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This paper extends the formalism for quantizing field theories via a microcanonical quantum field theory
and Hamilton’s principle to classical evolution equations. These are based on the well-known
correspondence under a Wick rotation between quantum field theories and 4D statistical mechanical
theories. By Wick rotating quantum field theories in 4þ 1D to 5D, the expectation values of observables
are calculated for a microcanonical field theory averaging Hamiltonian flow over a fifth spacelike
dimension, a technique common in lattice gauge simulations but not in perturbation theory. In a novel
demonstration, averaging pairs of external lines in the classical Feynman diagrams over the fifth dimension
generates diagrams with loops and vacuum fluctuations identical to Standard Model diagrams. Because it is
microcanonical, this approach, while equivalent for standard quantum fields theories in the Standard
Model, is able to quantize theories that have no canonical quantization. It is also unique in representing
expectation values as averages over solutions to an ordinary, classical partial differential equation rather
than a path integral or operator-based approaches. Hence, this approach draws a clear connection between
quantum field theory and classical field theory in higher dimensions which has implications towards how
quantum effects are interpreted. In particular, it raises questions about how violations of the ergodic
hypothesis could influence quantum measurements even in standard, nonstatistical quantum field theory.

DOI: 10.1103/PhysRevD.99.016012

I. INTRODUCTION

The correspondence between quantum field theory and
classical equilibrium statistical mechanics has been well
established for decades [1], grounded in the path-integral
approach to quantum field theory [2]. One way quantum
mechanics differs from classical mechanics is that the latter
obeys the principle of “least” action (least meaning an
extremum with first order change of zero), while actions in
the former case take on values above the least value
according to the path integral distribution. The principle
of least action states that the action S is a time integral that
is minimized for motion between the initial and final
positions, and is determined by solving for the extrema
of S, typically by using the variational principle δS ¼ 0.
Quantum mechanics suggests that this is only approxi-
mately true in a statistical sense and that the action actually
takes on many values above the least value. The same is
true of statistical ensembles that exchange energy with a
heat bath, and mathematically this equivalence emerges
from the path integral. The path integral approach of

Feynman obeys the complex distribution Z−1eiS½ϕ�=ℏ, where
Z ¼ R

DϕeiS½ϕ�=ℏ and ϕ is a time-dependent field which
approaches the least-action principle as ℏ → 0 [3]. When
time is taken to be imaginary (a Wick rotation [4]) t → iτ,
the distribution becomes an ordinary Boltzmann distribu-
tion, Z−1e−βS with β ¼ 1=ðkBTÞ ¼ 1=ℏ, where T temper-
ature and kB is Boltzmann’s constant. Hence, ℏ → kBT via
a Wick rotation. This correspondence can be extended from
mechanics to field theory by adding spatial dimensions to
the time dimension. Hence, there is a direct mathematical
equivalence between quantum field theory and the 4D
statistical mechanics of fields.
As discussed in the next few paragraphs, this correspon-

dence is no mere analogy but rather a mathematical tool
used frequently to go back and forth between classical and
quantum computational and mathematical frameworks.
Thus, the equivalence is not only between quantum field
theory and so-called canonical statistical mechanics. (The
word “canonical” means different things in different sub-
fields. In statistical mechanics it means using Boltzmann
distributions. In quantum field theory it means using
operators rather than path integrals.) The correspondence
extends mathematically from canonical statistical mechan-
ics to microcanonical statistical mechanics by well-known
equivalences [5] in continuum field theories where the
thermodynamic limit of particles or lattice points, N → ∞,
exists,
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Z−1e−βS ¼ Ω−1δðA − SÞ;

whereΩ ¼ R
DϕδðA − SÞ and δ is the Dirac delta function.

(For a proof, see Pauli’s work [6].)
From microcanonical statistical mechanics, it extends to

molecular dynamics [7], again by well-known equivalences
that connect integrals of actions over configuration space
with integrals of solutions to dynamical equations over
infinite time. Establishing such a connection was necessary
in the early 20th century in order to derive equilibrium
statistical mechanics from first principles [6,8]. This con-
nection depends on the assumption of ergodicity: the ability
of a dynamical equation to cover all states in the configu-
ration space over infinite time. Hence, with the assumptions
of continuous fields, the existence of a thermodynamic
limit, and ergodicity a transitive connection can be made
between canonical statistical mechanics and dynamics.
These equivalences are represented as follows:

eiS=ℏ ⟶
Wick

e−βS ≡TD limit
δðA − SÞ

≡ergodicity
�
dp
dτ

¼ −
∂H
∂q ;

dq
dτ

¼ ∂H
∂p

�

≡TD limit
Euler-Lagrange:

Given the equivalence underWick rotation to equilibrium
statistical mechanics in 4þ 1D, all of these are likewise
valid alternative approaches to quantum field theory.
Applications to quantum field theory emerged with the

search for quantum gravity [9] and, separately, the expan-
sion of computational lattice gauge theory. Microcanonical
quantum field theory first appeared in the literature in the
early 1980s, initially as a contender for solving uncontrol-
lable divergences in quantum gravity. Strominger devel-
oped a perturbation theory of the Standard Model in the
microcanonical ensemble [5,9]. Fermions were addressed
in his paper as well [5]. Strominger defined the action
S ¼ R

d4xðψ̄⊘−1ψ þ C̄ðxÞψðxÞ þ ψ̄ðxÞCðxÞÞ, where ⊘−1

is a matrix operator, e.g., ⊘−1 ¼ =D ¼ γμð∂μ − ieAμÞ and
CðxÞ is some source field. The fields ψ̄ðxÞ and ψðxÞ are
anticommuting spinor fields. Strominger’s configuration
integral is

Ω½C̄; C; A� ¼
Z

DψF=2Dψ̄F=2δðS − AÞ;

where A is the total fixed action and F is the finite number
of degrees of freedom defined by a box and ultraviolet
cutoff. The argument of the delta function is an even-order
Grassmann algebra, and Strominger computed the pertur-
bation theory for the action.
In 1985, Iwazaki proved the equivalence of the full

SUðNÞ lattice gauge theory with fermions in a Grassmann
algebra and the standard functional equations under weak

coupling. In other words, themicrocanonical ensemble gives
the same perturbation series as the standard path integral
[10]. Both provide good predictions of weakly interacting
fermions and bosons.At the end of his paper, he showed how,
under ergodicity, the microcanonical formulation is equiv-
alent to the time average of Hamilton’s equations, which
leads to a molecular dynamical equivalence.
On the computational front, Creutz developed his demon-

algorithm-based microcanonical quantum field theory
around the same time [11]. Meanwhile, in a pair of seminal
papers, Callaway developed microcanonical quantum field
theory for lattice gauge computations [7,12]. In his method,
Callaway proposed that discrete fields such as the electro-
magnetic vector potential ϕn;μ have conjugate momenta with
respect to a second time dimension τ, pn;μ ¼ ∂ϕn;μ=∂τ.
He pointed out that in the canonical quantization any
quantity independent of the field ϕ can be added to the
action. Thus, an observable expectation value with respect to
an action S,

hOi ¼ Z−1
Z

DϕO exp½−S� ð1Þ

(henceforth ℏ ¼ 1), can also be given by hOi ¼
Z0−1 R DϕDpO exp½−βH�, where the energy func-
tional H ¼ T½p� þ S½ϕ�=β and partition function Z0 ¼R
DϕDp exp½−βH�. He connected this equivalent theory

to the microcanonical ensemble. Thus, Callaway was able to
treat a quantum gauge theory as a classical dynamical theory
in an additional dimension. These methods have since
evolved into the hybrid Monte Carlo and molecular dynam-
ics approaches to lattice gauge simulation [13].
Approaching the problem as Hamiltonian flow in an

additional dimension of 1…N lattice points of a 4D lattice,
the microcanonical quantum field theory is the integral over
potential values on the lattice and their conjugate momenta:

Ω ¼
Z

dϕ1;μ � � � dϕN;μdp1;μ � � � dpN;μδðE −HÞ;

where the Hamiltonian is H ¼ T þ V, T ¼ 1
2

P
N
n¼1 jpn;μj2,

and V¼P
Reð1−Un;μUnþμU−1

nþν;μU
−1
n;νÞ, where Un;μ ¼

exp iϕn;μ. The action is S ¼ βV, with β ¼ 1=g20 where g0
is a coupling constant. This formulation is for Uð1Þ lattice
gauge theories but extends to SUð2Þ and SUð3Þ.
Observables on the lattice are given by

hOi ¼ Ω−1
Z

dϕ1;μ � � � dϕN;μdp1;μ � � � dpN;μOδðE −HÞ:

ð2Þ

The Hamiltonian is invariant under local gauge trans-
formations Un;μ þWnUn;μW

†
nþμ if Wn ∈ Uð1Þ and inde-

pendent of τ.
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By Hamilton’s equation for the flow through the second
time dimension τ,

d2ϕn;μ

dτ2
¼ _pn;μ ¼ −

∂Vfϕg
∂ϕn;μ

:

The flow explores the (2N − 1)-dimensional hypersur-
face of constant energy H½ϕ; p� ¼ E and any expectation
value is given by the average

hOi ¼ lim
τ→∞

1

τ

Z
τ

0

dτ0O½ϕðτ0Þ; pðτ0Þ� ð3Þ

and is a unique function of E.
The equivalence of Eqs. (2) and (3) follows from what

Callaway referred to as the “principle of equal weight”
which states that given E, trajectories given by solutions to
Hamilton’s equations cover the fixed energy hypersurface
with equal density. That expectation values can be com-
puted in either ensemble was discussed in Ref. [12] and
references cited therein. This principle follows from the
ergodic hypothesis. As long as the initial conditions are
chosen appropriately and the system has sufficient mixing,
all points on the energy hypersurface will be visited with
equal probability over infinite τ. In this case, a time average
is equivalent to an average over all phase space.
Hamilton’s principle can then be applied via the Euler-

Lagrange equations in the standard field-theoretic way,

d
dτ

�∂L
∂p

�
þ d
dxμ

� ∂L
∂ð∂μϕÞ

�
−
∂L
∂ϕ ¼ 0; ð4Þ

where L is the Lagrangian L ¼ T − V. In this case, we
derive a partial differential equation (PDE) indexed by
coordinates x rather than a set of ordinary differential
equations indexed by lattice sites n. Provided that L is not
directly dependent on τ, the energy H ¼ E is conserved by
these equations. This provides a starting point for a
perturbation theory or a computational solution to the PDE.
Quantum field theory relies heavily on standard pertur-

bation theory in the form of expanding nonlinear parts of
functionals in powers of weak coupling constants. This
perturbation approach has been enormously successful,
particularly for quantum electrodynamics [3], but has some
well-noted problems as well. In classical evolution equa-
tions, large sections of the physical behavior may be
inaccessible to standard perturbative expansions such as
the strongly coupled phase of the Kardar-Parisi-Zhang
(KPZ) equation above two dimensions [14,15]. Although
not all power series fail to converge, divergent power series
are inherently problematic in both statistical and dynamical
physics, particularly for strong coupling. There are a
number of alternative perturbation methods such as self-
consistent expansion (SCE) which avoids the divergences
of the standard perturbation theory for the KPZ equation.

Variational perturbation theory can also convert divergent
perturbation expansions in quantum field theory (QFT) into
convergent ones [16] and has been applied to strong-
coupling scalar field theory [17].
Despite these drawbacks to perturbation theory, they

underlie the primary tool for understanding fundamental
particle interactions: Feynman diagrams. In this paper, I
develop a perturbation theory in Feynman diagrams of the
scalar field theory with a quartic interaction, showing how
they develop loops and vacuum contributions once they are
integrated over “time.” I address the equivalence of the
perturbation theory for a classical 4þ 1D evolution equa-
tion to the standard path-integral-based perturbation theory
of quantum field theory in the quartic interaction. I show
how classical Feynman diagrams become quantum dia-
grams under “time” averaging, but I do not address the
fundamental problem of asymptotic divergence. The effi-
cacy of this theory for strongly interacting fields can be
potentially addressed, however, with known methods for
dealing with divergent perturbation series including those
in QFT (such as the variational principle) and those in the
study of classical evolution equations (such as the SCE).

II. SCALAR THEORY

We begin by assuming that all field theories exist on a
4þ 1D flat manifold, such that the usual spacelike coor-
dinates x, y, z are joined by a fourth spacelike dimension w
and the metric has signature ð−þþþþÞ. We could take
w to be a timelike dimension as well, or follow Ref. [18]
and leave it undetermined. In the case of a scalar theory it
makes little difference, but, for other theories of interest
(particularly gravity) this may create problems such as
negative cosmological constants. More immediately, it is
easier to represent fermions in a de Sitter rather than anti–
de Sitter spacetime [19]. We use capital letters A, B, C for
5-vector and 5-tensor subscripts, numbered 0 through 4,
with x4 ¼ w. We use small greek letters μ, ν, λ for 4-vector
and 4-tensor subscripts, numbered 0 through 3. All fields
ψ ;ϕ; AB; gAB;… are parametrized by this spacelike dimen-
sion w. At every slice w is a single instance or microstate of
the classical 3þ 1D universe. All vectors and tensors are
assumed to have indices from 0 through 4 (five indices). We
show below how assumptions on initial conditions, choice
of gauge, and averaging can remove the additional index.
Under Wick rotation t → iσ, all fields are in equilibrium
in the w dimension; hence, actions are integrals over the
four usual dimensions, xμ ¼ ðt; x; y; zÞ, which we write as
S ¼ R

d4xL. Also, we let ℏ ¼ 1 in the following to simplify
notation.
We will work in double-Wick-rotated space to put the

equations in more familiar statistical territory: t → iσ and
w → iτ, making τ timelike and σ spacelike. This has the
benefit that reversing the Wick rotation of time gives us
quantum field-theoretic results, while having the additional
dimension timelike makes the calculations look more
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natural (wave rather than Poisson equations) while not
affecting the results. This means that the signature becomes
ðþ þ þþ −Þ.
Given any standard action S over a field ϕ and coupling

g0, the corresponding Hamiltonian is the sum of the kinetic
energy T and potential energy V,

