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In the light baryon sector resonances can be broad and overlapping and are in most cases not directly
visible in the cross section data. Automatized model selection techniques that introduce penalties for
resonances can be used to determine the minimally needed set of resonances to describe the data. Several
possible penalization schemes are compared. As an application we perform a blindfold identification of
hyperon resonances in the K̄N → KΞ reaction based on the least absolute shrinkage and selection operator
(LASSO) in combination with the Bayesian information criterion (BIC). We find ten resonances—out
of the 21 above-threshold hyperon resonances with spin J ≤ 7=2 listed by the Particle Data Group.
In traditional analyses, it is practically impossible to test the relevance of all resonances and their
combinations that may potentially contribute to the reaction. By contrast, the present method proves
capable of determining the relevant resonances among a large pool of candidates.
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I. INTRODUCTION

One challenge in the phenomenological interpretation of
data from scattering or production experiments is the
determination of the resonance spectrum. Typically, the
quark model predicts more states than are found in experi-
ments, a phenomenon referred to as the missing resonance
problem [1–5]. Pioneering lattice QCD calculations [6–8]
obtain the same SUð6Þ × Oð3Þ symmetry pattern of the
spectrum [6] as in many quark models although the lattice
QCD calculations are still carried out at rather large pion
masses and without full control of finite-volume effects. In
the framework of Dyson-Schwinger and Faddeev equations,
several resonances and their properties can be identified
with their physical counterparts [9–12]. Chiral unitary
approaches operate directly with the physical degrees of
freedom—mesons and baryons—and explain the masses
and properties of some states [13–17] although it is clear that
not all excited baryons can be hadronic molecules. Some
bump structures might even be kinematic effects due to
triangle singularities [18–20].
Even if a unique determination of the amplitude were

possible—referred to as a complete experiment [21–24]—
the decomposition into partial waves, or multipoles in case

of photon-induced reactions, usually requires a truncation
[25,26]. Even then, the multipoles are not guaranteed to
clearly reveal resonances, especially if obtained from data
with statistical and systematic uncertainties because broad,
potentially overlapping resonances are difficult to distin-
guish from the background.
In principle, one has to test an arbitrary number of

resonances and their combinations in the parametrization
of partial-wave amplitudes. The goal is to keep the overall
number of needed resonances as small as possible, i.e., to find
the simplest description of the data within given uncertain-
ties. The number of possible combinations is usually far
beyond what can be tested in the traditional way such as by
inserting resonances by hand as s-channel singularities in
K-matrix or dynamical coupled-channel approaches, or as
Breit-Wigner terms in simpler parametrizations.
Several techniques have been developed to address

this problem. In the SAID analysis [26–29] only the
Δð1232Þ3=2þ resonance is explicitly included in the
amplitude. If required by data, other resonances can arise
through the non-linearity of the unitary coupled-channel
amplitude without manual intervention. Notably, in the
2006 SAID solution (SP06) the number of resonances
could be significantly reduced without spoiling the
description of elastic πN scattering [30].
Another technique to search for resonances are mass

scans [31–33]. In a given parametrization, additional Breit-
Wigner terms are introduced. Their mass is varied in steps
and all other parameters are fitted. If this leads to a
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significant minimum of the χ2 at a given mass—preferably
for different final states [33]—it could possibly be inter-
preted as a sign for a new resonance.
The question arises if there are ways of assessing the

significance of new resonances. One criterion is given by
the F-test [34] which tests for the significance of new fit
parameters, like the Breit-Wigner coupling, or bare cou-
pling of an s-channel resonance state in a K-matrix or
dynamical coupled-channel approach. This method has two
practical drawbacks: On the one hand, data from different
experiments tend to have systematic inconsistencies so that
the resulting fits are never good in the statistical sense
(e.g., passing a χ2 test). The F-test will then admit far too
many false states. On the other hand, the F-test does not
relieve one from testing “by hand” each new state, or, more
precisely, each combination of an unknown number of new
states and established ones.
There are various “blindfolded” ways to test new

resonances, without the need of manual intervention, that
are robust in the sense that they allow for relative model
comparison even if the fit cannot be satisfactory in the
frequentist’s sense. Bayesian inference to determine the
resonance spectrum was introduced into baryon spectros-
copy by the Ghent group [35,36]. In a related context, the
necessary precision of data to discriminate models was
determined in Ref. [37].
Another method for the partial-wave analysis of mesonic

systems was presented in Ref. [38], see also Ref. [39]. The
least absolute shrinkage and selection operator (LASSO)
allows one to generate a series of models with varying
partial-wave content. The best model can be selected by
additional criteria like cross validation or various criteria
from information theory [40–42].
In Ref. [43] different models and criteria were compared

with LASSO to determine the minimal multipole content
for low-energy neutral pion photoproduction. The method
was first demonstrated for synthetic data for which the
solution was known and then applied to real data. It was
found that some D-waves are relevant even at lower
energies. The cusp parameter was also precisely deter-
mined. See also Ref. [44] for a related study of dominant
partial waves in photoproduction reactions.
Here, we extend the idea further to address the resonance

spectrum itself, i.e., we use LASSO to determine the
minimal spectrum required to describe a hadronic reaction.
Different penalties are tested for synthetic data in which the
solution is known. In the second part of the manuscript, we
turn to the analysis of real data for the reactionK−p → KΞ.
This reaction is selected because the database is relatively
small but still exhibits problems of data inconsistencies
which makes it a suitable candidate for this pilot calculation
testing the robustness of LASSO. Also, the resonance
content of this reaction was determined “by hand” in
Ref. [45] and it is particularly illuminating to see how
this traditional method compares to the present results.

