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Conventional Brownian motion in harmonic systems has provided a deep understanding of a great
diversity of dissipative phenomena. We address a rather fundamental microscopic description for the
(linear) dissipative dynamics of two-dimensional harmonic oscillators that contains the conventional
Brownian motion as a particular instance. This description is derived from first principles in the framework
of the so-called Maxwell-Chern-Simons electrodynamics, also known as Abelian topological massive
gauge theory. Disregarding backreaction effects and endowing the system Hamiltonian with a suitable
renormalized potential interaction, the conceived description is equivalent to a minimal-coupling theory
with a gauge field, giving rise to a fluctuating force that mimics the Lorentz force induced by a particle-
attached magnetic flux. We show that the underlying symmetry structure of the theory (i.e., time-reverse
asymmetry and parity violation) yields an interacting vortexlike Brownian dynamics for the system
particles. An explicit comparison to the conventional Brownian motion in the quantum Markovian
limit reveals that the proposed description represents a second-order correction to the well-known
damped harmonic oscillator, which manifests that there may be dissipative phenomena intrinsic to the
dimensionality of the interesting system.
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I. INTRODUCTION

The study of the physical process whereby an interesting
system reaches asymptotically a stationary state following
a dissipative dynamics is ubiquitous in several areas of
physics such as quantum thermodynamics [1], condensed
matter physics [2,3], or cosmology [4–8]. Unfortunately,
this constitutes an intricate open-system theory problem
[1,9–13] for which there is no a “universal” recipe that
could successfully provide a rigorous solution. Indeed only
a few specific instances can be exactly solved, among
which the (linear) quantum Brownian motion in harmonic
systems (generically known as the damped harmonic
oscillator [14–21]) represents a prominent example
[22,23]. One of the most fruitful approaches to the latter
rests on assuming that the microscopic Hamiltonians
describing both the environment and system-environment
interaction basically consist of a large set of noninteracting
harmonic oscillators linearly coupled to the system. This
is commonly refereed to as the Feynman-Vernon [24],
Caldeira-Leggett [25] or independent-oscillator model
[11,21,26], and recently, it has been employed to inves-
tigate quantum thermometry [27–29] and nonequilibrium
quantum thermodynamics or information properties
[30–35].

Although this standard model may look somehow
artificial, it resembles the Pauli-Fierz Hamiltonian
[36,37] in the strict dipole approximation when the latter
describes simple charged particles interacting with
Maxwell electromagnetic fields [21,38–42]. That is, the
independent-oscillator model is essentially a particular
instance of the nonrelativistic Maxwell electrodynamics
[43,44]. Remarkably, along with the usual Maxwell con-
tribution, the action of the two-dimensional Abelian
electrodynamics admits a Chern-Simons kinetic term
[45] which preserves the essential ingredients demanded
for a sensible (Abelian) gauge theory [46]: space-time
locality, as well as local Uð1Þ gauge and Lorentz invari-
ance. This is the so-called Maxwell-Chern-Simons electro-
dynamics [47] or Abelain topological massive gauge
theory [46,48] and has been successfully applied to study
new forms of gauge field mass generation [46,47], the
dynamics of vortices [49,50], or the statistics transmuta-
tion [48] which have recently shown appealing applica-
tions in quantum computation theory [51]. Then two
immediate question arises as to which kind of microscopic
description is brought by this more fundamental gauge
theory and, further, whether it could shed new light on
two-dimensional dissipative dynamics.
Motivated by these natural questions, the present work is

devoted to extensively examine the Abelian topological
massive gauge theory from the perspective of the quantum*a.valido@iff.csic.es
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open-system theory. More concretely, we address the
dissipative dynamics in the low-energy regime of a two-
dimensional system composed of charged harmonic oscil-
lators minimally interacting with a Maxwell-Chern-Simons
electromagnetic field acting as a heat bath. Starting from
first principles, we derive a low-lying Hamiltonian that
provides a reliable and (numerically) solvable dissipative
microscopic description within the Langevin equation
framework [5,19,22]. Interestingly, the Chern-Simons
effects give rise to a Lorentz-like fluctuating force which
represents an alternative to the geometric magnetism [52] in
the context of recently extended environments [53,54].
Unlike previous treatments, we show that the components
of such a Chern-Simons (electric) force are noncommuta-
tive owing to the “topological” nature of the underlying
theory and cause an (ordinary) Hall response of the system
particles that recalls the dissipative Hofstadter model
[55,56]. We also show that this response enables generation
of stationary correlations between the transversal degrees
of freedom (d.o.f.) in the quantum regimen, which may
eventually induce new kinds of environmentally mediated
entanglement between the system particles different from
the standard dissipative models [39]. Moreover, the Chern-
Simons kinetic term endows the Brownian motion with
unusual statistical features that enrich the dissipative
dynamics; for instance, it prompts an antisymmetric 1=f
noise in the classical Markovian Langevin equation that
closely resembles the low-frequency magnetic flux noise in
superconducting circuits [57,58]. Our main concern is to
analyze the main characteristics of the novel dissipative
dynamics provided by the Chern-Simons action as com-
pared to the conventional Brownian motion. Let us stress
that our motivation as well as approach is significantly
distinct to most previous treatments within quantum open-
system theory to the best of our knowledge [1,9–13], in
particular, those related to the Brownian motion of charged
particles moving in the presence of external magnetic fields
[59–62]. The present work explores the intriguing interplay
between dissipation and the latent symmetry structure of
the interesting problem (e.g., the influence of time-reverse
symmetry or parity conservation on the spectral density), in
much the same fashion as Refs. [63–65].
The present paper is organized as follows. In Sec. II the

quantum canonical Hamiltonian governing the whole
dynamics is obtained via a Coulomb gauge quantization
procedure by starting from the action characteristic of the
Maxwell-Chern-Simons electrodynamics of a harmonic
n-particle system. From this, in Sec. III we derive the
dissipative microscopic Hamiltonian, which is the basis of
the present work, and extensively discuss its properties.
The reduced dynamics of the system particles is addressed
in terms of the Langevin equation formalism in Secs. III A,
III B, and III C, and we study the asymptotic properties of
the fluctuation-dissipation relation and the conditions under
which the system relaxes towards a thermal equilibrium

state. Sections IV and IVA provide an explicit example of
the proposed dissipative description applied to study the
Markovian dynamics. Finally, we summarize and draw the
main conclusions in Sec. V.

II. GAUGE INVARIANT DESCRIPTION

As stated in the Introduction, we consider the most
general action in Euclidean planar geometry of a Uð1Þ
gauge-invariant system composed of n harmonic oscillators
coupled to a homogeneous and isotropic gauge field
Aμ ¼ ðA0;AÞ. This is given by

S ¼ SHO þ
Z

d2xdtLMCSðx; tÞ; ð1Þ

where SHO is the usual action for the reduced harmonic
system and LMCS represents the Lagrangian density of the
Maxwell-Chern-Simons electrodynamics [45–47,51], i.e.,

LMCS ¼
1

2
ðE2 − B2Þ þ κ

2
ϵμνλAμ∂νAλ þ A · J þ A0ρ;

with ϵμνλ being the completely antisymmetric tensor (i.e.,
ϵ012 ¼ 1 and ϵij ¼ ϵ0ij). Here B and E are the magnetic and

electric fields (i.e., B ¼ ϵαβ∂αAβ and Eα ¼ − _Aα − ∂αA0),
whereas ρ and J are, respectively, the charge and current
densities of the harmonicn-particle system.The second term
in the Lagrangian density (1) describes the Chern-Simons
action whose strength is given by the coupling constant κ,
whereas the first one is the usual Maxwell kinetic term.
Importantly, we shall show that well-known results for the
damped harmonic oscillator [15,16,21,22,25,39] are recov-
ered in any step of the treatment by taking the limit κ → 0.
Throughout this work, Latin indices (running from 1 to n)
are reserved to the system harmonic oscillators, and unless
stated otherwise, we use Greek letters as well as Einstein
convention of repeated indices for the two spatial dimen-
sions. We use the natural units c ¼ ℏ ¼ kB ¼ 1.
We shall consider that the total density matrix for the

harmonic n-particle system and gauge field decouples at
the initial time t0, and further, the field is in a canonical
equilibrium state ρ̂β ∝ e−βĤMSC with ĤMSC being the free
Hamiltonian of the Maxwell-Chern-Simons gauge field
(defined below), whereas the system may be in an arbitrary
state. The restriction to free-correlation initial conditions is
not crucial for the subsequent treatment, rather it is an
extensively used assumption [10,11,16,22] that provides a
better exposition. Intuitively, this in agreement with pre-
paring the system separately and brought into contact with
the gauge field sufficiently fast such that the subsequent
dynamics is governed by the Maxwell-Chern-Simons
action (1). As a result, ρ̂β will completely characterize
the statistical properties of the gauge field operators and, as
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we shall see, the system particle operators in the asymptotic
time limit as well.
Without loss of generality we assume that all harmonic

oscillators possess identical mass m, with distinct (bare)
frequencies ωi for i ∈ f1; ng. Moreover, the charge and
current densities can be expressed in terms of a function φ
that models the charge distribution of each harmonic
oscillator [66],

ρðxÞ ¼ e
Xn
i¼1

φðx − qiðtÞÞ;

JðxÞ ¼ e
Xn
i¼1

φðx − qiðtÞÞ_qiðtÞ; ð2Þ

where 0 < e determining the coupling strength to the gauge
field A, and qiðtÞ denotes the spatial coordinate of the ith
harmonic oscillator. For the sake of simplicity, we shall
assume an identical φ for all particles.
From the Lagrangian density described by the general

action (1), one obtains the following expressions for the
canonical momentum of the ith harmonic oscillator pi and
gauge field Π [44]:

Π0 ¼ 0; ð3Þ

Πα ¼ _Aα þ ∂αA0 þ
κ

2
ϵαβAβ;

pi ¼ m_qi þ e
Z

d2xφðx − qiÞAðxÞ; ð4Þ

as well as the Gauss law [45,47,48,66],

∇Πþ κ

2
∇ × A − ρ ¼ 0; ð5Þ

which upon surface integration unveils that the harmonic
n-particle system possesses a magneticlike flux of strength
proportional to ne=κ [46,47]. The latter may be seen by
realizing that the contribution from ∇Π vanishes as this
represents the longitudinal electric field which here expo-
nentially decays owing to the photon mass [51]. One may
show that the classical Hamiltonian obtained via the
canonical procedure from the action (1) reads [67]

H ¼
Xn
i¼1

�
1

2m

�
pi − e

Z
d2xφðx − qiÞAðxÞ

�
2

þ VðqiÞ
�

þ 1

2

Z
d2x

�
Π ·Π − κΠ × Aþ ð∇ × AÞ2 þ κ2

4
A · A

þ A0

�
∇ ·Πþ κ

2
∇ × A − ρ

��
; ð6Þ

where V stands for the isotropic confining harmonic
potential of the oscillators, which we shall take as

VðqiÞ ¼ 1
2
mω2

i ðqi − q̄iÞ2 for simplicity, with q̄i being
the equilibrium position of the ith harmonic oscillator.
We now quantize the Hamiltonian (6) preserving

the gauge invariance by following the conventional
Coulomb gauge quantization procedure [47,67]. By writing
the gauge field variables (6) in terms of the longitudinal
ðAjj;ΠjjÞ and transversal components ðA⊥;Π⊥Þ, this means
to set Ajj equal to zero, whereas Πjj is evaluated by
demanding the Gauss law (5) as a nondynamical constraint
[47,48,68,69], i.e.,

ΠkðxÞ ¼ ∇x

Z
dyGcðx − yÞ

�
ρðyÞ − κ

2
∇ × A⊥ðyÞ

�
; ð7Þ

where GcðxÞ is the two-dimensional Coulomb Green’s
function that satisfies ∇2GcðxÞ ¼ δ2ðxÞ, i.e., Gcðx − yÞ ¼
ð2πÞ−1 log jx − yj [46,66,69]. The quantization of the
Hamiltonian is achieved by first imposing the Coulomb
gauge equal-time commutation relations [47,68],

½Â⊥
β ðyÞ; Π̂⊥

α ðxÞ� ¼ iδ⊥αβðx − yÞ;
½q̂i; p̂i� ¼ iδij; ð8Þ

where δ⊥αβðx − yÞ denotes the transverse delta function [48],

δ⊥αβðx − yÞ ¼
�
δαβ −

∂ðxÞ
α ∂ðxÞ

β

∇2
x

�
δð2Þðx − yÞ

¼ PαβðxÞδð2Þðx − yÞ; ð9Þ

and PαβðxÞ is called the transverse projective operator.
Notice that all other commutators vanish identically. The
quantum canonical Hamiltonian governing all the system-
field dynamics is then obtained from Eq. (6) after the
separation of the transverse and longitudinal components of
the quantum gauge field and the replacement of the gauge-
fixing constraints (see Appendix A for further details). By
substituting the expressions for the charge densities (2) and
the Coulomb Green’s function in the obtained Hamiltonian
(given by (A1), it is simply to verify that the latter can be
cast as follows:

Ĥ ¼
Xn
i¼1

�
1

2m

�
p̂i − e

Z
d2xφðx − q̂iÞÂ⊥ðxÞ

�
2

þ V̂ðq̂iÞ þ
Xn
j¼1

V̂cðq̂i − q̂jÞ
�
þ ĤCS þ ĤMCS; ð10Þ

with

ĤMCS ¼
1

2

Z
d2xðΠ̂⊥ · Π̂⊥ þ Â⊥

α ð−∇2 þ κ2ÞÂ⊥
α Þ; ð11Þ

and where we have defined the system-field interaction
term characteristic of the Chern-Simons action,
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ĤCS ¼
eκ
2π

Xn
i¼1

Z
d2xd2yφðx − q̂iÞ log jx − yj∇ × Â⊥ðyÞ;

ð12Þ

and the commonly known (two-dimensional) Coulomb
potential [70],

V̂cðq̂i− q̂jÞ

¼−e2

4π

Xn
i;j¼1

Z
d2xd2y log jx− yjφðx− q̂iÞφðy− q̂jÞ: ð13Þ

Note that Eqs. (12) and (13) emerge from the interaction
between the system particles and the longitudinal part of the
MSC gauge field via the Gauss law, so they are fundamental
for avoiding a gauge-invariance breaking. Here, ĤMCS
models the Maxwell-Chern-Simons (MSC) environmental
Hamiltonian, whereas the system-environment interaction
is mediated by Eq. (12), and the minimal coupling to the
gauge field appears in Eq. (10). In this way, the proposed
description has two main characteristics that distinguish it
from previous treatments [52,54,59]: (i) the MSC environ-
mental spectrum is gaped by κ due to the Chern-Simons
action and endows the environmental quasiparticle excita-
tions with a “toplogical” mass κ, and additionally, (ii) the
Chern-Simons action attaches a magneticlike flux to each
system particle [46,47] [see Eq. (5)] that gives rise to an
effective charge-flux coupling between the harmonic oscil-
lator mediated by ĤCS. In the next section, we build the
dissipative microscopic description upon the canonical
Hamiltonian (10).
For latter purposes it is convenient to express the

environmental Hamiltonian (11) in terms of the quasipar-
ticle excitations of the MCS gauge field [47],

ĤMCS ¼
X
k

ωðkÞa†ðkÞaðkÞ þ E0; ð14Þ

where a†ðkÞ (aðkÞ) stands for the creation (annihilation)
operator for the gauge field mode k ∈ ð2π=LÞZ2 and
excitation frequency,

ωðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þ κ2

q
; ð15Þ

and E0 ¼
P

k
ωðkÞ
2

is the usual vacuum expectation value of
the gauge field. As E0 does not play a crucial role in the
dissipative dynamics, this can be disregarded in the future
treatment by redefining the quasiparticle operators.
Furthermore, it is advantageous to express the canonical
variables of the MCS gauge field in terms of the complete
set of polarized plane waves,

Â⊥
α ðxÞ ¼

X
k

L−1eik·x

2π
ffiffiffiffiffiffiffiffiffiffiffiffi
2ωðkÞp ðεαðkÞâðkÞ þ ε†αð−kÞâ†ð−kÞÞ;

Π̂⊥
α ðkÞ ¼

X
k

ðiLÞ−1eik·x
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω−1ðkÞ

p ðεαðkÞâðkÞ − ε†αð−kÞâ†ð−kÞÞ;

ð16Þ

where we have introduced the spatial Fourier transform of
the generalized polarization vector εðkÞ, whose components
satisfy [47]

εαðkÞ ¼
iϵαβkβ
jkj ei

κ
jκjθðkÞ;

εαðkÞε†βðkÞ ¼ PαβðkÞ;

θðkÞ ¼ tan−1
�
k2
k1

�
: ð17Þ

The phase term e�i κjκjθ reflects the spin-1 property of the
quasiparticle excitations of the free MCS electrodynamics
which guarantees the Poincare algebra is satisfied [47,67].
Although such a phase must be taken account in order
to provide an appropriate creation-destruction algebra
(endowed with the usual equal-time commutation rela-
tions), we shall see that this has no apparent effect in the
asymptotic dissipative dynamics of the harmonic n-particle
system. This indicates that the gauge field can be treated as
a scalar electromagnetic field for practical purposes [70].
The physical results of the dissipative model (10) should

not depend upon details of the particle charged distribution,
which is ideally modeled by the Dirac delta function for
pointlike particles. As we are considering a harmonic
confinement of the particles, it is advisable to assume a
Gaussian distribution for the charged distribution of the
ith particle, i.e.,

φðx − q̂iÞ ¼
1

4πσ
e−

jx−q̂i j2
4σ ; ð18Þ

where 0 < σ determines the width of the distribution. For
the sake of simplicity we shall assume the same width for
all of the harmonic oscillators. With this choice we may
recover the point-particle situation by taking the limit
σ → 0þ, i.e., φðx − q̂iÞ → δð2Þðx − q̂iÞ.
For completeness we would like now to briefly discuss

the case in which we consider the Chern-Simons electro-
dynamics alone. By rescaling Â⊥ → Â⊥=λ and keeping
fixed κ=λ2 and e=λ after taking the limit λ2 → ∞, the
Maxwell term disappears from the action (1), leaving us
with the pure Chern-Simons electrodynamics coupled to
the harmonic n-particle system. Going further to the
canonical Hamiltonian governing the whole system-field
dynamics, one may verify that ĤMCS and ĤCS (describing
the MSC environment and Chern-Simons system-field
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interaction, respectively) also disappear from Eq. (10). This
is not surprising as it is a consequence of the fact that the
Chern-Simons action does not modify the energy because it
is first order in time derivatives [45–47]. So there would be
no environmental dynamics supporting an irreversible
transference of energy coming from the reduced system.
Indeed Â⊥ takes the form of a statistical gauge field that can
be properly absorbed in the matter field in order to produce
the desired statistics transmutation [48], for instance the
anionic statistics [46]. Consequently, this issue prevents us
from considering the Chern-Simons electrodynamics alone
as a legitimate microscopic model to describe dissipative
dynamics.

