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Succursale Centre-ville, Montreal, Québec, Canada, H3C 3J7
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We consider the Skyrme model modified by the addition of mass terms which explicitly break chiral
symmetry and pick out a specific point on the model’s target space as the unique true vacuum. However,
they also allow the possibility of false vacua, local minima of the potential energy. These false vacuum
configurations admit metastable skyrmions, which we call false skyrmions. False skyrmions can decay due
to quantum tunneling, consequently causing the decay of the false vacuum. We compute the rate of decay of
the false vacuum due to the existence of false skyrmions.
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I. INTRODUCTION

The Skyrme model [1,2] was introduced in the 1960s as a
nonlinear σ-model which describe the interaction of low-
energy mesons. The model also admits topological solitons
(skyrmions) which were interpreted as baryons (for a review
see [3]). However, since that time, skyrmions have found a
wide variety of applications in particle physics, cosmology
and, more recently, condensed matter physics [4].
The basic topological consideration comes from the

classification of mappings of d-dimensional configuration
spaceRd into the target space of the non-linear σ-modelM

φ∶ Rd → M ð1Þ

subject to the constraint that the field goes to a constant at
spatial infinity. Such a constraint allows us to compactify
configuration space from Rd to Sd, the d-dimensional
sphere, and the homotopy classes are then the homotopy
groups

fφ∶ Sd → Mg ¼ ΠdðMÞ ð2Þ

Of course, the existence of nontrivial homotopy classes
does not guarantee the existence of nontrivial finite-energy
solutions. Indeed, in the original work of Skyrme, a four-
derivative term (the Skyrme term) was added to prevent the
collapse of any topologically nontrivial configuration to a
singular configuration [1,2]. Additionally, the potential on
the target manifold must have a global minimum, and for
finite energy, the asymptotic constant value to which the
Skyrme field goes, sufficiently quickly, must be the global
minimum.
However, one can imagine a Skyrme model where the

potential on the target manifold has multiple local minima,
i.e., one true vacuum as well as one or more false vacua.
Furthermore, one can imagine scenarios where the system
is trapped in a metastable false vacuum state [5–9]. Indeed,
such a scenario would generically happen in a cosmological
phase transition wherein the universe cools down quickly
leaving large domains trapped in the false vacuum. Similar
scenarios can also occur in condensed matter applications
where skyrmions arise. Then the false vacuum can decay to
the true vacuum only from quantum fluctuations and
quantum tunneling transitions. However, relative to the
false vacuum, the Skyrme field admits skyrmion type
defects, where the constant value that the Skyrme field
goes to corresponds to the value of the field at the false
vacuum. The decay rate of the homogeneous and isotropic,
false vacuum configuration was computed by Kobzarev
et al. and by Coleman and collaborators [10–13].
Here we consider the situation that the false vacuum

contains a (false) skyrmion type defect. The false skyrmion,
due to topological exigency, requires the true vacuum point
on the target manifold to occur at some place in its interior.
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This region of true vacuum would in principle like to grow
unboundedly, converting false vacuum to true vacuum.
However, in the models considered in this paper, there is a
competition between the energy gained by such a process
versus the energy lost by growing the size of the wall. The
volume energy gain scales as ∼ − R3 while the energy in
the wal increases as ∼R2. Clearly for large enough R the
volume term wins. However for smaller R the wall term
dominates and there can be a potential barrier to the region
where the volume term dominates. We find, in the models
that we consider here, that the false skyrmion can only
decay through quantum tunneling transitions through such
a barrier, and we compute the corresponding tunneling rate.

II. MASS TERMS AND FALSE SKYRMIONS

In this paper, we begin with the original notion of
skyrmions, topologically nontrivial configurations of a
nonlinear SUð2Þ σ-model whose field UðxÞ takes values
in M ¼ S3, the group manifold of SUð2Þ. Finite-energy
field configurations must go to a constant (U → 1, say) at
spatial infinity, so they are maps from compactified
physical space (S3) into M. Since Π3ðS3Þ ¼ Z, topologi-
cally nontrivial field configurations exist and are stabilized,
as mentioned above, with the addition of a four-derivative
term, giving the Skyrme lagrangian:

L ¼ f2π
16

Tr½∂μU†∂μU� þ 1

32e2
Tr½U†∂μU;U†∂νU�2: ð3Þ

If applied to strong interactions, fπ may be interpreted as the
pion decay constant; e is a dimensionless constantwhich can
be inferred from scattering data [14–16]. Throughout this
paper, we will use energy and length units fπ=ð4eÞ and
2=ðefπÞ, respectively, as is common practice [17], with
which the Skyrme Lagrangian simplifies to

L ¼ 1

2
Tr½∂μU†∂μU� þ 1

16
Tr½U†∂μU;U†∂νU�2: ð4Þ

The Lagrangian (3) exhibits the full SUð2Þ × SUð2Þ
chiral symmetry of two-flavor QCD. The chiral SUð2Þ ×
SUð2Þ with element ðV;WÞ acts on U through the action