We expect that the method can be used in hadron spec-
troscopy in a wide context, e.g., for mesons [18,46–49] or
baryons. Light baryon spectroscopy is plagued by wide and
overlapping resonances which makes their determination
difficult. Groups like Bonn-Gatchina [50–52], ANL-Osaka
[53–55], Jülich-Bonn [56–58],Kent state [59–61],DMTand
MAID [62–66], Giessen [67,68], and other groups [69]
dedicate much effort to resonance spectroscopy. The reac-
tion considered here, K−p → KΞ, is only one of many for
strangeness S ¼ −1 that have been analyzed by different
groups recently [54,55,60,61,70].
Bayesian priors have been used in the determination of

low-energy constants in chiral perturbation theory [71] and
to quantify truncation errors [72]. Similarly, the LASSO
could be useful in selecting relevant low-energy constants
in meson-baryon scattering [14,73–75].
LASSO was also used in Ref. [13] in an attempt to

actively remove a resonance to explain data conventionally,
i.e., with nonresonant background. This turned out to be
impossible, favoring the nonconventional, i.e., resonant
explanation. In a different context, LASSO has been
recently used in the analysis of lattice QCD data via an
optical potential [76]. In general, LASSO is expected to
be particularly relevant in the analysis of lattice QCD
calculation because relatively few data points are available
for systems with several two-body channels [77–81] or
three-body systems [82–87]. LASSO could then be used to
limit the number of fit parameter and/or relevant two or
three-body channels.
This paper is organized as follows. In Sec. II, synthetic

data, generated from a partial-wave solution with known
resonance content, are analyzed with LASSO regulariza-
tion and using the Bayesian information criterion (BIC).
The efficacy of different penalties to recover the resonance
spectrum is tested. In Sec. III, LASSO is applied to the
actual data of the reaction K−p → KΞ. Our conclusions are
presented in Sec. IV. Two Appendices provide expressions
for observables used here and figures for the corresponding
synthetic data sets.

II. ANALYSIS OF SYNTHETIC DATA

The considered world database for the transition K̄N →
KΞ consists of polarized and unpolarized differential cross
sections up to a total energy of the system ofW ∼ 3.0 GeV.
In this section, however, we work with synthetic data, while
in Sec. III the actual data are analyzed.

A. Parametrization

We first consider (synthetic) data addressing the transition
K−p → KΞ in terms of the total, polarized and unpolarized
differential cross sections. These observables are related to
the partial-wave amplitudes (denoted by τ in the following),
as presented in Appendix A. For given isospin, total angular
momentum, and orbital angular momentum ðI; J; LÞ, we
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assume the following parametrization of the partial-wave
amplitudes as a function of energy W,

τðWÞ ¼ eiϕ
�
kfðWÞ
Λ

�
Lþ1=2

×

�
ae−α

2ðkf ðWÞ
Λ Þ2 − xeiΦ

Γ=2
W −M þ iΓ=2

�
; ð1Þ

where the scale parameter is fixed as Λ ¼ 103 MeV, and a,
α, ϕ, Φ, x, Γ, M are free (real) parameters for each set of
quantum numbers. The final c.m. meson momentum is
denoted as kf. We refer to this parametrization as the
benchmark model. In this approach, resonances are intro-
duced as poles with complex residues xeiΦ. The correct
threshold behavior ∼kLþ1=2

f is respected. Also, we cannot
exclude relative phases ϕ between different partial waves
because the amplitude is not real at threshold due to many
open channels. Yet, to avoid an overall-phase problem that
wouldmake the fit problem ill-defined, we setϕ ¼ 0 for one
partial wave, ðI; J; LÞ ¼ ð1; 5=2; 2Þ.
It should be noted that the present partial-wave para-

metrization is minimalistic. Properties from S-matrix
theory like left-hand cuts, energy-dependent widths or
unitarity could be used to improve the parametrization
(see, e.g., Ref. [88]), but this is not the aim of this study.
Note that the background phase ϕ and residue phase Φ are
related through coupled-channel unitarity. However, here
we fit only one channel in the presence of many other open
channels, and therefore leave these parameters independent
from each other. Also, if one analyzes lighter channels like
K̄N, it is indispensable to include S-wave threshold cusps
from heavier channels explicitly in the parametrization so
that they are not mistakenly identified as resonances.
Similarly, thresholds in the complex plane from three-body
states may result in false-positive resonance signals [89].