III. QUANTUM DISSIPATION

As similarly occurs in the case of a charged harmonic
oscillator coupled to the classical Maxwell electromagnetic
field, obtaining an analytical, exact treatment of the open-
system dynamics of the reduced system (10) is likely out of
reach [39,71]. Yet, a reliable and rich dissipative descrip-
tion may be provided by doing two approximations well
understood and motivated in the theory of quantum open
systems and classical electrodynamics that eventually turns
the Hamiltonian (10) (governing all the quantum dynamics)
into a quadratic operator in the canonical variables q̂i and
âðkÞ, for i ∈ f1; ng and k ∈ R2.
Concretely, as we are dealing with confined particles, it

proves convenient to consider both approximations: the
small displacement of harmonic oscillators in combination
with the usual dipole approximation of the gauge field. Let
us emphasize that the long-wavelength limit is ubiquitous
in most investigations in quantum optics, atomic physics,
and quantum chemistry [36]. In this way, the ith harmonic
oscillator is assumed to move around the equilibrium
position q̄i of the confining potential Vðq̂iÞ previously
defined, such that we may take the small displacement
approximation up to first order q̂i → q̄i þ q̂i in the Chern-
Simons interaction Hamiltonian (12), i.e.,

ĤCS ≃
eκ

8π2σ

Xn
i¼1

Z
d2x0e−

jx0 j2
4σ

Z
d2y∇× Â⊥ðyÞ

×

�
log jy− x0 − q̄ij þ

ðy− x0 − q̄iÞ · q̂i
jy− x0 − q̄ij2

�

¼
X
k

Xn
i¼1

gβðk; q̄iÞðεβðkÞâðkÞ þ ε†βð−kÞâ†ð−kÞÞ

þ
X
k

Xn
i¼1

fαβðk; q̄iÞq̂αi ðεβðkÞâðkÞ þ ε†βð−kÞâ†ð−kÞÞ;

ð19Þ

where we have replaced the Fourier decomposition of the
gauge field (16) and defined the complex coefficients,

gβðk; q̄iÞ ¼
iL−1eκϵγβkγ
4π3

ffiffiffiffiffiffiffiffiffiffiffiffi
2ωðkÞp Z

d2x
4σ

×
Z

d2ye−
jxj2
4σ eik·y log jy − x − q̄ij

¼ ieκϵγβkγ
2πL

ffiffiffiffiffiffiffiffiffiffiffiffi
2ωðkÞp eik·q̄ie−σjkj2

jkj2 ; ð20Þ

fαβðk; q̄iÞ ¼ ∂ q̄αi
gβðk; q̄iÞ

¼ −
eκϵγβkγkα

2πL
ffiffiffiffiffiffiffiffiffiffiffiffi
2ωðkÞp eik·q̄ie−σjkj2

jkj2 : ð21Þ

We must understand the spatial Fourier transform of the
logarithmic function as the solution of the homogeneous
two-dimensional Poisson equation [69]. Paying attention to
the first term on the right-hand side in Eq. (19), this can be
recognized as a displacement effect upon the environmental
quasiparticle operators, denoted by D̂BR, as a consequence
of the backreaction of the harmonic n-particle system on
the MSC environment. Importantly, the second term is
closely similar in structure to the vector potential associated
to certain magnetic flux Φðq̄iÞ attached to the particle
charge distribution φðx − q̂iÞ [46,70], which shall be called
Chern-Simons flux. This result is in complete agreement
with the previous discussions in Sec. II. Specifically, the
Chern-Simons interaction (12) can be rewritten as a
combination of these two contributions,

ĤCS ≃ D̂BR − e
Xn
i¼1

q̂i · ÊCSðq̄iÞ; ð22Þ

where ÊCSðq̄iÞ is interpreted as the electric field self-
consistently induced by an electric charge κΦðq̄iÞ accord-
ing to the induction Faraday’s law [47,66,72]. This shall
be referred to as the Chern-Simons electric field and
provides the desired interaction Hamiltonian in dipole
approximation. It is interesting to note that the Levi-
Civita symbol appearing in the definition of the coefficients
(20) and (21) signals that the time-reversal symmetry
breaks down, and the backreaction term and Chern-
Simons electric field inherit the axial symmetry from the
Chern-Simons kinetic term [47]. It is important to note as
well that the bilinear structure of Eqs. (19) and (22) is
independent of the particular choice of φ, wherein the
specific form of the coefficients gβ and fαβ only depends on
this. Following the same procedure we may obtain an small-
displacement expression of the Coulomb potential (13),
i.e., V̂c≃

P
n
i;j¼1 ðV̂0

cðq̄i− q̄jÞþ V̂c
0ðq̄i− q̄jÞ ·ðq̂i− q̂jÞÞ, where

V̂0
cðq̄i − q̄jÞ is a constant operator for given values of the

particle central positions that may be removed from the
Hamiltonian without perturbing the dissipative dynamics.
On the other side, the dipole approximation in the

Fourier decomposition of the gauge field (16) yields
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Z
d2xφðx − q̂iÞÂ⊥ðxÞ

≃
Z

d2yφðyÞÂ⊥ðyþ q̄iÞ

¼
X
k

eik·q̄ie−σjkj2

2πL
ffiffiffiffiffiffiffiffiffiffiffiffi
2ωðkÞp ðεðkÞâðkÞ þ ε†ð−kÞâ†ð−kÞÞ

¼ Âdipðq̄iÞ; ð23Þ

assuming that eik·q̂i ≈ 1 for i ∈ f1; ng [21,43] (i.e., the
system particles mainly interact with the field low-energy
modes in comparison with the oscillator bare frequencies).
Substituting these results of Eqs. (19) and (23) in (10),

we obtain a quadratic Hamiltonian which constitutes a first-
order approximation to the low-lying dissipative dynamics
(10). At this point, the latter Hamiltonian can be brought
into a suitable form by performing the Goeppert-Mayer
transformation [43],

ÛGM ¼ e−ie
P

n
i¼1

q̂i·Âdipðq̄iÞ; ð24Þ

which basically consists of replacing (according to the
Baker-Hausdorff-Campbell formula)

p̂i → p̂i þ eÂdipðq̄iÞ;

âðkÞ → âðkÞ þ i
eε†αðkÞe−σjkj2
2πL

ffiffiffiffiffiffiffiffiffiffiffiffi
2ωðkÞp Xn

i¼1

e−ik·q̄i q̂αi ;

whereas the other terms remain invariant as they commute
with ÛGM. Now, by grouping together the interaction terms
we redefine the system-environment coupling coefficient
as follows:

hαðk; q̄iÞ¼−
εβðkÞ
ωðkÞ fαβðk; q̄iÞþ i

eεαðkÞe−σjkj2eik·q̄i
2πL

ffiffiffiffiffiffiffiffiffiffiffiffi
2ωðkÞp

¼ eeik·q̄ie−σjkj2

2πL
ffiffiffiffiffiffiffiffiffiffiffiffi
2ωðkÞp �

κϵγβkγkαεβðkÞ
jkj2ωðkÞ þ iεαðkÞ

�
; ð25Þ

and introduce the renormalized potential interaction
between system particles,

Vαβ
ij ¼ δijδαβmω2

i

þ e2

4π2L2

X
k

PαβðkÞe−2σjkj2 cosðk · ðq̄i − q̄jÞÞ; ð26Þ

Vα
i ¼

Xn
j¼1

�
2ðV 0

cðq̄i − q̄jÞÞα þ
X
k

ðhαðk; q̄iÞg†βðk; q̄jÞε†βðkÞ

þ h†αðk; q̄iÞgβðk; q̄jÞεβðkÞÞ
�
; ð27Þ

where the second line of Eq. (26) corresponds to the
so-called dipole self-energy associated to Âdip [37], and
Eq. (27) contains the Coulomb potential along with a
backreaction contribution. Taking a closer look at Eq. (25),
one may see that the particle charge distribution width
ð2σÞ−1

2 plays the role of a frequency cutoff on the system-
environment interaction. Consequently, the Chern-Simons
influence on the dissipative dynamics becomes weak (or
strong) when

ffiffiffiffiffi
2σ

p
κ ≪ 1 (or 1 ≪

ffiffiffiffiffi
2σ

p
κ), and this will be

seen more clearly in the definition of the spectral density in
Sec. III A. Furthermore, the breaking of time-reversal and
parity symmetries is now hidden in the coupling coeffi-
cients (25) and the linear potential Vα

i .
Finally, after some manipulation once Eqs. (25), (26),

and (27) are substituted, we arrive at the desired micro-
scopic Hamiltonian which is the basis of the present work,

Ĥ0¼
Xn
i¼1

p̂2i
2m

þ
Xn
i¼1

Vα
i q̂

α
i

þ1

2

Xn
j;i¼1

�
Vαβ
ij −

X
k

ωðkÞðhαðk;q̄iÞh†βðk;q̄jÞþc:c:Þ
�
q̂αi q̂

β
j

þ
X
k

ωðkÞjâ†ðkÞ−
Xn
i¼1

�
hαðk;q̄iÞq̂αi −gβðk;q̄iÞ

εβðkÞ
ωðkÞ

�����2

−
Xn
i;j¼1

X
k

PαβðkÞ
ωðkÞ g†αðk;q̄iÞgβðk;q̄jÞ; ð28Þ

where the subscript “c.c.” stands for Hermitian conjugation.
According to the thermodynamic limit, the gauge field is
considered to be composed of an infinite number of modes,
then we may take the limit of a dense spectrum of field
frequencies in Eq. (28) whenever convenient and replace
the discrete momentum sum by an integral following the
prescription

P
k → L2

R
∞
−∞ d2k. Doing this, we provide

explicit expressions for Eqs. (26) and (27) in Appendix C.
Let us now discuss some important properties of the

dissipative Hamiltonian (28). First, it is important to
see that disregarding the Chern-Simons effects (that is,
D̂BR → 0 and Êα

CSðq̄iÞ → 0 for arbitrary i ∈ f1; ng) in
Eq. (28) returns the independent-oscillator model
[21,22,39]. Conversely, Eq. (28) exhibits the symmetry
structure characteristic of the underlying Chern-Simons
action: parity breaking and time-reversal asymmetry, as
similarly occurs in systems subjected to external magnetic
fields or recent extended environments [54]. We shall see
that such symmetry affords the appearance of a dissipative
vortexlike dynamics driven by a Lorentz force arising from
the aforementioned particle-attached Chern-Simons flux.
Concretely, by direct comparison to the so-called blackbody
radiation bath [21], we identify a pseudoelectric field Êα

i ðtÞ
responsible for the environmental force acting upon the
harmonic ith oscillator,
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Êα
i ðtÞ ¼ e

�
−

∂
∂t Â

α
dipðq̄i; tÞ þ Êα

CSðq̄i; tÞ
�
þ F̂α

BRðq̄i; tÞ;

ð29Þ

where Êα
CSðq̄i; tÞ and Âα

dipðq̄i; tÞ are, respectively, obtained by
replacing aðkÞ → aðkÞe−iωðkÞðt−t0Þ in the definitions (22) and
(23), whereas F̂BRðq̄i; tÞ identifies with a backreaction force
obtained from substituting aðkÞ → hαðk; q̄iÞe−iωðkÞðt−t0Þ in
the expression of D̂BR.
The first term of the right-hand side of Eq. (29) bears the

dissipation mechanism in the conventional Brownian
motion, and it coincides identically with the vector poten-
tial contribution to the electric field corresponding to the
Maxwell electrodynamics action alone (i.e., κ ¼ 0) in
dipole approximation. Hence, the second term may be
interpreted as the Lorentz force due to the Chern-Simons
electric field ÊCSðq̄iÞ, whereas the backreaction force
F̂BRðq̄i; tÞ contains the previously mentioned effective shift

in the environmental quasiparticle operators. Contrary to the
so-called “initial slip” term in the standard microscopic
model that just depends on the initial harmonic oscillator
positions [22], this backreaction displacement is indepen-
dent of the initial state of the harmonic system. In Sec. III B,
we shall see that the latter gives rise to nonstochastic
fluctuations which eventually cancel out in the time asymp-
totic limit.
Unlike the dipole approximation taken in Eq. (23), the

validity of the small displacement approximation described
in Eq. (19) is intricate to elucidate just by looking at
Eq. (22). This can be better assessed by requiring the
Hamiltonian (28) to be a positive definite operator
[16,21,39] so it has a lower-bounded spectrum preventing
“runaway” solutions [73], and thus, it gives rise to simple
dissipative dynamics (which preserves ωi as the bare
frequencies for the system particles). As shown in detail in
Appendix B, such a condition is found to be equivalent to
the following inequality,

1

2

Xn
j;i¼1

�
Vαβ
ij − δ2αδ2β

e−
jq̄i−q̄j j2

8σ

8πσ
þ e2

8

�
ðδαβ − 2δ1βδ1αÞ

κH1ðiκjΔq̄ijjÞ
jΔq̄ijj

þ δ1αδ1βκ
2H0ðiκjΔq̄ijjÞ

��
q̂αi q̂

β
j

þ
Xn
i;j¼1

�
2ðV 0

cðΔq̄ijÞÞα − δ1α
e2κ2

2π
J1ðjΔq̄ijjÞ

�
q̂αi ≥

e2κ2

4π

Xn
i;j¼1

J0ðjΔq̄ijjÞ; ð30Þ

where Δq̄ij ¼ q̄i − q̄j and we have introduced the auxiliary
functions,

JlðjΔq̄ijjÞ ¼
Z

∞

0

dk
klþ1e−2σk

2

k2ðk2 þ κ2Þ Jlðkjq̄i − q̄jjÞ;

with JiðxÞ denoting the i-order Bessel function of the first

kind in the variable x, and HjðxÞ ¼ ijþ1e2σκ
2ðHð2Þ

j ð−xÞ þ
ð−1Þjþ1Hð1Þ

j ðxÞÞ, with HðjÞ
i ðxÞ being the i-order Hankel

function of the jth kind [74]. It is worthwhile to note that
the integral involved in the definition of Jl may present
an infrared divergence (i.e., k → 0) owing to the two-
dimensional Coulomb Green function that blows up at the
origin [see Eq. (20)]. This is a feature characteristic of the
Maxwell-Chern-Simons electric and magnetic fields that
requires adequate regularization schemes [47,70].
Although the positive condition may appear rather

complicated for supporting an intuitive interpretation at
first sight, the right-hand side of Eq. (30), which emerges
exclusively as a consequence of the backreaction on the
MSC environment, reflects a repulsive effect between the
system particles that challenges the confining harmonic
potential. To see this more clearly, let us focus in the single
harmonic oscillator system (i.e., n ¼ 1). Hence, it can be
shown that the formidable inequality (30) boils down to

X
α¼1;2

�
mω2

1 −
e2κ2

8π
Γð0; 2σκ2Þe2σκ2

�
q̂α1q̂

α
1 ≥

e2κ2

2π
R2
0;

where R2
0 ¼

P
n
i;j¼1 J0ð0Þ, and Γð0; xÞ denotes the incom-

plete Euler Gamma function [74]. Clearly, the above
condition may be interpreted as the single harmonic oscil-
lator is enforced to follow a fluctuating motion around a
circular area of radius larger than certain R given by

R2

2σ
¼ R2

0

4πmσω2
1

e2κ2

�
1 − 1

8π
e2κ2Γð0;2σκ2Þe2σκ2

mω2
1

� : ð31Þ

For this result to be consistent with the small displacement
approximation considered previously, we demand the length
ofR to be sufficiently small in comparison to thewidth of the
particle charged distribution 2σ, which implies

e2

2mσ2ω2
1

≪
1

σκ2
: ð32Þ

Expression (32) indicates that there must exist a trade-off
between the system-environment interaction strength and
system particle bare frequencies. The physical intuition
behind the latter is that the environment could drive the
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particle to reach highly excited states for an arbitrary large
coupling, which would eventually lead to breakdown of the
small displacement approximation assumed in Eq. (19). For
instance, for a strong Chern-Simons action 1 ≪ σκ2, we
may approximate Γð0; 2σκ2Þe2σκ2 ∼ ð2σκ2Þ−1, and then, the
positive condition (31) holds for 1 ≪ mσω2

1=e
2, which is

equivalent to Eq. (32). In this way, the small displacement
approximation again requires that the system-environment
couplingmust pay off the repulsive counteraction of a strong
backreaction effect. From this point onward wework within
the parameter domain where expression (30) holds, and
therefore, the subsidiary condition (32) is always satisfied
for the bare frequencies of the n harmonic oscillators. In
particular, this result is a manifestation of the issue in which
the Maxwell-Chern-Simons theory works better for devel-
oping models of confined particle systems [46,75].
Our final remark is that the Hamiltonian (28) can be

regarded as a gauge-invariant microscopic description by
construction, as it was derived from a gauge-invariant
Hamiltonian (10). This is a major difference with previous
treatments [54], where the gauge invariance for a given
choice of the system-environment coupling coefficients is
not guaranteed. Remarkably, Eq. (28) looks very similar to
an environmental minimal-coupling Hamiltonian (in dipole
approximation) [38] with gauge field,

Âα
MSCðq̄iÞ ¼

i
e

X
k

ðhαðk; q̄iÞâðkÞ þ c:c:Þ;

and associated electric field,

Êα
MCSðq̄i; tÞ ¼ −

∂
∂t Â

α
dipðq̄i; tÞ þ Êα

CSðq̄i; tÞ: ð33Þ

Concretely, the Hamiltonian (28) is equivalent to a
minimal-coupling theory of n harmonic oscillators with
the gauge field ÂMSCðq̄iÞ provided we disregard the back-
reaction effects and endow the system Hamiltonian with a
renormalized potential interaction which cancels the envi-
ronmental influence on the conservative dynamics, i.e.,

ĤRN ¼−2
Xn
j¼1

ðV 0
cðq̄i− q̄jÞÞαq̂αi þ

1

2

Xn
i;j¼1

�
δijδαβmω2

i −Vαβ
ij

þ
X
k

ωðkÞðhαðk; q̄iÞh†βðk; q̄jÞþ c:c:Þ
�
q̂αi q̂

β
j ;

where the first term is the familiar Coulomb contribution.
This statement can be explicitly verified by absorbing the
gauge field in the canonical conjugate momentum bymeans

of a gauge transformation Û ¼ eie
P

n
i¼1

q̂i·ÂMCSðq̄iÞ upon the
Hamiltonian (28), once we have dropped the backreaction
terms [i.e., gβðk; q̄iÞ → 0] and introduced the renormaliza-
tion ĤRN. The associated Maxwell-Chern-Simons electric

field (33) features noncommutative components [see
Eq. (C7) in Appendix C for further details], i.e.,

½Êα
MCSðq̄iÞ; Êβ

MCSðq̄jÞ� ∝ −iκϵαβ: ð34Þ

Interestingly, this property is shared with the electric field
of the free Maxwell-Chern-Simons electrodynamics
(i.e., without matter-field interaction) [46] and has several
consequences in the dissipative dynamics illustrated in
Sec. III B.
We use the following sections to justify that the

Hamiltonian (28) regards a legitimate microscopic descrip-
tion to simulate the relaxation process towards a thermal
equilibrium state (see Secs. III A, III B and III C) despite
the approximations taken to derive it, and we provide an
explicit comparison with the popular damped harmonic
oscillator [4,11,18,21,22,25] in the Markovian Langevin
dynamics limit (see Secs. IV and IVA). Before proceeding
with our treatment, it is convenient to recall the ω
variable Fourier transform r̃ðωÞ of a time-dependent
function rðtÞ,

r̃ðωÞ ¼ 1

2π

Z
∞

−∞
dteiωtrðtÞ;

and its corresponding real and imaginary parts,

Rer̃ðωÞ¼ r̃ðωÞþ r̃†ðωÞ
2

; Imr̃ðωÞ¼ r̃ðωÞ− r̃†ðωÞ
2i

;

where r̃†ðωÞ represents the complex conjugate of r̃ðωÞ.

