
 

Dispersive approach to non-Abelian axial anomaly
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Manifestations of strong and electromagnetic axial anomalies in two-photon decays of η and η0 mesons
are studied. Applying a dispersive approach to axial anomaly in the singlet current, we obtain an anomaly
sum rule containing strong and electromagnetic anomaly contributions. The relevant low-energy theorem
was generalized to the case of mixed states and used to evaluate the subtraction constant of the strong
anomaly-related form factor h0jGG̃jγγi. We made a numerical estimation of the contributions of gluon and
electromagnetic anomalies to the two-photon decays of η and η0 mesons and found significant suppression
of the gluon anomaly contribution.
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I. INTRODUCTION

Axial (chiral) anomaly [1,2]—violation of the axial
symmetry of classical theory by quantum fluctuations—
is an important phenomenon inherent to QCD with many
interesting consequences. In particular, axial anomaly is
known to play an essential role in the two-photon decays
of pseudoscalar mesons. As a matter of fact, it was the
pion decay problem that led to the discovery of quantum
anomalies. Precision measurements of two-photon decays
of π0 [3,4], η, and η0 mesons remain a unique tool for the
study of properties of QCD and effective theories at the
low-energy limit, including such subtle effects as chiral
symmetry breaking and mixing.
Besides its connection with the real photon processes,

the axial anomaly is intimately connected with the proc-
esses involving virtual photons: the dispersive form of the
axial anomaly [5] (for a review, see e.g., [6]) leads to the
anomaly sum rules (ASRs) [7–9] which can be used to
evaluate the photon-meson transitions γðkÞγ�ðqÞ →
π0ðη; η0Þ at arbitrary photon virtuality. This approach was
used to study the transition form factors of the π0, η and η0
mesons in the spacelike [10–15] and timelike [16] regions.
Along with the study based on the ASRs, the transition
form factors have been a subject of extensive investigation

within other frameworks recently, such as light cone sum
rules [17–19], constituent [20], light-front [21] and non-
local chiral quark models [22], light-front holographic
QCD [23] as well as in some other models [24–26] and
model-independent analyses [27–29].
The presence of the axial anomaly results in the

nonconservation of the axial current (even in the chiral
limit). For the axial current Jμ5 ¼ ψ̄ iγμγ5ψ i, where ψ i is
some quark field of unit charge e, the axial anomaly
leads to

∂μJμ5 ¼ 2imiψ̄ iγ5ψ i þ
e2

8π2
NcFF̃ þ αs

4π
GG̃; ð1Þ

where F andG are electromagnetic and gluon field strength
tensors, respectively, F̃μν¼ 1

2
ϵμνρσFρσ and G̃

μν;a¼ 1
2
ϵμνρσGa

ρσ

are their duals, Nc ¼ 3 is a number of colors, αs is a strong
coupling constant.
In the case of light pseudoscalar mesons the relevant

currents are the diagonal components of the octet of axial

currents JðaÞμ5 ¼ ð1= ffiffiffi
2

p ÞPiψ̄ iγμγ5λ
aψ i and the singlet axial

current Jð0Þμ5 ¼ ð1= ffiffiffi
3

p ÞPiψ̄ iγμγ5ψ i, where the sum is over
the flavors of light quarks i ¼ u, d, s, λa are the diagonal
Gell-Mann SUð3Þ matrices, a ¼ 3, 8. While the π0 is

almost a pure SUð3Þ flavor state (with corresponding Jð3Þμ5

current), the η and η0 mesons are not—their physical states
are a significant mixture of the octet and singlet SUð3Þ
states (related to Jð8Þμ5 and Jð0Þμ5 currents). The mixing in the

η − η0 system results in four nonzero decay constants fðiÞM ,
defined as the currents’ projections onto meson states
M (i ¼ 8; 0;M ¼ η; η0),
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h0jJðiÞμ5ð0ÞjMðpÞi ¼ ipμfiM: ð2Þ

It is important that the octet of axial currents is free from
the strong (gluon) anomaly part while the singlet axial
current acquires both electromagnetic as well as gluon
anomalies,

