
 

k-strings with exact Casimir law and Abelian-like profiles
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We explore vortex solutions for a class of dual SUðNÞ Yang-Mills models with N2 − 1 Higgs fields in
the adjoint representation. Initially, we show that there is a collective behavior that can be expressed in
terms of a small N-independent number of field profiles. Then, we find a region in parameter space where
the nontrivial profiles coincide with those of the Nielsen-Olesen vortex, and the energy scales exactly
with the quadratic Casimir. Out of this region, we solve the ansatz equations numerically and find very
small deviations from the Casimir law. The coexistence of Abelian-like string profiles and non-Abelian
scaling features is welcome, as these properties have been approximately observed in pure Yang-Mills
lattice simulations.
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I. INTRODUCTION

Although dual superconductor models have long been
proposed as an effective description of color confinement
[1–3], so far, no such model has been completely success-
ful. The many candidates [4–23] grasp some, but not all, of
the rich confinement phenomenology obtained from the
lattice. This includes the static quark-antiquark potential
[24], the Lüscher term [25], the Abelian-like transverse
chromoelectric field profile [26], and Casimir scaling [27].
The latter refers to the dependence of the string tension with
the quadratic Casimir operator of the quark representation,
at intermediate distances. Another important feature to be
accommodated is the asymptotic string tension scaling-law,
which can only depend on an integer k (modulo N) that
dictates how the center of SUðNÞ is realized in the quark
representation (N-ality). In accordance with Monte Carlo
simulations in four dimensions [28], the Sine and Casimir
laws are among the possible behaviors. Note that the latter
corresponds to scaling with the quadratic Casimir of the
k-antisymmetric representation. N-ality suggests that con-
fining strings could be represented as stable topological
vortices in a Yang-Mills-Higgs (YMH) field description.
Models with fields transforming in the fundamental rep-
resentation [16], the adjoint [19–23], or both [10–15,18],
are among the possibilities. In spite of the fact that these

models possess vacua leading to confining strings with
N-ality, the different field contents and Higgs potentials
make it necessary to work on a case by case basis to
determine the precise vortex profiles and the behavior of the
string tension. For example, a model motivated by super-
symmetry and based on three complex adjoint fields was
analyzed in Ref. [22]. Although the group action on the
vacua manifold is not transitive in this case, the physical
properties in the different sectors can be related by means of
appropriate mappings between them. Moreover, a numeri-
cal analysis of the vortex solutions showed a string tension
closely approximated by a Casimir law.
Another important (more direct) approach to describe

confinement, developed over the years, is based on the
detection of ensembles of magnetic defects that could
capture the path-integral measure in lattice pure Yang-
Mills theory. Quantumvariables such as center-vortexworld
surfaces and monopole worldlines are among the most
promising detected defects [29–38]. In particular, Casimir
scaling at intermediate distances can be understood as due
to the finite thickness of center-vortex variables [39]. At
asymptotic distances, these defects also implement N-ality,
but their thickness cannot affect the string tension. In this
regime, the linear k-scaling, expected to occur in the largeN
limit, was reproduced by includingmonopolevariables [40].
Recently, we showed that an ensemble of two-dimensional
percolating world surfaces with attached monopole world-
lines in 4d can be related to a YMH effective model. In the
effective description, the dual gauge field represents the
Goldstone modes in a condensate of one-dimensional
defects, which generate the world surfaces, while a set of
adjoint Higgs fields reproduce the monopole degrees of
freedom. The field content in Ref. [41] was chosen so as to
implement the monopole fusion rules; in particular, models
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with an adjoint flavor index naturally encompass all pos-
sibilities. In this case, the phenomenological parameters can
be chosen so as to obtain a transitive group action and drive
SUðNÞ → ZðNÞ SSB. Transitivity of the vacua manifold
automatically renders the different choices [labeled by
points inSUðNÞ=ZðNÞ] physically equivalent. Then, among
the alternatives, a detailed analysis of this type ofmodel is of
special interest. In this work, despite the large number of
fields, we will show that the system acquires a collective
behavior where the classical vortex solutions are well
accommodated by a small (N and k-independent) number
of profiles. Moreover, we shall obtain a region in parameter
space where the exact Casimir law holds. In this regime,
most of the field profiles become frozen at their vacuum
value while the nontrivial ones obey the Nielsen-Olesen
equations, thus reproducing the chromoelectric field mea-
sured in the lattice (see Secs. II and III). In Sec. IV, we will
show the result of numerical simulations in other regions.
Finally, in Sec. V, we will present our conclusions.