ðV;WÞ∶ U → V†UW: ð5Þ

The vacuum manifold is the entire target space M. In any
specific vacuum, chiral symmetry is spontaneously broken
to an SUð2Þ subgroup. For instance, the choice U ¼ 1 is
invariant only under the diagonal subgroup V ¼ W.
We will add a potential to the Lagrangian of the form

Lmass ¼ −
1

4
ðm2

1Tr½1 − U� þm2
2Tr½1 − U2�Þ ð6Þ

with which U ¼ 1 is the global minimum-energy configu-
ration, or the true vacuum. More generally, explicit chiral

symmetry breaking can be achieved with a mass term
of the form1

Lmass ¼
X
k

CkTr½Uk�: ð7Þ

Writing

U ¼ eiζn̂·τ ¼ cos ζ þ in̂ · τ sin ζ ð8Þ
where τ ¼ ðτ1; τ2; τ3Þ are the Pauli matrices, we get

Lmass ¼ 2
X
k

Ck cos nζ ð9Þ

which is the cosine Fourier series representation of an
arbitrary potentialVðζÞ. In the context of low-energy meson
interactions, the only physical constraint on suchmass terms
is that the pion mass be small. This condition requires that
the curvature (second derivative) of the potential near its
global minimum be small. In fact, if we allow mass terms to
explicitly break the chiral symmetry completely, then any
potential on the three-sphere is permitted. Given that the
pions do not form a perfectly degenerate multiplet, it is clear
that even the diagonal symmetry is explicitly broken,
although softly. Hence any kind of soft symmetry breaking
terms would in principle be permissible.
Allowing such possibilities, it is not unreasonable to

imagine a theory with a more elaborate potential, one with
several local minima and of course one global minimum. In
this case, one could imagine that through some cooling
process the system is trapped in a false, metastable vacuum
which would be unstable to quantum tunneling. The
topologically nontrivial nature of the configuration space
allows for false skyrmions, ones where the field goes from
true vacuum to false as r goes from the origin to infinity.
These would decay by tunneling to a configuration that is
classically unstable to infinite expansion and dilution. In
fact, it is possible that the false vacuum is long-livedwhereas
false skyrmions decay rapidly, in which case the very
presence of false skyrmions could have a dramatic effect
on the overall stability of the system. We will examine
exactly such a possibility with the mass term given in (6).

III. SKYRME MODEL WITH A FALSE VACUUM

The model we consider is the Skyrme model (4)
combined with the potential (6):

L ¼ 1

2
Tr½∂μU†∂μU� þ 1

16
Tr½U†∂μU;U†∂νU�2

−
1

4
ðm2

1Tr½1 − U� þm2
2Tr½1 − U2�Þ: ð10Þ

1We could write the potential as a function of Tr½U�, but this is
completely equivalent, as Tr½Un� admits a polynomial expansion
in terms of Tr½U�.
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Using cosmological language for simplicity, we cam imag-
ine that the universe is trapped in the false vacuum. It will of
course eventually decay through quantum tunneling. As has
been observed in other contexts, [18–20], it is possible that
topological objects (skyrmions in the current model) which
have true vacuum in their core are formed, and that these
objects are classically stable yet unstable due to quantum
tunneling. The key question which we will address is
whether the presence of solitons has an important effect
on false vacuum instability.
For a static configuration, the energy density correspond-

ing to (10) is given by

E ¼ 1

2
Tr½∂iU†∂iU� −

1

16
Tr½U†∂iU;U†∂jU�2

þ 1

4
ðm2

1Tr½1 − U� þm2
2Tr½1 − U2�Þ:

Constant field configurations have energy density

EV ¼ 1

4
ðm2

1Tr½1 − U� þm2
2Tr½1 − U2�Þ: ð11Þ

Writing U as in (8) gives

EV ≡ VðζÞ ¼ m2
1sin

2ζ=2þm2
2sin

2ζ: ð12Þ

It is easy to see that ζ ¼ 0 is a global minimum with
vanishing energy density while if 4m2

2 > m2
1 there is a

second, local minimum at ζ ¼ π with energy density
EVðπÞ ¼ m2

1.

A. Metastable false solitons

Generically, false solitons in a variety of models can be
metastable for a wide range of parameters of the model. We
have analyzed magnetic monopoles, vortices and cosmic
strings in the false vacuum, [18–20]. These situations
contain gauge fields, which are absent in the case of
skyrmions; however, we find the behavior is quite similar.
Generally, we have found a simple expression for the
energy of the soliton in the so-called thin-wall limit. In this
limit, the soliton profile, which interpolates between the
true and false vacua, does so abruptly: it is essentially a
bubble of true vacuum embedded in the false vacuum with
the transition between the two occurring over a length scale
much smaller than the bubble radius R. In this case we find

E ¼ αRd−1 þ β

R4−d − ϵRd ð13Þ

where d is the dimension of the space. The first term
corresponds to the energy of the wall which is proportional
to its area if d ¼ 3, its length if d ¼ 2, etc. The second term
corresponds to the energy in the gauge field. For a
monopole in 3 dimensional space it is just the 1=R
Coulomb energy while for vortices or cosmic strings it
is the 1=R2 energy in the magnetic flux tube. The third term

is the energy of the true vacuum within the soliton, which is
taken to be negative by normalizing the false vacuum to have
zero energy density. It is clear that such an energy function
admits a classically stable soliton solution: the first two
terms have a nontrivial minimum. However, this minimum
does not actually guarantee the soliton’s existence which
must be established by solving the full equations of motion
allowing for arbitrary nonspherical variations. Our numeri-
cal analysis makes us quite confident that the corresponding
metastable solution does exist. This minimum is separated
by a classical potential barrier from region that is unbounded
from below as given by the third term.
Such thin wall solitons have been shown to exist in the