H ¼ T þ V;

where S¼βV, β¼1=g20, and T¼1
2

R
d4xjpj2, where p ¼

∂ϕ=∂τ. By a Legendre transform, L ¼ ½R d4xjp_xj� −H, we
also obtain a Lagrangian,

L ¼ T − V:

If the field is a vector Aμ, then T ¼ 1
2

R
d4xpμpμ and

likewise for higher-order tensors.
The ϕ4 Lagrangian is well known,

L½ϕ� ¼ 1

2
∂μϕ∂μϕþ 1

2
m2ϕ2 þ λ

4!
ϕ4 − Jϕ:

Let p ¼ ∂ϕ=∂τ, in which case L ¼ R
d4x 1

2
p2 þ L½ϕ�. By

the Euler-Lagrange equations, where ϕ̈ ¼ ∂2ϕ=∂τ2, the
final evolution equation in terms of ϕ alone over the 4þ 1D
space is then the Klein-Gordon (KG) equation:

ϕ̈ ¼ ð∂α∂α −m2Þϕ −
λ

3!
ϕ3 þ J; ð5Þ

or

0 ¼ ð□4þ1 þm2Þϕþ λ

3!
ϕ3 − J; ð6Þ

where □4þ1 ¼ ∂2
τ − ∂2

x − ∂2
y − ∂2

z − ∂2
σ.

III. PERTURBATION THEORY

In this section, the derivation of the perturbation theory is
given for the scalar field. We will focus on the quartic
theory, but the theory can be applied to other potentials:

0 ¼ ð□4þ1 þm2Þϕþ λ

3!
ϕ3: ð7Þ

We are interested in monomial potentials. Let uðx; τÞ be a
nonlinear potential such that our KG equation is

0 ¼ ð□4þ1 þm2Þϕþ uðx; τÞ: ð8Þ

We use the Green’s function method to solve the nonho-
mogeneous equation

ϕðx; τÞ ¼
Z

d4y
Z

dχuðy; χÞDðx − y; τ − χÞ; ð9Þ

where the propagator (Green’s function) is

Dðx − y; τ − χÞ ¼
Z

dω
ð2πÞ

d4k
ð2πÞ4

eiðωðτ−χÞþðx−yÞkÞ

ω2 − k2 −m2 þ iϵ
;

ð10Þ

where k2 ¼ k20 þ k21 þ k22 þ k23 and kx ¼ kμxμ.
Now, we want to solve Eq. (7) when 0 < λ ≪ m2. This

method is straightforward perturbation theory [20]. Let the
solution be the perturbation series in λ,

ϕ ¼
X∞
n¼0

ϕnλ
n;

such that ϕn does not depend on λ. When we plug this into
the equation we get

X∞
n¼0

ð□4þ1 þm2Þϕnλ
n ¼ −λ

�X∞
n¼0

ϕnλ
n

�
3

¼ −
X∞
n¼0

� X
k;l;m

kþlþmþ1¼n

ϕkϕlϕm

�
λn:

Collecting coefficients, we find

ð□4þ1 þm2Þϕn ¼ −
X
k;l;m

kþlþmþ1¼n

ϕkϕlϕm ð11Þ

for n > 0 and

ð□4þ1 þm2Þϕ0 ¼ 0:

Because k; l; m < n, this creates an iterative solution.
Starting with the free solution,

ð□4þ1 þm2Þϕ0 ¼ 0;

or, in momentum space,

ð−ω2 þ k2 þm2Þϕ̂0 ¼ 0;

which is given by a sum of plane waves:

ϕ̂0ðk; τÞ ¼
1

2ωðkÞ fAðkÞe
iωðkÞτ þ A�ðkÞe−iωðkÞτg; ð12Þ

where AðkÞ is any function, ·̂ ¼ F ½·� is the Fourier trans-
form xμ → kμ, and ωðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
. The position-space

free solution is ϕ0ðx; τÞ ¼
R
d4k=ð2πÞ4eikxϕ̂0ðk; τÞ. We

then use that solution to compute the next solution,

ð□4þ1 þm2Þϕ1 ¼ −ϕ3
0;
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which is