II. THE EFFECTIVE YMH MODEL

Awide class of SUðNÞ Yang-Mills-Higgs models can be
given by the general action

S¼
Z

d4x
1

4
hFμν;Fμνiþ1

2
hDμψA;DμψAi−VHiggsðψAÞ;

ð1Þ
where Fμν is the non-Abelian dual field strength tensor,

Fμν ¼ ½Dμ; Dν�; Dμ ¼ ∂μ þ ig½Aμ; �: ð2Þ
The Killing form h; i is defined in the Lie algebra as

hX; Yi ¼ TrðAdðXÞAdðYÞÞ; ð3Þ
whereAdðÞ stands for the adjoint representation. InRef. [23],
the flavor indexAwas chosen to run from 1 toN2 − 1, so that
the number of Higgs fields matches the dimension of the
suðNÞ Lie algebra. With this matching, if the manifold of
vacuum configurations M is given by SUðNÞ-rotated gen-
erators ψA ¼ vSTAS−1, ½TA; TB� ¼ fABCTC, then N-ality is
naturally implemented via the spontaneous symmetry break-
ing pattern SUðNÞ → ZðNÞ. The quartic potential

hψA ∧ ψB − vfABCψCi2 ð4Þ
would lead to these vacua, however, it would also lead to
a degenerate trivial vacuum ψA ¼ 0. Then, we expanded
this expression and introduced independent coefficients for
each term, thus proposing a natural potential

VHiggsðψÞ ¼ cþ μ2

2
hψA;ψAi þ

κ

3
fABChψA ∧ ψB;ψCi

þ λ

4
hψA ∧ ψB;ψA ∧ ψBi; ð5Þ

to construct the effective field model (c is adjusted such that
VHiggs ¼ 0 on M). In this manner, we obtained a region in
parameter space that only leads to nontrivial vacua, charac-
terized by

v ¼ −
κ

2λ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
κ

2λ

�
2

−
μ2

λ

s
: ð6Þ

III. THE VORTEX ANSATZ

As usual, in order to represent a straight infinite vortex
along the z-axis, we set

Ai ¼ SAiS−1 þ
i
g
S∂iS−1; ð7aÞ

ψA ¼ hABSTAS−1; ð7bÞ

S ¼ eiφβ·T; β · T ≡ βjqTq; ð7cÞ

where Tq, q ¼ 1;…; N − 1, are Cartan generators. Notice
that S is ill-defined along the z-axis, while Ai must be
smooth. Furthermore, Ai should be a pure gauge when
ρ → ∞, so that the magnetic energy per unit length stored in
the vortex is finite. Both issues can be resolved by defining

Ai ¼
1

g
ða − 1Þ∂iφ β · T; ð8Þ

with the boundary and regularity conditions

aðρ → ∞Þ ¼ 1; aðρ → 0Þ ¼ 0: ð9Þ

Clearly, the Higgs profiles must obey

hABðρ → ∞Þ ¼ vδAB ð10Þ

so that their contribution to the energy per unit length is
also finite. The vortex charge is represented by β ¼ 2Nω,
where ω is a weight of suðNÞ and is closely connected with
the N-ality k. For example, when ω is a weight of the
fundamental representation, ω ¼ ω1;ω2;…ωN , then the
vortex has k ¼ 1, while if it is a root α, then the N-ality
is that of the adjoint representation (k ¼ 0). A general
N-ality can be reproduced by takingω as the highest weight
of the k-antisymmetric representation