A. Generalized Lanvegin equation

Having determined the dissipative Hamiltonian (28)
along with the quasiparticle excitations of the gauge field,
we may turn the attention to the nonequilibrium dynamics
of the harmonic n-particle system. Starting from the
Hamiltonian (28) we derive the following Heisenberg
equations for the ith oscillator position and momentum
operators,

_̂qαi ¼
p̂α
i

m
; ð35Þ

_̂pα
i ¼ −2

Xn
j¼1

ðV 0
cðq̄i − q̄jÞÞα −

Xn
j¼1

Vαβ
ij q̂

β
j

þ
X
k

ωðkÞðhαðk; q̄iÞâðkÞ þ h†αðk; q̄iÞâ†ðkÞÞ; ð36Þ

as well as for the quasiparticle creation operator of the
gauge field,
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_̂a†ðkÞ ¼ iωðkÞâ†ðkÞ

þ i
Xn
i¼1

ðgβðk; q̄iÞεβðkÞ − ωðkÞhβðk; q̄iÞq̂βi Þ:

It is straightforward to obtain the formal solution of the
latter equation by using the standard Green’s function
method, as it constitutes an inhomogeneous linear system
of differential equations. First, we obtain for the quasipar-
ticle operators of the gauge field,

â†ðk; tÞ ¼
�
â†ðk; t0Þ þ

Xn
i¼1

εβðkÞ
ωðkÞ gβðk; q̄iÞ

�
eiωðkÞðt−t0Þ

− iωðkÞ
Xn
i¼1

hβðk; q̄iÞ
Z

t

t0

eiωðkÞðt−τÞq̂βi ðτÞdτ

−
Xn
i¼1

εβðkÞ
ωðkÞ gβðk; q̄iÞ; ð37Þ

where tþ0 ≤ t in order to be physically consistent with the
considered initial preparation. Inserting the solution (37)
into Eq. (36) and manipulating the subsequent result, one
gets the desired generalized Langevin equation,

m
d2q̂αi
dt2

þ
Xn
j¼1

Vαβ
ij q̂

β
j þ Vα

i

−
Xn
j¼1

Z
t

t0

Σαβ
ij ðt − τÞq̂βj ðτÞdτ ¼ Êα

i ðtÞ; ð38Þ

where we have identified the pseudoelectric field Êα
i

defined in Eq. (29) as the fluctuating force and the
generalized susceptibility or self-energy as the retarded
Green’s function,

Σαβ
ij ðt − t0Þ ¼ iΘðt − t0 − jΔq̄ijjÞh½Êα

i ðtÞ; Êβ†
j ðt0Þ�i

ρ̂β
; ð39Þ

where ΘðtÞ denotes the Heaviside step function. Clearly,
the linear potential Vi represents a nonstochastic force
affecting mainly the mean average position of the system
particles, so it could be neglected from the future discussion
by doing a suitable renormalization of the harmonic
oscillators.
Although Eq. (38) may look similar at first sight to the

quantum Langevin equation in presence of magnetic fields
[59–61], both equations significantly differ in the statistical
and analytical properties of the corresponding fluctuating
force and retarded self-energy. On one side, the backreaction
effects in the pseudoelectric force (29) prevents the dis-
sipative dynamics from fulfilling the fluctuation-dissipation
theorem at all times, in contrast to the conventional
Brownian motion. On the other side, the breaking of
time-reversal and parity symmetry in the present context

induces an imaginary contribution to the (field) spectral
density that has no counterpart in the independent-oscillator
model [21,39]. This deeply modifies the analytical structure
of the Fourier transform of the retarded self-energy, which
can be compactly written as follows:

Σ̃αβ
ij ðωÞ ¼ RΣ̃αβ

ij ðωÞ þ iI Σ̃αβ
ij ðωÞ; ð40Þ

where RΣ̃αβ
ij ðωÞ (I Σ̃αβ

ij ðωÞ) must not be confused with the
real (imaginary) part previously defined. Despite this, we
would like to remark that the self-energy Σ̃αβ

ij ðωÞ exhibits
the general properties required to produce reliable dissipa-
tive dynamics: (causality condition) it is analytic in the
upper-half ω-complex plane, and further, (reality condition
[21,61]), it holds

ðΣ̃βα
ij Þ†ðωÞ ¼ Σ̃αβ

ji ðωÞ: ð41Þ

Basically, these properties are encoded by the (field) spectral
density arising from the Maxwell-Chern-Simons electrody-
namics, denoted by J αβ, and which reduces to the well-
known spectral density of the independent-oscillator model
for zero Chern-Simons constant.
Let us draw more attention to the properties of the

retarded self-energy. The Heaviside step function in the
expression of the retarded self-energy Eq. (39) guarantees
the dissipative dynamics to be consistent with the initial
decoupling of the harmonic particle system and gauge field,
and further, it gives the usual pole prescription in the
frequency domain mentioned above: Σαβ

ij ðtÞ is an analytic
function in the upper-half complex plane. Moreover, it is in
agreement with the fact that the pseudoelectric fields Êα

i ðtÞ
and Êβ

j ðtÞ must commute for spacelike separations, i.e.,

½Êα
i ðt0Þ; Êβ

j ðtÞ� ¼ 0 if jq̄i − q̄jj > jt − t0j. This is usually
known as microscopic causality, and for instance, it is
fulfilled for the free Maxwell electromagnetic field [40].
As a consequence, we show in Appendix C that the self-
energy satisfies a generalized Kramers-Kronig identity
[23,39], i.e.,

RΣ̃αβ
ij ðωÞ ¼ H½IΣ̃αβ

ij ðω0Þ�ðωÞ

¼ 1

π
P
Z þ∞

−∞

I Σ̃αβ
ij ðω0Þ

ω0 − ω
dω0; ð42Þ

where H½fðxÞ�ðωÞ denotes the Hilbert transform of the
function fðxÞ in the variable ω, and P is the Cauchy
principal value.
By replacing the pseudoelectric field (29) in Eq. (39) and

taking the dense spectrum limit, the retarded self-energy
can be cast in terms of the environmental spectral density as
follows (see Apendix C for further details),
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Σαβ
ij ðt − t0Þ ¼ 2

π
Θðt − t0 − jΔq̄ijjÞ

×
Z

∞

0

dωðRefJ αβðω;Δq̄ijÞg sinðωðt − t0ÞÞ

þ ImfJ αβðω;Δq̄ijÞg cosðωðt − t0ÞÞÞ; ð43Þ

whereas the spectral density takes the form,

J αβðω;Δq̄ijÞ ¼
�
e
2

�
2

e−2σðω2−κ2ÞYαβ

�
jΔq̄ijj;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − κ2

p �
;

with κ ≤ ω; ð44Þ

and

Yða; bÞ ¼

0
B@ κ2J0ðabÞ þ b

a J1ðabÞ iκωJ0ðabÞ
−iκωJ0ðabÞ ω2J0ðabÞ − b

a J1ðabÞ

1
CA;

where we may clearly observe that the off-diagonal
elements arise exclusively from the Chern-Simons action.
This specific form of the spectral density deserves some
attention. Expression (44) shares some features with the
usual (bath) spectral density of the damped harmonic
oscillator model [19,20]: (i) it features a broad gaped
spectrum (κ < ω < ∞) that may span the harmonic oscil-
lator frequencies, and further, (ii) the strength of the system-
field coupling decays (exponentially) for sufficiently large
frequencies compared to the aforementioned frequency
cutoff given by ð2σÞ−1

2. Although the latter eventually
prevents ultraviolet divergence issues in the nonequilibrium
particle dynamics formost interesting cases, it is worthwhile
to notice that the specific case of point particles (i.e.,
σ → 0þ) is not free from this divergence. This may be seen
as a consequence of the well-known self-energy problems
that suffer the point-particle electrodynamics [45]. Further-
more, this shows that the cutoff factor of the spectral density
is mainly determined by the choice of the particle charged
distribution φðq̂Þ. Accordingly, the spectral density con-
stitutes a 2n × 2n Hermitian matrix (i.e., J αβðω;Δq̄ijÞ ¼
ðJ βαÞ†ðω;Δq̄jiÞ), which immediately implies Eq. (41), and
therein, the retarded self-energy is a 2n × 2n real matrix in
the time domain.
The specific form of the spectral density (44) also reveals

interesting properties related to the dissipative dynamics.
For instance, the fact that the spectral density is highly
oscillatory in the frequency domain unveils that the
harmonic system may undergo a strong non-Markovian
dissipative dynamics [9], rendering a richer quantum
dissipative evolution than the conventional Brownian
motion. Furthermore, the diagonal elements of the spectral
density manifest an anisotropic influence to the transversal
spatial d.o.f. of distant harmonic oscillators. Nevertheless,
this effect cancels out when the particles are very close or
localized in identical positions, which can be seen by taking
the asymptotic limit jΔq̄ijj → 0 in (44). By virtue of the off-
diagonal shape of the spectral density, we may also realize
that the new dissipative Chern-Simons effects are mainly
encoded in the Fourier cosine transform appearing in the

retarded self-energy definition (43). This result is consistent
with previous treatments [54,59] about Brownian motion in
the presence of magnetic fields, where it was shown that
either a Berry’s geometric magnetic or uniform magnetic
field produces a “transversal” contribution to the memory
kernel. Interestingly, we shall show in Sec. IV that in the
Markovian Langevin limit the off-diagonal elements of the
retarded self-energy turn into an effective interaction which
is akin to applying a nonconservative rotating force upon
the harmonic oscillators, which is in agreement with the
fact that such a contribution is promoted by the time-
reversal asymmetry and parity violation.
A further simplified expression between the retarded

self-energy and spectral density is obtained by performing
the Fourier transform in Eq. (43) (the details of the
derivation can be found in Appendix C). Doing this we
arrive at the following identity:

IΣ̃αβ
ij ðωÞ¼h½Ẽα

i ðωÞ;Ẽβ†
j ðωÞ�i

¼ 1

2π
ðΘðωÞJ †

αβðω;Δq̄ijÞ−Θð−ωÞJ αβð−ω;Δq̄ijÞÞ;
ð45Þ

which completely characterizes the dissipative effects. It is
well-known that a system, whose open-system dynamics
is governed by a given quantum Langevin equation, will
reach an asymptotic thermal equilibrium state if the
dissipative effects are related to the fluctuations of the
environmental noise via the so-called fluctuation-
dissipation theorem [30,39,76], e.g.,

hfξ̃αi ðωÞ; ξ̃β†j ðω0Þgi
ρ̂β

2IΣ̃αβ
ij ðωÞ

¼ δðω − ω0Þð1þ 2nðω; β−1ÞÞ; ð46Þ

where ξ̂αi ðtÞ represents a mean zero stationary Gaussian
noise (i.e., a quantum Brownian noise) and 1þ2nðω;β−1Þ¼
cothðβω=2Þ. This relation manifests that the fluctuating
force is only due to thermal fluctuations,which is the case for
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the independent-oscillator model [21,22,25] (e.g., see the
case of the electromagnetic field [41]). Going back to
the expression (29), the aforementioned backreaction
contribution F̂BRðq̄i; tÞ to the pseudoelectric field
constitutes a nonstochastic force that breaks down the

fluctuation-dissipation theorem (46) for the MSC environ-
ment initially in a canonical equilibrium state ρ̂β. As shown
in Appendix C, the statistics of the pseudoelectric force
is related to the dissipative effects via the following
formidable equation:

1

2
hfẼα

i ðωÞ; Ẽβ†
j ðω0Þgi

ρ̂β
¼ δðω − ω0Þð1þ 2nðω; β−1ÞÞIΣ̃αβ

ij ðωÞ þ ΘðωÞΘðω0ÞðG̃αβ
ij Þ†ðω;ω0; t0Þ

þ Θð−ωÞΘð−ω0ÞG̃αβ
ij ð−ω;−ω0; t0Þ þ ΘðωÞΘð−ω0ÞðF̃ αβ

ij Þ†ðω;−ω0; t0Þ
þ Θð−ωÞΘðω0ÞF̃ αβ

ij ð−ω;ω0; t0Þ; ð47Þ

where we have defined the following nonstochastic spectral functions for κ ≤ ω;ω0,

G̃αβ
ij ðω;ω0; t0Þ ¼

e4κ2

16ωω0 e
iðω−ω0Þt0e−2σðω2þω02−2κ2Þ Xn

l;m¼1

Rαβ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − κ2

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω02 − κ2

p
; jq̄i þ q̄lj; jq̄j þ q̄mj

�
; ð48Þ

and

F̃ αβ
ij ðω;ω0; t0Þ ¼ −

e4κ2

16ωω0 e
iðωþω0Þt0e−2σðω2þω02−2κ2Þ Xn

l;m¼1

Tαβ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − κ2

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω02 − κ2

p
; jq̄i þ q̄lj; jq̄j þ q̄mj

�
; ð49Þ

and we have introduced the matrices R and T, e.g.,

R11ða; b; c; dÞ ¼
1

acbd
u

�
κac; 2

κω

jκj − 2κ; ac

�
u

�
κbd; 2

κω

jκj − 2κ; bd

�
;

R12ða; b; c; dÞ ¼
i

acbd
u

�
−κac;−2

κω

jκj − 2κ; ac

�
u

�
−bdω0;−

κ2

jκj þ 2ω0; bd
�
;

R21ða; b; c; dÞ ¼
i

acbd
u

�
acω0;−

κ2

jκj − 2ω0; ac
�
u

�
κb2d;−2

κω

jκj − 2κ; bd

�
;

R22ða; b; c; dÞ ¼
1

acbd
u

�
acω;

κ2

jκj − 2ω; ac

�
u

�
bdω0;

κ2

jκj − 2ω0; bd
�
; ð50Þ

and the auxiliary function uðx; y; zÞ ¼ xJ1ðzÞ þ yJ2ðzÞ.
Because the detailed representation of T is lengthy and
not crucial for the future discussion, we move it to the
Appendix D [see Eq. (D8)], as well as the derivation of the
fluctuation-dissipation relation (47). At this point, it is
important to realize that both nonstochastic spectral func-
tions, Eqs. (48) and (49), are integrable functions in the
frequency domain, and further, they decay as fast as an
exponential function for large arguments of ω and ω0. For
instance, it is easy to see that the matrix elements of R
reduce to a finite and continuous algebraic function for
small arguments jq̄i=j þ q̄lj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − κ2

p
≪ 1 by using the

asymptotic expressions of the Bessel functions, i.e.,
JαðzÞ ∼ Γðαþ 1Þ−1ðz=2Þα for z ≪ 1. The matrix T is found
to feature this property as well.
From the derivation of Eq. (47) it follows that the first

line is just due to the Maxwell and Chern-Simons electric
contributions to the fluctuating force. That is, we can

identify the Lorentz force rendered by these electric fields
with a stochastic thermal noise, i.e.,

ξ̂αi ðtÞ ¼ eÊα
MCSðq̄i; tÞ; ð51Þ

where Êα
MCSðq̄i; tÞwas defined in Eq. (33). Recall that ξ̂αi ðtÞ

is an unbiased random operator (i.e., hξ̂αi ðtÞi ¼ 0) that
satisfies the fluctuation-dissipation relation illustrated in
Eq. (46) even though the Chern-Simons electric field
exhibits time-reversal asymmetry [3]. On the other hand,
the second and third line represents the nonstochastic
fluctuations owing to the backreaction force in Eq. (29).
Concretely, they come from nonstationary terms involving
âðkÞâðkÞ and â†ðkÞâ†ðkÞ, which represent nonconservative
energy processes taking place in the gauge field at the
initial time t0. Interestingly, paying attention to Eqs. (48)
and (49), we may observe that such fluctuations become
highly oscillatory in the long time limit t − t0 → ∞, which
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could make their contribution to the stationary dynamics
neglectable. Indeed, we illustrate in the next section how
the nonstochastic fluctuations asymptotically cancel out in
the strict limit by appealing to the fact that the aforemen-
tioned spectral functions (48) and (49) have both a broad
bandwidth and rapid decay at large frequencies compared
to the particle frequencies ωi, recovering in turn the
fluctuation-dissipation theorem (46). Before we continue,
it is worthwhile to mention that these fluctuations would
effectively disappear from the noise statistics [and thus, the
theorem (46) would be valid for the fluctuating force Êα

i ðtÞ
during the whole time evolution] if we would have access
to the initial preparation of the Maxwell-Chern-Simons
electromagnetic field and its initial state could be tuned to

ρ̂β ∝ exp

�
−β
X
k

ωðkÞâ†dðkÞâdðkÞ
�
;

instead of the canonical equilibrium state ρ̂β ∝ e−βĤMCS .
That is, the environmental annihilation (creation) operator
would be initially replaced by a shifted operator âd (â†d)
which effectively counteracts the backreaction effects. As
this is not the case for most interesting physical situations,
in the next sections we find it useful to briefly present
the concrete arguments that justify that the microscopic
model (28) may reproduce a relaxation process towards a
thermal equilibrium state despite this issue.