∂μJðaÞμ5 ¼ 2iffiffiffi
2

p
X
i

miψ̄ iγ5λ
aψ iþ

e2

8π2
CðaÞNcFF̃; a¼ 3;8;

ð3Þ

∂μJð0Þμ5 ¼ 2iffiffiffi
3

p
X
i

miψ̄ iγ5ψ i þ
e2

8π2
Cð0ÞNcFF̃ þ

ffiffiffi
3

p
αs

4π
GG̃;

ð4Þ

where CðaÞ are the charge factors (ei are quark charges in
units of the electron charge):

Cð3Þ ¼ 1ffiffiffi
2

p ðe2u − e2dÞ ¼
1

3
ffiffiffi
2

p ; ð5Þ

Cð8Þ ¼ 1ffiffiffi
6

p ðe2u þ e2d − 2e2sÞ ¼
1

3
ffiffiffi
6

p ; ð6Þ

Cð0Þ ¼ 1ffiffiffi
3

p ðe2u þ e2d þ e2sÞ ¼
2

3
ffiffiffi
3

p : ð7Þ

Absence of the gluon anomaly for the third (isovector)
and the eighth (octet) components of the octet of axial
currents allowed to derive the anomaly sum rules
[10,11,13,14,16] which benefited from the absence of
corrections due to Adler-Bardeen theorem and t’Hooft’s
principle.
The singlet axial current has a complication due to gluon

anomaly part. This paper is aimed to investigate this issue.
We derive the anomaly sum rule based on the dispersive
form of axial anomaly in the singlet channel and study the
contributions of electromagnetic and gluon parts of the
axial anomaly to the two-photon decays of the η and η0
mesons.
The paper is organized as follows. In Sec. II, we derive

the anomaly sum rule for the singlet axial current. In
Sec. III, we generalize the low-energy theorem for the case
of mixing (η − η0) states. In Sec. IV, we apply the results of
the previous sections to study the role of electromagnetic
and gluon parts of the axial anomaly in the meson decays.

II. DISPERSIVE APPROACH TO AXIAL
ANOMALY WITH A GLUON TERM

In order to study the hadron observables in the non-
perturbative region, we will develop a sum rule based on
the dispersive representation of the axial anomaly in the
singlet current. Consider the triangle graph amplitude,

composed of the axial current Jα5 with momentum p ¼
kþ q and two vector currents with momenta k and q,Z

d4xd4yeðikxþiqyÞh0jTfJα5ð0ÞJμðxÞJνðyÞgj0i

¼ e2Tαμνðk; qÞ: ð8Þ

This amplitude can be decomposed [30] (see also [31,32])
as

Tαμνðk; qÞ ¼ F1εαμνρkρ þ F2εαμνρqρ

þ F3kνεαμρσkρqσ þ F4qνεαμρσkρqσ

þ F5kμεανρσkρqσ þ F6qμεανρσkρqσ; ð9Þ

where the coefficients Fj ¼ Fjðp2; k2; q2;m2Þ, j ¼ 1;…; 6
are the corresponding Lorentz invariant amplitudes con-
strained by current conservation and Bose symmetry. Note
that the latter includes the interchange μ ↔ ν, k ↔ q in the
tensor structures and k2 ↔ q2 in the arguments of the scalar
functions Fj.
The anomalous axial-vector Ward identity for Tαμνðk; qÞ

for the singlet axial current Jð0Þμ5 ðpÞ and photons γðk; ϵðkÞÞ,
γðq; ϵðqÞÞ (real or virtual) reads

pαTαμν ¼ 2
X
i

miGiϵ
μνρσkρqσ þ

Cð0ÞNc

2π2
ϵμνρσkρqσ

þ Nðp2; q2; k2Þϵμνρσkρqσ; ð10Þ

where the sum is over i ¼ u, d, s and

h0j 1ffiffiffi
3

p
X
i

miψ̄ iγ5ψ ijγγi ¼ 2
X
i

miGiϵ
μνρσkρqσϵ

ðkÞ
ρ ϵðqÞσ ;