Abelian Higgs model in 2þ 1 dimensions where the
corresponding soliton is called a vortex, [21], in the same
model in 3þ 1 dimensions where the corresponding soliton
is called a cosmic string, and in the ’t Hooft-Polyakovmodel
[22,23], giving rise to magnetic monopoles. There are also
interesting 1-dimensional models where kinks or domain
walls have true vacuum inside the wall and false vacuum
outside [24–26], although these metastable configurations
owe there stability to a slightly subtler mechanism. We will
find in this paper that such solutions also exist in models with
just scalar fields, such as the Skyrme model [3] although then
there is nogauge field energy.However for theSkyrmemodel,
we will see that the Skyrme term provides the inverse powers
of the energy which stabilize the soliton against collapse.

IV. THE SKYRMION ANSATZ

A. Energy functional

We take the field U to be that given by the rational map
ansatz [3,27]

U ¼ eifðrÞn̂ðx̂Þ·τ ; ð14Þ
where n̂ðx̂Þ is a mapping of S2 → S2 that corresponds to the
rational map of degree B. The baryon number of the
configuration then is also B as long as fðrÞ interpolates
from π to 0 for a normal skyrmion, but from 2π to π for a
false skyrmion. The baryon number is an odd function of
fðrÞ but it is invariant under shifts by π. If we want to
maintain fðrÞ ∈ ½0; π� then we must replace fðrÞ → π −
fðrÞ and n̂ → −n̂. However, the energy functional, apart
from the symmetry-breaking mass terms in the potential is
invariant under fðrÞ → fðrÞ þ π, the transformation which
exchanges the interior with the exterior.
The (dimensionless) energy functional is given by

E ¼
Z

d3rE →
1

3π

Z
dr

�
r2f02 þ 2Bðf02 þ 1Þsin2f

þ I
sin4f
r2

þ r2VðfÞ
�

ð15Þ

where we have rescaled the energy by an additional factor
1=12π2. (This is a fairly commonpractice [17], motivated by
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the fact that it simplifies the Skyrme-Faddeev-Bogomolny
lower bound on the energy [2,28,29] to E ≥ jBj. Note that
recently stronger lower topological energy bounds have
been derived in Refs. [30,31].)
The factor I appearing in (15) is an integral involving

only the rational map and is given in [3,27]. An interesting
aspect of I is that, although evaluated numerically, it is
approximately proportional to the baryon number squared in
the Skyrme model [32]: I ≈ 1.28B2. This value for I is
actually obtained fromnumerical studies forB ∈ 1 ∼ 22, but
wewill assume that it does not change significantly formuch
larger baryon number and will therefore extrapolate accord-
ingly. I only depends on the rational map and the angular
variables and hence cannot depend on the non-standard
choice of radial potential (6). Explicitly, the potential is

VðfÞ ¼ m2
2sin

2fðrÞ þm2
1sin

2
fðrÞ
2

: ð16Þ
Throughout the paper we have usedm1 ¼ 0.5,m2 ¼ 10; the
potential for these values is displayed in Fig. 1. The potential
has a global minimum at f ¼ 0, where it vanishes, and a
local minimum at f ¼ π, making the latter a false vacuum.
We call the difference in vacuum energy densities ϵ; for the
parameter values used ϵ ¼ 0.25. (We will in fact give the
potential an overall shift so that it is zero at the false vacuum
and −ϵ in the true vacuum.)

B. Equation of motion

The equation of motion is given by

ðr2 þ 2Bsin2fÞf00 þ 2f0r

þ sin 2f

�
Bðf02 − 1Þ − Isin2f

r2

�
−
r2

2

∂V
∂f ¼ 0 ð17Þ

with the boundary conditions

fð0Þ ¼ 2π; fð∞Þ ¼ π: ð18Þ

The boundary conditions correspond to a false skyrmion,
having the true vacuum at the center and the false vacuum at
infinity.
The equation of motion can be easily solved numeri-

cally using MATLAB’s bvp4c solver [33]. We discre-
tize the two-point boundary problem [(17)] on a uniform
grid with spatial grid size r ¼ ½0; 20� and 4000 spatial
grid points. We obtain the profile function for the B ¼ 1
false skyrmion solution by providing the finite difference
solver with a crude initial guess satisfying the boundary
conditions (18). False skyrmion solutions for higher
baryon numbers B, are obtained by simple continuation,
that is we increase the baryon number from B ¼ 5 up to
B ¼ 2000 in steps of ΔB ¼ 5 and initialize the solver in
each step with the false skyrmion solution obtained in
the previous step.
The profile function fðrÞ for a wide range of baryon

number is displayed in Fig. 2, from which it can readily be
seen that the profile is indeed of thin-wall type for B
sufficiently large. The energy density and baryon number
density are plotted as a function of radius in Figs. 3 and 4,
respectively, again displaying the thin-wall nature of the
solutions.
As a measure of the skyrmion’s size, we have computed

numerically the skyrmion’s mean charge radius, which is
defined as the square root of the second moment of the
baryon number density BðrÞ, that is,

hr2iQ ¼
R
d3rr2BðrÞR
d3rBðrÞ ; ð19Þ

with

FIG. 1. Potential (16) with mass parameters m1 ¼ 0.5 and
m2 ¼ 10 as a function of the profile function fðrÞ. VðπÞ is
slightly positive, making f ¼ π a false vacuum.