ω ¼ Λk ¼
Xk
i¼1

ωi: ð11Þ

Regarding the Higgs fields ψA in Eq. (7b), the number of
profile functions hAB scales with N4. However, in the next
section, we shall see that the vortex solutions display a
collective behavior with a fixed reduced number of field
profiles. A closer look at the local basis nA ¼ STAS−1,
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nq ¼ Tq; ð12aÞ

nα ¼ cosðα · β φÞTα − sinðα · β φÞT ᾱ; ð12bÞ

nᾱ ¼ cosðα · β φÞTα þ sinðα · β φÞT ᾱ; ð12cÞ

reveals that, whenever α · β ≠ 0, the elements nα are ill-
defined along the vortex line. On the other hand, the
elements nq and nα with α · β ¼ 0 have no defects. This
leads to a natural splitting between ψq and ψα, ψᾱ

ψq ¼ hqpTq; ð13aÞ

ψα ¼ ψᾱ ¼ hαSTαS−1 ð13bÞ

and the regularity condition

hαðρ → 0Þ ¼ 0 if α · β ≠ 0: ð14Þ

So far, the equations of motion read

1

ρ

�∂a
∂ρ −

∂2a
∂ρ2

�
β · T ¼ g2h2αð1 − aÞðβ · γÞðγ · TÞ; ð15aÞ

∇2hqp ¼ μ2hqp þ h2γ κγqγp þ λh2γhqlγlγp; ð15bÞ

∇2hα ¼ ð1 − aÞ2ðα · β=ρÞ2hα þ μ2hα

þ 2κhααqhqpαp þ κN2
α;γhγhαþγ þ λh3αα2

þ λh2γhαN2
α;γ þ λhααqhqphplαl: ð15cÞ

In Eq. (15), γ is summed over all the roots except in
Eq. (15c) where γ ≠ −α and there is no summation over the
repeated positive root α. When γ < 0, hγ ¼ h−γ is under-
stood. Although smaller, the number of profiles in Eq. (15)
still scales with N2. In what follows, we shall further reduce
their number by carefully studying the equations of motion.
We shall initially address the simpler k ¼ 1 case and then
we will extend the analysis to k > 1.

A. Case k= 1

In Ref. [23], a reduced ansatz was constructed for SUð2Þ
and SUð3Þ, and it was numerically explored in Ref. [42].
Note that for N ≤ 3 there is no variety in the possible string
tensions as vortices with k and −k have the same tension,
and for N ¼ 3 the N-ality k ¼ 2 is equivalent to k ¼ −1.
In this subsection we shall extend the k ¼ 1 case for an
arbitrary N, while the k > 1 case will be worked out in the
next subsection. In view of Eqs. (12) and (15c), it is natural
to propose a collective behavior that only depends on the
product α · β,

hα ¼ hᾱ ¼
�
h0; if α · β ¼ 0;

h; if α · β ¼ 1:
ð16Þ

As a consequence, Eq. (15a) turns out to be

1

ρ

∂a
∂ρ −

∂2a
∂ρ2 ¼ g2h2ð1 − aÞ: ð17Þ

With regard to the Cartan sector, Eq. (15b) involves
only three matrices: The ρ-dependent Hjqp ¼ hqp and
the constant ones

Ajqp¼
X

α>0;α·β¼1

αjqαjp; A0jqp¼
X

α>0;α·β¼0

αjqαjp; ð18Þ

which satisfy

Aþ A0 ¼
1

2
I; ð19aÞ

A2
0 ¼

N − 1

2N
A0: ð19bÞ

Thus, we can use Eq. (19a) to eliminate A and cast
Eq. (15b) into the form

��
∇2 − μ2 −

λ

2
h2
�
I − λðh20 − h2ÞA0

�
H

¼ κ

2
hI þ κðh0 − hÞA0: ð20Þ

As the Laplacian is a scalar operator, the inversion of the
matrix operator in the first member will be a power series in
A0. Then, because of Eq. (19b), the solution for H in
Eq. (20) must be a linear combination of I and A0. We can
define a pair of projectors, M1 þM2 ¼ I, MiMj ¼ δijI, by
taking