In the analysis of real K−p → KΞ data, a more sophisti-
cated parametrization is employed, see Sec. III C.
To avoid that the fit can perfectly reproduce the

true solution, the synthetic data were generated using a
slightly different parametrization, i.e., including an addi-
tional energy dependence in the background i.e., a → aþ
bkfðWÞ=Λ for b ∈ R. From this parametrization, and with
realistic choices of free parameters, synthetic data are
generated for each partial wave over the same energy range
with equal spacing between energy points. Adopting the
standard notation LIð2JÞ, four resonances are included in the
partial waves S01,P11,D05, andD15. The partial waves used
to generate the data can be seen in Fig. 1, whereas the data
themselves can be seen in Figs. 9, 10 and 11.

B. Criteria based on information theory

With the parametrization of Eq. (1) and synthetic data at
hand, we turn to the LASSO method to select the simplest
model, which describes the data with the minimal number
of resonances. In general, the χ2 is a good measure for
determining under-fitting but not overfitting [43]. Other
means to penalize model complexity are needed like the
penalization of undesired parameters. The penalized χ2T is
defined as follows

χ2TðλÞ ¼ χ2 þ PðλÞ; ð2Þ

where χ2 denotes the usual measure of the goodness of fit,
while the penalty is denoted by PðλÞ and reads

PðλÞ ¼ λ4
Ximax

i¼1

jxij; ð3Þ

i.e., the ith resonance is penalized through its coupling xi.
We allow here for one resonance in each partial wave,
i.e., ten resonances altogether, imax ¼ 10. In practice, we
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FIG. 1. Partial-wave amplitudes τ (in dimensionless units) of the synthetic data for the considered isospin channels. Blue dashed and
red solid lines show the real and imaginary parts, respectively.
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change (in- or decreasing) λ in small steps, minimizing each
time χ2T . Subsequently, we use various criteria based on
information theory in order to determine the optimal λ.
Note also that the power of four in Eq. (3) is simply chosen
to provide a more convenient graphical representation of
these criteria in the following plots. We chose the Bayesian
information criterion (BIC) to search for the optimal λ,
defined as

BIC ¼ keff logðnÞ − 2 logðLÞ
¼ keff logðnÞ þ χ2 þ c; ð4Þ

where c is an irrelevant offset that depends on the number
of data but not the model. Here L is the likelihood, keff
denotes the effective number of parameters which changes
dynamically as a function of λ (see discussion below),
while n is the number of data points. For a normal
distributed data, the likelihood can be expressed in terms
of the χ2.
For BIC, the optimal value of λ can be determined from

the respective minimum. This is because it takes on small
values for models with low test error. Note that another
common criterion from information theory is the Akaike
information criterion (AIC). BIC tends to penalize models
with more parameters due to the factor logðnÞ which allows
for a more distinct minimum to be seen and, thus, a clearer
indication of which model to favor. The different criteria
are compared and illustrated in Ref. [43]. For a further
comparison between AIC and BIC, see Refs. [40,42].
The degrees of freedom (d.o.f.) in the penalized fits are

increased due to LASSO regularization, which effectively
reduces the number of fit parameters. In particular, the
d.o.f. are not simply given by the number of data n minus
number of parameters k but

d:o:f: ¼ n − keff ; ð5Þ

where keff is the effective number of parameters [41],

keff ¼
Xn
i¼1

COVðŷi; yiÞ; ð6Þ

given by the covariance of the ith predicted observable ŷi
and the true ith observable yi. In practice, we calculate
the covariance via bootstrap aggregation, generating m
different fits

COVðŷi; yiÞ ¼
Xm
j¼1

ðŷi;j − ¯̂yiÞðyi;j − ȳiÞ
m − 1

; ð7Þ

where ŷi;j is the jth predicted value for ith data point, and
the averaged value for all m predictions for the ith point is
denoted by ¯̂yi ¼

P
m
j¼1 ŷi;j=m. The corresponding notation

holds for the data points, i.e., yi;j and ȳj.

In practical calculations we simplify the described
procedure to determine keff by counting a fit parameter
xi towards keff if it is above some limit, jxij > xlim.
To determine this limit, we perform a simulation with
synthetic data and find that xlim ≈ 0.01, which will be used
in the following. The quantity keff is well determined as can
be seen in Fig. 2.