FIG. 2. False skyrmion profile functions, m2 ¼ 10, m1 ¼ 0.5,
B ¼ n.
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BðrÞ ¼ 2n
π
sin2ff0: ð20Þ

In order to allow the interested reader to reproduce
our numerical results, we list in Table I energies and
charge radii for false skyrmions for a range of baryon
numbers B.

The corresponding profiles for true skyrmions are given
in Figs. 5 and 6. The profile functions and the energy
density are plotted as a function of radius displaying the
thin-wall nature of the solutions.
It is instructive to compare the energy as a function of

B for true and false skyrmions in our model. These are
shown in Figs. 7 and 8. We notice that they are both thin
wall. This is to be expected, since the potential is
essentially a symmetric double well with a relatively
small asymmetry; the vacuum energy at the false vacuum
is ≈:25 while the height of the energy barrier is ≈100 as
can be ascertained from Fig. 1. Hence there is not
much difference between a true skyrmion and the false
skyrmion. The field fðrÞ simply eschews the regions
where the potential barrier is high, in order to minimize
the energy.
We can see the effect of the existence of true and false

vacua on the skyrmion energy by comparing the model
described by (10) and the usual model with massive
pions, which does not have a false vacuum. The usual
model is obtained by keeping only the first term of (6). To
make a meaningful comparison, we keep the pion mass
[the second derivative of the potential at the vacuum (false
or true)] the same. Figure 9 shows a comparison of the
energy in the two models. Figure 10 displays hr2i
weighted by the energy density, (19) with B → E, as a
function of the baryon number. For shell-like skyrmions
formed in the model (10), we find a perfect linear
correlation, hr2i ∝ B, as shown by the dashed line in
Fig. 10. The solid line in Fig. 10 scales more like B2=3.
Both of these behaviors are as expected, as can be seen by
the following argument. In both models,

hr2i ∼ R2; R≡ skyrmion radius: ð21Þ

However, distinct skyrmion profiles give a different
relation between B and R

Bshell ∼ R2; Bball ∼ R3: ð22Þ

Combining (21) and (22), we find

hr2ishell ∼ B; hr2iball ∼ B2=3: ð23Þ

FIG. 4. False Skyrmion baryon number density, m2 ¼ 10,
m1 ¼ 0.5, B ¼ n.

TABLE I. Energies and charge radii for false skyrmion solutions for a range of baryon numbers B. Associated profile functions,
baryon densities and energy densities can be found in Figs. 2–4. Recall that energy values are given in units of 12π2 and we subtracted
the energy of the false vacuum.

B 1 10 100 200 300 400 500 600 1000 1500 2000

E 2.769 23.339 227.317 453.752 680.058 906.259 1132.373 1358.405 2261.856 3389.900 4516.776
hr2i1=2Q

0.370 0.984 2.997 4.230 5.179 5.981 6.688 7.327 9.468 11.607 13.415

FIG. 3. False skyrmion energy density,m2¼10,m1¼0.5,B¼ n.
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FIG. 5. True skyrmionprofile functions,m2¼10,m1¼0.5,B¼n.

FIG. 6. True skyrmion energy density,m2¼10,m1¼0.5, B¼n.

FIG. 7. hr2i versus B for the potential with a false skyrmion
(blue, solid) and with a true Skyrmion (red, dashed), for the same
pion mass.

FIG. 8. Energy versus B comparing true and false skyrmions.

FIG. 9. Energy versus B for the potential without a false
vacuum (blue, solid) and with a false vacuum (red, dashed),
for the same pion mass.

FIG. 10. hr2i versus B comparing potentials as in Fig. 9.
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C. Energy

We have established the existence of thin-wall
solutions for skyrmions within the rational map ansatz
and evaluated their energy numerically. In fact, the energy
can be determined using an analytical approach in the thin
wall limit approximatiion. The energy can be written as a
sum of contributions from three regions: inside the wall,
across the wall and outside the wall. Thus,

EðRÞ ¼
Z

R−Δ

0

drE þ
Z

RþΔ

R−Δ
drE þ

Z
∞

RþΔ
drE

¼ Eint þ Ewall þ Eext ð24Þ

where R is the radius of the thin wall and Δ is its thickness.
Of course, it is assumed that Δ ≪ R, an approximation
amply justified by the skyrmion profiles shown in Fig. 2. In
the interior of the skyrmion, fðrÞ ¼ 2π which is the true
vacuum. The true vacuum has energy density −ϵ as the
false vacuum is normalized to have zero energy density.
Thus

