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A regularization scheme that explicitly separates vacuum contributions from medium effects is applied
to a Nambu–Jona-Lasinio model with diquark interactions and in β equilibrium. We perform a comparison
of this proposed scheme with the more traditional one, where no separation of vacuum and medium effects
is done. Our results point to both qualitative and quantitative important differences between these two
methods, in particular regarding the phase structure of the model in the cold and dense nuclear matter case.
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I. INTRODUCTION

Low-energy nonrenormalizable effective models are
widely used as a tool to understand many problems in
physics when its microscopic, renormalizable counterpart
is too complex to be used. This is particularly true in the
case of quantum chromodynamics (QCD), where a full use
of it becomes not applicable in the context of perturbation
theory, like at low energies, given its strong coupling
nature. Likewise, the study of the dense nuclear matter
through nonperturbative methods based on lattice
Monte Carlo QCD simulations (for a recent review, see,
e.g., Ref. [1] and references therein) is plagued by the so-
called “sign problem”. In this context, the use of effective
models, for instance the Nambu–Jona-Lasinio (NJL) type
of models [2,3], is highly valuable to access some other-
wise unaccessible region of parameters.
Even in the context of effective models, we still find

ultraviolet (UV) divergent momentum integrals that need to
be solved. The usual prescription adopted in the literature is
to regularize all the divergent momentum integrals through
a sharp cutoff Λ. The momentum cutoff Λ in this case is
then treated as a parameter of the model, which is fitted by
the physical quantities (e.g., by using the pion decay
constant, the quark condensate, and pion mass). Λ also
in a sense sets an energy scale below which in general the
effective model should be trusted.

In Refs. [4,5] the authors showed that the gaps in fermion
spectrum are expected to be of the order of 100 MeV and
that the possible presence of color superconducting phases
could be extended to the region of nonzero temperature on
the QCD phase diagram. This is related to the fact that, just
like in the case of the usual superconductivity, gaps are
related to larger values of critical temperature, which results
in a very rich phase structure. In this region the matter
consists of three quarks and, depending on the value of the
strange (s) quark mass, one may observe different types of
superconducting phases that can be formed by one, two, or
three flavors of quarks. If three quarks do participate in the
pairing, the color-flavor locked (CFL) phase is observed
[6], while if only the up (u) and down (d) quarks take place
in the pairing, the phase is 2SCþ s. It is also possible
that only the s quark forms pairs, characterizing a spin-1
condensate that may have influence on some properties of
compact stars, as shown, e.g., by Ref. [7]. If the value of the
baryon density is not large enough such that the quark s
does not need to be included, we have a pairing of up and
down quarks and the corresponding phase is called two-
flavor superconducting (2SC). This is the case we are
interested in the present work. In Refs. [8–10] there are
good reviews on this topic, and in [11,12] the authors
studied the color superconductivity mechanism at asymp-
totic densities using first principles calculations. One of the
most relevant applications of these studies is to understand
the structure of compact stars, where color superconducting
phases are expected, since these stars are expected to
present densities on their nuclei of the order of 10 ρ0,
where ρ0 ∼ 0.15 fm−3 is the saturation density.
In the present work we will make use of the NJL model

to study the diquark condensation for a cold and dense
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quark matter with color and electric charge neutrality. The
importance of this model stems from the fact that at
sufficiently cold and dense regimes, quark matter behaves
as a color superconductor [13,14], where quarks form
Cooper pairs with equal and opposite momenta, and studies
of QCD under these conditions have many different
applications. When studied in the context of the NJL
model, which is an intrinsically nonrenormalizable model,
we should in principle handle with care the regularization
procedure. Even though the regularization scheme is
treated as part of the model, it can potentially mix vacuum
quantities with medium ones, which can involve explicitly,
e.g., chemical potentials, temperature and external fields, or
implicitly, through, e.g., a dependence on the various
condensates that the system can allow. In principle, one
could claim that we are not restricted to follow any
prescribed regularization procedure. Yet, since the model
is supposed to be an approximation of a renormalizable
theory (QCD), we still find that is fair to assume that it
should preserve some of the properties observed in the latter.
One of these properties is that renormalization should in
principle only depend on vacuum quantities and not
on medium effects. Thus, regularization procedures are
required to be done only on vacuum dependent terms, while
medium dependent terms should be independent of the
regularization chosen to perform UV divergent terms.
That this separation of medium effects from regularized
vacuum dependent terms only might have not only qualita-
tive but also important quantitative effects was noticed
already in Ref. [15] in the context of color superconductivity
in aNJLmodel. A similar situationwas also found in the case
of studies of magnetized quark matter, where unphysical
spurious effects are eliminated by properly separating the
magnetic field contributions from the divergent integrals [16–
19]. This same procedure has been advocated recently in
Ref. [20] in the context of the NJL model with a chiral
imbalance. The process of disentangling the vacuum depen-
dent terms frommedium ones and properly regularizing only
the UV divergent momentum integrals for the former was
named the “medium separation scheme” (MSS) in opposition
to the usual procedure where the cutoff is applied even to the
medium dependent terms, the traditional regularization
scheme (TRS).
One of the most important motivations for our study

comes from the fact that there is a great deal of evidence
pointing to the increasing of the diquark condensatewith the
chemical potential. While realistic Nc ¼ 3 QCD lattice
simulations cannot be implemented due to the well-
discussed sign problem [21], this is not the case in
Nc ¼ 2, where there are lattice simulations available
[22,23], For that case, the results clearly predicts an increase
of the diquark condensate with the chemical potential. This
is also indicated by studies using chiral perturbation theory
(ChPT) [24]. As we are going to see, in the traditional
treatment of divergences in the TRS case, the diquark

condensate eventually vanishes, which seems to be at odds
withwhat wewould expect in general. By applying theMSS
procedure instead, we predict an always increasing diquark
condensate. As a side result, we also show an explicit change
of behavior in the phases for the diquark condensate as the
chemical potential is increased, which is not able to be
obtained in the context of the TRS regularization procedure.
This work is organized as follows. In Sec. II, we

introduce the NJL model with diquark interactions and
give the explicit expression for the thermodynamical
potential. In Sec. III we give the MSS regularization
procedure and define the appropriate equations for having
β equilibrium and charge neutrality. In Sec. IV, we show
our numerical results comparing TRS andMSS schemes. In
Sec. V, we present our conclusions. Three Appendixes are
also included where we show the more technical details in
the MSS calculation and how to write the expressions for
the individual densities when β equilibrium is included.