C. LASSO in a benchmark model

In this section, we describe several initial trials using
various LASSO implementations on three different bench-
mark datasets in order to gain a robust understanding of the
individual method’s strengths and weaknesses before
moving onto fitting the real data discussed in detail in
Sec. III.
The models we use to generate all of the data sets are

slightly more complicated than the model we use to fit the
data as noted in Sec. II A. All data sets are generated using
the same background parameters, energies, and error
distributions, but they differ with respect to their resonance
content. Our main data set consists of four resonances, each
corresponding to a different partial wave with differing
masses. However, we also look at a data set containing four
resonances, all with the same mass, as well as a set with two
groups of two resonances in two different partial waves, all
with different masses. In our exploratory analysis, we find,
as detailed later in the paper, that some methods are more
effective than others, however, we find a consistency
among data sets in which particular methods are better
than others. In the following we concentrate the discussion
on the data set containing four resonances with different
masses in four different partial waves. See Sec. II A for
details. Our conclusions remain consistent across the other
data sets.
In all three fit strategies discussed in the following, we

allow one resonance in each of the ten partial waves
(imax ¼ 10).
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FIG. 2. Degrees of freedom as a function of λ. The blue bars
correspond to counting a parameter x if jxj > 0.01 while the red
line shows the d.o.f. with keff calculated according to Eq. (6).
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With our model parametrization, where one parameter
being sent to zero (xi) implicitly removes a group of other
parameters (Γi, Φi, Mi), one actually needs to consider the
group LASSO [41] instead of the traditional LASSO. The
group LASSO can be expressed by the following modifi-
cation to the penalty term,

PgrðλÞ ¼ λ4
Ximax

i¼1

ffiffiffiffiffi
pi

p jxij; ð8Þ

wherepi are the number of parameters in the ith group and a
group represents a predefined set of variables that are either
all included or excluded together. In our case, a group
represents the set of parameters which corresponds to
the ith resonance. The new term, pi, acts as a weight for
various groups, countering the effects caused by potential
differences in group size. Here, pi ¼ 4, ∀ i which in
practice allows one to absorb them into λ. In doing so,
one retains the same best-fit results as normal LASSO,
however, the optimal value of λ changes, shifted from the
position of theminima of theBIC result. This is an important
caveat that must be remembered when using differing
resonance parametrizations in various partial waves.

D. Forward LASSO

For this forward selection model, all ten resonances
are initialized with random values selected from Gaussian
distributions, i.e., xi ∼ N ð0; 0.25Þ, Γi ∼ N ð100; 25Þ,
Mi ∼N ð2500; 150Þ, Φi ∼N ð0; 1Þ, taking subsequently
the absolute value of xi, Γi, Mi to ensure the correct

physical scenario. The initialization of the background
terms comes from using the fit results from fitting the
benchmark model data with no resonances included. We
iterate λ stepwise as 10; 9.5;…; each time minimizing χ2T
from Eqs. (2) and (3), thus penalizing the occurrence of
resonances. For each new step in λ, the converged solution
of the previous λ is taken as starting value in the fit. In other
words, resonances are added until they are all present in the
fit, at λ ¼ 0. With BIC we observe a minimum and thus our
best model occurs at λopt ¼ 4; see left panel of Fig. 3. This
model contains five resonances, the four correct ones and a
false one as seen in the same figure (some of the red lines in
the figure overlap and are difficult to distinguish). Note also
that all of the models from λ ¼ 0 to λ ¼ 4 have a χ2 within
the confidence interval given by a 90% two-sided con-
fidence level calculated from the χ2 distribution (referred to
as “Pearson’s χ2 test” in the following). While the best fit
results for the forward model is not in complete agreement
with the benchmark model, it still represents a good local
minimum in χ2 and a starting point for initial guesses of
subsequent optimizations.

E. Backward automatic shutoff LASSO

In linear regression one can expect that the LASSO path,
i.e., the estimated parameters as function of λ in para-
meter space, does not depend whether forward selection or
backward selection is applied. There is only one local mini-
mum and the χ2 is a multidimensional parabola in param-
eter space. Our current problem, however, is inherently

0 2 4 6 8
6000

6500

7000

7500

λ

B
IC

1

0.1

0.01

x

1.0

1.2

1.4

1.6

1.8
2.0

χ d
.o

.f
.

2

0 2 4 6 8

6450

6350

6250

λ

1

0.1

0.01

0.001

1.0

1.1

1.2

1.3

0 20 40 60 80 100

6500

7000

7500

8000
8500

λ

1

0.1

0.01

1.0

1.5

2.0

2.5

3.0

0.001 0.001

FIG. 3. Fit results from forward (left), backward automatic shutoff (central) and second-derivative penalty (right) LASSO for the
benchmark model. Top panel: χ2 per degree of freedom in blue with the upper limit of Pearson’s χ2 test per degree of freedom in orange
dashed. Middle panel: Absolute value of the ten residues x as a function of λ in a logarithmic scale. The red dashed lines indicate the final
set of parameters, the gray lines show the unnecessary parameters. Bottom panel: The Bayesian information criterion (BIC). The vertical
line signifies the minimum of the BIC that defines the chosen model.
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non-linear because the observables are bilinear in the
parameters (c.f. Appendix A).
In particular, there are multiple local minima and the

result of the backward selection (starting with λ ¼ 0 and
dynamically updating the initial values as described in the
previous section) depends on the local minimum one
starts from.
In the backward selection, we start with the mini-