Eint ¼ −
1

9π
ðR − ΔÞ3ϵ ¼ −

1

9π
R3ϵ

�
1þO

�
Δ
R

��
: ð25Þ

In the exterior, the configuration is in the false vacuum,
which is normalized to have zero energy density, thus

Eext ¼ 0: ð26Þ

For the energy in the wall, Ewall, we will show that it is easy
to obtain an approximate expression for the energy as a
function of the radius of the wall. Consider the equation of
motion, multiplied by f0ðrÞ

ðr2þ2Bsin2fÞf00f0 þ2f02r

þsin2f

�
Bðf02−1Þf0−Isin2f

r2

�
f0−

r2

2

∂V
∂f f

0 ¼0: ð27Þ

Now near the wall, r is large so we can take r ≈ R. f0 and f00

are both of Oð1Þ compared with R. Hence the term 2rf02 is
negligible compared to r2f00f0, and we will simply drop it.
The rest of the equation can now be integrated, giving

R2f02

2
þ 2Bsin2ff02

2
− Bsin2f −

Isin4f
2R2

−
R2V
2

¼ 0 ð28Þ

where we have normalized the integration constant to
vanish. This allows us to isolate f02:

f02 ¼ 2B sin2 f þ ðI sin4 f=R2Þ þ R2V
R2 þ 2B sin2 f

ð29Þ

which then can be used to obtain the energy in the wall as a
quadrature

Ewall ¼
2

3π

Z
π

0

df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2Bsin2f þ Isin4f

R2
þ R2V

�s

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 þ 2Bsin2fÞ

q
; ð30Þ

Dropping the small symmetry-breaking term in the poten-
tial, givingV ≈m2

2 sin
2 f, andmaking the change of variable

x ¼ cos f, we find

Ewall ¼
2

3π

Z
1

−1
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2Bþ R2m2

2 þ
I
R2

−
I
R2

x2
�s

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 þ 2B − 2Bx2Þ

q
: ð31Þ

This integral can be done analytically and expressed in terms
of elliptic functions of the first and secondkind; however, the
answer is not particularly illuminating.
The energy of the configuration as a function of R is

given by the sum of (25), (26) and (31); the result is
displayed in Fig. 11.
We notice that Ewall contains the crucial terms which

behave as R2 and 1=R giving the energy of the thin wall
skyrmion as

(a)

(b)

FIG. 11. Numerical plot of the potential for thin wall false
skyrmions for N ¼ 1000, m1 ¼ 0.05 and m2 ¼ 10.
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E ¼ αR2 þ β

R
−

1

9π
ϵR3 ð32Þ

where α gets contributions mostly from both the kinetic
term and Skyrme term and β gets its contribution largely
from the Skyrme term and simple dimensional analysis
implies the 1=R behavior, while ϵ comes from the mass
terms and the energy difference between the true and false
vacua. Note that this is only an approximate picture to
understand why it should make sense to have a metastable
skyrmion. A quick look back to (30) shows the energy’s
dependence on R is not so simple. Nevertheless, the above
expression is useful since it encompasses the large R and
small R limits. Clearly the minimum of this potential must
exist for R0 such that R0 ≫ Δ.

V. TUNNELING DECAY

A. False skyrmion decay

Figure 11 shows that the thin-wall skyrmion is a
metastable solution. The static skyrmion has a radius R0,
Fig. 11(a), but there is a larger escape radius R1, Fig. 11(b),
and the static energy is equal at both of these radii. Through
quantum tunneling, the metastable skyrmion can expand to
radius R1 and become unstable. In what follows, we study
the instanton giving this tunneling effect.
Considering the field dependence on time, it is simple to

show that the only change occurring is a substitution of the
radial derivative

f02 → _f2 þ f02: ð33Þ

We consider the motion of the skyrmion in Euclidean
spacetime ðτ;xÞ, restricting our attention to radial fluctua-
tions of the skyrmion. It is clear that such fluctuations
yield instantons of lowest actions, and thus dominate the
tunneling decay rate. In fact, we shall treat the radius R
of the skyrmion as a collective coordinate, and as the
only dynamical degree of freedom. Furthermore, we shall
suppose that the profile of the wall remains unchanged in its
rest frame as RðτÞ changes.
We must calculate the action for the time dependent

skyrmion. There are in principle contributions from the
three regions, inside, wall and outside, although some of
these are trivial or vanish. The functional form of the
energy inside the skyrmion as given by (25) is not affected
by the addition of _f since the scalar field is constant inside;
thus,