M2 ¼
2N

N − 1
A0; ð21Þ

and write

H ¼ h1M1 þ h2M2: ð22Þ

In this manner, if these profiles satisfy

∇2h1 ¼ μ2h1 þ ðκ þ λh1Þh2; ð23aÞ

∇2h2 ¼ μ2h2 þ
h2 þ ðN − 1Þh20

N
ðκ þ λh2Þ; ð23bÞ

then the equations in the Cartan sector close. Now, to
simplify those for h and h0, we note that according to our
conventions the coefficients Nα;γ are given by (see Sec. 5.5
in Ref. [43])

N2
α;γ ¼

1

2
α · α ¼ 1

2N
; ð24Þ
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when αþ γ is a root, and they are zero otherwise. Thus, in
order to perform the summation over γ in Eq. (15c), we
have to count the number of terms for each profile
combination. For a fixed α, the multiplicities are summa-
rized in table I. Combining these ingredients, the remaining
Higgs equations can be simplified to

∇2h0 ¼ μ2h0 þ
h0
N

ð2κh2 þ λh22 þ λh20Þ

þ ðκ þ λh0Þ
N

ðh2 þ ðN − 3Þh20Þ; ð25aÞ

∇2h ¼ μ2hþ ð1 − aÞ2
ρ2

hþ λ

2
h3

þ ðN − 2Þ
2N

hh0ð2κ þ λh0Þ þ
ð2κ þ λh1Þ
2ðN − 1Þ hh1

þ ðN − 2Þ
2NðN − 1Þ ð2κ þ λh2Þhh2: ð25bÞ

They must be solved with the Higgs profiles approaching
the vacuum value v when ρ → ∞, so as to comply
with Eq. (10), while hðρÞ must also obey the regularity
condition (14).

B. Case k > 1

To solve the case k > 1, we consider a general β ¼
2NΛk in Eq. (7c). The reasoning to be followed is very
similar to the previous one. The main difference is that we
have to split the positive roots with α · β ¼ 0 into two
categories:

α̃0 ¼ ωi≤k − ωj≤k; ð26aÞ

α0 ¼ ωi>k − ωj>k: ð26bÞ

The point is that α0 and α̃0 have a slightly different
behavior. For example, there are kðk − 1Þ roots of type
α̃0 and ðN − kÞðN − k − 1Þ roots of type α0, which gen-
erates a difference when counting the terms in (15c). Note
that for k ¼ 1 there are no roots of type α̃0. The roots
associated with a rotating nα are given by

α ¼ ωi≤k − ωj>k: ð27Þ

Thus, we are led to introduce three profiles in the α-sector,

hα ¼

8>><
>>:

h̃0; if α ¼ α̃0

h0; if α ¼ α0

h; if α · β ¼ 1:

ð28Þ

In any case, the equation for a remains that in (17). This
time, in order to solve the matrix part of Eq. (15b) we use
three matrices I, Ã0 and A0 instead of two. Following a
similar reasoning, we can introduce three projectors,
M1 þM2 þM3 ¼ I, determined by

M2 ¼
2N

N − k
A0; M3 ¼

2N
k

Ã0: ð29Þ

In terms of them, the solution for H is

H ¼ h1M1 þ h2M2 þ h3M3 ð30Þ

where h1 satisfies Eq. (23a), while h2 and h3 are
determined by

∇2h2 ¼ μ2h2 þ
�
kh2 þ ðN − kÞh20

N

�
ðκ þ λh2Þ; ð31aÞ

∇2h3 ¼ μ2h3 þ
�ðN − kÞh2 þ kh̃20

N

�
ðκ þ λh3Þ: ð31bÞ

Here, we begin to see how the center symmetry is made
explicit by the ansatz. When the ZðNÞ charge k is replaced
by N − k, the equations for h2 and h3 get interchanged,
provided that h0 and h̃0 are also interchanged, which will be
justified in the following discussion.
For a fixed α, the multiplicity of terms in Eq. (15c) with a