mum determined at λ ¼ 0 with the forward selection
discussed before. As before, we iterate λ in steps at values
0; 0.5;…; 10, each time minimizing χ2T from Eqs. (2)–(3)
for imax ¼ 10 and updating the initialization of each fit by
the converged fit of the previous value of λ. As a result the
minimum in BIC occurs at λopt ¼ 6 at which the resonances
are correctly selected and their properties are very close to
their correct values (masses, widths, couplings).
Next, we discuss a greedier version of the backward

selection, referred to as backward automatic shutoff in the
following. The modification is that once a pole residuum xi
becomes smaller than 10−3, which is our shutoff criterion,
that resonance is permanently removed from the model and
is no longer fit for the remaining iterations. From BIC
results shown in the central panel of Fig. 3 we see the
minimum, and thus our best model, occurs at λ ¼ 6. This
model contains only the four genuine resonances, success-
fully sending all of the other resonance couplings to zero as
shown. The minimum in BIC also coincides with the inter-
section of the χ2 with the value given from Pearson’s χ2 test
indicating that the model passes the test.

F. Second-derivative penalty

In many approaches to extract the baryon spectrum, it is
not possible to directly penalize the size of the resonance
residues as tested before. In dynamical coupled-channel
approaches one can still penalize bare resonance couplings
and, thus, remove the dressed resonance poles. Yet, in these
approaches, the nonlinear meson-baryon dynamics can lead
to the formation of resonance poles [90], and it is difficult
to pin down the corresponding parameters responsible for
resonance formation. In the SAID approach [27] resonan-
ces are almost exclusively generated through the unitary
coupled-channels dynamics if required by data.
One way of minimizing the number of resonances, when

fit parameters cannot be clearly attributed to their existence,
is to penalize the second derivative of the partial-wave
amplitude.
In this study, we are working in a one-channel approxi-

mation, with no prominent two-body threshold opening
above KΞ such that nonanalyticities for physical energies
are assumed to be negligible. Accordingly, we introduce the
penalty

PðλÞ ¼ λ5
X10
i¼1

RWmax
mKþmΞ

j ∂2
∂W2 τiðWÞj2dWRWmax

mKþmΞ
jτiðWÞj2dW ; ð9Þ

where index i denotes the corresponding partial wave
indices ðI; J; LÞ, and Wmax ¼ 3200 MeV is the maximum
energy of the data. For numerical convenience, we penalize
here only the resonance term in τ, i.e., the second term
in Eq. (1).
The introduced penalty term is significantly different

from the previous one of penalizing the resonance cou-
plings jxj. This allows for resonances to effectively dis-
appear by their widths becoming so large that they flatten
out and become indistinguishable from the background,
or by their masses moving outside of the fitted region. The
typical form for this penalty is indicated in Fig. 4 with
the white contours ranging from large penalty (close to the
physical axis) to small penalty (for wide and/or sub/above-
threshold resonances.)
For the determination of the resonance spectrum, we

proceed like in case of backward LASSO, i.e., from the
same local minimum at λ ¼ 0, dynamically updating λ.
With respect to counting parameters to determine the
degrees of freedom, the four parameters of a given
resonance are only counted in BIC if the resonance pole
is within a certain ðM;ΓÞ region. This “resonance area” is
indicated in Fig. 4 with the thick blue dashed line. The
window in mass reaches from threshold to Wmax, given by
the maximum energy of available data, and in width up to
Γmax. The χ2 and BIC are shown in Fig. 3 in the right-hand
panel. The minimum in BIC occurs at λ ¼ λopt ≈ 50 which
coincides with one false resonance leaving the resonance
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FIG. 4. Derivative penalty. Resonance trajectories (thick solid
lines) in the ðM;ΓÞ plane as function of penalty parameter λ from
λ ¼ 0 (dark shading) to λ ¼ λopt (light shading). The very short
trajectories of significant resonances are highlighted by red
circles. The thick blue dashed line shows the ðM;ΓÞ region in
which resonance parameters are counted towards the total
number of parameters. The typical penalty size is indicated with
white contours ranging from large penalty (close to Γ ¼ 0) to
small penalty (large Γ and/or high/low M.)
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area (see Fig. 4 at around ðM;ΓÞ ¼ ð1.85; 0.4Þ GeV). At
λ ¼ λopt, the significant resonances have barely moved
(short trajectories highlighted by red circles) while the false
resonances are completely driven out of the resonance area.
We have checked explicitly that forΓmax∈ ½250;400�MeV

different values of λopt are obtained, but in each case leading
to the same best resonance content. As for backward
LASSO, the second-derivative penalty is able to correctly
identity the four genuine resonances while eliminating the
others by sending their widths above Γmax and/or their
masses out of the fitted energy window.