SEint ¼
Z

dτEint: ð34Þ

As for the energy on the wall, its contribution to the
Euclidean action becomes

SEwall ≈
1

3π

Z
dτdr

�
R2ð _f2 þ f02Þð1þ 2Bsin2fÞ

þ
�
2BR2sin2f þ I

sin4f
R2

þ R2VðfÞ
��

: ð35Þ

where we maintain the thin-wall approximation for which
r ≈ R on the wall. To compute this term, it is useful to
introduce the Gaussian normal coordinate system (see [34]
for an example of the application in the vortex system)

ds2 ¼ dτ2p − dr2p − R̄2ðτp; rpÞdθ2; ð36Þ

where gτpτp ¼ 1. In this system, the wall is located at a fixed

value rp ¼ r̄p for which R̄2ðτp; r̄pÞ ¼ R2ðτpÞ, where R is
the physical radius of the wall. The induced metric on the
surface of the wall Σ is then

ds2ðΣÞ ¼ dτ2p − RðτpÞ2dθ2: ð37Þ

With these coordinates, the Euclidean action is given by

SEwall ¼
1

3π

Z
dτpdrp

�
R2

�
df
drp

�
2

ð1þ 2Bsin2fÞ

þ
�
2BR2sin2f þ I

sin4f
R2

þ R2VðfÞ
��

: ð38Þ

By the nature of the coordinate system which is co-moving
with the wall, the kinetic term is absent: df=dtp ¼ 0.
Additionally, we assume that df=drp is left unchanged
compared to its value (29) when the skyrmion is static. It
then follows that

SEwall ¼
Z

dτpEwall ð39Þ

where Ewall is given in (30). Going back to the “lab” frame,
we get a relativistic correction which comprises the kinetic
term expected with the motion of the wall

SEwall ¼
Z

dτ
Ewall

γE
; γE ¼ ð1þ _R2Þ−1=2: ð40Þ

The contribution of the region outside the skyrmion still
vanishes when the wall becomes dynamic. The complete
Euclidean action is then given by

SEsky ¼
Z

dτLE ¼
Z

R1

R0

dR
_R

�
Ewall

γE
þ Eint

�
: ð41Þ

We have a single degree of freedom R so we can simply use
methods of classical mechanics to reexpress this action.
Invariance of the Lagrangian under Euclidean time trans-
lation implies
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−
∂LE

∂ _R
_Rþ LE ¼ constant: ð42Þ

Computation of the left-hand side yields

γEEwall þ Eint ≡ E0: ð43Þ

This is of course energy conservation, hence the name E0

for the constant. With this conserved quantity, useful
relations to reexpress the action in (41) can be found.
First, γE is found from (43) as

γE ¼ −
Eint − E0

Ewall
: ð44Þ

We then can solve for the Euclidean velocity of the wall

_R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

Ewall

Eint − E0

�
2

− 1

s
: ð45Þ

In order to compute the tunneling decay rate, we shall
compute the tunneling exponent which is the difference in
action between the instanton configuration and the back-
ground skyrmion2

S̃Esky ≡ SEsky

���
RðτÞinstanton

− SEsky

���
R0

ð46Þ

¼
Z

R1

R0

dR
_R

�
Ewall

γE
þ Eint − E0

�
: ð47Þ

Using (44) and (45), this can be rewritten as

S̃Esky ¼ −
Z

R1

R0

dRðEint − E0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

Ewall

Eint − E0

�
2

− 1

s
: ð48Þ

Wewill find an analytic expression for S̃Esky. To do so, we
assume R1 ≫ R0. This means the escape radius R1

obtained in the thin-wall approximation must be much
larger than the static skyrmion radius R0. The motivation
for this approximation is the following. As a very small
difference between false and true vacuum energy density is
required from the outset, the volume density contribution
rendering the system metastable is very weak, meaning that
a large soliton radius is required to before we reach the
unstable situation where the energy of the solitons is less
than that of the initial, metastable soliton.
We shall first obtain the desired analytic expression.

Afterwards, we will verify that the approximation
employed, R1 ≫ R0, is self-consistent. We first write SEsky
using R0 ≪ R1,

SEsky ¼
Z

R1

R0

dR
_R
LE ≈

Z
R1

0

dR

�
LE

_R

�����
R≫R0

ð49Þ

The integrand for R ≫ R0 admits a Laurent expansion in
powers of R with a finite number of positive powers. The
dominant contribution to the integral comes from this region,
which can be ascertained by studying the contributions from
the interior and from the wall as given by Eqs. (25), (31). In
this region, we can approximate the integrandwith its largest
polynomial power. The contribution from the region where
R ≈ R0 is finite and negligible compared to the contribution
from region of large values of R. Therefore, keeping only
largest power of R in the integrand, and integrating from
some large valueR0 toR1, whereR0 satisfiesR0 ≪ R0 ≪ R1,
will give a good approximation to the actual integral. But
now, sinceR0 ≪ R1, and since furthermoreweare integrating
only a positive power of R, extending the integration all the
way down to R ¼ 0will give rise to only a tiny contribution
to the integral compared to the bulk of the integral coming
from R0 → R1. This approximation to the original integral
will simply give an upper bound to the actual integral, with
corrections that are small compared to the computed
approximate value.
With this in mind, we wish to simplify LE. There are two

contributions, Eint and Ewall, which are respectively defined
in (25) and (38), (39). Keeping only the largest powers of R,
we obtain

Eint − E0 ≈ Eint ¼ −
1

3π

ϵ

3
R3; ð50Þ

Ewall ≈
R2

3π

Z
π

0

drpðf02 þ VðfÞÞ≡ R2

3π
σ; ð51Þ

where σ is the surface energy density, a quantity which can
be computed in our approximation scheme using (29):