II. THE MODEL AND ITS THERMODYNAMIC
POTENTIAL

In this work we study the NJL model with interactions
involving the scalar, pseudoscalar, and diquark channels for
the quark field. The explicit form of the Lagrangian density
is then given by

L ¼ ψ̄ðiγμ∂μ −mÞψ þGs½ðψ̄ψÞ2 þ ðψ̄ iγ5τ⃗ψÞ2�
þ Gd½ðiψ̄Cεϵbγ5ψÞðiψ̄εϵbγ5ψCÞ�; ð2:1Þ

where m is the current quark mass, ψC ¼ Cψ̄T is the
charge-conjugate spinor, and C ¼ iγ2γ0 is the charge
conjugation matrix. The quark field ψ ≡ ψ iα is a four-
component Dirac spinor that carries both flavor (i ¼ 1, 2)
and color (α ¼ 1, 2, 3) indices. The Pauli matrices are
denoted by τ⃗ ¼ ðτ1; τ2; τ3Þ, while ðεÞik ≡ εik and ðϵbÞαβ ≡
ϵαβb are the antisymmetric tensors in the flavor and color
spaces, respectively.
In β equilibrium, the diagonal matrix of quark chemical

potentials is given in terms of quark, electrical, and color
charge chemical potentials,

μij;α;β ¼ ðμδij − μeQijÞδαβ þ
2ffiffiffi
3

p μ8δijðT8Þαβ; ð2:2Þ

where Q and T8 are generators of the electromagnetism
Uð1Þem and the Uð1Þ8 subgroup of the color gauge groups,
respectively. The explicit expressions for the quark chemi-
cal potentials read

μur ¼ μug ¼ μ −
2

3
μe þ

1

3
μ8; ð2:3Þ

μdr ¼ μdg ¼ μþ 1

3
μe þ

1

3
μ8; ð2:4Þ
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μub ¼ μ −
2

3
μe −

2

3
μ8; ð2:5Þ

μdb ¼ μþ 1

3
μe −

2

3
μ8: ð2:6Þ

In the mean field approximation, the finite temperature
(T) effective potential for quark matter in β equilibrium
with electrons is well known [25,26] and it is explicitly
given by

Ω ¼ Ω0 −
�

μ4e
12π2

þ T2μ2e
6

þ 7π2

180
T4

�
þ ðM −mÞ2

4Gs

þ Δ2

4Gd
− 2T

X
a

na

Z
d3p
ð2πÞ3 ln ð1þ e−Ea=TÞ

−
X
a

na

Z
d3p
ð2πÞ3 Ea; ð2:7Þ

where μe is the electron chemical potential and Ω0 is the
constant vacuum energy term added so as to make the
pressure of the vacuum zero. In Eq. (2.7), for simplicity, we
have assumed a vanishing value for the electron mass,
which is sufficient for the purposes of the current study. The
sum in the second line of Eq. (2.7) runs over all quasi-
particles, whose explicit dispersion relations read

E�
ub ¼ E� μub; ð2:8Þ

E�
db ¼ E� μdb; ð2:9Þ

E�
Δ� ¼ E�

Δ þ δμ; ð2:10Þ

where we have introduced the following notation for
convenience:

E≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q
; ð2:11Þ

E�
Δ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE� μ̄Þ2 þ Δ2

q
; ð2:12Þ

μ̄≡ μur þ μdg
2

¼ μug þ μdr
2

¼ μ −
μe
6
þ μ8

3
; ð2:13Þ

δμ≡ μdg − μur
2

¼ μdr þ μug
2

¼ μe
2
; ð2:14Þ

in the above equations, Δ is the diquark condensate and M
is the constituent quark mass. The multiplicity na
in Eq. (2.7) is related to the degeneracy factors of
each quasiparticle dispersion, such as nub ¼ ndb ¼ 1 and

nΔ ¼ 2 (corresponding to the dispersions E�
Δ� , related to

the r and g colors, due to the definitions of μ̄ and δμ).
For the demonstration purposes in this work, we can

assume, without loss of generality, the chirally symmetric
phase of quark matter and, thus, we will work in the chiral
limit. In this limit, the quasiparticle dispersions (2.11) and
(2.12) then become

E ¼ p; ð2:15Þ

E�
Δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp� μ̄Þ2 þ Δ2

q
: ð2:16Þ

The vacuum termΩ0 in Eq. (2.7) is obtained by considering
Δ ¼ μ ¼ μe ¼ μ8 ¼ 0 and taking the effective quark mass
is its vacuum value, M0. Thus, we obtain that

Ω0 ¼ −
M2

0

4Gs
þ 12

Z
d3p
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

0

q
: ð2:17Þ

Finally, by considering the T → 0 limit in Eq. (2.7), we
obtain that [25]

ΩT¼0ðΔ; μ̄; δμÞ ¼ Ω0 −
μ4e

12π2
þ Δ2

4Gd
−

μ4ub
12π2

−
μ4db
12π2

− 2θðδμ − ΔÞ
Z

μþ

μ−

dp
π2

p2ðδμ − E−
ΔÞ

− 4

Z
d3p
ð2πÞ3 ðpþ Eþ

Δ þ E−
ΔÞ; ð2:18Þ

where μ� ¼ μ̄�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δμ2 − Δ2

p
andΩ0 is given by Eq. (2.17).