G. Discussion

The discussed LASSO variants perform similarly.
Backward LASSO and second-derivative penalty are able
to correctly identify which resonances are present in the
data while the forward selection is off by one resonance.
The automatic shutoff method leads to a more pronounced
minimum in the BIC than the second-derivative penalty. It
is, however, greedier in the sense that once a parameter is
zero, it is forever removed from the fit. This can become an
issue if there are multiple local minima and the fit cannot
explore them because parameters have been shut off.
The second-derivative penalty has the advantage that

parameters are not removed at all, but they can still
contribute to shape the background that varies slowly with
energy. This possibly protects the fit against bias in the
background terms: In case the background parametrization
is not flexible enough this could lead to false-positive
resonance signals.
Yet, the derivative penalty has a slightly different

meaning than the penalty of Eq. (3). While in the latter,
resonance poles are completely removed from the partial-
wave amplitude, the derivative penalty moves resonance
poles far away from the physical axis and the region of
fitted data. From a phenomenological point of view, these
scenarios are quite similar to each other. However, if
spectra from theory are to be tested with phenomenology,
wide resonances pose a problem because in quark models
and related approaches, resonance widths cannot be reli-
ably determined and one does not know if a pole in the
complex plane far away from the real axis corresponds to a
quark-model state or not. Such questions are, however, not
of interest for this data-driven phenomenological approach.
Higher derivatives in the penalization are also possible

and, if they can be reliably evaluated, even desirable: For
example, if one has a small resonance signal on top of a
large background, the denominator of Eq. (9) could become
large and the penalty small. Replacing both the numerator
and denominator with higher derivatives might be more
suitable to detect such special circumstances.
The obvious disadvantages of the derivative penalty lie

in the more complicated analytic structure in form of
threshold cusps in the physical scattering region on or
close to the real axis [89]. In the analysis of the K−p → KΞ

reaction, we assume that those thresholds (e.g., from K�Ξ
or KΞ�) play no role. One could explicitly exclude thresh-
old regions from the integrals of Eq. (9) but then has to pay
attention to resonances on hidden sheets that might enhance
thresholds.
Another possibility to penalize resonances close to the

physical axis, not explored here, is given by suitable
closed-contour integrals on the unphysical Riemann sheets
]88 ] that could be used to penalize the size of resonance

residues. This method can deal with threshold openings if
the contour is chosen appropriately but would fail if
residues of two or more resonances cancel.
Due to its performance identifying correct resonance

content (of synthetic data) and its simplicity, the backward
automatic shutoff LASSO will be used in the next section
for the determination of the resonance spectrum with actual
data from experiment.

III. ANALYSIS OF K̄N → KΞ WITH LASSO

In this section, we present a blindfold analysis of the
resonance content of the actual data using LASSO in
combination with BIC as explained in the previous sections,
see also Refs. [41,42,91] and [92]. To this end we consider
the reaction K−p → KΞ. This choice of the reaction is on
purpose for this exploratory calculation because for many
existing data one often encounters a situationwhere data sets
from different experiments are inconsistent with each other
due to underestimation of systematic uncertainties. Also,
some experimental data sets are of very poor quality, which
makes the extraction of resonances from such data difficult.
The K−p → KΞ reaction is chosen here to test LASSO for
its robustness against such a database.
Obviously, the resonance content extracted from the data

can depend on which data sets one includes in the analysis.
Thus, in general, the selection of the data to be considered
is the first step toward an extraction of resonances. To
this end, here, we apply the so-called self-consistent 3σ
criterion [93,94]. Once the data sets to be included in the
analysis are selected, we proceed to fit the model param-
eters using the LASSO method in combination with BIC
(LASSOþ BIC). Our model for the reaction at hand
contains initially all the known above-threshold hyperon
resonances from the Particle Data Group (PDG) [95],
irrespective of their rating status. The LASSOþ BIC
method will tell us which resonances will actually be
required to fit the data.

A. Calculation of the merit function

In general, the theoretical description of a given exper-
imental data set is achieved by fitting the model parameters
through a minimization procedure of the merit function

χ2 ¼
X
k

χ2k; ð10Þ
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where the summation runs over all data sets, specified by
the index k. For each data set k, χ2k is given by

χ2k ¼
Xn
i¼1

�
yi − Zkŷi

δyi

�
2

þ
�
Zk − 1

δsys k

�
2

; ð11Þ

where, yi and δyi are, respectively, the experimental value
and corresponding statistical uncertainty of the observable
at the kinematical point (total energy and scattering angle)
specified by the index i. The number of data points in each
data set is denoted by n, while ŷi stands for the model fit
value for that observable. The contribution to χ2k arising
from systematic uncertainties is addressed by the last term
in the above equation, expressed by the systematic uncer-
tainty (δsys k) and the scaling factor (Zk). We note that every
experimental data set can be subject to a known and
common systematic uncertainty (normalized data), an
arbitrarily large systematic uncertainty (floated data) or
no systematic uncertainty at all (absolute data). Absolute
data have δsys k ¼ 0 and are not scaled (Zk ¼ 1). The correct
value of Zk for normalized and floated data is obtained by
minimizing χ2k with respect to Zk. This leads to