B. Properties of the fluctuating force and
retarded self-energy

Let us draw attention to the retarded self-energy and
force fluctuations governing the quantum Langevin dynam-
ics in the asymptotic time limit. From Eq. (47), we may
envisage the two-point autocorrelation function of the
fluctuating force in the time domain for t0 ≤ t, i.e.,

hfÊα
i ðtÞ; Êβ†

j ðt0Þgi
ρ̂β
¼hfξ̂αi ðtÞ; ξ̂β†j ðt0Þgi

ρ̂β

þϒαβ
ij ðt; t0; t0ÞþΞαβ

ij ðt; t0; t0Þ; ð52Þ

where ξ̂i describes the previously mentioned thermal noise
upon the ith harmonic oscillator given by Eq. (51), whereas
the nonstochastic fluctuations ϒαβ

ij ðt; t0; t0Þ and Ξαβ
ij ðt; t0; t0Þ

represent the inverse Fourier transform of the second and
third line of the right-hand side of Eq. (47), respectively.
Because the functions (48) and (49) are continuously

differentiable for κ ≤ x < ∞ and they exponentially
decay for values x larger than ð2σÞ−1

2, ϒαβ
ij ðt; t0; t0Þ and

Ξαβ
ij ðt; t0; t0Þ can be computed for any finite value t0, though

we may need to resort to numerical computation methods in
most interesting cases. In particular, these fluctuations can
be evaluated in the asymptotic time limit t − t0 → ∞ by
appealing to the so-called Riemann-Lebesgue lemma [77],

which is illustrated in Appendix D and has been employed
in the study of the stationary properties of the damped
harmonic oscillator [30,76]. Essentially, this lemma states
that the factor e�iðω�ω0Þt0 appearing in Eqs. (48) and (49)
becomes so highly oscillatory that the integral of the
corresponding inverse Fourier transform averages out to
zero over the bandwidth of the MSC environment. As a
result, it follows from the Riemann-Lebesgue lemma that
both ϒαβ

ij ðt; t0; t0Þ and Ξαβ
ij ðt; t0; t0Þ asymptotically vanish in

the long time limit t − t0 → ∞. We elaborate on this
discussion in Appendix D. In this way, the asymptotic
dynamics of the harmonic n-particle system will be
dominated mainly by the thermal fluctuations, i.e., Êα

i ðtÞ →
ξ̂αi ðtÞ for t − t0 → ∞, and thus, the time asymptotic dis-
sipative dynamics will follow a fluctuation-dissipation
relation (46), as we wanted to show. We would like to
emphasize that this result is general and just rests on the
basic properties of the spectral function: it exhibits a broad
bandwidth and a finite and continuous coupling strength
between the MSC environment and system particles.
We pay attention to the properties of the thermal noise

ξ̂αi ðtÞ in what follows. By performing the inverse Fourier
transform in Eq. (46) after substituting the expression of
the retarded self-energy in terms of the spectral density
(45), we obtain

hfξ̂αi ðt0 þ τÞ; ξ̂β†j ðt0Þgi

¼ 1

π

Z
∞

0

dωð1þ2nðω;β−1ÞÞðRefJ αβðω;Δq̄ijÞgcosðτωÞ

þ ImfJ αβðω;Δq̄ijÞgsinðτωÞÞ: ð53Þ

Observe that the Chern-Simons effects give rise to the off-
diagonal contribution contained by the Fourier sine trans-
form term appearing in Eq. (53), as similarly occurs for
extended Caldeira-Legget environments [54]. This term
encodes all the thermal fluctuations emerging from the
Chern-Simons electric field ÊCS acting upon the transversal
spatial d.o.f. In Secs. IV and IVA, it is shown that such a
contributionmay be interpreted as an ordinaryHall response
associated with ÊCS, and interestingly, it may generate long-
time correlations between the transversal d.o.f. of the system
particles in the asymptotic equilibrium state.
A profound analysis of the self-energy Eq. (43) and

thermal fluctuations Eq. (53) inferred from the MSC
environment is beyond the scope of the present work.
Rather we will focus the attention to the realistic physical
situation when the Chern-Simons action strength is weak,
i.e.,

ffiffiffiffiffi
2σ

p
κ ≪ 1, and all harmonic oscillators are very close

to each other compared with the particle charge distribu-

tion, i.e., jΔq̄ijjffiffiffiffi
2σ

p ≪ 1 for arbitrary i and j. Under these

assumptions the definition for the spectral density (44)
may be brought into the simplified expression,
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Jðω;Δq̄ijÞ ≃
�
e
4

�
2

e−2σω
2

  
1
4
ð8κ2 þ 2ð4 − κ2ðjΔq̄ijj2 − 8σÞÞω2Þ i4κω

−i4κω 1
4
ð8κ2 þ 2ð4þ κ2ðjΔq̄ijj2 þ 8σÞÞω2Þ

!

−

 ð1þ 2κ2σÞ 4iκ
ω κ

− 4iκ
ω κ 3ð1þ 2κ2σÞ

! 
jΔq̄ijjω2

2

!
2
!
; with 0 ≤ ω: ð54Þ

Equation (54) is obtained by using the asymptotic form of the Bessel functions of the first kind for small arguments, and
then we performed a Taylor series expansion around jΔq̄ijj ¼ 0. Now, replacing Eq. (54) in Eq. (43) and using the standard
tables of integration [74], one may obtain closed-form formulas for the retarded self-energy with 0 ≤ t. For instance, the off-
diagonal elements takes the following form,

Σ12
ij ðtÞ ¼ −Σ21

ij ðtÞ ≃
e2κ

64πσ2

�
jΔq̄ijj2ð−1þ x2Þ þ 8σ þ x

ffiffiffi
π

p
2

ðjΔq̄ijj2ð3 − 2x2Þ − 16σÞe−x2erfiðxÞ
�
; ð55Þ

where x ¼ tffiffiffiffi
8σ

p and erfiðxÞ ¼ i−1erfðixÞ, with erfðxÞ being
the error function in the variable x [74]. The computed form
for the other terms can be found in Appendix E; see
Eqs. (E6) and (E7). The components of the retarded self-
energy as functions of time are depicted in Fig. 1. Paying
attention to Eq. (55), we may observe that the quantum
Langevin dynamics of the harmonic n-particle system
presents an intricate non-Markovian memory kernel, which
exhibits an algebraic behavior at small times, whereas it is
dominated by an exponential decay with vanishing time
ð2σÞ−1

2 in the long time. Such non-Markovianity is a clear
signature of a rich dissipative dynamics [9]. Interestingly,
the expression for the off-diagonal component (55) reveals
that the fluctuating forces acting upon transversal spatial
components of the harmonic oscillators do not commute at
t ¼ 0, rather it takes a finite value proportional to the so-
called topological mass κ [46]. Taking into account
Eq. (29), this feature can be traced back to the fact that
the Maxwell-Chern-Simons electric field ÊMCSðq̄iÞ respon-
sible for the dissipative dynamics has noncommutative

components [see Eq. (34)], as pointed out in Sec. III. It is
well-known in the free Maxwell-Chern-Simons electrody-
namics [46,47] that such noncommutative property for the
electric fields arises from the latent topological features of
the microscopic theory, thus this feature of the memory
kernel can be thought of as a topological trademark in the
present dissipative dynamics [63].
Figure 1 also illustrates the thermal fluctuations of

Eq. (53) obtained in the zero-temperature limit after
replacing the spectral density by Eq. (54). The exact
representation of the diagonal and off-diagonal elements
can be found in Appendix E [see Eqs. (E8), (E9) and
(E10)]. Observe that the time-dependent thermal fluctua-
tions share a similar behavior with the retarded self-energy.
Moreover, both diagonal components almost take the same
values due to the apparent anisotropy of the spectral density
that vanishes for closed particles, as was just discussed in
the previous section. Interestingly, we shall see in Sec. IV
that the transversal contribution (see the inset) at high
temperatures may be identified with the fluctuations of an

FIG. 1. (Left) Elements of the retarded self-energy as a function of time. The solid blue and dashed orange lines correspond,
respectively, to Σ11

ij ðtÞ and Σ22
ij ðtÞ, whereas Σ12

ij ðtÞ is represented by the solid black line in the inset. (Right) Plot illustrating the elements
of the thermal fluctuations in the zero-temperature regime as a function of time. The diagonal correlations for α ¼ 1, 2 are given by the
solid blue and dashed orange lines, respectively. In the inset, the solid black line depicts the off-diagonal correlation hfÊ1

i ðtÞ; Ê2†
j ðt0Þgi.

In both pictures, we have fixed e ¼ 1,
ffiffiffiffiffi
2σ

p
κ ≃ 0.01, and jΔq̄ijj=

ffiffiffiffiffi
2σ

p
≃ 0.01.
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antisymmetric 1=f noise in the Markovian Langevin
dynamics limit.
In summary, on one hand we have shown that the

stationary dissipative effects characterized by Eq. (45)
and the stochastic electric force Eq. (51) follow a gener-
alized fluctuation-dissipation relation (46). Remarkably,
the retarded self-energy exhibits a noncommutative feature
characteristic of the topologically massive gauge theory.
On the other hand, we have seen that the Maxwell-Chern-
Simons field induces nonstochastic fluctuations which may
dominate the initial dissipative dynamics, but nevertheless
their influence on the long-time dynamics can be disre-
garded, and thus, the system could eventually reach a
thermal equilibrium state determined by the initial gauge-
field temperature β−1. We shall discuss in the following
section under which conditions any initially prepared
configuration of the harmonic n-particle system decays into
a thermal state at temperature β−1 due to the interaction with
the MCS environment.

C. Equilibrium structure of propagators

We now turn the attention to the equilibrium properties
of the harmonic n-particle system at late times. It proves
convenient to analyze this by means of the (one-particle)
Green’s function Gαβ

ij ðt; t0Þ ¼ hTCQ̂
α
i ðtÞQ̂β

j ðt0Þi defined for

a pair of particle position operators Q̂i and Q̂j, where TC

denotes the closed time path or Schwinger-Keldysh contour
[3]. This is also known as the contour-ordered propagator
and may be conveniently expressed as follows:

Gαβ
ij ðt; t0Þ ¼ Δαβ

ij ðt; t0Þ −
i
2
sgnTC

ðt − t0ÞΛαβ
ij ðt; t0Þ;

in terms of the spectral and statistical correlators,
respectively,

Λαβ
ij ðt; t0Þ ¼ ih½Q̂α

i ðtÞ; Q̂β
j ðt0Þ�i; ð56Þ

Δαβ
ij ðt; t0Þ ¼

1

2
hfQ̂α

i ðtÞ; Q̂β
j ðt0Þgi: ð57Þ

Interestingly, in a thermal equilibrium state the contour-
ordered propagator becomes time-translational invariant,
i.e.,Gαβ

ij ðt; t0Þ ¼Gαβ
ij ðt− t0Þ, andmore importantly, the above

correlators are related such that it satisfies the Kubo-Martin-
Schwinger (KMS) boundary condition [3,7]:

Gαβ
ij ðt − t0 þ iβÞjt<t0 ¼ Gαβ

ij ðt − t0Þjt0<t: ð58Þ

By means of arguments analogous to derive the long-time
behavior of the environmental fluctuations, we shall show
that the harmonic n-particle system asymptotically
approaches a stationary state retrieving the KMS relation
(58), with β−1 being the initial gauge-field temperature, under
certain conditions consistent with the spectral density (44).

In order to evaluate the asymptotic time solution of the
contour-ordered propagator we first solve the Cauchy
problem for the quantum Langevin equation (38). As the
latter constitutes a linear integral-differential equation, its
solution can be straightforwardly obtained via either the
Laplace or the Fourier transform methods [19,20,30]. In this
context, the solution can be conveniently expressed in terms
of the (Kadanoff-Baym) retarded Green’s function matrix
GRðtÞ of the harmonic n-particle system [5,20], whose
entries are completely determined by the time Fourier
transform,

ðG̃−1
R Þαβij ðωÞ¼−δijδαβmðωþ i0þÞ2þVαβ

ij − Σ̃αβ
ij ðωþ i0þÞ;

ð59Þ

where G̃−1
R denotes the 2n × 2nmatrix inverse. Additionally,

the homogeneous solution q̂αi;hðtÞ ofEq. (38) is obtained from

Xn
j¼1

Z
t

t0

dτðG−1
R Þαβij ðt − τÞq̂βj;hðτÞ ¼ 0; ð60Þ

by setting the initial conditions q̂αi;hðt0Þ¼ q̂αi ðt0Þ and _̂qαihðt0Þ¼
_̂qαi ðt0Þ (which implies GRðt0Þ ¼ I2n and _GRðt0Þ ¼ m−1I2n,
with I2n being the 2n × 2n identity matrix). Notice that
G̃Rð−ωÞ ¼ G̃†

RðωÞ thanks to the properties of the retarded
self-energy [see Eqs. (42) and (45)]. Then the solution of
Eq. (38) formally reads,

q̂αi ðtÞ ¼ q̂αi;hðtÞ

þ
Xn
j¼1

Z
t

t0

ðGRÞαβij ðt − τÞðξ̂βj ðτÞ − Vβ
j Þdτ; ð61Þ

where all the stationary dynamics is completely contained by
the second line expression on the right-hand side. For a better
exposition, we shall disregard the nonstochastic force Vβ

j

from the following discussion by doing a local unitary
transformation,

Q̂α
i ðtÞ ¼ q̂αi ðtÞ þ

Xn
j¼1

Z
t

t0

ðGRÞαβij ðt − τÞVβ
jdτ:

From the expressions (60) and (61) one may see that, for
the system particles reaching a stationary state independent
of an initially prepared configuration, the retarded Green
function GRðtÞ must completely decay (either algebraically
or exponentially) at a long time. As previously shown in
Sec. III B, this information is completely encoded by its
(time) Fourier transform (59). It is known from previous
studies related to the generalized Langevin equation for the
conventional damped harmonic oscillator [19,20,76,78,79]
that the existence of a well-defined stationary solution
indicates that G̃RðωÞ has no isolated pole ωb lying outside
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of the environment dense spectrum, or equivalently, it does
not blow up at some value ωb with 0 < ω2

b < κ2 (one way
to see this is by evaluating its Fourier transform by means
of the Riemann-Lebesgue lemma). This immediately
implies that the determinant of G̃−1

R ðωÞ can only have
roots ωr obeying κ2 < ω2

r . By substituting the frequency-
domain expression of the retarded self-energy in Eq. (59),
the search of these roots may be rephrased in terms of
the eigenvalue problem of the real part of G̃−1

R ðωÞ, i.e.,
ReG̃−1

R ðλÞ ¼ mλ2I2n with

ReðG̃−1
R Þαβij ðλÞ ¼ Vαβ

ij −
sgnðλÞ
2π

ImJ αβðjλj;Δq̄ijÞ

−
1

2π
H½ReJ αβðjωj;Δq̄ijÞ�ðλÞ; ð62Þ

where I2n denotes the 2n × 2n identity matrix and sgn
stands for the usual sign function. Using results borrowed
from the matrix theory [80], the condition under which
GRðtÞ asymptotically vanishes could be then expressed in
the following compact form:

mκ2I2n < ReG̃−1
R ðωrÞ; ð63Þ

that is, ReG̃−1
R ðωrÞ −mκ2I2n is a positive-definite matrix

for ωr. In the particular case of vanishing Chern-Simons
action, the condition (63) returns the known result for the
conventional damped harmonic oscillator [19,20,79].
When Eq. (63) is obeyed, the dissipative Hamiltonian
(28) is prevented to have a bound, stable normal mode
with frequency ωb. Intuitively speaking, the condition
(63) ensures that the spectrum of the gauge field will
well accommodate the bare frequencies of the harmonic
n-particle system (i.e., κ < ωi < 1=

ffiffiffiffiffi
2σ

p
for i ∈ f1; ng),

and, consequently, it makes possible an irreversible energy
transfer from the system to the environment, at least in a
finite time sufficiently larger than the natural time scale of
the system particles.
As similarly occurs for an intricate non-Markovian

Langevin dynamics in the conventional Brownian motion,
it may be rather difficult to obtain the analytic structure of
G̃−1

R ðωÞ for most cases as manifested by the sophisticated
spectral density (44) and expression (45) for the retarded
self-energy. Concretely, the real part of the retarded self-
energy, which is obtained via the Kramers-Kronig relation
(42), regards a Bessel Hilbert transform that has no analytic
expression in general, and thus, one has to resort to
numerical methods [81]. Nonetheless, this treatment sub-
stantially simplifies for the previously discussed situation
when all the system particles are very close to each other
and the Chern-Simons action is weak (i.e., σκ2 ≪ 1 and
jΔq̄ijjffiffiffiffi

2σ
p ≪ 1 for arbitrary i and j). Recall that the positive

constraint upon the microscopic Hamiltonian (30) dis-
cussed in Sec. III imposes the consistency condition (32)

as well. As shown previously, the dissipation produced by
the MCS environment is then characterized by a sort of
super-ohmic spectral density (54). Replacing this in
Eq. (62) and computing the corresponding Hilbert trans-
form, it may be verified that there is no (nontrivial) solution
ωr which violates Eq. (63) provided the particle frequencies
lie in the MCS environment spectrum (i.e., κ < ωi for
i ∈ f1; ng), and further, the subsidiary condition (32) is
obeyed. To see this we must realize that the off-diagonal
elements of G̃−1

R ðωrÞ represent a perturbative contribution
to det G̃−1

R ðωÞ by virtue of Eq. (32). Hence, we expect that
the harmonic oscillators relax towards a thermal equilib-
rium state in the closed-particle and weak Chern-Simons
action picture. In more general scenarios, the condition (63)
will be satisfied depending mainly on the values of the
oscillator bare frequencies ωi, width of the particle charged
distribution σ, Chern-Simons constant κ, and environmen-
tal coupling e.
Once the stationary solution is guaranteed [and the

condition (63) is fully satisfied], it is convenient to take
the limit t − t0 → ∞ in Eq. (61) and rewrite the stationary
solution of the position operator in terms of its Fourier
transform, i.e., Q̂α

i;sðωÞ ¼
P

n
l¼1 ðG̃RÞαγil ðωÞξ̃γl ðωÞ. After

replacing this into both the spectral (56) and statistical
(57) correlators, and averaging over the initial state ρ̂β, we

arrive at their Fourier transform Λ̃αβ
ij ðω;ω0Þ and Δ̃αβ

ij ðω;ω0Þ,
respectively. These are directly obtained by taking into
account the anticommutator (45) and commutator (47)
expressions of the fluctuating force in the frequency
domain. As a result, we find for the spectral correlator,

Λ̃αβ
ij ðω;ω0Þ ¼ 2iδðω − ω0Þ

Xn
l;l0¼1

½ðG̃RÞαγil IΣ̃γγ0
ll0 ðG̃†

RÞγ
0β
l0j �ðωÞ;

ð64Þ

which is absent of the nonstochastic fluctuations
ϒαβ

ij ðt; t0; t0Þ and Ξαβ
ij ðt; t0; t0Þ. In contrast, the Fourier

transform of the latter functions are involved in the
expression for Δ̃αβ

ij ðω;ω0Þ. Once again we may evaluate
the time asymptotic limit of the statistical correlator by
using the aforementioned Riemann-Lebesgue lemma after
interchanging it with the integral in the frequency domain
(as similarly discussed in the previous section). Recall that
ϒ̃αβ

ij ðω;ω0; t0Þ and Ξ̃αβ
ij ðω;ω0; t0Þ explicitly inherit the fast

oscillatory behavior exhibited by Eqs. (48) and (49), such
that we may drop the nonstochastic fluctuation contribution
in the asymptotic limit t − t0 → ∞ once we appeal to the
fact that the retarded Green’s function is integrable accord-
ing to the condition (63). Thus it can be shown that this
yields

Δ̃αβ
ij ðω;ω0Þ ¼ −

i
2
ð1þ 2nðω; β−1ÞÞΛ̃αβ

ij ðω;ω0Þ: ð65Þ
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This result is in agreement with the previous finding about
the asymptotic vanishing of the nonstochastic fluctuations
in Sec. III B. Now, it is simple to verify that the KMS
relation (58) is recovered from Eqs. (64) and (65) via their
inverse Fourier transform. Consequently, this certifies that
the harmonic n-particle system asymptotically reaches a
thermal equilibrium state regardless of its initial configu-
ration, as we wanted to show. On the other hand, the KMS
relation (58) reveals that the system particle undergoes a
stationary Gaussian process in the long time limit com-
pletely determined by the statistical propagator Δαβ

ij ðt0 þ
τ; t0Þ ¼ Δαβ

ij ðτÞ and its time derivatives. The latter probes
that the microscopic Hamiltonian (28) in the asymptotic
limit provides us with a (numerically) solvable model for
the dissipative dynamics of harmonic planar systems.
In the following section, we shall focus the attention

in a nonequilibrium situation of physical interest which
arises when the dissipative dynamics is well described by
time-local damping, or equivalently, the retarded Green’s
function in the time domain is exclusively dominated
by an exponential decaying behavior at long time. This
is commonly recognized as the Markovian regime [22] and
has been extensively studied for the damped harmonic
oscillator based on the independent-oscillator model
[1,16,18,21,25] or, alternatively, by phenomenological
stochastic models [14]. We shall illustrate how this
description emerges in the present treatment and briefly
discuss its validity.