III. REGULARIZATION ISSUES AND
MEDIUM EFFECTS

The momentum integral in the last term in Eq. (2.7) and,
equivalently, the last one in Eq. (2.18) when taking the
chiral limit are UV divergent. These terms mix vacuum
quantities with medium ones. In the case of the last term in
Eq. (2.7), or in the case of Eq. (2.18), we have a term that
involves explicitly the chemical potentials μ, μe, and μ8 and
implicitly, whose dependence comes from the diquark
condensate Δ. As argued in the Introduction, these terms
should be handled with care and two regularization
procedures can be applied, the TRS and the MSS one.
Let us start by discussing the implementation of the MSS
procedure as a way to properly disentangle these depend-
encies of vacuum dependent terms from the medium effects
for the present problem. We initially discuss the more
general case, the physical case, with a nonvanishing current
quark massm. The generalization for the chiral limit for the
MSS regularized integrals is immediate.
The gap equation for Δ is obtained from Eq. (2.7) by

deriving it with respect to Δ. Let us concentrate on the UV
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divergent term that results from the last term in Eq. (2.7).
Its contribution for the gap equation for Δ is of the form

IΔ ¼
Z

d3p
ð2πÞ3

�
1

Eþ
Δ
þ 1

E−
Δ

�

¼
X
s¼�1

Z
d3p
ð2πÞ3

1

Es
Δ
; ð3:1Þ

with Es
Δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEþ sμ̄Þ2 þ Δ2

p
. This term can be rewritten

as

Z
d3p
ð2πÞ3

1

Es
Δ
¼ 1

π

Z þ∞

−∞
dp4

Z
d3p
ð2πÞ3

1

p2
4 þ ðEs

ΔÞ2
; ð3:2Þ

such that

1

2

X
s¼�1

Z
d3p
ð2πÞ3

1

Es
Δ

¼
X
s¼�1

Z þ∞

−∞

dp4

2π

Z
d3p
ð2πÞ3

1

p2
4 þ ðEs

ΔÞ2
: ð3:3Þ

Making use of the identity [27],

1

p2
4 þ ðEþ sμ̄Þ2 þ Δ2

¼ 1

p2
4 þ p2 þM2

0

−
μ2 þ 2sEμþ Δ2 þM2 −M2

0

ðp2
4 þ E2 þM2

0Þ½p2
4 þ ðEþ sμ̄Þ2 þ Δ2� ; ð3:4Þ

we obtain, after making two iterations of this same identity,
the result

1

p2
4 þ ðEþ sμ̄Þ2 þ Δ2

¼ 1

p2
4 þ p2 þM2

0

þ A − 2sEμ̄
ðp2

4 þ p2 þM2
0Þ2

þ ðA − 2sEμ̄Þ2
ðp2

4 þ p2 þM2
0Þ3

þ ðA − 2sEμ̄Þ3
ðp2

4 þ p2 þM2
0Þ3½p2

4 þ ðEþ sμ̄Þ2 þ Δ2� ; ð3:5Þ

with A ¼ M2
0 −M2 − μ̄2 − Δ2. Thus, after performing

some simple algebraic manipulations, the sum in s and
also the p4 integrations, as indicated in Eq. (3.3), can be
made and we obtain the result

X
s¼�1

Z þ∞

−∞

dp4

2π

Z
d3p
ð2πÞ3

1

p2
4 þ ðE�

ΔÞ2

¼ Iquad −
ðΔ2 −M2

0 − 2μ̄2 þM2Þ
2

Ilog − Ifin;2

þ
�
3ðA2 þ 4M2μ̄2Þ

8
−
3μ̄2M2

0

2

�
Ifin;1; ð3:6Þ

where we have defined the quantities

Iquad ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

0

p ; ð3:7Þ

Ilog ¼
Z

d3p
ð2πÞ3

1

ðp2 þM2
0Þ

3
2

; ð3:8Þ

Ifin;1 ¼
Z

d3p
ð2πÞ3

1

ðp2 þM2
0Þ

5
2

; ð3:9Þ

Ifin;2 ¼
15

32

X
s¼�1

Z
d3p
ð2πÞ3

Z
1

0

dxð1 − xÞ2

×
ðA − 2sEμ̄Þ3

½ð2sEμ̄ − AÞxþ p2 þM2
0�

7
2

: ð3:10Þ

Comparing Eq. (3.1) and the left-hand side of Eq. (3.3)
we can see that

1

2
IΔ ¼

X
s¼�1

Z þ∞

−∞

dp4

2π

Z
d3p
ð2πÞ3

1

p2
4 þ ðE�

ΔÞ2
; ð3:11Þ

and, therefore,

IΔ ¼ 2Iquad − ðΔ2 −M2
0 − 2μ̄2 þM2ÞIlog þ 2Ifin;2

þ
�
3ðA2 þ 4M2μ̄2Þ

4
− 3M2

0μ̄
2

�
Ifin;1: ð3:12Þ

It is important to note that Eq. (3.12) was not evaluated in
the chirally symmetric phase; i.e., it can also be used for
studying the system before the chiral phase transition or in
the physical limit. In the physical case we have an addi-
tional gap equation for the mass m that can be evaluated in
the MSS procedure by using the same manipulations used
to evaluate IΔ. The m → 0 limit to study the chiral phase
is trivial and it is taken in the calculations to be pre-
sented below.

IV. CONTRASTING THE TRS AND MSS
REGULARIZATION PROCEDURES

To obtain the numerical results for Nc ¼ 3 in β equi-
librium we first evaluate the gap equation for Δ, the charge
neutrality conditions for μ8 and μe, and the densities from
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Eq. (2.18). For comparison purposes, we will present the
results for both schemes, TRS and MSS.

A. The Δ gap equation

The gap equation is given by

∂ΩT¼0

∂Δ
����
Δ¼Δc

¼ 0; ð4:1Þ

where Δc is the solution of

1 ¼ 2Gd

�
4IiΔ − 2θðδμ − ΔcÞ

Z
μþ

μ−

dp
π2

p2

E−
Δc

�
; ð4:2Þ

where IΔ is given, in the TRS and MSS cases, respectively,
by

ITRSΔ ¼
Z
Λ

d3p
ð2πÞ3

�
1

Eþ
Δ
þ 1

E−
Δ

�
; ð4:3Þ

IMSS
Δ ¼ 2Iquad − ðΔ2 −M2

0 − 2μ2ÞIlog þ 2Ifin;2

þ
�
3ðM2

0 − μ̄2 − Δ2Þ2
4

− 3M2
0μ̄

2

�
Ifin;1; ð4:4Þ

where the indicated integrals were defined in the previous
section, Eqs. (3.7)–(3.10), in the limit m → 0, and E�

Δ are
defined in Eq. (2.16).