Zk ¼
�Xn

i¼1

yiŷi
δy2i

þ 1

δ2sysk

��Xn
i¼1

�
ŷi
δyi

�
2

þ 1

δ2sysk

�
−1
: ð12Þ

Due to the nature of the currently available data for
K−p → KΞ, as discussed in the following subsection,
where systematic uncertainties are unknown, we treat the
data as absolute, i.e., set δsys k ¼ 0 and Zk ¼ 1 in this work.
This is also what was done in Ref. [45]. Furthermore, each
data point is considered to be a data set of its own, i.e.,n ¼ 1.
The total χ2 given by Eq. (10) is then minimized using the
MINUITminimization code.As systematic uncertainties are
neglected, problems tied to the d’Agostini bias [96,97] play
no role.

B. Data selection

The reaction process K−p → KΞ has been studied
experimentally, mainly, throughout the 1960s [98–107],
which was followed by several measurements made in the
1970s and 1980s [108–114]. The existing data (total cross
sections, differential cross sections, and recoil polarization
asymmetries) are rather limited and suffer from large
uncertainties. The total cross section and some of the
differential cross-section data are tabulated in Ref. [115].
Some of them are not in tabular (numerical) form that can
be readily used but are given only in graphical form or as
parametrization in terms of their Legendre polynomial
expansions. In Ref. [116], Sharov et al. have carefully
considered the data extraction from these papers. We have
checked that the extracted data are consistent with those in
the original papers within the permitted accuracy of the
check. In the present work, we use these data from

Ref. [116]. No differential cross sections given in terms
of the Legendre polynomial expansions are included.
From the database mentioned above we select the data

points to be included in our analysis using the self-
consistent 3σ criterion applied in Refs. [93,94] to the
potential-model analyses of NN scattering. This is an
improved version of the 3σ criterion introduced by the
Nijmegen group in their 1993 partial-wave analysis [117]
which became an essential aspect of their success and the
subsequent high-quality fits of the NN scattering data
[118–121]. This criterion discards mutually incompatible
data, but can also prevent a fraction of the data to contribute
to the final fit. This is so because no distinction is made
between mutually incompatible data sets in similar kin-
ematical conditions and which of them, if any, are actually
incompatible with the remaining data in different kinemati-
cal conditions. The latter is encoded in the phenomeno-
logical parametrization which links all kinematical regions.
The self-consistent 3σ criterion is an extension of the 3σ
criterion, which differentiates both situations.
For a set of n measurements with Gaussian distribution,

the quantity z≡ χ2k=n follows a rescaled, renormalized χ2

distribution,

PnðzÞ ¼
nðnz=2Þn=2−1
2Γðn=2Þ e−nz=2: ð13Þ

Here, ΓðxÞ stands for the usual gamma function. According
to the 3σ criterion, a data set (here: a single data point) is
considered inconsistent with the rest of the database if its
statistics z > zmax where zmax is given by the cumulative
distribution function, CDF½PnðzmaxÞ� ¼ 1 − 0.0027. In
most cases, a data set will have a highly improbable
z-value if the systematic errors are underestimated (z will
be very large). The discussed one-sided criterion reads

Z
∞

zmaxðnÞ
PnðzÞdz ¼

Γðn=2; nzmax=2Þ
Γðn=2Þ ¼ 0.0027; ð14Þ

where Γðx; yÞ is the incomplete gamma function. One could
also consider a two-sided criterion as in Ref. [94] to
exclude data with too good of a χ2. However, in the
present situation, in which every data point counts as a data
set, this does not make much sense; there is no problem if
the χ2 of a single point is very small; the problem arises
only if the χ2 of an entire data set is too small, and then one
might conclude that the errors in that data set are over-
estimated and a two-sided criterion might be needed. In a
test, we found no evidence for overestimated error bars that
would justify the usage of a two-tailed pruning criterion.
In practice, the above methodology is applied as follows:

(1) we fit the entire database (unpruned data) with some
phenomenological model to represent the database. The
model used just in this subsection for data pruning purposes
is chosen to be overflexible in the sense that the pruning
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should not occur due to a biased parametrization. This
model is constructed based on the model of Ref. [45]. The
differences are that, here, we include more contact and
resonance contributions. In addition, we relax the con-
straints imposed in Ref. [45] on the complex phases in the
contact amplitudes as well as the constancy of the masses
and widths of the resonances. All these differences make
the model more flexible. As to the additional number of
resonances included, we have made sure that these does not
start to fit the obvious statistical fluctuations in the data.
(2) Using the fitted model, we calculate z of each data
point, subsequently pruning the database according to the
3σ criterion described above. (3) The pruned database is
then fitted anew and the 3σ criterion is applied again to the
entire unpruned database to obtain a new pruned database.
The process is repeated until self-consistency is reached,
i.e., the pruned database remains unchanged after the
iterations.
The results of the pruning according to the self-

consistent 3σ criterion described above are shown in
Fig. 5. Only 10 data points out of 448 in total are outside
the allowed range of z.