given profile combination ðhα; hγ; hαþγÞ are displayed in
Table II. In addition, in expressions such as the energy,
where a sum over α is required, the above numbers should

be multiplied by kðN − kÞ if nα rotates, by kðk−1Þ
2

if the root

is of type α̃0, and by ðN−kÞðN−k−1Þ
2

if it is of type α0. With
this information at hand, the equations for h, h0, and h̃0
become

TABLE I. Multiplicities for roots with k ¼ 1.

Profile types Number of terms

ðhα; hγ; hαþγÞ ¼ ðh; h; h0Þ N − 2

ðhα; hγ; hαþγÞ ¼ ðh; h0; hÞ N − 2

ðhα; hγ; hαþγÞ ¼ ðh0; h0; h0Þ 2ðN − 3Þ
ðhα; hγ; hαþγÞ ¼ ðh0; h; hÞ 2

TABLE II. Multiplicities for roots with k > 1.

Profile types # terms Profile types # terms

ðh; h; h̃0Þ (k − 1) ðh̃0; h; hÞ 2ðN − kÞ
ðh; h; h0Þ (N − k − 1) ðh̃0; h̃0; h̃0Þ 2ðk − 2Þ
ðh; h̃0; hÞ (k − 1) ðh0; h; hÞ 2k
ðh; h0; hÞ (N − k − 1) ðh0; h0; h0Þ 2ðN − k − 2Þ
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∇2h0 ¼ μ2h0 þ
h0
N

ð2κh2 þ λh22 þ λh20Þ

þ ðκ þ λh0Þ
N

ðkh2 þ ðN − k − 2Þh20Þ; ð32aÞ

∇2h̃0 ¼ μ2h̃0 þ
h̃0
N

ð2κh3 þ λh23 þ λh̃20Þ

þ ðκ þ λh̃0Þ
N

ððN − kÞh2 þ ðk − 2Þh̃20Þ; ð32bÞ

∇2h ¼ μ2hþ ð1− aÞ2
ρ2

hþ λ

2
h3 þ hh1

2kðN − kÞ ð2κ þ λh1Þ

þ N − k− 1

2NðN − kÞ ð2κþ λh2Þhh2 þ
k− 1

2Nk
ðκþ λh3Þhh3

þN − k− 1

2N
ð2κþ λh0Þhh0 þ

k− 1

2N
ð2κ þ λh̃0Þhh̃0:

ð32cÞ

with boundary conditions similar to those for k ¼ 1,
where h is the only profile with a regularity condition
along the vortex line. As anticipated, under k → N − k
we have

h2 ↔ h3; h0 ↔ h̃0: ð33Þ
Indeed, due to these properties, the center symmetry is made
explicit: the energy of a vortex with charge k and an
antivortex with charge N − k are the same. Incidentally, it
is easy to see that the differences Δh ¼ h0 − h2 and Δh̃ ¼
h̃0 − h3 are governed by

ð∇2 − μ2ÞΔh ¼ λh2 þ λðN − k − 1Þh20 − κh0
N

Δh; ð34aÞ

ð∇2 − μ2ÞΔh̃ ¼ λh2 þ λðk − 1Þh̃20 − κh̃0
N

Δh̃: ð34bÞ

forwhichh0 ¼ h2 and h̃0 ¼ h3 are solutions. This obviously
holds for k ¼ 1 and leads to a welcomed additional
reduction in the number of profiles.
Replacing the ansatz in the energy functional for the