B. The color neutrality condition

It has been widely discussed in the literature that the
superconducting quark matter that may occur in compact
stars is required to be both electromagnetic and color
neutral, such as to be in the stable bulk phase [28–30]. The
color neutrality represents the equality between the num-
bers of quarks with colors red, green, and blue, since the
quark matter must be composed by color singlets. In
Ref. [28] the authors have shown that once a macroscopic
chunk of color superconductor is color neutral, implemen-
tation of the projection which imposes color singletness has
a negligible effect on the free energy of the state, similar to
the usual fact from ordinary superconductivity. In this case,
the projection which turns a BCS state, wherein the particle
number is formally indefinite, into a state with definite but
very large particle number has no significant effect. Color
singletness follows without paying any further free energy
price [31]. It is important to mention that by imposing these
constraints, the free energy of the 2SC phase becomes
extremely large and cannot be found in nature. This
problem disappears if we also consider the s quark, in
which case the phase of the system is CFL, which satisfies
the neutrality constraints, costing a smaller quantity of free
energy.

In this work we are focused on the correct separation of
vacuum divergences, from finite integrals, but also how this
separation can influence the values of the diquark con-
densate and, consequently, in the phase diagrams of the
system when β equilibrium and charge neutrality are taken
into account. For this reason, we will be working simply
with the SUð2Þ version of the NJL model, in which case,
due to the definitions (2.3) to (2.6), only quarks with red
and green colors participate in the pairing.
The color neutrality condition is obtained by imposing

that the number density n8 be vanishing. Thus, it is required
that

n8 ¼ −
∂ΩT¼0

∂μ8 ¼ 0; ð4:5Þ

which leads to the condition

0 ¼ −
μ3ub
3π2

−
μ3db
3π2

þ 2Ii8 þ 2μ̄IiΔ

þ θðδμ − ΔÞ
Z

μþ

μ−

dp
π2

p2
p − μ̄

E−
Δ

; ð4:6Þ

with IiΔ defined in Eq. (4.3) or (4.4), for the TRS or MSS
cases, respectively, and Ii8 is given by

ITRS8 ¼
Z
Λ

d3p
ð2πÞ3

�
p
Eþ
Δ
−

p
E−
Δ

�
; ð4:7Þ

IMSS
8 ¼ −2μ̄Iquad þ μ̄ð3Δ2 −M2

0 − 2μ̄2ÞIlog þ Ifin;5

þM2
0μ̄ð3M2

0 þ 2μ̄2 − 3Δ2ÞIfin;1
þ 5μ̄

4
½4M2

0μ̄
2 − 3ðM2

0 − μ̄2 − Δ2Þ2�Ifin;4: ð4:8Þ

In Appendix A we give some of the details on the explicit
calculation of IMSS

8 and present there also the definitions of
Ifin;4 and Ifin;5.

C. The electric neutrality condition

When considering the electric neutrality condition, we
must note that the integrands have the same structure as the
ones in n8. Then, by imposing that

ne ¼ −
∂ΩT¼0

∂μe ¼ 0; ð4:9Þ

we obtain that

0 ¼ μ3e
3π2

−
2μ3ub
9π2

þ μ3db
9π2

−
2

3
μ̄IiΔ −

2

3
Ii8

þ 2θðδμ − ΔÞ
Z

μþ

μ−

dpp2

π2

�
1

2
−
p − μ̄

6E−
Δ

�
; ð4:10Þ
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where IiΔ and Ii8 are given by Eqs. (4.3) and (4.7), for the
TRS case, or by Eqs. (4.4) and (4.8), for the MSS case.

D. The results

To obtain our numerical results, we consider the values
for the parameters in the NJL model as chosen in the usual
way, by the fitting with the experimental vacuum values of
the pion decay constant fπ ¼ 93 MeV and chiral conden-
sate hψ̄fψfi1=3 ¼ −250 MeV. The third parameter, the use
of the pion mass mπ, is not required if we stay in the chiral
limit. The model parameters in this case are found simply to
be given by the values Gs ¼ 5.0163 GeV−2 for the scalar
quark four-fermion interaction term, while the ultraviolet
cutoff scale is found to be Λ ¼ 653.3 MeV. The diquark
coupling constant Gd is set to be proportional to Gs, with
the value chosen as Gd ¼ 0.75Gs [3,30].
In Fig. 1 we show the results for Δ; μe, and μ8, obtained

by solving numerically Eqs. (4.2), (4.6), and (4.10) in both
the TRS and MSS regularization procedures. Note that the
result forΔ initially increases with the chemical potential in
both TRS and MSS regularization procedures, but as μ gets
sufficiently large, μ ∼ 0.53 GeV, the result for TRS drops

down and it is vanishing from then on. The result for MSS
still grows with μ as expected in general grounds. Note also
the change in behavior for both the chemical potentials μe
and μ8 in both regularization schemes. Even for small
values for the chemical potential, there are significant
quantitative differences in the results obtained in the
TRS and MSS procedures.
To emphasize the differences between the TRS and

MSS, we also show some of the relevant thermodynamic
quantities to compare them between the two methods. First
of all, to obtain the baryon density ρB we need to determine
the total density ρT ¼ ρu þ ρd in the SUð2Þ case. However,
our expression for the thermodynamic potential, Eq. (2.18),
is written in terms of μ̄ and δμ. Here, we restrict ourselves to
show the final expressions for each quantity, whose details
for their derivation are given in Appendix C. The individual
densities ρu and ρd are given by

ρu ¼
μ3ub
3π2

þ 2Ii8 þ 2μ̄IiΔ þ θðδμ − ΔÞ
Z

μþ

μ−

dp
π2

p2

�
p − μ̄

E−
Δ

�

−
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δμ2 − Δ2

p
3π2

ðδμ2 − Δ2 þ 3μ̄2Þθðδμ − ΔÞ; ð4:11Þ

and

ρd ¼
μ3db
3π2

þ 2Ii8 þ 2μ̄IiΔ þ θðδμ − ΔÞ
Z

μþ

μ−

dp
π2

p2

�
p − μ̄

E−
Δ

�

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δμ2 − Δ2

p
3π2

ðδμ2 − Δ2 þ 3μ̄2Þθðδμ − ΔÞ; ð4:12Þ

where Ii8 and I
i
Δ were already defined previously for each of

the two schemes. The normalized pressure pN , the baryon
density ρB, and the energy density ε are then given,
respectively, by