ð11Þ

h0j
ffiffiffi
3

p
αs

4π
GG̃jγγi¼ e2Nðp2;k2;q2ÞϵμνρσkμqνϵðkÞρ ϵðqÞσ ; ð12Þ

h0jFF̃jγγi ¼ 2ϵμνρσkμqνϵ
ðkÞ
ρ ϵðqÞσ : ð13Þ

We introduced here the form factors Gi and N, while the
last matrix element is pointlike up to QED corrections.
In the kinematical configuration with one real photon

(k2 ¼ 0) which we consider in the rest of this section,
the above anomalousWard identity can be rewritten in terms
of form factors Fj, Gi, N as follows (Nðp2; q2Þ≡
Nðp2; q2; k2 ¼ 0Þ):

ðq2 − p2ÞF3 − q2F4 ¼
X
i

2miGi þ
Cð0ÞNc

2π2
þ Nðp2; q2Þ:

ð14Þ
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We can write the form factors Gi, F3, F4 as dispersive
integrals without subtractions. Indeed, in the case of iso-
vector and octet channels (free from gluon anomaly) it can be
shown explicitly [8]. In the considered case of the singlet
current from simple dimensional arguments one can assume
that Gi, F3;4 decrease at large p2, and, therefore, the form
factors can be written as dispersive integrals without sub-
tractions. On the other hand, generally speaking, one should
get the subtraction constant in the dispersion relation for the
form factor N, analogous to the Abelian anomaly constant
Cð0ÞNc

2π2
. Let us rewrite this dispersion relation in the form with

one subtraction at p2 ¼ 0:

Nðp2; q2Þ ¼ Nð0; q2Þ þ p2Rðp2; q2Þ; ð15Þ

where the new form factor R can be written as an unsub-
tracted dispersive integral. Then the imaginary part of (14)
with respect to p2 (s in the complex plane) reads

ðq2 − sÞImF3 − q2ImF4 ¼ 2
X
i

miImGi þ sImR: ð16Þ

Dividing every term of Eq. (16) by ðs − p2Þ and integrating
over s ∈ ½0;þ∞Þ, we get1

1

π

Z
∞

0

ðq2 − sÞImF3

s − p2
ds −

q2

π

Z
∞

0

ImF4

s − p2
ds

¼ 1

π

X
i

Z
∞

0

2miImGi

s − p2
dsþ 1

π

Z
∞

0

sImR
s − p2

ds: ð17Þ

After simple transformation of the first and last terms in
(17) and making use of the dispersive relations for the form
factors F3, F4, Gi, R, we arrive at

ðq2 − p2ÞF3 −
1

π

Z
∞

0

ImF3ds − q2F4

¼ 2
X
i

miGi þ p2Rþ 1

π

Z
∞

0

ImRds: ð18Þ

Comparing now (18) with (14), we can write down the
anomaly sum rule for the singlet current:

1

π

Z
∞

0

ImF3ds¼
Cð0ÞNc

2π2
þNð0;q2Þ−1

π

Z
∞

0

ImRðs;q2Þds;

ð19Þ

Saturating the lhs of (19) with resonances according to
global quark-hadron duality, we write out the first

resonances’ contributions explicitly, while the higher states
are absorbed by the integral with a lower limit s0,

X
M

f0MFMγðq2Þ þ
1

π

Z
∞

s0

ImF3ds

¼ Cð0ÞNc

2π2
þ Nð0; q2Þ − 1

π

Z
∞

0

ImRðs; q2Þds; ð20Þ

where the hadron contributions are expressed in terms of
the decay constants f0M (2) and form factors FMγðq2Þ of the
transitions γγ� → M

Z
d4xeikxhMðpÞjTfJμðxÞJνð0Þgj0i¼e2ϵμνρσkρqσFMγðq2Þ:

ð21Þ

Let us make a significant note about derivation of
Eqs. (19) and (20). Due to multiplicative renormalization
of matrix element of axial current and corresponding
operators [1,34], in anomaly Ward identity the scale
dependence is the same for all terms in left and right sides
of Eq. (10).
Then, bearing in mind that renormalization should not

change a power behavior at infinity of corresponding
invariant amplitudes, we may conclude, that dispersive
relations without subtractions for invariant amplitude still
remain fair. As a result, derivation of Eq. (19) remains valid
at any scale, so that it does not depend of normaliza-
tion point.
The problem of normalization point appears, however, in

Eq. (20) which was obtained from Eq. (19) by use of quark-
hadron duality. In this case, clearly, when one saturates the
imaginary part by resonance contributions, the decay
constants are fixed at corresponding resonance masses.
So, in Eq. (20), the normalization point for decay constants
f0M in first approximation can be taken at η0 mass scale,
which is a typical mass scale for singlet current.
The lower limit s0ðq2Þ in the integral in the lhs of (20)

should range between the masses squared of the last taken
into account resonance and the first resonance included into
the integral term. The choice of s0 for the isovector and
octet channels was discussed earlier [12,15]. For the case of
singlet current, keeping η and η0 mesons in the first term of
(20), we expect s0 ≳ 1 GeV2. Actually, this estimation is
sufficient for the purposes of the present paper.
As a note, let us point out the following observation. We

can also saturate with resonances the last term in the ASR
(19). The main contributions are given, in particular, by the
glueball-like states. Although it is hard to draw any
numerical conclusions at present (for instance, the decay
constants of the respective states are not known), the ASR
can be useful for estimation of their relative contributions in
the future.

1The lower limits of the integrals are formally expressed in
terms of quark masses, but due to confinement they should be
replaced with a pion mass (see, e.g., [33]), which we neglect
anyway.
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III. LOW-ENERGY THEOREM AND MIXING

An important part of the ASR (20), representing
gluon anomaly, is related to the matrix element
h0jGG̃ðpÞjγðkÞγðqÞi. Rigorous QCD calculation of this
matrix element encounters difficulties due to confinement
and is not known yet. However, it is possible to estimate it
in the limit pμ ¼ 0. Hereafter, we consider the case of two
real photons (q2 ¼ k2 ¼ 0).
The idea is simple (see [35] and references therein).

Consider the matrix element of the singlet axial current

h0jJð0Þμ5 ðpÞjγγi. Supposing that there are nomassless particles
in the singlet channel in the chiral limit, as the η0 meson
remains massive, one must get limp→0pμh0jJμ5ðpÞjγγi ¼ 0.
This corresponds to h0j∂μJμ5jγγi ¼ 0, so using the explicit
expression for the divergence of axial current in the chiral
limit (put mq ¼ 0), one can relate the matrix elements of
h0jGG̃jγγi and h0jFF̃jγγi in the considered limits.
However, due to a significant mixing in the η − η0

system, the assumption of [35], that the singlet channel
in the chiral limit does not contain massless particles, is
violated by the contribution of the massless in the chiral
limit η. Therefore, our aim now is to construct such a
current, that has no projections onto the Goldstone states.
Taking into account that π0 meson has a negligible

projection onto Jð8Þμ5 and Jð0Þμ5 (∼1% [36,37]), we can limit
our basis to these currents and require the current to be
orthogonal only to η:

JðXÞμ5 ¼ aJð0Þμ5 þ bJð8Þμ5 ; h0jJðXÞμ5 jηi ¼ 0: ð22Þ

After eliminating the constant a, in terms of meson decay
constants this current reads

JðXÞμ5 ¼ b

�
Jð8Þμ5 −

f8η
f0η

Jð0Þμ5

�
; ð23Þ

where b is an arbitrary constant and the decay constants fðiÞM
are the defined in (2). The current (23) gives no massless

poles in the matrix element h0jJðxÞμ5 jγγi even in the chiral
limit, so

lim
p→0

h0j∂μJ
ðXÞ
μ5 ðpÞjγγi ¼ 0: ð24Þ

Using explicit expressions for the divergences of currents in
the chiral limit, at pμ ¼ 0 we immediately obtain the
following relation between the matrix elements of GG̃
and FF̃:

h0j
ffiffiffi
3

p
αs

4π
GG̃jγγi ¼ Nc

f8η
ðf0ηCð8Þ − f8ηCð0ÞÞh0j αe

2π
FF̃jγγi:

ð25Þ

This gives us the value of the subtraction constant of the
gluon anomaly,

Nð0; 0; 0Þ ¼ Nc

2π2f8η
ðf0ηCð8Þ − f8ηCð0ÞÞ: ð26Þ

IV. HADRON CONTRIBUTIONS
AND ANALYSIS OF THE ASR

As we mentioned above, the first hadron contributions to
the ASR (20) are given by η and η0. We keep these
resonances as explicit contributions, while the rest of the
resonances are absorbed by the integral “continuum” term.
In what follows, we limit ourselves to the case of real
photons, i.e., k2 ¼ q2 ¼ 0. In this limit the transition form
factors determine the two-photon decay amplitudes AM
(M ¼ η; η0) which are expressed in terms of the decay
widths of the mesons ΓM→2γ as follows:

AM ≡ FMγð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64πΓM→2γ

e4m3
M

s
: ð27Þ

Recall also, that the ASR for the octet channel [14] in the
case of real photons leads to

f8ηAη þ f8η0Aη0 ¼
1

2π2
NcCð8Þ: ð28Þ

The ASR (20) for the singlet channel for real photons can
be written as follows:

f0ηAη þ f0η0Aη0 ¼
1

2π2
NcC0 þ B0 þ B1; ð29Þ

where, for the sake of brevity, we defined different
contributions to the ASR as follows,

B0≡Nð0;0;0Þ; B1≡−
1

π

Z
∞

0

ImRðsÞds−1

π

Z
∞

s0

ImF3ds:

ð30Þ

The B0 term is the subtraction constant in the dispersion
representation of gluon anomaly. TheB1 term consists of two
parts: spectral representation of gluon anomaly and the
integral covering higher resonances. The latter is propor-
tional to α2s . Indeed, the form factor F3 is described by a
triangle graph (no αs corrections) plus diagrams with addi-
tional boxes (∝ α2s for the first box term). In the case of both
real photons in the chiral limit the triangle amplitude is zero
(∝ q2). So, one can expect α2s suppression of the higher
resonances contributions term due to the sufficiently high
lower limit of the integral, s > s0 ≳ 1 GeV2.
Note, that at s < s0 there is a NP QCD contribution

following from (25): h0jGG̃jγγi ∝ αe
αs
. So, unlike the second
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term of B1 (higher resonances contributions), the first term
of B1 (spectral part of the gluon anomaly) lies in the
essentially nonperturbative region.
Combining the ASRs for the octet (28) and singlet (29)

channels of axial current, one gets

Aη ¼
1

Δ

�
Nc

2π2
ðCð8Þf0η0 − Cð0Þf8η0 Þ − ðB0 þ B1Þf8η0

�
; ð31Þ

Aη0 ¼
1

Δ

�
Nc

2π2
ðCð0Þf8η − Cð8Þf0ηÞ þ ðB0 þ B1Þf8η

�
; ð32Þ

where Δ ¼ f8ηf0η0 − f8η0f
0
η. Also, making use of the result of

the low-energy theorem (26) for B0, we can express the
two-photon decay amplitudes as follows,

Aη ¼
NcCð8Þ

2π2f8η
−
B1f8η0

Δ
; ð33Þ

Aη0 ¼
B1f8η
Δ

: ð34Þ

Note that the low-energy theorem leads to the cancellation
of the photon anomaly term with subtraction part of gluon
anomaly B0 in (32), so the amplitude η0 → γγ (in the chiral
limit) is entirely determined by B1, which is (predomi-
nantly) the spectral part of the gluon anomaly.
Let up pass to the numerical analysis. The B0 þ B1 term

can be evaluated directly from the Eq. (29) if we use the
values of the two-photon decay widths and decay constants
of the mesons. The low-energy theorem additionally gives
estimation for B0, so combining (28), (29), we can
separately evaluate B0 and B1.
For the decay constants fiM we employ the sets of decay