IV. EXAMPLE: MARKOVIAN LANGEVIN
DYNAMICS

As the specific form of the spectral density (56) consists
of an algebraic combination of Bessel functions evaluated
in square roots and weighted by a Gaussian function, we
may expect that the retarded Green’s function [endowed
with the condition (63)] may display an intricate mixture of
“particle” poles and brunch cut singularities in the complex
ω-plane [5,19,20,79]. It is well known that the latter
singularities contribute to the dynamics with a power-
law decaying evolution, whereas the former renders the
previously mentioned exponential behavior characteristic
of the Markovian dynamics. Now we shall assume that the
dissipative dynamics of the harmonic n-particle system is
mainly dominated by particle poles. As the latter math-
ematically represents (simple) complex poles, the
Markovian case corresponds to focus the attention when
ðG̃RÞαβij ðωÞ takes the form of a rational function [82].

Formally, this is equivalent to approximate G̃RðωÞ by a
Breit-Wigner resonance shape [5,7,19,20,79], i.e., G̃RðωÞ ≃
G̃BWðωþ i0þÞ with

ðG̃−1
BWÞαβij ðωÞ ¼

−δijδαβω2 − i2ωΓαβ
ij þ ðΩ∘2Þαβij

ð2πmÞ−1Zαβ
ij

; ð66Þ

where the matrix entries ðΩ∘2Þαβij and Γαβ
ij are given by

mðΩ∘2Þαβij ¼ Vαβ
ij −

1

2π
sgnðΩαβ

ij ÞImJ αβðjΩαβ
ij j;Δq̄ijÞ

−
1

2π
H½ReJ αβðjxj;Δq̄ijÞ�ðΩαβ

ij Þ; ð67Þ

Γαβ
ij ¼ m−1Zαβ

ij

2ð2πÞΩαβ
ij

�
1

2π
ReJ αβðjΩαβ

ij j;Δq̄ijÞ

−
1

2π
H½sgnðxÞImJ αβðjxj;Δq̄ijÞ�ðΩαβ

ij Þ
�
; ð68Þ

with Zαβ
ij being a renormalization factor,

Zαβ
ij ¼ 2π

�
1þ 1

2πm
∂

∂ω2
ðH½ReJ αβðjxj;Δq̄ijÞ�ðΩαβ

ij Þ

þ sgnðΩαβ
ij ÞImJ αβðjΩαβ

ij j;Δq̄ijÞÞ
	
−1
: ð69Þ

The matrix elements Ωαβ
ij are obtained from the Hadamard

(entrywise) power ðΩ∘2Þαβij ¼ Ωαβ
ij Ω

αβ
ij , and further, they

satisfy ϵαβðΩ∘2Þαβij ¼ ϵβαðΩ∘2Þβαij in order (66) to preserve
the Hermitian property of the equations. Additionally, for
Breit-Wigner approximation (66) to be physically consis-
tent with a Markovian treatment of dissipative harmonic
systems, we demand

Ωαβ
ij

Ωαα
ij

<
Γαα
ij

Ωαα
ij

≪ 1 with α ≠ β; ð70Þ

as well as 0 < Γαα
ij ;Ωαα

ij for i; j ∈ f1; ng and α, β ¼ 1, 2.
Expression (70) reflects nothing else but the fact that
the Markovian dynamics emerges when the system-
environment coupling is weak in comparison with the bare
particle frequencies [15,16]. On the other hand, the left-
hand side of Eq. (70) is motivated by the subsidiary
condition (32) discussed in Sec. III. This point will be
explained in the next section when we deal with a concrete
example, e.g., the single harmonic oscillator case.
The ansatz (66) is inspired by the Breit-Wigner reso-

nance shape for the scenario of a two-dimensional system
composed of n independent damped harmonic oscillators.
Following the prescription from Refs. [5,7], this may be
obtained by doing a Taylor expansion of the real and
imaginary parts of the retarded self-energy around the
particle pole. Recalling that ImΣ̃αβ

ij ðωÞ and ReΣ̃αβ
ij ðωÞ are,

respectively, odd and even functions in the frequency
domain [according to the Kramers-Kronig relation (42)],
such prescription may be extended to our treatment by
considering the following Taylor expansions near Ωαβ

ij :
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ImΣ̃αβ
ij ðωÞ ≃ ImΣ̃αβ

ij ðΩαβ
ij Þ þ

4πmΓαβ
ij

Zαβ
ij

ðω −Ωαβ
ij Þ; ð71Þ

ReΣ̃αβ
ij ðωÞ ≃ ReΣ̃αβ

ij ðΩαβ
ij Þ

−m

�
1 −

2π

Zαβ
ij

�
ðδijδαβω2 − ðΩ∘2Þαβij Þ; ð72Þ

where we have defined without loss of generality,

∂ImΣ̃αβ
ij ðωÞ

∂ω
����
ω¼Ωαβ

ij

¼ 4πmΓαβ
ij

Zαβ
ij

;

∂ReΣ̃αβ
ij ðωÞ

∂ω2

����
ω¼Ωαβ

ij

¼ −m
�
1 −

2π

Zαβ
ij

�
:

By replacing Eqs. (71) and (72) in the inverse of the
retarded Green’s function (59), we are led to the constraints
(67) and (68) by requiring this takes the form of the ansatz
(66). Notice that the final expression of these constraints is
obtained after substituting the retarded self-energy by the
spectral density, where the factor 2π essentially appears
because the definition of the latter is consider here.
Similarly, Eq. (69) follows directly from Eq. (72) and
corresponds to the so-called wave function renormalization
in the particular case of independent damped harmonic
oscillators. One may verify that Eqs. (71) and (72) retrieve
the Breit-Wigner resonance shape for n two-dimensional
oscillator following the conventional Brownian motion, as
desired.
By considering the ansatz (66), we obtain a Markovian

dynamics in agreement with the dissipative properties
encoded by the spectral density. Indeed, it can be shown
that the inverse Fourier transform of Eq. (66) returns the
following Markovian Langevin equation for our harmonic
n-particle system:

2πm
Zαα
ij

̈Q̂α
i ðtÞ þ 2πm

Xn
j¼1

X
β¼1;2

2Γαβ
ij

Zαβ
ij

_̂Q
β
j ðtÞ

þ 2πm
Xn
j¼1

X
β¼1;2

ðΩ∘2Þαβij
Zαβ
ij

Q̂β
j ðtÞ ¼ ξ̂αi;BWðtÞ; ð73Þ

where ξ̂αi;BWðtÞ is the associated thermal noise which is
determined from Eq. (53). Aside from the contribution
from the quadratic potential Vαα

ij contained in Ωαα
ij (notice

that Vαβ
ij ¼ 0 for α ≠ β), one may realize from Eq. (73) that

the MSC environment in the Markovian limit may mediate
an effective interaction between transversal spatial compo-
nents that is characteristic of a linear drift force [62].
More concretely, the latter is equivalent to an array of
nonconservative rotational forces acting on the harmonic
oscillators,

F̂R;i ¼ −2πmXn
j¼1

Ω2
ijðQ̂j × ê3Þ; with i ∈ f1; ng; ð74Þ

where ðΩ∘2Þαβij ¼ ϵαβZαβ
ij Ω2

ij and ê3 denotes the (unit)
normal vector to the plane defined by the system. Upon
close inspection of Eq. (67), one may see that F̂α

R;i must
exclusively arise from the imaginary part of the spectral
density [see Eqs. (43) and (44)]. The latter pinpoints the
Chern-Simons electric field ÊCS as being responsible for
Eq. (74), which is primarily induced by the particle-
attached Chern-Simons flux discussed in Secs. II and III.
Interesting enough, this situation is common in static MCS
electrodynamics [70] and invokes a physical picture for our
dissipative system that recalls an intricate ensemble of
dissipative coupled magneticlike vortices: each oscillator
follows a rotational symmetric motion carrying certain
Chern-Simons flux that simultaneously interacts between
each other with strength determined by Ωij. A similar
vortexlike dynamics was also found in a dissipative
microscopic description of type-II superconductors [83].
To be in agreement with an asymptotic stationary picture,
there must exist a complex interplay between these driving
forces and the energy dissipated by the corresponding
environmental noise. Indeed, we show below that the noise
associated with Eq. (74) via the fluctuation-dissipation
relation (46) resembles a magnetic flux noise, which
reinforces the aforementioned vision of flux-carrying
particles. Accordingly, these rotational forces constitute
a perturbative repulsive interaction (which may globally
drift away the system particles) that counteracts the
particle-confining potential.
Alternatively, the ansatz (66) can be thought of as the

retarded Green’s function resulting from the generalized
Langevin equation after assuming a certain form for the
spectral density, namely J BW

αβ , that fulfills Eqs. (67) and
(68). In other words, we should be able to deduce a
Markovian Langevin equation identical to the one asso-
ciated with the Breit-Wigner ansatz (73) if we replace such
spectral density J BW

αβ in the expression (43) for the retarded
self-energy. In this way, we could follow an inverse line of
thinking to figure out the specific form of J BW

αβ by requiring
the expression (43) reproduces a time-local memory kernel
which agrees with Eq. (73), i.e., Σαβ

ij ðt − t0Þ ∝ δðt − t0Þ. On
one hand, as the off-diagonal elements of the spectral
density are just contained in the Fourier cosine transform of
Eq. (43), the transformation rules for the latter entails (for
arbitrary i, j): Γαβ

ij ¼ 0 and J BW
αβ ðω;Δq̄ijÞ ∝ iΩ2

ij for α ≠ β.
On the other hand, J BW

αβ must be Hermitian to provide a
sensible description as explained in Sec. III A. Introducing
together these results in Eqs. (67) and (68), we are led to the
following spectral density associated with the Breit-Wigner
approximation (66):
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J BW
αβ ðω;Δq̄ijÞ ¼ δαβ

2mπΓαα
ij

Zαα
ij

ω − iϵαβ
2πmΩ2

ij

2
: ð75Þ

Using the Fourier sine and cosine transformation rules, it is
simple to verify that expression (75) matches with the
Markovian Langevin equation (73). Interestingly, the
diagonal elements of J BW

αβ take the form of an ohmic
spectral density (which is characteristic of the strict
Markovian limit [1]), whereas the off-diagonal contribution
exhibits a flat or white spectrum.
Additionally, we may obtain the fluctuation-dissipation

relation determining the corresponding fluctuating force
ξ̂αi;BWðtÞ by replacing Eq. (75) in the expression (53). In the
high-temperature limit Γαα

ij β ≪ 1, this takes the particular
form,

hfξ̂αi;BWðt0 þ tÞ; ξ̂β†j;BWðt0Þgi

¼ δαβ
2mð2πÞΓαα

ij

Zαα
ij β

δðt− t0Þþ ϵαβ
2πmΩ2

ij

2β
sgnðt− t0Þ; ð76Þ

where again we have made use of the well-known proper-
ties of the Dirac delta function and the standard tables of
Fourier cosine and sine transforms [74].
The statistical correlator (76) reveals intriguing features of

the fluctuating force acting on the harmonic n-particle system
at high temperatures, especially for the off-diagonal correla-
tions arising from the Chern-Simons effects. We may clearly
recognize the first line in Eq. (76) as the well-known
fluctuation-dissipation relation due to the white noise pre-
sented in the conventional Brownian motion [22].
Remarkably, the second term of the right-hand side closely
resembles the ordinary Hall response of two-dimensional
particles found in the dissipative Hofstadter model [55,56],
such that the fluctuations of the transversal spatial compo-
nents may be interpreted as the Hall effect counterpart in the
present context, occurring here because of the Chern-Simons
flux. Moreover, the second term of the right-hand side in the
frequency domain identically coincides with the fluctuations
of an antisymmetric 1=f noise of power spectrum SðωÞ ¼
ðiωÞ−1. The latter may be realized by paying attention to
Eq. (53): the hyperbolic cotangent renders an effective inverse
scaling for the power spectrum of the transversal correlations,
whereas the spectral density contributeswith a constant factor
owing to the form (75). Interestingly, the 1=f power law is
characteristic of the low-frequency magnetic flux noise in
superconducting circuits [57,58], which suggests that the
environmental noise acting upon transversal spatial d.o.f.
originates from the fluctuations of the Chern-Simons flux
carried by the harmonic oscillators. The time-reversal asym-
metry and parity violation of the present microscopic
description can be clearly appreciated from Eqs. (73) and
(76). In principle, the latter can be thought of as an extension
to the classical Einstein relation [22].

A final remark in this section is that the spectral density
(75) cannot provide a fully physical description of the
dissipative dynamics [and thus neither can Eq. (73)], as
similarly occurs for the ohmic spectral density in the
standard microscopic model (i.e., it gives rise to the so-
called ultraviolet catastrophe). Here, it is important to
emphasize that the Markovian Langevin equation (73) will
be valid when the coupling between the harmonic n-particle
system and gauge field is weak according to Eq. (70).
Physically, this could correspond well to the scenario of
closed particles and weak Chern-Simons action in the weak
damping regime, i.e., e=ωi ≪ 1 and ωi

ffiffiffiffiffi
2σ

p
≪ 1.

A. Single harmonic oscillator

So far we have followed a very general treatment of the
harmonic n-particle system. Aiming to provide a clear
comparison with the conventional (two-dimensional) iso-
tropic damped harmonic oscillator [22], we now address
the asymptotic dissipative dynamics of the single harmonic
oscillator case (i.e., n ¼ 1) within the previous Markovian
framework. For a better exposition, we take the parameters
involved in Eqs. (66) and (75) as follows: Ω12 ¼ −Ω21 ¼
ð2πÞ−1

2ΩCS, whereas for the diagonal elements Ω11 ¼
Ω22 ¼ Ω0 and Γ11 ¼ Γ22 ¼ Γ0. Furthermore, substituting
Eq. (76) in Eq. (69) yields Zαα ¼ 2π for α, β ¼ 1, 2. Note
that we have chosen an isotropic damping rate because the
apparent anisotropy of the spectral density cancels out for
the single oscillator case as discussed in Sec. III A, and
further, ΩCS determines the strength of the rotational forces
discussed in the previous section.
Owing to the rational form of the Breit-Wigner approxi-

mation, the retarded Green’s function G̃SOðωÞ is found to
decay algebraically as fast as ∼ω−3 and has no brunch cut.
Instead it possesses four complex-conjugate simple poles,
denoted by −iλ�, in the ω-plane, i.e.,

λ� ¼ Γ0 � η with η ¼ ðΓ2
0 −Ω2

0 þ iΩ2
CSÞ

1
2; ð77Þ

aside its complex conjugate. Hence we may use contour
integration methods [82] to obtain its inverse Fourier
transform. Note that the contours at infinity do not
contribute to the final integral because G̃SOðωÞ vanishes
rapidly at large frequency. Hence, it is simple to verify that

GSOðτÞ ¼ ΘðτÞ
�

fþðητÞ −if−ðητÞ
if−ðητÞ fþðητÞ

�
; ð78Þ

where τ ¼ t − t0, and we have introduced the following
auxiliary functions,

f�ðtzÞ ¼
e−Γ0t

2m

�
sinhðtz†Þ

z†
� sinhðtzÞ

z

�
;

which returns the familiar solution of the Markovian
damped harmonic oscillator when ΩCS → 0. At first sight,
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the retarded Green’s function (78) does not seem to decay at
late times, preventing the single harmonic oscillator to relax
towards an equilibrium state. However, one may show that
the consistency condition (70) guarantees Eq. (78) asymp-
totically vanishes. Concretely, it is immediate to see that
Eq. (78) will exhibit an exponential decay if the following
inequality holds:

Re
n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γ2
0 −Ω2

0 þ iΩ2
CS

q o
< Γ0:

By means of identities for the complex square root, this
inequality is equivalent to Ω4

CS < 4Γ2
0Ω2

0, which is clearly
satisfied by recalling Eq. (70), as we wanted to show. Note
this result is in complete agreement with the subsidiary
condition (32) derived in Sec. III.
Now we study the position autocorrelation function

denoted by Δαα
SOðtÞ and defined in Eq. (57). As before,

this may be obtained via Eqs. (64) and (65) by using
standard contour integration techniques to compute the
corresponding inverse Fourier transform, once we have
replaced the single oscillator expressions for both the
spectral density (76) and retarded Green’s function
G̃SOðωÞ. Specifically, we arrive at the following identities,

Δ11
SOðtÞ ¼ Δ22

SOðtÞ ¼ RefS0ðtÞ þ SCSðtÞg

þ 4Γ0

mβ
_SðqÞ0 ðtÞ; ð79Þ

where we have introduced

S0ðtÞ ¼
iμþ

2mμ−ðλþ − λ−Þ
�
coth

�
iβλ−
2

�
e−λ−t

− coth

�
iβλþ
2

�
e−λþt

�
;