ϕ1ðx; τÞ ¼
Z

d4y
Z

dχϕ3
0ðy; χÞDðx − y; τ − χÞ:

Then, we use that to obtain the solution

ð□4þ1 þm2Þϕ2 ¼ −3ϕ2
0ϕ1;

which allows us to substitute our previous solution
for ϕ1,

ϕ2 ¼ 3

Z
d4y

Z
dχ

Z
d4y0

Z
dχ0

×Dðx − y; τ − χÞϕ2
0ðy; χÞDðy − y0; χ − χ0Þϕ3

0ðy0; χ0Þ;

and so on so that all solutions can be found in terms of
interactions of the free solution ϕ0 [Eq. (9)]. The integrals
over χ and χ0 indicate interactions between different slices
of τ (the classical 3þ 1D universes).
Let the perturbation solution be truncated to level N,

such that

ϕðx; τÞ ≈
XN
n¼0

ϕnλ
n;

and discard all solutions of order Oðλnþ1Þ. (In general, the
solution will diverge for some λ > ϵ ≥ 0 as N → ∞ as in
standard perturbation theory.)
The expected value of the correlation of two plane-wave

solutions averaged over τ is

G0ðk; k0Þ ¼ hϕ̂0ðkÞϕ̂0ðk0Þi

¼ lim
τ→∞

1

2τ

Z
τ

−τ
dτ0ϕ̂0ðk; τ0Þϕ̂0ðk0; τ0Þ

¼ lim
τ→∞

1

2τ

Z
τ

−τ
dτ0

1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k02 þm2

p

× fAðkÞAðk0ÞeiðωðkÞþωðk0ÞÞτ0

þ AðkÞA�ðk0ÞeiðωðkÞ−ωðk0ÞÞτ0

þ A�ðkÞAðk0Þeið−ωðkÞþωðk0ÞÞτ0

þ A�ðkÞA�ðk0Þeið−ωðkÞ−ωðk0ÞÞτ0 g: ð13Þ
Now, note that the integral is only nonzero if ωðkÞ ¼
�ωðk0Þ. Since ωðkÞ ≥ 0, we have

hϕ̄0ðkÞϕ̄0ðkÞi ¼ lim
τ→∞

1

2τ

Z
τ

−τ
dτ0ϕðx; τ0Þϕðy; τ0Þ

¼ jAðkÞj2
2jk2 þm2j : ð14Þ

We let AðkÞ ¼ ffiffiffi
2

p
, which gives a correlation that is

equivalent to the standard path-integral quantization when
ℏ ¼ c ¼ 1. This gives the initial condition for ϕ as well (an

amplitude scaling that turns out to be constant for all k). To
regularize this for renormalization, which we will need to
do, we should let AðkÞ fall to zero at some large jkj ¼ Λ,
but for now we will let it remain constant.
The 2M-correlation Green’s functions are

Gðx1;…; x2MÞ ¼ hϕðx1Þ � � �ϕðx2MÞi

¼ lim
τ→∞

1

τ

Z
τ

0

dτ0ϕðx1; τÞ � � �ϕðx2M; τÞ:

To compute these up to a truncated order N, we take the
sum and compute all of the cross terms in the τ integral up
to the desired order λN, discarding higher-order terms.

IV. FEYNMAN RULES

Suppose we want the correlation up to order λ,

hΩjϕðx1Þϕðx2ÞjΩi ¼ lim
τ→∞

1

τ

Z
τ

0

dτ0ϕðx1; τÞϕðx2; τÞ:

Carrying out the perturbative calculation, the correlation
has three terms. The first, a zeroth-order correlation,
involves two free fields and no interaction. The second
and third involve correlations between a free field and a
single interaction.
These terms can be laboriously computed but there is a

simpler approach with Feynman diagrams. Let the propa-
gator be the field ϕg ¼ Dðx − y; τ − χÞ. The solution for
position space ϕ1ðx; τÞ, for example, is

This represents bringing three plane-wave solutions ϕ0 to a
single point y and transporting that to x using the Green’s
function ϕg. This pattern can be iterated to higher orders by
adding more points that transport more particles together
with symmetry factors representing the permutations of
such graphs.
Helling [21] wrote down the rules for these classical

Feynman diagrams as follows:
(1) Draw n vertices for the expression for ϕn at order λn.
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(2) Each vertex gets one ingoing line to the left and three
outgoing lines to the right.

(3) A line can either connect to the ingoing part of
another vertex or to the right-hand side of the
diagram.