pN ¼ −ΩT¼0ðΔ; μ̄; δμÞ; ð4:13Þ

ρB ¼ ρT
3
; ð4:14Þ

ε ¼ −pN þ μBρBð¼ −pN þ 3μρBÞ: ð4:15Þ

The numerical results for these quantities, as well as the
individual densities and the equation of state, pN × εN , are
shown in Figs. 2 and 3. Though the differences in the EoS
are not very significant in both the regularization schemes,
the energy density and pressure tend to increase faster in the
MSS case than in the TRS one.
It is argued in the literature [25,26] that a neutral 2SC

phase exists at low values of μ, called the “gapless-2SC”
(g2SC) phase, instead of the usual 2SC one (for a detailed
discussion regarding the gapless phase, structure, and
consequences, see in addition [32] and references therein).
The criterion used to define whether the system is in the
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FIG. 1. The diquark condensate Δ and the electron chemical
potential μe (a) and the color chemical potential μ8 (b), as
functions of μ, for both the TRS and MSS regularization
schemes.
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gapless or in the 2SC phase is quite simple. In β equilibrium
the new contribution to the effective potential is exactly the
term that contains a step function on Eq. (2.18). If δμ > Δ,
this term remains and the phase is said to be in the g2SC.
Otherwise, for δμ < Δ, that term disappears and the phase
is said to be in the usual 2SC one. In Fig. 4 we probe the
emergence of these two possible phases.
It is also useful to discuss the difference between the

g2SC and 2SC phases from the dispersion relations for
quasiparticles in the context of the two regularization

schemes studied here. From Eqs. (4.11) and (4.12) one
can see that in g2SC the pairing quarks have different
number densities, which does not occur in 2SC. The
spectrum in the 2SC case includes the free blue quark
that does not take place in the pairing and also the
quasiparticle excitations formed by the linear superposition
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FIG. 2. The energy density (a), the normalized pressure (b), and
the equation of state (c) as functions of μ, for both the TRS and
MSS regularization schemes.
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MSS regularization schemes.
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of urg and drg quarks, whose gap is Δ. When δμ ≠ Δ, there
is a small discrepancy between the Fermi surfaces of the u
and d pairing quarks, shifting one of the dispersions to
Δþ δμ and the other to Δ − δμ. When the mismatch
δμ > Δ, the lower dispersion relation becomes negative
for some values of p and this is the spectrum usually called
gapless. This is illustrated in Fig. 5. For μ ¼ 0.35 GeV,
both regularization schemes predict a gapless phase for the
system, even though in the MSS case the value of E−

Δ − δμ
is smaller (in magnitude) than in the TRS case. On the other
hand, for μ ¼ 0.5 GeV, the dispersion for the MSS never
becomes negative; i.e., the system is in the 2SC phase,
while in the TRS the gapless phase is observed again.
One can see that using the MSS regularization procedure

the behavior of the phase structure can become quite
different. While in the TRS case the system is always in
the g2SC phase in the range of μ considered in this work,
the situation becomes quite the opposite in the case of the
MSS regularization procedure. We can see from the results
shown in Figs. 4 and 5 that now the system can display a
transition between the g2SC and the 2SC phases. This is
quite a remarkable difference and it is the main result of this
work. We can trace this change of behavior in the MSS case
by recalling the result shown in Fig. 1 for the diquark

condensate Δ. In the TRS case, the diquark condensate
never increases to be above δμ and, even worse, it vanishes
after μ≳ 0.53 GeV. However, in the MSS, Δ is larger than
in the TRS case and always increases with the chemical
potential. Thus, it is no wonder that at some point it will
become larger than δμ and the system can transition from a
g2SC to a 2SC phase. It is nice to see that this can happen
already for not relatively too large values of the chemical
potential. This is also reflected on the behavior of thermo-
dynamic quantities. From Figs. 2 and 3, one notices that the
difference between two schemes increases with the increase
of the chemical potential. This is related to the change to the
2SC phase in the MSS case, while in the TRS case the
system is still in the g2SC phase.
Finally, it is also useful to comment on the effect of the

value of the diquark interaction Gd on the results. In all of
the above results, we have used Gd ¼ 3Gs=4, a value
naturally motivated when deriving the Lagrangian density
Eq. (2.1) from the QCD one-gluon exchange approxima-
tion and it results from the Fierz transform of the primary
color current-current coupling, projected into the relevant
quark-antiquark and diquark channels [3]. However, it is
quite common in the literature to simply consider Gd as an
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FIG. 5. Quasiparticle dispersion relations E−
Δ � δμ, for

(a) μ ¼ 0.35 GeV and (b) μ ¼ 0.5 GeV.
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additional free parameter of the model. In Fig. 6(a) we
show the results for the diquark condensate and in Fig. 6(b)
the results equivalent to Fig. 4, as a function of some
representative values of the ratio Gd=Gs ≡ η, to illustrate
the differences that appear when using the TRS or the MSS
procedures. From the results shown in Fig. 6, we see that
the differences between the TRS and MSS procedures are
more pronounced for values of η < 1. As we increase η, the
differences decrease, but they are still evident and quanti-
tatively large as the chemical potential increases. In
particular, we still see a decrease of the diquark condensate
Δ in the TRS case even when η ¼ 1. For a ratio of η≳ 0.82,
we see from Fig. 6(b) that the TRS can also display a
transition from the g2SC to the 2SC phase, yet the differ-
ence with the MSS case is always appreciable. It is also
important to mention that if we consider lower values of η,
the system is in the gapless phase for larger values of μ
in MSS, and the value of Δ becomes smaller for both
schemes. For η ∼ 0.68, we did not find solutions for Δ ≠ 0
using TRS, and the color superconducting phase is not
predicted in this scheme.