action (1), we find

E ¼
Z

d3x
kðN − kÞ

ρ2

�j∇aj2
g2

þ h2ð1 − aÞ2
�

þ 1

2
j∇h1j2 þ

1

2
μ2h21 þ

ðN − kÞ2 − 1

2
ðj∇h2j2 þ μ2h22Þ

þ k2 − 1

2
ðj∇h3j2 þ μ2h23Þ þ kðN − kÞðj∇hj2 þ μ2h2Þ

þ λ
kðN − kÞ

4
h4 þ C1h2 þ C2; ð35Þ

where C1 and C2 are given by

C1 ¼
h1
2
ð2κ þ λh1Þ þ

kðN − kÞ2 − k
2N

ð2κ þ λh2Þh2

þ ðN − kÞðk2 − 1Þ
2N

ð2κ þ λh3Þh3;

C2 ¼
ðN − kÞ3 þ k − N

N

�
κ
h32
3
þ λ

h42
4

�
þ κ

k3 − k
3N

h33

þ λ
k3 − k
4N

h43 − ðd2 − 1Þ
�
μ2v2

2
þ κv3

3
þ λv4

4

�
:

A particularly interesting region in parameter space is
μ2 ¼ 0. In this case, except for a and h, the profiles are
frozen at the vacuum value v. This is possible because only
a and h satisfy regularity conditions at ρ ¼ 0. Moreover, on
the vortex ansatz, the nontrivial Higgs profiles a and h get
Abelianized in the sense that they satisfy the usual Nielsen-
Olesen (NO) equations. This is interesting because the YM
chromoelectric field distribution obtained from the lattice is
precisely that of the NO vortex-string [26]. The crucial
difference is that in our case N-ality is automatically
implemented due to the underlying non-Abelian structure.
Furthermore, at μ2 ¼ 0, a direct calculation shows that the
collective behavior gives rise to an exact Casimir scaling of
the energy per unit vortex length (string tension)

σk ¼ kðN − kÞσNO: ð36Þ
Indeed, apart from a factor ðN þ 1Þ−1, the factor kðN − kÞ
is precisely the quadratic Casimir of the k-antisymmetric
representation. In other words, an exact Casimir law

σk ¼
C2ðAkÞ
C2ðFÞ

σ1 ð37Þ

is analytically verified at μ2 ¼ 0.

IV. NUMERICAL SOLUTIONS

In principle, the numerical exploration of the model
parameter space ðg; μ2; κ; λÞ is a hard task since it is four-
dimensional. Fortunately, we can reduce it to two dimen-
sions by a simple rescaling, defining the dimensionless
quantities

x̄i ¼ −
κ

g
xi; ḡ ¼ 1; μ̄ ¼ −

g
κ
μ;

κ̄ ¼ −1; λ̄ ¼ λ

g2
;

which implies the energy per unit length rescaled as

σðg; μ2; κ; λÞ ¼ −
κ

g3
σð1; μ̄2;−1; λ̄Þ: ð38Þ

Then, for a given N-ality k, the ratio σk
σ1

can only depend

on μ̄2, λ̄. Furthermore, when computing the string tension
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ratios, we observed that they essentially depend on the
combination μ̄2λ̄, so we will also fix λ̄ ¼ 1 when evaluating
this ratio. It is important to underline that the reduction
from four parameters to one applies only to σk

σ1
while other

observables may display a more complex behavior. For
example, another important quantity we can always fit is
the fundamental string tension σ1. For every μ̄2 and λ̄,
including λ̄ ≠ 1, we can evaluate the rescaled string tension
and then set the proper κ and g in Eq. (38) to obtain the
well-established value σ1 ¼ ð440 MevÞ2. With regard to
the numerical procedure, we initially discretized the
coupled equations for a; h; h1; h2, and h3. For this aim,
we used finite differences with a range ρ̄ ∈ ½0.001; 10�
partitioned into 150 points. Then, we randomly swept over
the domain updating each site using the relaxation method
until the desired degree of convergence was met. All the
simulations were implemented inMathematica. We defined
an error function as the modulus of the deviations summed
over the various equations and integrated over the domain,
using it to establish a numerical convergence criterion.
In Fig. 1, we plot aðρÞ and hðρÞ for various values of μ2,

all of them with g ¼ λ ¼ −κ ¼ 1. Note that there are only
small changes in the whole range considered. Since this
seems to be true for other values of g, κ and λ, we expect
these profiles to be well approximated by those of the
Nielsen-Olesen vortex. On the other hand, Fig. 2 shows
that the profile h1 is more influenced by changes in μ2.
A similar behavior was also observed for h2 and h3. In
Fig. 3, we plot the quantity