(4) Write down an integral for the point of each vertex.
(5) For a line connecting two vertices at points

y1, τ1 and y2, τ2, write down a Green’s function
ϕgðy1 − y2; τ1 − τ2Þ.

(6) For a line ending on the right, write down a factor of
ϕ0 evaluated at the point of the vertex to the left of
the line.

(7) Multiply by the number of permutations of outgoing
lines at the vertices which yield different diagrams
(“symmetry factor”).

These rules are nearly identical to the Feynman rules for
the equivalent scalar statistical theory, with the only differ-
ence being that loops are prohibited because of rules 2 and
3 on incoming and outgoing lines. Relaxing these rules
allows for loops.
A loop in a Feynman diagram can represent a

correlation of a point y with itself,
R
V d

4yϕgðy − yÞ, or it
can represent two correlations of two points y1 and y2,R
V d

4y1d4y2ϕgðy1 − y2Þϕgðy2 − y1Þ, such that both points
are integrated over a hypervolume V. (In momentum space,
it can be one momenta k integrated over a large box Λ.)
Since these are integrated over all space and time, they
form vacuum contributions in quantum field theory that
affect the outcomes of experiments but are not directly
measurable.
While loops do not appear in the classical perturbation

theory because the classical theory forms trees of diagrams,
they do appear under averaging. More perturbation orders of
the classical field theory imply more branches, but there is no
way for branches to double back and connect to prior
branches. A plane wave at a point y, ϕ0ðy; τÞ, however,
can interact with another plane wave at y. These interactions,
formed by a simple multiplication of fields, are meaningless
in the classical dynamical theory, but—integrated over
infinite τ—they are correlations in the statistical theory
which then become loops. The way they become loops is
that under averaging they are identical to 3þ 1Dpropagators,

which is not the case in 4þ 1D. [Recall that a propagator is
simply a two-point Green’s function G0ðx1;x2Þ¼ϕgðx1−
x2Þ¼ hϕ0ðx1Þϕ0ðx2Þi¼ limτ→∞

1
2τ

R
τ
−τdτϕ0ðτ;x1Þϕ0ðτ;x2Þ.]

Therefore, while
R
d4yϕ0ðy; τÞϕ0ðy; τÞ is just the product of

two fields in 4þ 1D, ϕgðy − yÞ ¼ limτ→∞
1
2τ

R
τ
−τ dτ ×R

d4yϕ0ðy; τÞϕ0ðy; τÞ is a vacuum loop at y in 3þ 1D
[22]. For example, when the expected value is taken by
averaging over τ, we find that the correlations of pairs of
plane-wave solutions and the propagator, which are different
in the 4þ 1Devolution theory, become equal in the statistical
theory. By reverse Wick rotating back to real time, we find

hϕ0ðxÞϕ0ðyÞi ¼ hϕgðx − yÞi ¼ ϕ̄gðx − yÞ

¼
Z

d4k
ð2πÞ4

eikðx−yÞ

k2 −m2 þ iϵ
;

where iϵ is a small value to avoid integrating through poles
and k2 ¼ −kμkμ. This canbe shownby taking the τ averageof
Eq. (10) and comparing it to the correlation given byEq. (14).
The expectation values of order λ correlations such as

hϕ1ðx1Þϕ0ðx2Þi, for example, develop loops in the 3þ 1D
statistical theory from the pairs of instances of ϕ0 that were
external lines in the 4þ 1D theory. The preceding example
generates two pairs of plane-wave solutions and one
propagator which, when averaged, become three propa-
gators. Because of the linearity of the integrals in the
average over τ, taking the expectation values of correlations
of perturbation solutions always reduces to products and
sums of propagators provided the number of plane-wave
solutions is even.
In real time, a factor of i is introduced in the example in

the preceding paragraph:

G1ðx1; x2Þ ¼ hϕ1ðx1Þϕ0ðx2Þi

¼ iλ
Z

d4yϕ̄gðx1 − yÞϕ̄gðy − yÞϕ̄gðx2 − yÞ:

ð15Þ
The diagrammatic equation correlates the first-order
diagram with a single, zeroth-order plane-wave solution
(just a line),

ð16Þ
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A pair correlation of plane waves at y in the classical
solution (the two solutions above and below the left
diagram) becomes a propagator from y back to itself in
the quantum field solution on the right. Thus, it is as if two
of the plane-wave solutions in the diagram on the left
connect to one another to form a propagator, while the other
plane-wave solution at y on the right side of the left diagram
connects to the solution at x2.