SCSðtÞ ¼
2Γ0Ω2

CS

mμ−ðλþ − λ−Þ
�
λþ coth

�
iβλ−
2

�
e−λ−t

− λ− coth
�
iβλþ
2

�
e−λþt

�
; ð80Þ

with μ� ¼ 4Γ2
0Ω2

0 � Ω4
CS, and the quantum corrections,

SðqÞ0 ðtÞ ¼
X∞
n¼1

e−νntððν2n þΩ2
0Þ2 þ 3Ω4

CS − 4Γ2
0ν

2
nÞ

ðν2n − λ2þÞðν2n − λ2−Þðν2n − λ†2þ Þðν2n − λ†2− Þ ;

SðqÞCSðtÞ ¼
X∞
n¼1

e−νntððν2n þΩ2
0Þ2 þ Ω4

CS − 12Γ2
0ν

2
nÞ

ðν2n − λ2þÞðν2n − λ2−Þðν2n − λ†2þ Þðν2n − λ†2− Þ ;

ð81Þ

with νn being the positive bosonic Matsubara frequencies,
i.e., νn ¼ 2πn=β. It is straightforward to show that Eq. (79)
returns the well-known results of the Markovian damped

harmonic oscillator [14] for zero Chern-Simons action (i.e.,
ΩCS → 0). From expression (79) it is immediate to get the
mean-square dispersion of the harmonic oscillator position
along one dimension, i.e., hQ̂2iβ ¼ Δ11

SOð0Þ ¼ Δ22
SOð0Þ. To

evaluate the classical and quantum limit, it is convenient to
rewrite Eq. (79) in terms of the psi function ψðxÞ, which is
the logarithmic derivative of the gamma function. In

particular the quantum corrections _SðqÞ0 ð0Þ could be written
as a combination of ψðxÞ by following a similar procedure
to Ref. [14].
In the high-temperature limit (Γ0β ≪ 1), the quantum

corrections vanish as can be clearly seen from Eq. (81).
After some straightforward manipulation we then arrive at

hQ̂2iβ ¼
Ω4

CSΩ2
0 þ 4Γ2

0ðΩ4
0 þ 2Ω4

CSÞ
mβð4Γ2

0Ω2
0 −Ω4

CSÞðΩ4
0 þΩ4

CSÞ

¼ 1

mβΩ2
0

�
1þ

�
1þ Ω2

0

2Γ2
0

��
ΩCS

Ω0

�
4
�

þO
��

ΩCS

Ω0

�
8
�
; ð82Þ

where the first term coincides identically with the classical
correlation function of the damped harmonic oscillator
[14]. Clearly, the above expression shows that the Chern-
Simons action in the Markovian limit induces an effective
broadening and shifting of the harmonic oscillator spec-
trum, so that the two-dimensional particle is expected to be
in a thermal equilibrium distribution incorporating these
effects.
Although Eq. (82) manifests that the Chern-Simons

effects may be eventually negligible in the classical
dynamics, this result may significantly diverge from the
quantum scenario. In the zero-temperature limit β−1 ¼ 0,
we consider the asymptotic expression of the psi function
for large arguments, i.e., ψð1þ zÞ ≈ log z for 1 ≪ z. It can
be shown that this leads to

hQ̂2iβ¼
log

�
Γ0þ

ffiffiffiffiffiffiffiffiffiffi
Γ2
0
−Ω2

0

p
Γ0−

ffiffiffiffiffiffiffiffiffiffi
Γ2
0
−Ω2

0

p
�

2πm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2
0−Ω2

0

p þ 1

2mΓ0

�
ΩCS

Ω0

�
2

þO
��

ΩCS

Ω0

�
4
�
; ð83Þ

where again the first term of the right-hand side identifies
with the quantum result for the mean-square dispersion
found in the damped harmonic oscillator [1,13,14,25].
Unlike the previous classical limit, this result underlines
that the Chern-Simons effects may substantially influence
the Brownian motion and could be interpreted as an “hyper-
fine” structure of the two-dimensional dissipative dynamics.
Finally, we evaluate the position cross-correlationΔ12

SOðtÞ
between the transversal spatial d.o.f. We can follow an
identical procedure as to compute Eq. (79). We find
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Δ12
SOðtÞ ¼ ImfS0ðtÞ þ SCSðtÞg þ

2Ω2
CS

mβ
SðqÞCSðtÞ þ

2Ω2
CS

πmβ

Z
∞

0

dω
sinðωtÞððω2 −Ω2

0Þ2 þ Ω4
CS þ 12Γ2

0ω
2Þ

ωðω2 þ λ2þÞðω2 þ λ2−Þðω2 þ λ†2þ Þðω2 þ λ†2− Þ ; for 0 < t

ð84Þ

which vanishes for zero Chern-Simons action. Figure 2
illustrates the short-time behavior of the position cross-
correlation at different temperatures.
From Eq. (84) we may also evaluate the long-time

behavior of Δ12
SOðtÞ. Paying attention to Eqs. (80) and

(81), it is easy to see that in the high-temperature limit
Γ0β ≪ 1 the position cross-correlation (84) will decrease
exponentially with a ratio given by Γ0 at long time, as the
quantum corrections decay as e−β

−1t. However, this scenario
drastically changes in the low-temperature regimewhere the
quantum corrections dominate the long time behavior. In
particular, in the zero-temperature limit the quantum cor-
rections sum up to an algebraic long-time behavior, i.e.,

Δ12
SOðtÞ∼

Ω2
CS

mπðΩ4
0þΩ4

CSÞ
1

t

¼ 1

mπΩ2
0

1

t

�
ΩCS

Ω0

�
2

þO
��

ΩCS

Ω0

�
6
�
; for t→∞:

ð85Þ

To obtain the above result we evaluate the infinite sum

involved in the quantum corrections SðqÞCSðtÞ after expanding
the rational part of its argument about the origin νn → 0, and
then take the strict zero-temperature limit. Interestingly,
expression (85) shows that the transversal spatial compo-
nents exhibit long-time correlations in the quantum regimen.
Let us stress that this feature is a consequence of the quantum

Hall response previously discussed in Sec. IV and has
no counterpart in the conventional Brownian motion,
rather the latter generates a similar time algebraic decay
just for the position autocorrelation functions [14] (i.e.,
Δαα

SOðtÞ ∽ t−2 for α ¼ 1, 2). Thus we see from Eqs. (83)
and (85) that the dissipative dynamics arising from the
Chern-Simons action in the Markovian limit constitute a
second-order correction to the damped harmonic oscillator
in the quantum regime.

V. OUTLOOK AND CONCLUDING REMARKS

Adopting a combined gauge field and open-system
theoretical view, we have shown that the nonrelativistic
Maxwell-Chern-Simons electrodynamics leads to a novel
microscopic model for the nonequilibrium dynamics of
planar harmonic systems that fulfills the essential ingre-
dients of a (linear) nonanomalous dissipative description:
local Uð1Þ gauge invariance and relaxation towards a
thermal equilibrium state, and it encompasses the conven-
tional Brownian motion as a particular instance (i.e., the
deduced microscopic Hamiltonian exactly maps on the
independent-oscillator model in the limit of zero Chern-
Simons constant). Specifically, we have shown that the
symmetry structure provided by the Chern-Simons action
has two main effects in the long-wavelength regime: a gap
environmental spectrum and a particle-attached magnetic-
like flux which yields an ordinary Hall response of the
harmonic oscillators. As a counterpart, these come along
with a backreaction on the environment and renormalized
potential interaction of the system particles. Importantly, if
we disregard the latter effects, the conceived dissipative
model provides a legitimate description for the Brownian
motion of free particles, as well, owing to the fact that the
microscopic Hamiltonian turns identically into a minimal-
coupling theory with a gauge field bearing the basic
dissipative mechanism. It is also worthwhile to remark
that, though we have considered a Gaussian particle charge
distribution, this condition could be substantially relaxed to
contain a broad class of form factors (e.g., we could chose a
well-behaved function which falls to zero at sufficiently
large distances) without changing the overall properties of
the dissipative dynamics, as such choice mainly affects the
cutoff factor of the spectral density.
In the Markovian regime, we have found that the explicit

influence of the Chern-Simons action at the level of the
Langevin equation is twofold: an additional rotational force
and magneticlike flux noise acting upon the harmonic
oscillators, such that the system could be regarded as an

FIG. 2. Position cross-correlation as a function of time. The
solid black, dashed blue and dot-dashed red lines correspond to
the temperatures β−1 ¼ 0.01Ω0, β−1 ¼ Ω0=2, and β−1 ¼ Ω0,
respectively. We have fixed the rest of the parameters as follows:
Ω0 ¼ 10, Γ0 ¼ 0.1Ω0, ΩCS ¼ Γ0=2, and m ¼ 1.
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ensemble of interacting dissipative vortex particles, unlike
the conventional Brownian motion. Moreover, for the
single harmonic oscillator case we have provided concise
expressions for the mean-square dispersion in the high- and
zero-temperature limit. Interestingly, from the latter follows
that the Chern-Simons action can be thought of as a second-
order correction to the well-known damped harmonic
oscillator model, from an open-system theory perspective.
From an experimental point of view,many results of planar

condensed matter systems predicted by the Maxwell-Chern-
Simons electrodynamics are still challenging to be exper-
imentally tested. Nonetheless, there exist several examples,
for instance in the context of cold Rydberg atoms [75], where
this theory reproduces the true electromagnetic interaction.
In particular, it was probed in Ref. [84] that an effective
Maxwell-Chern-Simons description naturally emerges in the
study of systems composed of charged particles constrained
to move on an infinite plane and subjected to an ordinary
electromagnetic interaction, like in the quantum Hall effect.
Concretely, it was shown that the Chern-Simons kinetic term
may arise from the underlying topological structure of the
(3þ 1)-dimensional electrodynamics by dimensional reduc-
tion [84], which emphasizes the genuine topological nature of
the Chern-Simons action [45]. Together with the previous
discussion, we could draw the conclusion that the proposed
description could be tested in near-future two-dimensional
experiments addressing the dissipative dynamics induced by
electric and magnetic fields.
In the last decade the quantum physics of two-

dimensional systems have attracted a renewed interest
(e.g., in quantum computation theory), for which the
Maxwell-Chern-Simons theory proved to be useful in the
description of a great diversity of phenomena connected to
condensed matter systems. Similarly, the proposed micro-
scopic description could provide a theoretical testing ground
for new ideas in two-dimensional quantum thermodynamics,
optics or information theory (e.g., as occurs for the

independent-oscillator model). In particular, it is appealing
to further investigate which are the nonequilibrium thermo-
dynamic properties of the rising flux-carrying Brownian
particles.
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APPENDIX A: CANONICAL HAMILTONIAN IN
THE COULOMB GAUGE

In this appendix we briefly illustrate the derivation of the
canonical Hamiltonian (10) presented in Sec. II. First, let us
indicate that we enforce A0 as a Lagrange multiplier in
Eq. (6) [46,66], in order to satisfy the Coulomb law
constraint (5). It is easy to verify that Eq. (7) is a solution
of the latter. Now, we replace this in Eq. (6) once we have
rewritten the field canonical variables in terms of their
longitudinal and transversal parts. Doing this, we obtain two
terms coming from the dot and cross products, respectively,

I1 ¼
Z

dxΠk ·Πk; I2 ¼ −κ
Z

dxΠk × A⊥:

Owing to the boundary properties of the Coulomb Green’s
function, gauge field, and charged distribution function (i.e.,
∇GcðxÞ → 0, ∂αA⊥

β ðxÞ → 0, and ρðxÞ → 0 for jxj → ∞),
both terms may be manipulated as follows:

I1 ¼
Z

dy
Z

dy0
�
ρðyÞ − κ

2
∇ × A⊥ðyÞ

��
ρðy0Þ − κ

2
∇ × A⊥ðy0Þ

�Z
dx∂αGcðx − yÞ∂αGcðx − y0Þ

¼ −
Z

dx
Z

dy

�
ρðyÞ − κ

2
∇ × A⊥ðyÞ

�
Gcðx − yÞ

Z
dy0∇2

xGcðx − y0Þ
�
ρðy0Þ − κ

2
∇ × A⊥ðy0Þ

�

¼ −
Z

dx
Z

dyðρðyÞ − κ∇ × A⊥ðyÞÞGcðx − yÞρðxÞ − κ2

4

Z
dx
Z

dy∇ × A⊥ðxÞGcðx − yÞ∇ × A⊥ðyÞ

¼ −
Z

dx
Z

dyðρðyÞ − κ∇ × A⊥ðyÞÞGcðx − yÞρðxÞ þ κ2

4

Z
dx
Z

dy0Gðx0Þϵαβϵα0β0A⊥
β0 ðxÞ∂x

α∂x
α0A

⊥
β ðxþ y0Þ;

as well as

I2 ¼ −κ
Z

dx
Z

dy0Gcðy0ÞϵαβA⊥
β ðxÞ∂x

α

�
ρðxþ y0Þ − κ

2
∇ × A⊥ðxþ y0Þ

�

¼ κ

Z
dx
Z

dy∇ × A⊥ðxÞGðx − yÞρðyÞ þ κ2

2

Z
dx
Z

dy0Gcðy0Þϵαβϵα0β0A⊥
β0 ðxÞ∂x

α∂x
α0A

⊥
β ðxþ y0Þ:
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Now we may go further by gathering together the above results,

I1 þ I2 ¼ −
Z

dx
Z

dyðρðyÞ − 2κ∇ × A⊥ðyÞÞGcðx − yÞρðxÞ

þ 3κ2

4

Z
dx
Z

dyGcðx − yÞðδαα0δββ0 − δαβ0δα0βÞA⊥
β ðxÞ∂y

α0∂y
αA⊥

β0 ðyÞ

¼ −
Z

dx
Z

dyðρðyÞ − 2κ∇ × A⊥ðyÞÞGcðx − yÞρðxÞ þ 3κ2

4

Z
dx
Z

dy∇2
yGcðx − yÞA⊥

α ðxÞA⊥
α ðyÞ

¼ −
Z

dx
Z

dyðρðyÞ − 2κ∇ × A⊥ðyÞÞGcðx − yÞρðxÞ þ 3κ2

4

Z
dxA⊥ · A⊥;

where we have made use of the fact ∂y
α0A

⊥
α0 ðyÞ ¼ 0 according to the Coulomb gauge fixing. By substituting this result in the

Hamiltonian expressed in terms of the longitudinal and transversal parts, we arrive at

Ĥ ¼
Xn
i¼1

�
1

2m

�
p̂i − e

Z
d2xφðx − q̂iÞÂ⊥ðxÞ

�
2

þ Vðq̂iÞ
�
−
1

2

Z
d2xd2yρðxÞGcðx − yÞðρðyÞ − 2κ∇ × Â⊥ðyÞÞ þ ĤMCS;

ðA1Þ

where ĤMCS is defined in Sec. II. It is immediate to see that
the canonical Hamiltonian (10) is obtained after replacing
the Coulomb Green’s function and the charge density in
Eq. (A1).

APPENDIX B: DERIVATION OF THE POSITIVE
CONDITION

Here we compute the positive constraint (30) presented
in Sec. III, and we provide explicit expressions for the
potentials (26) and (27). First, we illustrate the basic
procedure by starting to compute the quadratic potential
Vαβ
ij . To carry out the discrete sum in k, it is convenient to

take the dense spectrum limit after switching the integral to
polar-coordinate variables,

Vαβ
ij ¼ δijδαβmω2

i þ
e2

8π2

Z
∞

0

dkke−2σk
2

×

�Z
π

−π
dθeikjq̄i−q̄jj cos θðδ1αδ1βsin2θ þ δ2αδ2βcos2θ

− ð1 − δαβÞ cos θ sin θÞ þ c:c:

�
;

where we have rewritten jkj ¼ k, and θ is chosen to be the
azimuthal angle of the vector k and the axis defined byΔq̄ij.
The above equation is further simplified by introducing the
definition of the Bessel function of first kind, i.e.,

Vαβ
ij ¼ δijδαβmω2

i þ
e2

2π

Z
∞

0

dkke−2σk
2

×

�
δαβ

J1ðkjq̄i− q̄jjÞ
kjq̄i− q̄jj

−δ2αδ2βJ2ðkjq̄i− q̄jjÞ
�
: ðB1Þ

Fortunately, the integral involving the Bessel functions
can be exactly obtained by making use of the integration
tables (see Secs. 6.618 and 6.631 in Ref. [74]),

Vαβ
ij ¼ δijδαβmω2

i þ
e2e−

jq̄i−q̄j j2
16σ

4π
ffiffiffiffiffi
2σ

p jq̄i− q̄jj

�
δαβ

ffiffiffi
π

p
I1
2

�jq̄i− q̄jj2
16σ

�

−δ2σδ2βM1
2
;1

�jq̄i− q̄jj2
8σ

��
; ðB2Þ

where In denotes the n-order modified Bessel function
of the first kind and M1

2
;1 is the Whitakker function [74].