V. CONCLUSIONS

In this work we have studied an alternative regularization
approach where medium effects are explicitly separated
from vacuum dependent terms and UV divergent momen-
tum integrals become only dependent on the vacuum
quantities. We have applied this to the NJL model with
diquark interactions and in β equilibrium. We perform an
explicit comparison of this proposed scheme, called the
MSS regularization procedure, with the more traditional
one, the TRS regularization procedure, where no separation
of vacuum and medium effects is done. Our results point to
both qualitatively and quantitatively important differences
between these two methods, in particular regarding the
phase structure of the model in the cold and dense nuclear
matter case. While in the TRS case the diquark condensate
eventually vanishes for a chemical potential of order
μ ∼ 0.53 GeV, in the MSS case the diquark condensate
always increases. As a consequence of this result, we show
that there is a change in the phase structure of the model
from a g2SC to a 2SC phase that is also reflected on the
thermodynamic quantities. The phase structure is also
affected by the value of the ratio Gd=Gs, since a large
value of the diquark constants favors the 2SC over
the g2SC.
Finally, given that the differences between the MSS

and TRS approaches becomes more pronounced at high
densities, it is important also to comment on the validity
of the two-flavor approximation used here. It is known
that the charge neutrality has a strong influence in the
effective s quark mass, which starts to decrease at around
μ ∼ 400 MeV, in comparison with the case without neutral-
ity [33]. Near the Fermi surface (p ∼ μ) the dispersion can

be approximated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

s

p
− μ ∼ p − ðμ − M2

s
2μÞ. Since

Ms ≃ 150 MeV is a good estimate for the s quark mass in
the intermediate density region, one notices that the super-

conductor gap Δ has the same order of the scale M2
s

2μ . For this
reason, the contribution effects due to the s quark should be
taken into account and keeping in mind that the free energy
cost to satisfy the neutrality conditions is too large in 2SC,
the CFL phase is favored [31]. In either case, as the driving
difference between the TRS and MSS approaches is in the
way the medium effects are handled, it is quite reasonable
to expect that even in the case of including the effects of the
s quark, the differences in the results will remain. These
differences might even increase as additional density effects
due to the s quark are added and also in the case of
including thermal and external magnetic fields effects [34].
In future works it will be interesting to further analyze these
differences between the TRS and MSS regularization
approaches, as also when going beyond the mean-field
approximation [35] which can possibly exacerbate the
differences between results derived when using either the
TRS or MSS approaches.
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APPENDIX A: COLOR NEUTRALITY
CONDITION AND THERMODYNAMIC

POTENTIAL IN THE MSS REGULARIZATION
SCHEME

In Eq. (2.7) we have the full expression for the
thermodynamic potential at finite temperature and β equi-
librium. With the exception of the last momentum integral
in there, which needs to be regularized, all other terms are
finite. In this Appendix we show some details in the
calculation of the contributions that come from this integral
when using the MSS regularization scheme. In particular,
the expression of the color neutrality condition, n8 ¼ 0, has
an unusual divergency structure, so the procedure to
separate the divergent integrals requires some extra care,
which we here explain in detail. Once more we choose to
present the calculations for the more general case, i.e., in
the physical limit, since the chiral limit is trivial to obtain
from the final expressions. In this way, the dispersions
needed here are defined in Eqs. (2.11) and (2.12). We start
from the correspondent integrand that comes from
Eq. (2.7), when we derive it with respect to μ8, which is
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Z
d3p
ð2πÞ3

�
Eþ μ̄

Eþ
Δ

−
E− μ̄

E−
Δ

�
¼ I8þ μ̄

Z
d3p
ð2πÞ3

�
1

Eþ
Δ
þ 1

E−
Δ

�
:

ðA1Þ

Note that the second integrand in the right-hand side in the
above equation is exactly IΔ given by Eq. (3.12), while I8 is
given by

Ii8 ¼
Z

d3p
ð2πÞ3

�
E
Eþ
Δ
−

E
E−
Δ

�
¼

X
s¼�1

Z
d3p
ð2πÞ3

sE
Es
Δ
: ðA2Þ

To deal with the UV divergence structure of I8, we start by
writing it as

I8 ¼
X
s¼�1

Z
d3p
ð2πÞ3

sE
Es
Δ

¼
Z

d3p
ð2πÞ3 E

X
s¼�1

s

�
1

π

Z þ∞

−∞

dp4

p2
4 þ ðEs

ΔÞ2
�
: ðA3Þ

The procedure used here is quite similar to the one used in
Sec. III, with the difference that it is necessary to make one
more iteration of the identity (3.4), to obtain

1

p2
4 þ ðEþ sμ̄Þ2 þ Δ2

¼ 1

p2
4 þ p2 þM2

0

þ A − 2sEμ̄
ðp2

4 þ p2 þM2
0Þ2

þ ðA − 2sEμ̄Þ2
ðp2

4 þ p2 þM2
0Þ3

þ ðA − 2sEμ̄Þ3
ðp2

4 þ p2 þM2
0Þ4

þ ðA − 2sEμ̄Þ4
ðp2

4 þ p2 þM2
0Þ4½p2

4 þ ðEþ sμ̄Þ2 þ Δ2� ; ðA4Þ

with A ¼ M2
0 −M2 − μ̄2 − Δ2. After some algebraic

manipulations and performing the sum over s and the p4

integrations as indicated in Eq. (A3), we obtain

IMSS
8 ¼ −2μ̄Iquad þ μ̄ð2M2

0 − 5μ̄2 − 3A − 2M2ÞIlog
þ μ̄ð3M2

0Aþ 5M2
0μ̄

2 − 3M2AÞIfin;1
−
5m2μ̄

4
ð3A2 þ 4M2μ̄2ÞIfin;3

þ 5μ̄

4
ð4M2

0μ̄
2 − 3A2 − 8M2μ̄2ÞIfin;4 þ Ifin;5; ðA5Þ

where Iquad; Ilog; Ifin;1, and Ifin;2 were already defined in
Sec. III, while Ifin;3; Ifin;4, and Ifin;5 are given by

Ifin;3 ¼
Z

d3p
ð2πÞ3

1

ðp2 þM2
0Þ

7
2

;

Ifin;4 ¼
Z

d3p
ð2πÞ3

p2

ðp2 þM2
0Þ

7
2

;

Ifin;5 ¼
35

32

X
s¼�1

Z
d3p
ð2πÞ3

Z
∞

0

dt
t3ffiffiffiffiffiffiffiffiffiffi
1þ t

p

×
sEðA − 2sEμ̄Þ4t3

½ðp2 þM2
0Þtþ ðEþ sμ̄Þ2 þ Δ2�92 ; ðA6Þ

where for Ifin;5 we have made use of the Feynman para-
metrization formula,

1

ambn
¼ Γðmþ nÞ

ΓðmÞΓðnÞ
Z

∞

0

tm−1dt
ðatþ bÞmþn : ðA7Þ

The only UV divergences now are in the first line of
Eq. (A5) above, but they do not have any dependence on
medium terms. Note that this expression is also used in the
charge neutrality condition [see Eq. (4.10)], as well as in
Eq. (3.12). To obtain Eq. (4.8) used in Sec. IV, we simply
set M ¼ 0 in the above equations.