A. Momentum space

The 2M-correlation Green’s functions against the vac-
uum Ω in momentum space are

Gðk1;…; k2MÞ ¼ hΩjϕ̂ðk1Þ � � � ϕ̂ðk2MÞjΩi

¼ lim
τ→∞

1

τ

Z
τ

0

dτ0ϕ̂ðk1; τÞ � � � ϕ̂ðk2M; τÞ:

This can be obtained directly from the position-space
Green’s function by a Fourier transform,

Gðk1;…; k2MÞ ¼ F ½Gðx1;…; x2MÞ�:

Therefore, the same Feynman rules that apply in standard
path-integral quantum field theory apply in this case as well
since the position space rules are the same.
The order λ two-point correlation in Minkowski space,

for example, is the Fourier transform of Eq. (15),

G1ðkÞ ¼ F ½G1ðx1; x2Þ� ¼ hϕ1ðk; τÞϕ0ðk; τÞi

¼ iλ
Z

d4p
ð2πÞ4

1

p2 −m2 þ iϵ

�
1

k2 −m2 þ iϵ

�
2

:

V. PERTURBATION SERIES EQUIVALENCE

The perturbation series can be shown to be equivalent to
the standard path-integral series which is often given the
functional definition

Z½J� ¼
X∞
n¼0

1

n!

�
λ

4!

�
n

×
Z

d4x1 � � � d4xn
δ4

δJðx1Þ
� � � δ4

δJðxnÞ
Z0½J�;

where Z0½J� is the free path integral and Z½J� is the fully
interacting one. This series, while divergent for strong
coupling, is the basis for Feynman diagrams. Let the
scalar action be S ¼ S0 þ λSint, consisting of the free part
S0 and the interacting part Sint, and the Hamiltonian is
H¼H0þλSint, where H0 ¼ T þ S0 (with T ¼ − 1

2
p2 ¼

− 1
2
_ϕ2 for scalar theory in 4þ 1D). Iwazaki proved the

equivalence for the scalar theory for the microcanonical
quantum field theory [23],

Ω ¼
Z

DpDϕδðE −H0 − λSintÞ

¼
X∞
n¼0

ð−1Þn
n!

dn

dEn

Z
DpDϕδðE −H0ÞðλSintÞn

via the convergence of the continuum limit on a lattice.
Given an observable O½ϕ� for which the ensemble is
convergent, e.g., any Green’s function, it has a series in λ,

hO½ϕ�i ¼
X∞
n¼0

λnhOn½ϕ�i:

Thus, Iwazaki’s result proves

XN
n¼0

λnhOn½ϕ�i

¼ Ω−1
N

XN
n¼0

ð−1Þn
n!

dn

dEn

Z
DpDϕOn½ϕ�δðE −H0ÞðλSintÞn

¼ Z−1
N

XN
n¼0

ð−1Þn
n!

Z
DϕOn½ϕ�e−S0ðλSintÞn

for any N given that ΩN ¼ P
N
n¼0

ð−1Þn
n!

dn
dEn

R
DpDϕδðE −

H0ÞðλSintÞn and ZN ¼ P
N
n¼0

ð−1Þn
n!

R
Dϕe−S0ðλSintÞn. By

Wick rotating to Minkowski space, this shows the equiv-
alence of the microcanonical and canonical path-integral
approaches to quantum field theory for scalar theory. This
result has also been proved for SUðNÞ and fermions [10].
It remains to be shown that the perturbation series of the

evolution equation approach is equivalent to Iwazaki’s
microcanonical ensemble. Starting with the Hamiltonian
in the double-Wick-rotated de Sitter spacetime metric,

H ¼ 1

2
½− _ϕ2 þ ð∂μϕÞ2 þm2ϕ2� þ ðλ=4!Þϕ4; ð17Þ

we set E ¼ H as the fixed energy of the 4þ 1D system. We
know that E is a function of λ and given the power series for
small λ, E ¼ P∞

n¼0 Enλ
n. Further, we have the power series

of ϕ ¼ P∞
n¼0 ϕnλ

n. The Hamiltonian breaks into

X∞
n¼0

Enλ
n ¼ 1

2

�
−
�X∞

n¼0

_ϕn λ
n

�
2

þ
�X∞

n¼0

∂μϕnλ
n

�
2

þm2

�X∞
n¼0

ϕnλ
n

�
2
�
þ ðλ=4!Þ

�X∞
n¼0

ϕnλ
n

�
4

:

This equation, by matching terms, generates an infinite
number of equations that are iteratively solvable, i.e., equation
nþ 1 can be solved with the solution to equation n,
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En ¼ Hn ¼
1