Note that the above expression is valid for 0 < jq̄i − q̄jj
and 0 < σ.
Now, paying attention to the Hamiltonian (28), it

is clear that the latter will be a positive-definite operator
as long as the following quadratic expression is
satisfied:

1

2

Xn
j;i¼1

�
Vαβ
ij −

X
k

ωðkÞðhαðk;q̄iÞh†βðk;q̄jÞþc:c:Þ
�
q̂αi q̂

β
j

þ
Xn
i¼1

Vα
i q̂

α
i −
Xn
i;j¼1

X
k

PαβðkÞ
ωðkÞ g†αðk;q̄iÞgβðk;q̄jÞ≥0: ðB3Þ

Let us address the second term in the first line of
Eq. (B3). First, by replacing the expression of the
system-environment coupling coefficient (25), we obtain
after some algebra,
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hαðk; q̄iÞh†βðk; q̄jÞ ¼
e2eik·ðq̄i−q̄jÞe−2σjkj2

8π2L2ωðkÞ
�
PαβðkÞ þ

κ2kαkβ
jkj4ω2ðkÞ ðjkj

2 − kγkδPγδðkÞÞ þ i
κϵγδkγ
jkj2ωðkÞ ðkβPαδðkÞ − kαPβδðkÞÞ

�
:

Inserting this result and the dispersion relation (15) yieldsX
k

ωðkÞhαðk; q̄iÞh†βðk; q̄jÞ

¼ e2

4π

Z
∞

0

dkke−2σk
2

���
δαβ − δ1αδ1β

�
1 −

κ2

ðk2 þ κ2Þ
��

J0ðkjq̄i − q̄jjÞ

þ ðδαβ − 2δ2αδ2βÞ
k

ðk2 þ κ2Þ
J1ðkjq̄i − q̄jjÞ

jq̄i − q̄jj
�
− iϵαβ

κJ0ðkjq̄i − q̄jjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ κ2

p
	
:

We can analytically compute the above integral via standard contour integration techniques by writing the Bessel
function as a combination of the Hankel functions and noting that the functions within the integral has simple poles
�iκ [85], i.e.,

X
k

ωðkÞðhαðk; q̄iÞh†βðk; q̄jÞ þ c:c:Þ ¼ δ2αδ2β
e2

8πσ
e−

jq̄i−q̄j j2
8σ þ e2e2σκ

2

8

�
κðδαβ − 2δ1αδ1βÞ

jq̄i − q̄jj
ðHð2Þ

1 ð−jq̄i − q̄jjiκÞ

þHð1Þ
1 ðjq̄i − q̄jjiκÞÞ þ δ1αδ1βiκ2ðHð1Þ

0 ðjq̄i − q̄jjiκÞ −Hð2Þ
0 ð−jq̄i − q̄jjiκÞÞ

	
: ðB4Þ

Similarly, the previous procedure can be replicated to obtain the potential (56). That is,

X
k

hαðk; q̄iÞg†βðk; q̄jÞε†βðkÞ ¼
e2κ
8π2

Z
∞

0

dkke−2σk
2

Z
π

−π
dθ

eikjq̄i−q̄jj cos θ

k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ κ2

p
�
ϵγαkγ − i

κkαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ κ2

p
�

¼ e2κ
4π

Z
∞

0

dk
e−2σk

2

J1ðkjq̄i − q̄jjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ κ2

p
�
−

κδ1αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ κ2

p þ iδ2α

�
;

and thus,

Vα
i ¼

Xn
j¼1

�
2ðV 0

cðq̄i − q̄jÞÞα − δ1α
e2κ2

2π

Z
∞

0

dk
e−2σk

2

k2 þ κ2
J1ðkjq̄i − q̄jjÞ

�
: ðB5Þ

On the other hand, we find for the independent term of the quadratic form (B3),

X
k

PαβðkÞ
ωðkÞ gαðk; q̄iÞgβðk; q̄jÞ ¼

e2κ2

4π

Z
∞

0

dk
e−2σk

2

kðk2 þ κ2Þ J0ðkjq̄i − q̄jjÞ: ðB6Þ

Finally, the positive constraint (30) is directly obtained
by replacing (B4), (B5), and (B6) in (B3).

APPENDIX C: RETARDED SELF-ENERGY AND
SPECTRAL DENSITY

In this appendix we illustrate the derivation of the
retarded self-energy (43) and (field) spectral density and
the Kramers-Kronig relations (42) and (45) presented in
Sec. III A.
We start from computing the anticommutator appearing

in the definition of the retarded self-energy (39) by using

the following expression of the pseudoelectric field which
follows from (29),

Êα
i ðtÞ ¼

X
k

ωðkÞðhαðk; q̄iÞe−iωðkÞðt−t0Þâdðk; t0Þ þ c:c:Þ;

ðC1Þ
where âdðk; t0Þ are the environmental quasiparticle oper-
ators at the initial time after introducing the displacement
produced by the backreaction effects discussed in Sec. III.
By considering an equilibrium canonical initial state ρ̂β,
we obtain the following statistics for the displaced quasi-
particle operators,
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hfâdðk; t0Þ; â†dðk0; t0Þgiρ̂β ¼ δðk − k0Þð1þ 2nðωðkÞ; β−1ÞÞ þ 2
Xn
i;j¼1

εαðkÞε†βðk0Þ
ωðkÞωðk0Þ gαðk; q̄iÞg

†
βðk0; q̄jÞ;

hfâdðk; t0Þ; âdðk0; t0Þgiρ̂β ¼ 2
Xn
i;j¼1

εαðkÞεβðk0Þ
ωðkÞωðk0Þ gαðk; q̄iÞgβðk

0; q̄jÞ; ðC2Þ

with nðωðkÞ; β−1Þ denoting the average quasiparticle number of the free MCS field at temperature β−1,

nðωðkÞ; β−1Þ ¼ 1

eβωðkÞ − 1
: ðC3Þ

Now from Eq. (C1) we obtain

h½Êα
i ðtÞ; Êβ†

j ðt0Þ��iρ̂β ¼
X
k;k0

ωðkÞωðk0Þðhαðk; q̄iÞh†βðk0; q̄jÞe−iðωðkÞt−ωðk
0Þt0−ðωðkÞ−ωðk0ÞÞt0Þh½adðk; t0Þ; a†dðk0; t0Þ��iρ̂0

þ hαðk; q̄iÞhβðk0; q̄jÞe−iðωðkÞtþωðk0Þt0−ðωðkÞþωðk0ÞÞt0Þh½adðk; t0Þ; adðk0; t0Þ��iρ̂0
þ h†αðk; q̄iÞh†βðk0; q̄jÞeiðωðkÞtþωðk0Þt0−ðωðkÞþωðk0ÞÞt0Þh½a†dðk; t0Þ; a†dðk0; t0Þ��iρ̂0
þ h†αðk; q̄iÞhβðk0; q̄jÞeiðωðkÞt−ωðk0Þt0−ðωðkÞ−ωðk0ÞÞt0Þh½a†dðk; t0Þ; adðk0; t0Þ��iρ̂0Þ; ðC4Þ

where ½•; •�� represents the anticommutator and commutator in a short-hand notation, respectively. By taking
the dense spectrum limit after some straightforward manipulation in the anticommutator expression (C4), we
arrive at

h½Êα
i ðtÞ; Êβ†

j ðt0Þ�i
ρ̂β
¼
X
k;k0

ωðkÞωðk0Þðe−iðωðkÞt−ωðk0Þt0−t0ðωðkÞ−ωðk0ÞÞÞhαðk; q̄iÞh†βðk0; q̄jÞ½adðk; t0Þ; a†dðk0; t0Þ�−

þ eiðωðkÞt−ωðk0Þt0−t0ðωðkÞ−ωðk0ÞÞÞh†αðk; q̄iÞhβðk0; q̄jÞ½a†dðk; t0Þ; adðk0; t0Þ�−Þ
¼ −2i

X
k

ω2ðkÞðRefhαðk; q̄iÞh†βðk; q̄jÞg sinðωðkÞðt − t0ÞÞ − Imfhαðk; q̄iÞh†βðk; q̄jÞg cosðωðkÞðt − t0ÞÞÞ

¼ −
2i
π

Z
∞

0

dωðRefJ αβðΔq̄ij;ωÞg sinðωðt − t0ÞÞ þ ImfJ αβðΔq̄ij;ωÞg cosðωðt − t0ÞÞÞ; ðC5Þ

where J αβ represents the spectral density. It is immediate to see that we get expression (43) after substituting Eq. (C5)
in the definition (39). In the above equation, we introduced the following expression for the spectral density:

J αβðΔq̄ij;ωÞ ¼ π
X
k

ω2ðkÞðRefhαðk; q̄iÞh†βðk; q̄jÞg − iImfhαðk; q̄iÞh†βðk; q̄jÞgÞδðωðkÞ − ωÞ

¼ e2ω
8πL2

X
k

eik·Δq̄ije−2σjkj2
�
δαβ − kαkβ

jkj2 þ κ2kαkβ
jkj2ω2

þ i
κ

jkj2ω ðϵγαkγkβ − ϵγβkγkαÞ
�
δðωðkÞ − ωÞ

¼ e2ω2

8π

Z
∞

0

dkke−2σk
2 δðk −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − κ2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 − κ2
p

Z
π

−π
dθeikjΔq̄ijj cos θWαβðk; θÞ; ðC6Þ

where we have replaced the expression for the system-environment coupling coefficients (25). In the last line of
Eq. (C6), the integral is expressed in terms of the polar-coordinate variables ðk ¼ jkj; θÞ (where θ is the azimuthal angle
as before), and the following matrix,

Wαβðk; θÞ ¼

0
BB@ −1þ

�
1þ κ2

ω2

�
cos2θ

�
−1þ κ2

ω2

�
cos θ sin θ þ i κω�

−1þ κ2

ω2

�
cos θ sin θ − i κω −1þ

�
1þ κ2

ω2

�
sin2θ

1
CCA:
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To get Eq. (C6) (after taking the dense spectrum limit)
we employed the dispersion relation (15) of the Maxwell-
Chern-Simons gauge field combined with the properties
from the Dirac delta function [44], i.e., δðωðkÞ − ω0Þ ¼
ω0ðω02 − κ2Þ−1

2δðk −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω02 − κ2

p
Þ. Now, by paying attention

to the trigonometric integral in Eq. (C6), we may identify
the definition of the zero- and first-order Bessel functions
of first kind [86]. Once we have rewritten the integral in
terms of the latter, one may readily verify that the integral
in the variable k directly leads to the desired expression
for the spectral density (44).
On the other hand, from expression (C5)wemay compute

the commutator of theMaxwell-Chern-Simons electric field
defined by Eq. (33) in Sec. III. As the backreaction
displacement on the environmental quasiparticle operators

must leave invariant the commutator of the pseudoelectric
field force, from Eq. (C5) follows that

½Êα
MCSðq̄iÞ; Êβ

MCSðq̄jÞ� ¼
1

e2
½Êα

i ðtÞ; Êβ†
j ðtÞ�

¼ −
iκϵαβ
2π

Z
∞

0

dkke−2σk
2

J0ðkjΔq̄ijjÞ;

ðC7Þ

which clearly manifests that the Maxwell-Chern-Simons
electric field has noncommutative components.
Let us turn the attention to the Kramers-Kronig relation

(42) and expression (45). This may be obtained directly
by carrying out the inverse Fourier transform on the
previously deduced Eq. (43), i.e.,

Σ̃αβ
ij ðωÞ ¼

1

2π

Z
∞

−∞
dteiωtΣαβ

ij ðtÞ

¼ 1

π

X
k

ω2ðkÞ
�
Refhαðk; q̄iÞh†βðk; q̄jÞgeiωjΔq̄ijj

Z
∞

−∞
dτeiωτΘðτÞ sinðωðkÞðτ þ jΔq̄ijjÞÞ

− Imfhαðk; q̄iÞh†βðk; q̄jÞgeiωjΔq̄ijj
Z

∞

−∞
dτeiωτΘðτÞ cosðωðkÞðτ þ jΔq̄ijjÞÞ

�

¼ i
2π

X
k

ω2ðkÞ
�
Refhαðk; q̄iÞh†βðk; q̄jÞg lim

ϵ→0þ

Z
∞

0

dτðe−iðωðkÞ−ωÞðτ−ϵτþjΔq̄ijjÞ − eiðωðkÞþωÞðτ−ϵτþjΔq̄ijjÞÞ

þ iImfhαðk; q̄iÞh†βðk; q̄jÞg lim
ϵ→0þ

Z
∞

0

dτðe−iðωðkÞ−ωÞðτ−ϵτþjΔq̄ijjÞ þ eiðωðkÞþωÞðτ−ϵτþjΔq̄ijjÞÞ
�

¼ i
2

X
k

ω2ðkÞðð−Refhαðk; q̄iÞh†βðk; q̄jÞg þ iImfhαðk; q̄iÞh†βðk; q̄jÞgÞe−iðωðkÞþωÞjΔq̄ijjδðωðkÞ þ ωÞ

þ ðRefhαðk; q̄iÞh†βðk; q̄jÞg þ iImfhαðk; q̄iÞh†βðk; q̄jÞgÞe−iðωðkÞ−ωÞjΔq̄ijjδðωðkÞ − ωÞÞ

þ 1

2π

X
k

ω2ðkÞ
�
P
Z

∞

−∞

dω0

ω0 − ω
ð−Refhαðk; q̄iÞh†βðk; q̄jÞg þ iImfhαðk; q̄iÞh†βðk; q̄jÞgÞe−iðωðkÞþωÞjΔq̄ijjδðωðkÞ þ ω0Þ

þ P
Z

∞

−∞

dω0

ω0 − ω
ðRefhαðk; q̄iÞh†βðk; q̄jÞg þ iImfhαðk; q̄iÞh†βðk; q̄jÞgÞe−iðωðkÞ−ωÞjΔq̄ijjδðωðkÞ − ω0Þ

�
: ðC8Þ

Recalling that the self-energy must be analytic in the
upper-half complex ω plane (which is feature by the
Heaviside step function), in the above Fourier transform
we have introduced a positive infinitesimal quantity
0þ that provides the correct pole prescriptions in the
frequency domain. The latter gives rise to the principal-
value terms. Paying attention to the real and imaginary
parts in the last few lines of the right-hand side of
Eq. (C8), we may easily identify the spectral density
definition (C6). While the imaginary terms directly lead
to Eq. (45), the principal-value terms only contribute
to the real part of the self-energy Fourier transform,

and thus, they retrieve the extended Kramers-Kronig
relation (42).

APPENDIX D: DERIVATION OF THE
FLUCTUATION-DISSIPATION RELATION

This appendix is devoted to the derivation of the
fluctuation-dissipation relation (47) of Sec. III A and,
further, the nonequilibrium spectral functions (48) and
(49). We start from the commutator expression computed
from Eq. (C4) in Appendix C. By inserting the average
values for the environmental displaced quasiparticle oper-
ators (C2), we find
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1

2
hfÊα

i ðtÞ; Êβ†
j ðt0Þgi

ρ̂0
¼
X
k;k0

�
δðk − k0Þω2ðkÞð1þ 2nðωðkÞ; β−1ÞÞRefhαðk; q̄iÞh†βðk; q̄jÞe−iωðkÞðt−t

0Þg

þ 2
Xn
l;m¼1

Refe−iðωðkÞt−ωðk0Þt0−ðωðkÞ−ωðk0ÞÞt0ÞεγðkÞε†δðk0Þgγðk; q̄lÞg†δðk0; q̄mÞhαðk; q̄iÞh†βðk0; q̄jÞg

þ 2
Xn
l;m¼1

Refe−iðωðkÞtþωðk0Þt0−ðωðkÞþωðk0ÞÞt0ÞεγðkÞεδðk0Þgγðk; q̄lÞgδðk0; q̄mÞhαðk; q̄iÞhβðk0; q̄jÞg
�
:

Now we compute the Fourier transform of the above anticommutator by following a similar procedure as to compute the
commutator expression (C5) in Appendix C. Specifically, considering t0 < t one obtains

1

2

Z
∞

−∞

Z
∞

−∞
dtdt0eiωte−iω0t0 hfÊα

i ðtÞ; Êβ†
j ðt0Þgi

¼
X
k;k0

�
δðk − k0Þω2ðkÞð1þ 2nðωðkÞ; β−1ÞÞ ð2πÞ

2

2
ðRefhαðk; q̄iÞh†βðk; q̄jÞgðδðω − ω0ÞðδðωðkÞ − ωÞ þ δðωðkÞ þ ωÞÞÞ

− iImfhαðk; q̄iÞh†βðk; q̄jÞgðδðω − ω0ÞðδðωðkÞ þ ωÞ − δðωðkÞ − ωÞÞÞÞ

þ ð2πÞ2
2

Xn
l;m¼1

ðRefeiðωðkÞ−ωðk0ÞÞt0εγðkÞε†δðk0Þgγðk; q̄lÞg†δðk0; q̄mÞhαðk; q̄iÞh†βðk0; q̄jÞgðδðωðkÞ − ωÞδðωðk0Þ − ω0Þ

þ δðωðkÞ þ ωÞδðωðk0Þ þ ω0ÞÞ
− iImfeiðωðkÞ−ωðk0ÞÞt0εγðkÞε†δðk0Þgγðk; q̄lÞg†δðk0; q̄mÞhαðk; q̄iÞh†βðk0; q̄jÞgðδðωðkÞ − ωÞδðωðk0Þ − ω0Þ
− δðωðkÞ þ ωÞδðωðk0Þ þ ω0ÞÞ

þ ð2πÞ2
2

Xn
l;m¼1

ðRefeiðωðkÞþωðk0ÞÞt0εγðkÞεδðk0Þgγðk; q̄lÞgδðk0; q̄mÞhαðk; q̄iÞhβðk0; q̄jÞgðδðωðkÞ − ωÞδðωðkÞ0 þ ω0Þ

þ δðωðkÞ þ ωÞδðωðk0Þ − ω0ÞÞ
− iImfeiðωðkÞþωðk0ÞÞt0εγðkÞεδðk0Þgγðk; q̄lÞgδðk0; q̄mÞhαðk; q̄iÞhβðk0; q̄jÞgðδðωðkÞ − ωÞδðωðk0Þ þ ω0Þ

− δðωðkÞ þ ωÞδðωðk0Þ − ω0ÞÞ
	
: ðD1Þ

One may bring the bracket appearing in the first and second lines of Eq. (D1) into the form of the stationary fluctuations in
Eq. (47) after using the properties of the Dirac delta function (e.g., fðωðkÞÞδðω − ωðkÞÞ ¼ fðωÞδðω − ωðkÞÞ for a given
function fðωÞ) as well as 1þ 2nðω; β−1Þ is an odd function in the variable ω and then substituting the definition of the
spectral density given by Eq. (C6). Similarly, by directly comparing the first and second brackets on the variables l, m in
Eq. (D1) with the second and third lines of Eq. (47), it is easy to recognize the following expressions for the nonstationary
spectral functions,

G̃αβ
ij ðω;ω0; t0Þ¼

ð2πÞ2
2

eiðω−ω0Þt0
Xn
l;m¼1

X
k;k0

εγðkÞε†δðk0Þgγðk; q̄lÞg†δðk0; q̄mÞhαðk; q̄iÞh†βðk0; q̄jÞδðωðkÞ−ωÞδðωðk0Þ−ω0Þ; ðD2Þ

as well as

F̃ αβ
ij ðω;ω0; t0Þ¼

ð2πÞ2
2

eiðωþω0Þt0
Xn
l;m¼1

X
k;k0

εγðkÞεδðk0Þgγðk; q̄lÞgδðk0; q̄mÞhαðk; q̄iÞhβðk0; q̄jÞδðωðkÞ−ωÞδðωðk0Þ−ω0Þ: ðD3Þ

Let us next to obtain Eqs. (48) and (49) starting from Eqs. (D2) and (D3), respectively. We show first the derivation for
G̃αβ
ij , and an identical procedure can be carried out to obtain F̃

αβ
ij . Substituting the corresponding expressions (17), (20) and

(25) in (D2), we find
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2G̃αβ
ij ðω;ω0;t0Þ