σ ≡
Z

π

0

drðf02 þ VðfÞÞ ≈ 2

Z
π

0

drf02

¼ 2

Z
π

0

df
ffiffiffiffiffiffiffiffiffiffi
VðfÞ

p
¼ 4m2 þO

�
m2

1

m2
2

�
; ð52Þ

where again, we have kept only highest powers of R when
using (29). Inserting Eqs. (50), (51) in the action (48), we
obtain

S̃Esky ≈ −
Z

R1

0

dREint

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Ewall

Eint

�
2

− 1

s

¼ 1

3π

Z
R1

0

dR

�
ϵR3

3

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
σR2

ðϵ=3ÞR3

�
2

− 1

s

¼ 1

3π

ϵR4
1

3

Z
1

0

dxx3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

x2
− 1

r
; x≡ R

R1

¼ ϵ

144
R4
1: ð53Þ

2In Coleman’s notation, this normalized action would be
referred to as Bsky. Here we use S̃Esky to avoid confusion with
the baryon number B.
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We must now evaluate the escape radius R1. We again
rely on the approximation R0 ≪ R1 which justifies neglect-
ing small powers of R. We search for zeroes of _R since the
boundary conditions of the expanding skyrmion imply,
among others, that _RjR¼R1

¼ 0. Going back to the defi-

nition (45), _R can be approximated with (50), (51)

_R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

σR2

ðϵ=3ÞR3
− 1

�
2

s
: ð54Þ

This vanishes for

R1 ¼ 3σ=ϵ: ð55Þ

The computation of the action can now be completed

S̃Esky ¼
ϵ

144
R3
1 ¼

9σ4

16ϵ3
≡ 144

m4
2

m6
1

: ð56Þ

We now verify our claim that R0 ≪ R1. We have
computed R1 ¼ 3σ=ϵ≡ 12ðm2=m2

1Þ which can be written

R1 ¼ 12
m2

m2
1

¼ 12

m2

�
m2

m1

�
2

∼
�
m2

m1

�
2

≫ 1: ð57Þ

for the parameters considered here. Moreover, R0 is the
only length scale relevant to describe the false skyrmion
and it should obey R0 ∼

ffiffiffiffi
B

p
. This behavior has indeed been

demonstrated in Fig. 10. Comparing R1 and R0, we find the
relation

R0 ¼
ffiffiffiffi
B

p
≪

�
m2

m1

�
2

∼ R1: ð58Þ

This relation between parameters,
ffiffiffiffi
B

p
≪ ðm2=m1Þ2,

implying R0 ≪ R1, is observed in solutions presented in
Sec. IV. Thus, there is a class of metastable skyrmions
whose lifetimes are easily computed with the analytical
tunneling exponent (56). The contribution of these defects
in determining the false vacuum lifetime is determined by
comparing it to other destabilizing effects.

B. False vacuum decay

We now turn our attention to false vacuum decay. As
mentioned earlier, the false vacuum is given by a constant
unitary matrix parameterized as U ¼ eiζn̂·τ with ζ ¼ π and
then n̂ is irrelevant, U ¼ −1. Deviating from this false
vacuum is done only through ζ ¼ gðτ;xÞ. In this given
background, a true vacuum bubble can nucleate and induce
a phase transition. We assume the associated instanton has
the form U ¼ Reigðτ;xÞn̂·τR† where R denotes a constant,
global rotation. Then the Skyrme term is zero and we find a
simple scalar field theory with potential VðgÞ

SE ¼ 1

12π2

Z
d4xð∂μg∂μgþ VðgÞÞ: ð59Þ

In this case, we can use the result of Coleman and
collaborators [11–13], according to which the nontrivial
configuration of minimal action is spherically symmetric.
Thus, assuming gðρÞ where ρ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 þ jx2j

p
, we obtain the

following equation of motion

g00 þ 3

ρ2
g0 −

1

2

∂VðgÞ
∂g ¼ 0: ð60Þ

A thin-wall solution, for which g makes a sharp transition
from π to 0, is possible given that VðgÞ is nearly degenerate,
that is,m1=m2 ≪ 1. We play the same game as for the false
skyrmion. Given that ρ is large, we can drop the second
term in the equation of motion (60). Then, we obtain the
first integral

g02 − VðgÞ ¼ −VðπÞ: ð61Þ

Then the corresponding action is

S̃Evac ¼
1

12π2

Z
d4xðg02 þ VðgÞ − VðπÞÞ

¼ 1

12π2

Z
dΩ

�Z
ρ̄−δ

0

dρρ3ðVðgÞ − VðπÞ
�

þ
Z

ρ̄þδ

ρ̄−δ
dρρ3ðg02 þ VðgÞ − VðπÞÞÞ

¼ 1

6

�Z
ρ̄−δ

0

dρρ3ð−m2
1Þ þ

Z
ρ̄þδ

ρ̄−δ
dρρ3ð2g02Þ

�

≈
1

6

�
−
ϵ

4
ρ̄4 þ σ̃ρ̄3

�
ð62Þ

where ρ̄ is the radius of the instanton, the exterior of the
instanton gives a vanishing contribution, ϵ≡m2