APPENDIX B: THE NORMALIZED
THERMODYNAMIC POTENTIAL IN THE
MSS REGULARIZATION PROCEDURE

To obtain the MSS expression for the normalized
thermodynamic potential, we use Eq. (2.7) to define

ΩN ¼ Ωfinite þΩT þ ΩReg

¼ −
μ4e

12π2
þ ðM −mÞ2

4Gs
−
ðM0 −mÞ2

4Gs
þ Δ2

4Gd

þ T2μ2e
6

þ 7π2

180
T4

−
X
a

na
2

β

Z
d3p
ð2πÞ3 ln ð1þ e−βEaÞ

þ 12

Z
d3p
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

0

q
−
X
a

na

Z
d3p
ð2πÞ3 Ea;

ðB1Þ

where Ωfinite corresponds to pure mean field and electron
gas contributions; ΩT is the temperature dependent con-
tributions; andΩReg is the last two terms in Eq. (B1), which
are UV divergent and require a regularization procedure.
We will need to evaluate first the gap equation for mass M,
corresponding to the chirally broken phase. To this end, we
take the derivative of Eq. (B1) with respect to M to get

∂Ω
∂M ¼ ∂Ωfinite

∂M þ ∂ΩT

∂M þ ∂ΩReg

∂M : ðB2Þ
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In the derivatives of ΩReg we have divergent integrands
with the form

IM ¼
Z

d3p
ð2πÞ3

1

E
þ

X
s¼�1

Z
d3p
ð2πÞ3

1

E
Eþ sμ̄
Es
Δ

¼ IaM þ IbM: ðB3Þ
To deal with the divergences of IaM, first of all we rewrite
it as

IaM ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
¼ 2

Z
∞

−∞

dp4

2π

Z
d3p
ð2πÞ3

1

p2
4 þ p2 þM2

: ðB4Þ

The identity equivalent to Eq. (3.4) in the present case is

1

p2
4 þp2 þM2

¼ 1

p2
4 þp2 þM2

0

þ M2
0 −M2

ðp2
4 þp2 þM2

0Þðp2
4 þp2 þM2Þ ; ðB5Þ

which, iterated once, becomes

1

p2
4 þ p2 þM2

¼ 1

p2
4 þ p2 þM2

0

þ M2
0 −M2

ðp2
4 þ p2 þM2

0Þ2

þ ðM2
0 −M2Þ2

ðp2
4 þ p2 þM2

0Þ2ðp2
4 þ p2 þM2Þ :

ðB6Þ

After performing the integrals indicated in (B4), one gets

IaM ¼ Iquad þ
M2

0 −M2

2
Ilog þ Ifin;6; ðB7Þ

with

Ifin;6 ¼
3

4

Z
d3p
ð2πÞ3

Z
∞

0

tðM2
0 −M2Þ2dtffiffiffiffiffiffiffiffiffiffi

1þ t
p ½ðp2 þM2

0Þtþ p2 þM2�52 ;

ðB8Þ

where we have used the same Feynman parametrization
defined in Eq. (A7).
For IbM we first write

IbM ¼
X
s¼�1

Z
d3p
ð2πÞ3

1

E
Eþ sμ̄
Es
Δ

¼
X
s¼�1

Z
d3p
ð2πÞ3

1

Es
Δ

þ
X
s¼�1

Z
d3p
ð2πÞ3

sμ̄
E

Z
∞

−∞

dp4

π

1

p2
4 þ ðEs

ΔÞ2
: ðB9Þ

Note that the first momentum integral in the right-hand side
of the above equation is exactly IΔ and determined in
Sec. III. To deal with the second momentum integral in the
above equation, we can use the result Eq. (3.5) and write,
after performing the p4 integration,

μ̄

E

Z
∞

−∞

dp4

π

X
s¼�1

s
p2
4 þ ðEþ sμ̄Þ2 þ Δ2

¼ −
4μ̄2

ðp2
4 þ p2 þM2

0Þ2
−

8Aμ̄2

ðp2
4 þ p2 þM2

0Þ3

þ
X
s¼�1

sμ̄ðA − 2sEμ̄Þ3
Eðp2

4 þ p2 þM2
0Þ3½p2

4 þ ðEþ sμ̄Þ2 þ Δ2� :

ðB10Þ

Then, we have

Z
d3p
ð2πÞ3

μ̄

E

Z
∞

−∞

dp4

π

X
s¼�1

s
p2
4 þ ðEþ sμ̄Þ2 þ Δ2

¼ −2μ̄2Ilog − 3Aμ̄2Ifin;1 þ Ifin;7; ðB11Þ

with, by using the same Feynman parametrization Eq. (A7)
again in the last line of Eq. (B10),

Ifin;7 ¼
15

16

X
s¼�1

Z
d3p
ð2πÞ3

Z
∞

0

dt
t2ffiffiffiffiffiffiffiffiffiffi
1þ t

p

×
sμ̄ðA − 2sEμ̄Þ3

E½ðp2 þM2
0Þtþ ðEþ sμ̄Þ2 þ Δ2�72 : ðB12Þ

In this way, collecting the results (B7) and (B11) in
Eq. (B3), IM becomes

IM ¼ IaM þ IbM

¼ 3Iquad −
ð2Δ2 − 3M2

0 þ 3M2Þ
2

Ilog

þ 3

4
½A2 þ ðM2 −M2

0Þμ̄2 − 4Aμ̄2�Ifin;1
þ 2Ifin;2 þ Ifin;6 þ Ifin;7: ðB13Þ

Going back to the expression for ΩReg and recalling all the
definitions of Sec. II, we rewrite it as

ΩReg ¼ −4
Z

d3p
ð2πÞ3

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q
þ μ̄

�
2

þ Δ2

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þM2

q
− μ̄

�
2

þ Δ2

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

q
− 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

0

q �
: ðB14Þ
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Now, starting from the complete M gap equation, we
perform an integration in M to obtain the thermodynamic
potential, such that