constants obtained in different analyses based on the octet-
singlet (OS) mixing scheme [14], quark-flavor mixing
scheme [14,38] and scheme-free approach [14,39]. The
results are shown in the Table I.
These results demonstrate, that the contribution of the

gluon anomaly and the higher order resonances (expressed
by B0 þ B1 term) to the 2-photon decay amplitudes appears
to be rather small numerically in comparison with the
contribution of electromagnetic anomaly ð1=2π2ÞNcCð0Þ ≃
0.058. In fact, these processes are dominated by the
electromagnetic anomaly: the electromagnetic part (the
first two terms in (31), (32)) makes 95% and 90% for η
and η0 meson decay amplitudes, respectively, while the
gluon anomaly originated part (the last two terms
∝ðB0 þ B1Þ) makes only 5% and 10% (for the decay
constants scheme-free analysis from [14]). Let us note,
that this conclusion is valid for the processes with real
photons: for the processes involving virtual photons (pho-
ton-meson transitions) it may not be true.
Using the low-energy theorem gives the values of B0

(subtraction constant) and, in combination with the results

of the ASR (29), B1 (dominated by the term
R
∞
0 ImRds, the

higher resonances term is suppressed as ∝ α2s , as we noted
before). Numerically, B0 and B1 appear to be rather large:
they are of order of the electromagnetic anomaly term. At
the same time, B0 and B1 enter the ASR with different signs
and almost cancel each other, giving only a small total
contribution to the two-photon decay widths of the η and η0.
Our conclusions hold for different sets of decay constants
which were obtained in independent analyses.2

V. CONCLUSIONS AND OUTLOOK

Employing the dispersive approach to axial anomaly in
the singlet current, we have obtained the sum rule with
electromagnetic and gluon anomaly contributions. The
gluon contribution consists of a spectral part (originated
from p2-dependent term) and a subtraction constant (inde-
pendendent of p2).
The low-energy theorem was generalized for the case of

mixed η − η0 states and applied to evaluate the matrix
element h0jGG̃jγγi in the limit pμ ¼ 0. It gave an estima-
tion for the subtraction constant of the gluon anomaly
contribution in the dispersive form of axial anomaly.
The spectral part of the gluon anomaly was estimated

using the ASR in the singlet current and low-energy
theorem result for the subtraction part. Numerically, it is
found to be significant—of the order of the electromagnetic
anomaly contribution. However, it is almost canceled out
by the subtraction term of gluon anomaly, resulting in the
overall small contribution of the gluon anomaly to the
ηðη0Þ → γγ decays.
Also, application of the low-energy theorem showed that

the two-photon decay of η0 meson (in the chiral limit) is
mainly determined by the spectral part of gluon anomaly.

TABLE I. Gluon anomaly term contributions for different sets
of meson decay constants.

�
f8η
f0η

f8
η0

f0
η0

�
1
fπ B0×102 B1×102 ðB0þB1Þ×102

[14], scheme-free
�
1.11
0.16

−0.42
1.04

�
−5.55 4.91 −0.64

[14], OS mix.
scheme.

�
0.85
0.20

−0.22
0.81

�
−5.36 3.84 −1.53

[14], QF mix.
scheme

�
1.38
0.18

−0.63
1.35

�
−5.58 6.39 0.81

[39], scheme-free
�

1.39
0.054

−0.59
1.29

�
−5.77 5.86 0.095

[38], QF mix.
scheme

�
1.17
0.19

−0.46
1.15

�
−5.51 5.47 −0.047

2Somewhat different results for the constants of octet-singlet
mixing scheme [14] can be attributed to rather restricted proper-
ties of this scheme. Historically, it was the first one used for the
η − η0 mixing description, but now it is rarely applied where
precise analysis of the processes with η − η0 mixing is required.
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The smallness of the gluon contribution to radiative
decays of pseudoscalar mesons may result in a relative
suppression of the η and η0 production from the color glass
condensate in heavy ion collisions in favor of heavy
glueballs. The properties of such glueballs may be deduced
in a further analysis of the ASR (20).
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