1 and

σ̃ ¼
Z

ρ̄þδ

ρ̄−δ
dρðg02 þ VðgÞ − VðπÞÞ

¼ 2

Z
π

0

dg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðgÞ − VðπÞ

p
¼ 2m2

Z
π

0

dg sin

�
g
2

�
þO

�
m2

1

m2

�

¼ 4m2 þO
�
m2

1

m2

�
: ð63Þ

Comparingwith (52), we see that σ̃ ¼ σ to leading order. The
action is extremized on physical configurations. Requiring
dS̃Evac=dρ̄ ¼ 0, the radius of the bounce is obtained

ρ̃ ¼ 3σ

ϵ
≡ R1: ð64Þ
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This is exactly the escape radius R1 we found for the false
skyrmion. The tunneling exponent is then

S̃Evac ¼
1

24
ρ̃4 ¼ ϵ

24
R4
1 ¼

9σ4

8ϵ3
: ð65Þ

We note that

S̃Esky ¼
S̃Evac
2

: ð66Þ

This result is not exclusive to false skyrmions. It was also
observed for vortices [34]. This can be understood in the
following way. Once appropriate terms are neglected in the
soliton’s euclidean action, its disintegration is described
by a OðD − 1Þ symmetric vacuum bubble which expands
and shrinks in Euclidean time, where D is the number of
spacetime dimensions. This channel is then compared to
conventional vacuum decay given by nucleation of a OðDÞ
symmetric vacuum bubble. Thus, with this universal struc-
ture arising for codimension D − 1 solitons, the general
relation Ssoliton ¼ Svac=2 is not surprising.

C. Vacuum decay rates

For a dilute gas of instantons, the vacuum decay rate (per
unit volume) in the semiclassical approximation is given by
Γ=V ¼ Ae−B½1þOðℏÞ�. For the coefficient A, the change
of variables gives rise to a Jacobian factor which is
evaluated in [12,13,35] and yields the decay rate

Γ ¼ A0Lð#zero modes−1Þ
�
S̃E

2π

�ð#zero modesÞ=2
e−S̃

E
; ð67Þ

where A0 is the determinant excluding the contribution of
translational zero modes and hence V ¼ Lð#zero modes−1Þ,
where L denotes the linear dimension of space.3 We
compare the decay rate for skyrmion disintegration and
that of regular vacuum decay. The skyrmion decay rate has
to be multiplied by the numberN of skyrmions in the given
volume V. We suppose a dilute distribution of skyrmions
such that inter-skyrmions interactions can be ignored. The
ratio of tunneling rates is then given by

Γvac

NΓsky ¼
VA0vacðS̃Evac

2π Þ
4=2

exp ð−S̃EvacÞ
NA0skyðS̃

E
sky

2π Þ
1=2

exp ð−S̃EskyÞ

¼
ffiffiffi
2

p
A0vac

ðN =VÞA0sky

�
S̃Evac
2π

�
3=2

exp

�
−
S̃Evac
2

�
ð68Þ

where we have used S̃Esky ¼ S̃Evac=2 ¼ 48m4
2=m

6
1. N =V

indicates the skyrmion number density.
The skyrmion number density is assumed to be small

enough that there is no significant interaction between the
skyrmions. Thus we assume

N ≪
V
R3
0

; ð69Þ

which simply means that the available volume per skyrmion
is much greater than its own volume ∼R3

0. The size of the
skyrmion is fixed by thevarious parameters in theLagrangian
(10) and the total baryon number of the skyrmion. This can be
much smaller than any macroscopic volume V whose decay
rate we are interested in, for example the size of the universe.
Hence V ≫ R3

0 andN can be very largewhile still satisfying
(69). The number density of topological defects is controlled
by the rate of quenching and the correlation length of the
fluctuations of the quantum fields as the system passes
through the phase transition [36–39].
We have assumed from the outset that ϵ ≪ 1. In this

limit, we find the tunneling rate due to false skyrmions to be
much larger than the tunneling rate due to simple, homo-
geneous vacuum decay, as seen by their ratio, given in (68),
is then very small. This can occur because S̃Evac is very large,
particularly as ϵ → 0, however, as S̃Evac becomes large, the
tunneling rate due to both false skyrmion decay and
homogeneous vacuum decay both become exponentially
small. In turn, this means the ratio, (68) is exponentially
small and therefore the phase transition is controlled by the
false skyrmion density. If this is large enough, the vacuum
decay will be largely dominated by false skyrmion dis-
integration. Calculation of the determinant factors A0vac and
A0sky has not been attempted here and is beyond the scope
and thrust of this work.

VI. CONCLUSIONS

Skyrmions are ubiquitous in particle physics and con-
densed matter physics as solitons which use the topological
nature of the space of field configurations and of the space
on which they are defined to form topologically stable
solitons. In the case of a false vacuum with the inherent
possibility of containing a skyrmion, such a false skyrmion,
due to its topological nature, necessarily contains the true
vacuum point within its interior, and as such it can induce
false vacuum decay. It is most important to be able to
compute the rate at which the induced vacuum decay will
occur. The present study reveals that false skyrmion decay
dominates regular vacuum decay in regions of parameter
space where the thin-wall approximation is valid.
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