Ω ¼
Z

dM
∂Ω
∂M ¼

Z
dM

�∂Ωfinite

∂M þ ∂ΩT

∂M þ ∂ΩReg

∂M
�
:

ðB15Þ

Note that once the integral in undefined, we obtain an
integration constant that has to be adjusted to obtain the
same potential of the TRS case, when the integrals in the
MSS case are performed up toΛ. In this case, the numerical
value of the expressions for both schemes has to be exactly
the same. To this end, we first separate the normalized
contribution of r, g, and b quark colors, namely,

ΩReg ¼ Ωr;g þΩb

¼ −4
Z

d3k
ð2πÞ3 ðE

þ
Δ þ E−

Δ − 2E0Þ

− 4

Z
d3k
ð2πÞ3 ðE − E0Þ; ðB16Þ

where we have used the previous definitions of E�
Δ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE� μ̄Þ2 þ Δ2
p

(remembering that E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

p
) and

also E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2

0

p
. After the M integration and some

algebraic manipulations, we obtain

Ωr;g ¼ −4
Z

d3k
ð2πÞ3 ðE

þ
Δ þ E−

Δ − 2E0Þ

¼ −4M̄Iquad − 4

�
Δ2μ̄2 −

M̄
4

�
Ilog

− 4

Z
d3k
ð2πÞ3

��
M̄2

4
− Δ2μ̄2

�
1

E3
0

−
M̄
E0

− 2E0 þ Eþ
Δ þ E−

Δ

�
; ðB17Þ

with the definition M̄ ¼ Δ2 þM2 −M2
0 and, finally,

Ωb ¼ −4
Z

d3k
ð2πÞ3 ðE − E0Þ

¼ −2ðM2 −M2
0ÞIquad þ

ðM2 −M2
0Þ2

2
Ilog

− 4

Z
d3k
ð2πÞ3

�
E − E0 −

M2 −M2
0

2E0

þ ðM2 −M2
0Þ2

8E3
0

�
:

ðB18Þ

It is important to notice that the only divergent contribu-
tions, Iquad and Ilog, already defined in Sec. III, do not
depend on medium contributions, only on the vacuum
mass M0.

APPENDIX C: THE BARYONIC AND
INDIVIDUAL DENSITIES

To obtain the baryon density ρB, we need to determine
the total density ρT ¼ ρu þ ρd in the SUð2Þ case. However,
our expression for the thermodynamic potential Eq. (2.18)
is written in terms of μ̄ and δμ. To rewrite it in terms of the
u and d quark chemical potentials, we first write

ΩT¼0 ¼ Ω0 −
μ4e

12π2
þ Δ2

4Gd
− 4

Z
Λ

0

dp
2π2

p3 −
μ4ub
12π2

−
μ4db
12π2

þ Ωμ; ðC1Þ

where we identify

Ωμ ¼ −4
Z

d3p
ð2πÞ3 ðE

þ
Δ þ E−

ΔÞ

− 2θðδμ − ΔÞ
Z

μþ

μ−

dp
π2

p2ðδμ − E−
ΔÞ: ðC2Þ

Note that Ωμ refers to the double degenerate modes [see
Eqs. (2.8)–(2.10)], so one can write

ΩμðΔ; μ̄; δμÞ ¼
1

2
Ωμ

�
Δ;

μdg þ μur
2

;
μdg − μur

2

�

þ 1

2
Ωμ

�
Δ;

μdr þ μug
2

;
μdr − μug

2

�
: ðC3Þ

In this way, we can write ρu ¼ ρur þ ρug þ ρub. Due to the
gauge choice, we have ρur ¼ ρug. For the quark u we have

ρur ¼ ρug ¼ −
∂ΩμðΔ; μ̄; δμÞ

∂μur
¼ −

1

4

�∂ΩμðΔ; μ̄; δμÞ
∂μ̄ −

∂ΩμðΔ; μ̄; δμÞ
∂ðδμÞ

�
; ðC4Þ

and in the blue direction,

ρub ¼ −
∂ΩT¼0

∂μub ¼ μ3ub
3π2

: ðC5Þ

For the quark d, we have ρdr ¼ ρdg, such that

ρdr ¼ ρdg ¼ −
∂ΩμðΔ; μ̄; δμÞ

∂μdr
¼ −

1

4

�∂ΩμðΔ; μ̄; δμÞ
∂μ̄ þ ∂ΩμðΔ; μ̄; δμÞ

∂ðδμÞ
�
; ðC6Þ

while in the blue direction,

DUARTE, FARIAS, and RAMOS PHYS. REV. D 99, 016005 (2019)

016005-12



ρdb ¼ −
∂ΩT¼0

∂μdb ¼ μ3db
3π2

: ðC7Þ

Evaluating the derivatives in Eqs. (C4) and (C6), we
obtain

∂ΩðΔ; μ̄; δμÞ
∂μ̄ ¼ −4Ii8 − 4μ̄IiΔ

− 2θðδμ − ΔÞ
Z

μþ

μ−

dpp2

π2

�
p − μ̄

E−
Δ

�
; ðC8Þ

∂ΩðΔ; μ̄; δμÞ
∂ðδμÞ
¼ −

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δμ2 − Δ2

p
3π2

ðδμ2 − Δ2 þ 3μ̄2Þθðδμ − ΔÞ: ðC9Þ

Finally, the expressions for the ρu and ρd densities become

ρu ¼ 2Ii8 þ 2μ̄IiΔ þ θðδμ − ΔÞ
Z

μþ

μ−

dp
π2

p2

�
p − μ̄

E−
Δ

�

−
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δμ2 − Δ2

p
3π2

ðδμ2 − Δ2 þ 3μ̄2Þθðδμ − ΔÞ

þ μ3ub
3π2

ðC10Þ

and

ρd ¼ 2Ii8 þ 2μ̄IiΔ þ θðδμ − ΔÞ
Z

μþ

μ−

dp
π2

p2

�
p − μ̄

E−
Δ

�

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δμ2 − Δ2

p
3π2

ðδμ2 − Δ2 þ 3μ̄2Þθðδμ − ΔÞ

þ μ3db
3π2

; ðC11Þ

where Ii8 and IiΔ were defined previously for each scheme
and given by Eqs. (4.3), (4.4), (4.7), and (4.8).
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