ΔCðkÞ ¼ 1 −
N − 1

kðN − kÞ
σk
σ1

; ð39Þ

for N ¼ 8 and various values of k. It measures deviations
between the Casimir law. At μ̄2 ¼ 0, this function passes
by zero, a point where we showed an exact Casimir scaling.
The simulations did not converge well for μ̄2 < − 12

9λ̄
. It is

interesting to note that the Casimir law is only slightly

deviated from in thewhole regionwewere able to explore. In
addition, asΔCðkÞ is positive, the scaling law of themodel is
slightly below the Casimir law. Recalling that the Sine law
lies above the Casimir, it is not a surprise that in the whole
range the model shows larger deviations when compared
with the Sine law (cf. Fig. 4), via the relative difference

FIG. 1. Profiles aðρÞ and hðρÞ for various μ̄2. The profile a is
that with a linear behavior around ρ ¼ 0.

FIG. 2. Profile h1ðρÞ for various μ̄2.

FIG. 3. Plot of ΔCðkÞ with N ¼ 8. Notice the region depicted is
that where the SSB takes place, including positive μ̄2.

FIG. 4. Plot of ΔSðkÞ with N ¼ 8. The deviations are much
larger in the whole region explored.
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ΔSðkÞ ¼ 1 −
sinðπNÞ
sinðkπN Þ

σk
σ1

: ð40Þ

V. CONCLUSIONS

Considering a dual YMH effective model with N2 − 1
adjoint Higgs fields, we were able to develop an ansatz for a
topologically stable static vortex carrying charge in the
k-antisymmetric representation. The model has four param-
eters: the gauge coupling constant g, plus the quadratic (μ2),
cubic (κ), and quartic (λ) couplings in the Higgs potential.
We focused in the region μ2 < 2

9
κ2

λ , where the SUðNÞcolor is
spontaneously broken to ZðNÞ and the vacuum manifold is
given by AdðSUðNÞÞ ¼ SUðNÞ=ZðNÞ, thus implementing
N-ality. By using the algebraic structure of the model,
especially that concerning the weights and roots of
SUðNÞ, we showed that a collective behavior takes place.
For k ¼ 1, the many adjoint scalar field equations are closed
in terms of the profiles h, h1 and h2, while for k > 1 only an
additional profile h3 is required. Since this is valid for every
value ofN and k, it allows for a simple numerical simulation.
Furthermore, when μ2 ¼ 0, we found an exact Casimir law
and nontrivial profiles coinciding with those of the Nielsen-
Olesen vortex. This is compatible with the observed string
tension and in agreement with the chromoelectric field

distribution obtained in the lattice. Finally, upon an appro-
priate rescaling, the dependence of string tension ratios on
themodel parameters was reduced from four to two adimen-
sional quantities: μ̄2 and λ̄. Thismade it easier to numerically
explore the parameter space by using the relaxation method.
We noticed that the scaling law depends in fact on the
particular combination μ̄2λ̄ and that it is very stable through-
out the parameter space. In particular, taking N ¼ 8 as an
example,we observed that it deviates by atmost 4% from the
exact Casimir law at μ̄2 ¼ 0.
Our analysis encourages a thorough exploration of the

interplay between ensembles observed in pure Yang-Mills
lattice simulations, the associated large distance effective
field description, the implied asymptotic properties, and
their comparison with Monte Carlo calculations. Some of
these connections were successfully verified in the model
analyzed here.
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