ð2πÞ2eit0ðω−ω0Þ¼
e4κ2

4ð2πÞ4L4ωω0
Xn
l;m¼1

X
k;k0

e−2σðjkj2þjk0j2Þeiðk0·ðq̄jþq̄mÞ−k·ðq̄iþq̄lÞÞ

×

��
κ2kαk0βϵινϵνγϵι0ν0ϵν0γ0kιkι0

0kγkγ0 0e
i κjκjðθðk0Þ−θðkÞÞ

jk0j2jkj2ωðkÞωðk0Þ −iκe−i
κ
jκjðθðk0Þ−θðkÞÞ

�
ϵινϵνγϵβγ0kαkιkγkγ0 0

jkj2ωðkÞ −
ϵι0ν0ϵν0γϵαγ0k0βkι0

0k0γkγ0

jk0j2ωðk0Þ
�

þϵαγϵβγ0kγkγ0 0e
−i κjκjðθðk0Þ−θðkÞÞ

�ðk21þk22Þðk021 þk022 Þ
jkj3jk0j3 e−i

κ
jκjðθðk0Þ−θðkÞÞ

�
δðωðkÞ−ωÞδðωðk0Þ−ω0Þ

¼ e4κ2

4ð2πÞ4L4ωω0
Xn
l;m¼1

X
k;k0

e−2σðjkj2þjk0j2Þe−iðk0·ðq̄jþq̄mÞ−k·ðq̄iþq̄lÞÞe−i
2κ
jκjðθðk0Þ−θðkÞÞ

×

�
κ2kαk0β

ωðkÞωðk0Þþiκ

�
ϵβγ0kαkγ0 0

ωðkÞ −
ϵαγ0k0βkγ0

ωðk0Þ
�
þδαβðk1k01þk2k02Þ−kβk0α

�
1

jkjjk0jδðωðkÞ−ωÞδðωðk
0Þ−ω0Þ

¼ e4κ2

4ð2πÞ4
Xn
l;m¼1

Z
∞

0

dkdk0kk0e−2σðk2þk02Þδðk−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−κ2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2−κ2
p δðk0−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω02−κ2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω02−κ2
p ×Rαβðk;k0;jq̄iþq̄lj;jq̄jþq̄mjÞ;

ðD4Þ

where we have rewrite θðk0Þ ¼ θ0 and θðkÞ ¼ θ and introduced the following matrix,

Rαβðk; k0; jq̄i þ q̄lj; jq̄j þ q̄mjÞ ¼
Z

π

−π
dθdθ0e−i

2κ
jκjðθ0−θÞe−iðk0jq̄jþq̄mj cos θ−kjq̄iþq̄lj cos θ0ÞDαβ; ðD5Þ

with

D11 ¼
κ2

ωω0 cos θ cos θ
0 þ iκ

�
1

ω
cos θ sin θ0 −

1

ω0 cos θ
0 sin θ

�
þ sin θ sin θ0;

D12 ¼
κ2

ωω0 cos θ sin θ
0 − cos θ0 sin θ − iκ

�
1

ω
cos θ cos θ0 þ 1

ω0 sin θ sin θ
0
�
;

D21 ¼
κ2

ωω0 cos θ
0 sin θ − cos θ sin θ0 þ iκ

�
1

ω0 cos θ cos θ
0 þ 1

ω
sin θ sin θ0

�
;

D22 ¼
κ2

ωω0 sin θ sin θ
0 þ iκ

�
1

ω0 sin θ
0 cos θ −

1

ω
sin θ cos θ0

�
þ cos θ cos θ0:

As we have previously done in Appendix C to obtain the expression for the spectral density, we now replace the
trigonometric integrals appearing in Eq. (D5) by the corresponding definition of the first- and second-order Bessel functions
of first kind, i.e.,

R11ðk; k0; a; bÞ ¼
4π2

abkk0ωω0

�
κðakJ1ðakÞ − 2J2ðakÞÞ þ 2

κω

jκj J2ðakÞ
��

κðbk0J1ðbk0Þ − 2J2ðbk0ÞÞ þ ω0 2κ
jκj J2ðbk

0Þ
�
;

R12ðk; k0; a; bÞ ¼
−4iπ2

abkk0ωω0

�
κðakJ1ðakÞ − 2J2ðakÞÞ − 2

κω

jκj J2ðakÞ
��

bk0ω0J1ðbk0Þ −
�
2ω0 −

κ2k0

jκj
�
J2ðbk0Þ

�
;

R21ðk; k0; a; bÞ ¼
4iπ2

abkk0ωω0

�
κðbk0J1ðbk0Þ − 2J2ðbk0ÞÞ − 2

κω0

jκj J2ðbk
0Þ
��

akωJ1ðakÞ −
�
2ω −

κ2k
jκj
�
J2ðakÞ

�
;

R22ðk; k0; a; bÞ ¼
4π2

abkk0ωω0

�
akωJ1ðakÞ −

�
2ω −

κ2k
jκj
�
J2ðakÞ

��
bk0ω0J1ðbk0Þ −

�
2ω0 −

κ2k0

jκj
�
J2ðbk0Þ

�
: ðD6Þ

Finally, Eq. (48) is obtained by first inserting Eq. (D6) into Eq. (D4) and then carrying out the integral on the real variables
k and k0, which is immediately obtained by using the properties of the Dirac delta function. Although we obtain a
formidable expression, the particular shape of Eq. (D6) permits one to cast the nonequilibrium spectral density in the form
(48) after some simple manipulation.
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Applying a similar procedure to Eq. (D3) as before yields

2F̃ αβ
ij ðω;ω0;t0Þ

ð2πÞ2e−it0ðωþω0Þ ¼
e4κ2

4ð2πÞ4L4ωω0
Xn
l;m¼1

X
k;k0

e−2σðjkj2þjk0j2Þeiðk0·ðq̄jþq̄mÞþk·ðq̄iþq̄lÞÞ
��

κϵινkιkαενðkÞ
jkj2ωðkÞ þ iεαðkÞ

�

×

�
κϵι0ν0k0ι0k

0
βεν0 ðk0Þ

jk0j2ωðk0Þ þ iεβðk0Þ
�
ϵλγϵλ0δkλk0λ0
jkj2jk0j2

ϵγμϵδμ0kμk0μ0
jkjjk0j ei

κ
jκjðθðk0ÞþθðkÞÞ

�
δðωðkÞ−ωÞδðωðk0Þ−ω0Þ

¼ e4κ2

4ð2πÞ4L4ωω0
Xn
l;m¼1

X
k;k0

e−2σðjkj2þjk0j2Þeiðk0·ðq̄jþq̄mÞþk·ðq̄iþq̄lÞÞei
2κ
jκjðθðk0ÞþθðkÞÞ

×

�
−

κ2kαk0β
ωðkÞωðk0Þ− iκ

�
ϵβγ0kαk0γ0
ωðkÞ þϵαγ0k0βkγ0

ωðk0Þ
�
−ðδαβðk1k01þk2k02Þ−kβk0αÞ

�
1

jkjjk0jδðωðkÞ−ωÞδðωðk0Þ−ω0Þ

¼−
e4κ2

4ð2πÞ4
Xn
l;m¼1

Z
∞

0

dkdk0kk0e−2σðjkj2þjk0j2Þδðk−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2−κ2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2−κ2
p δðk0−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω02−κ2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω02−κ2
p

×T αβðk;k0;jq̄jþ q̄mj;jq̄iþ q̄ljÞ; ðD7Þ
where we have introduced the following matrix after doing some tedious algebra as before,

T 11ðk; k0; a; bÞ ¼
4π2

abkk0ωω0

�
akκJ1ðakÞ

�
−bk0κJ1ðbk0Þ þ 2

�
κ −

κω0

jκj
�
J2ðbk0Þ

�

þ 2J2ðakÞ
�
bk0κ

�
κ −

κω

jκj
�
J1ðbk0Þ þ 2

�
κ2

jκj ðω
0 þ ωÞ þ ωω0 − κ2

�
J2ðbk0Þ

��
;

T 12ðk; k0; a; bÞ ¼
−4iπ2

abkk0ωω0

�
a2k2κJ1ðakÞ

�
bk0ω0J1ðbk0Þ − 2

�
ω0 −

κ2

jκj
�
J2ðbk0Þ

�

þ 2akJ2ðakÞ
�
bk0ω0

�
κ þ κω

jκj
�
J1ðbk0Þ þ 2

�
ðω0 þ ωÞκ þ κ2 þ κ

jκjωω
0
�
J2ðbk0Þ

��
;

T 21ðk; k0; a; bÞ ¼
−4iπ2

abkk0ωω0

�
a2k2ωJ1ðakÞ

�
bk02κJ1ðbk0Þ − 2

�
κ þ κω0

jκj
�
J2ðbk0Þ

�

− 2akJ2ðakÞ
�
bk0κ

�
κ þ κω

jκj
�
J1ðbk0Þ − 2

�
κðω0 þ ωÞ − κ2 þ κ

jκjωω
0
�
J2ðbk0Þ

��
;

T 22ðk; k0; a; bÞ ¼
4π2

abkk0ωω0

�
−akωJ1ðakÞ

�
bk0ω0κJ1ðbk0Þ þ 2

�
ω0 þ κ2

jκj k
0
�
J2ðbk0Þ

�

þ 2J2ðakÞ
�
bk0ω0κ

�
2ωþ κ2

jκj k
�
J1ðbk0Þ − 2

�
κ2 þ κ2

jκj ðω
0 þ ωÞ − ωω0

��
J2ðbk0Þ

��
: ðD8Þ

Once again, the integrals appearing in the last line of
Eq. (D7) are directly obtained by making use of the Dirac
delta properties, once we have replaced Eq. (D8). In this
way, we finally arrive to the expression (49) for the
nonstochastic spectral function presented in Sec. III A.

APPENDIX E: NONSTOCHASTIC
FLUCTUATIONS, THERMAL NOISE AND
RETARDED SELF-ENERGY FOR CLOSED
PARTICLES AND WEAK CHERN-SIMONS

ACTION

In this section, we extend the discussion, presented in
Sec. III B, about the evaluation of the nonstochastic

fluctuations appearing in Eq. (52) when it is taking the
strict limit t − t0 → ∞, and we provide explicit expressions
for the self-energy and the thermal correlations (53) in the
zero-temperature limit as well.
By paying attention to the expressions obtained for

Eqs. (48) and (49), it is easy to see that both are integrable
functions forω;ω0 into the domain of theMSC environment
bandwidth (i.e., κ ≤ ω ≤ ð2σÞ−1

2), and they decay as fast as
an exponential function for large frequencies as the
Bessel functions decrease algebraically. As mentioned in
Sec. III A, these properties permit one to use the Riemann-
Lebesgue lemma to evaluate the nonequilibrium fluctua-
tions ϒαβ

ij ðt; t0; t0Þ and Ξαβ
ij ðt; t0; t0Þ involved in expression

(52), which are respectively obtained from the second and

ANTONIO A. VALIDO PHYS. REV. D 99, 016003 (2019)

016003-28



third line of Eq. (47) via the inverse Fourier transform.
Specifically, these nonstochastic fluctuations take the fol-
lowing form in the time domain:

ϒαβ
ij ðt;t0;t0Þ¼

4

π2

Z
dωdω0ðRefG̃αβ

ij ðω;ω0;t0Þgcosðωt−ω0t0Þ

þImfG̃αβ
ij ðω;ω0;t0Þgsinðωt−ω0t0ÞÞ; ðE1Þ

and

Ξαβ
ij ðt;t0;t0Þ¼

4

π2

Z
dωdω0ðRefF̃ αβ

ij ðω;ω0;t0Þgcosðωtþωt0Þ

þImfF̃ αβ
ij ðω;ω0;t0Þgsinðωtþωt0ÞÞ; ðE2Þ

where we recall that G̃αβ
ij ðω;ω0; t0Þ and F̃ αβ

ij ðω;ω0; t0Þ are
given by Eqs. (48) and (49), respectively. Formally, the
aforementioned lemma can be enunciated as follows: Let
fðωÞ be a complex-valued function that is absolutely
integrable on R. Then the Riemann-Lebesgue lemma states
that [77]

lim
jtj→∞

Z
∞

−∞
fðωÞeiωtdω → 0: ðE3Þ

One says fðωÞ is an absolutely integrable function onR if it
fulfills

R∞
−∞ jfðωÞjdω < 0 or, equivalently, if it belongs to

the class of L1ðRÞ functions. Clearly, the Riemann-
Lebesgue lemma has an intuitive interpretation: the integral
becomes so highly oscillatory that everything cancels out.
To see more clearly how such lemma is applied to

Eqs. (E1) and (E2), it is convenient to rewrite them as the
integrals of two independent dispersion functions in
the variables ω and ω0. Let first pay attention to the non-
stochastic fluctuation encoded by ϒαβ

ij ðt; t0; t0Þ. By using
trigonometric identities once replaced Eq. (48) into
Eq. (E1), we can bring this into the following form:

ϒαβ
ij ðt; t0; t0Þ

¼
Z

∞

0

dωdω0Refραβi ðωÞgRefραβj ðω0Þgcðω;ω0; t− t0Þ

þ
Z

∞

0

dωdω0Imfραβi ðωÞgImfραβj ðω0Þgsðω;ω0; t− t0Þ;

ðE4Þ

where

cðω;ω0; τÞ ¼ cos ðωτÞ cos ðω0τÞ þ sin ðωτÞ sin ðω0τÞ
sðω;ω0; τÞ ¼ sin ðωτÞ cos ðω0τÞ − sin ðωτÞ cos ðω0τÞ;

and with the dispersion function given by

ραβi=jðωÞ ¼
e2κe−2σðω2−κ2Þffiffiffiffiffiffiffiffi

128
p

ω

Xn
l¼1

rαβi=j

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − κ2

p
; jq̄i=j þ q̄lj

�
;

κ ≤ ω; ðE5Þ

where the elements of the matrix function rið
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − κ2

p
;

jq̄i þ q̄ljÞ (rjð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω02 − κ2

p
; jq̄j þ q̄ljÞ) are directly obtained

from the elements Rαβ, determined by Eq. (50), after
removing the dependence on the variables ω0 (ω) and q̄j
(q̄i). It is found that the elements rαβi=j are basically
convergent combinations of first- and second-order
Bessel functions of the first kind.
From Eq. (E5) it is now clear that both dispersion

functions ραβi=jðxÞ (for arbitrary i and j) are continuously
differentiable for κ ≤ x < ∞, and they exponentially decay
for values x larger than ð2σÞ−1

2. As a result, it follows from
the above Riemann-Lebesgue lemma that all integrals in
Eq. (E4) asymptotically vanish in the long time limit
t − t0 → ∞. On the other hand, starting from the expression
for F̃ αβ

ij ðω;ω0; t0Þ [see Eq. (D8) in Appendix D], we can
follow the same procedure to show that the corresponding
dispersion functions characterizing the nonstochastic fluc-
tuation Ξαβ

ij ðt; t0; t0Þ share these features with ραβi=jðxÞ, so we
could conclude an identical statement for Eq. (E2) after
applying the Riemann-Lebesgue lemma.
Now we address the retarded self-energy and thermal

fluctuations in the realistic situation when the system
particles are sufficiently closed (i.e., jΔq̄ijjffiffiffiffi

2σ
p ≪ 1) and the

Chern-Simons action is considered to be weak (i.e.,ffiffiffiffiffi
2σ

p
κ ≪ 1). As a result of these approximations, the

spectral density substantially simplifies to Eq. (C6),
which is illustrated in Sec. III B. Replacing this in the
expression for the retarded self-energy Eq. (43) yields, upon
integration,

Σ11
ij ðtÞ ≃

e2

16π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð4σÞ5

p �
ð32σð1þ 2κ2σÞ − jΔq̄ijj2ð5þ 18κ2σÞÞxþ 2jΔq̄ijj2ð1þ 2κ2σÞx3

−
ffiffiffi
π

p
2

e−x
2

erfiðxÞð3jΔq̄ijj2 − 32σ þ 14jΔq̄ijj2κ2σ − 192κ2σ2

þ ð−12jΔq̄ijj2 þ 64σ − 40jΔq̄ijj2κ2σ þ 128κ2σ2Þx2 þ ð4jΔq̄ijj2 þ 8jΔq̄ijj2κ2σÞx4Þ
�
; ðE6Þ
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and

Σ22
ij ðtÞ ≃

e2

16π
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð4σÞ5

p �
ð32σð1þ 2κ2σÞ − jΔq̄ijj2ð15þ 22κ2σÞÞxþ 6jΔq̄ijj2ð1þ 2κ2σÞx3

−
ffiffiffi
π

p
2

e−x
2

erfiðxÞð9jΔq̄ijj2 − 32σ þ 10jΔq̄ijj2κ2σ − 192κ2σ2

þ ð−32jΔq̄ijj2 þ 64σ − 56jΔq̄ijj2κ2σ þ 128κ2σ2Þx2 þ ð12jΔq̄ijj2 þ 24jΔq̄ijj2κ2σÞx4Þ
�
; ðE7Þ

as well as the off-diagonal element given by Eq. (55) in Sec. III B. The behavior of Eqs. (E6) and (E7) in the time domain is
illustrated in Fig. 1. Moreover, we may follow a similar procedure to get the zero-temperature limit of the thermal
fluctuations (53) once we have replaced the spectral density by Eq. (C6). In this way, we consider the zero-temperature limit
where nðω; β−1Þ → 0. Using the standard tables of integration, we find after some tedious manipulation,

hfξ̂1i ðt0 þ tÞ; ξ̂1†j ðt0Þgi ≃ e2e−x
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð16σÞ5

p ð−3jΔq̄ijj2 þ 32σ − 14jΔq̄ijj2κ2σ þ 192κ2σ2

þ ð12jΔq̄ijj2 − 64σ þ 40jΔq̄ijj2κ2σ − 128κ2σ2Þx2 − 4ðjΔq̄ijj2 þ 2jΔq̄ijj2κ2σÞx4Þ; ðE8Þ

and

hfξ̂2i ðt0 þ tÞ; ξ̂2†j ðt0Þgi ≃ e2e−x
2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð16σÞ5

p ð−9jΔq̄ijj2 þ 32σ − 10jΔq̄ijj2κ2σ þ 192κ2σ2

þ ð36jΔq̄ijj2 − 64σ þ 56jΔq̄ijj2κ2σ − 128κ2σ2Þx2 þ ð−12jΔq̄ijj2 þ 2jΔq̄ijj2κ2σÞx4Þ; ðE9Þ

whereas for the off-diagonal term,

hfξ̂1i ðt0 þ tÞ; ξ̂2†j ðt0Þgi ≃ e2κ
256

ffiffiffi
π

p
σ2

xe−x
2ð16σ þ jΔq̄ijj2ð−3þ x2ÞÞ; ðE10Þ

with x ¼ tffiffiffiffi
8σ

p . The above expressions are illustrated in Fig. 1 as functions of time.
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