2

X
k;l

kþl¼n

½− _ϕk
_ϕl þ ∂μϕk∂μϕl þm2ϕkϕl�

þ ð4!Þ−1
X
j;k;l;m

jþkþlþmþ1¼n

ϕjϕkϕlϕm: ð18Þ

By applying the Euler-Lagrange equations, each Hamil-
tonian generates an evolution equation [Eq. (11)]. Taking
the microcanonical statistical ensemble from the equation
for H [Eq. (17)] and setting it equal to the statistical
ensemble for the infinite set of equations for Hn, up to a
constant C, the equivalence is

Ω ¼
Z

DϕδðE −HÞ ¼ C
Y∞
n¼0

Z
DϕnδðEn −HnÞ ¼ CΩ0:

ð19Þ

Since ϕnþ1 is determined by ϕn, all of the functions are
determined by ϕ0. Likewise, Enþ1 is determined by En.
Thus, up to a constant, the infinite number of functional
integrals collapses to one functional integral over one field
ϕ0 and one independent energy constant E0, which is
determined by ℏ. Thus, we can show for an observable O
that the microcanonical series given by Iwazaki is equiv-
alent to the microcanonical series given by Eq. (19),

XN
n¼0

λnhOn½ϕ�i

¼ Ω−1
N

XN
n¼0

ð−1Þn
n!

dn

dEn

Z
DϕOn½ϕ�δðE − S0ÞðλSintÞn

¼ Ω0
N
−1

XN
n¼0

λn
Z

Dϕ0On½ϕ�
Yn
m¼0

δðEm −HmÞ; ð20Þ

neglecting orders of λ higher than N. This final result
follows because the coefficients to powers λn must match
on both sides since they determine the same expectation
values of the observable to the required order in the Taylor
series. In other words, we have two derivations of the same
perturbation series from the same original nonperturbed
ensemble which necessarily determine the same expect-
ation values of any observable to the same order if that
expectation value exists (which it does for point correla-
tions for sufficiently small λ).
Assuming ergodicity, since the PDE (18) is derived from

the energy functional (11) by using the Euler-Lagrange
equations, the resulting expectation values of observables
from each must be equivalent. This observation along with
Eq. (20) proves that the time-averaging approach is
equivalent for perturbation theory, and

XN
n¼0

λnhOn½ϕ�i ¼
XN
n¼0

λn lim
τ→∞

1

2τ

Z
τ

−τ
dτ0On½ϕ; τ0�

gives the standard path-integral result up to order N.

VI. CONCLUSION

The discrete Hamiltonian flow method of molecular
dynamics has been extended to a continuum PDE method,
showing that classical Feynman diagrams reduce to quantum
field-theoretic ones when correlated. By doing so, a novel
way of reducing quantum physics on a 3þ 1D spacetime to
classical physics on a 4þ 1D spacetime has been presented.
Of interest are cases where ergodicity may break down
strongly enough to be measurable. New experimental results
would be required to determine if ergodicity is a factor in
quantum expectation values. A classic classical example of a
system that violates ergodicity is the Fermi-Pasta-Ulam-
Tsingou (FPUT) system involving an oscillating stringwith a
quadratic nonlinearity [24]. In general, exactly integrable
systems are the most likely to exhibit nonergodic behavior
since they are integrated from initial conditions and can be
periodic (as opposed to “forgetting” initial conditions). In
this case, the predictions of the time-averaging approach will
diverge from those of the path integral. This would provide a
test to determine ifWick-rotated quantum field theory differs
from equilibrium statistical mechanics.
In a strong breakdown of ergodicity, a statistical ensem-

ble continues to obey the dynamical (evolution) equations
but violates the path-integral ensemble (or only obeys a
subset of it) because the regions of microstates on the
covered energy manifold are different, with the nonergodic
system avoiding trajectories because of its initial condi-
tions. Phase transitions are another example where regions
of microstates are avoided, not because of initial conditions
but because of the parameters of the system such as inverse
temperature which determine the phase. The key point here
is to understand the relationship between quantum theory as
a 3þ 1D path integral and the classical counterpart
in 4þ 1D (which are equivalent under the ergodic hypoth-
esis), and which is more fundamental. If violations of that
hypothesis could be constructed experimentally through a
quantum analog of the FPUT system, for example, the
existence of an additional dimension would be implied. If
not, then quantum theory would be shown to be fundamen-
tally different from classical equilibrium statistical mechan-
ics derived fromdynamical first principles. Such a discovery
would be important for the interpretation of quantum
phenomena. Future work includes extending the ideas
presented here to SUðNÞ and fermions, and addressing
the problem of ergodicity in quantum field theory in order to
give more insight into such ergodicity-violating systems.
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