C. Theoretical model

In the analysis of the K̄N → KΞ reaction we use the
theoretical model of Ref. [45], except for the above-
threshold resonances considered. In contrast to Ref. [45],
in the present blindfold analysis, we consider all the above-
threshold hyperon resonances, irrespective of their PDG
rating status. Furthermore, the PDG [95] does not assign
the spin-parity quantum numbers for the Σð2250Þ and
Λð2000Þ resonances. The analyses of Ref. [109] provide
two possible parameter sets for the Σð2250Þ, one with JP ¼
5=2− at about 2270� 50 MeV and another one with JP ¼
9=2− at about 2210� 30 MeV. In the present work, we
assume the Σð2250Þ to have JP ¼ 5=2− with a mass of
2265 MeV, the primary reason being that the total cross
section in K−p → KþΞ− shows a small bump structure at
around 2300 MeV, which is well reproduced in our model
with these parameter values. We refer to this resonance as
Σð2265Þ5=2− in the following. For the Λð2000Þ resonance,
we adopt JP ¼ 1=2−, the only quantum numbers claimed in
Ref. [60]. The PDG also quotes a one-star Λð2050Þ3=2−
resonance with a mass of 2056 MeVand width of 493 MeV.
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FIG. 5. Full unpruned data (blackþ red) and 3σ-pruned data (red) as described in the text. The fit results using the over-parametrized
model described in Sec. III B are shown by the blue curve with χ2d:o:f: ¼ 2.53 with respect to the full data. The numbers in the plots of
dσ=dΩ and P indicate the total scattering energy W in GeV.
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We do not consider this resonance in our study here due to
its width being larger than the maximum value of 400 MeV
adopted in the present work (cf. Sec. II F). Neither do we
consider the high-spin three-star Λð2350Þ9=2− resonance.
The inclusion of baryon resonances requires the knowledge
of the corresponding propagators and transition vertices,
which is not a trivial task both conceptually and numeri-
cally, especially, for high-spin resonances. Indeed, it is well
known that, unlike for spin-1=2 resonances, the construc-
tion of propagators for higher-spin resonances is not a
straightforward procedure. In principle, the propagators
and transition vertices for high-spin resonances can be
obtained, e.g., following the Rarita-Schwinger approach
[122–124]. In fact this is the case for spin-5=2 and -7=2
resonances which have been tested and applied in the
description of many reactions [45,125–127] and also used
in the present work. However, to our knowledge, spin-9=2
resonances have never been considered in microscopic
calculations where the full Dirac-Lorentz structures of the
corresponding propagators and vertices are required.
Furthermore, the number of Lorentz indices to be con-
tracted in evaluating the reaction amplitude involving
baryon resonances in the intermediate states increase with
the resonances’ spin. In fact, for a resonance with spin-j, its
propagator has (2j − 1) Lorentz indices and its transition
vertex, ðj − 1=2Þ indices. Hence, the number of Lorentz
indices to be contracted increases rapidly with the spin of
the resonance, making the evaluation of the reaction
amplitude containing the high-spin resonances, such as
Λð2350Þ9=2−, very much time consuming. Thus, for the
reasons given above, the inclusion of spin-9=2 resonances
is beyond the scope of the present work. The full set of
resonances considered in the present work is listed in
Table I.

We emphasize that in the present analysis for determin-
ing the minimally required resonance content to describe
the data through the LASSOþ BIC method, we keep our
model as close as possible with that of Ref. [45] apart from
the number of resonances considered as described above.
For example, the phenomenological contact amplitudes are
kept the same expect for the corresponding parameter values
that are refitted here. Also, the masses and widths of the
resonances are kept fixed as in Ref. [45]. Of course, the
resonance content depends on whether or not masses and
widths are also allowed to vary in the fitting procedure.
However, the major motivation here for keeping these
parameters fixed is to be able to make a close comparison
of the resonance content with themore conventional method
of manually determining the resonance content used in
Ref. [45], where these parameters were kept fixed due to the
poor quality of the data. Thus, for a meaningful comparison,
we perform our analysis under the same constraints.
Obviously, to determine the resonance content more

accurately, we should allow the masses and widths of the
resonances to vary as well during the fitting procedure.
This, however, may be reserved for a future work when a
more accurate and larger database becomes available.

D. Penalty function for LASSO

For an above-threshold resonance, the square of its
s-channel amplitude, when the resonance is on-shell, is
proportional to [126]

jMJ�j2 ∝
� ðεN ∓ mRÞðεΞ ∓ mRÞ; if J ¼ 1

2
; 5
2
;

ðεN �mRÞðεΞ �mRÞ; if J ¼ 3
2
; 7
2
;

ð15Þ

where MJP denotes the reaction amplitude involving
the intermediate hyperon R with the spin-parity JP;

TABLE I. Λ and Σ hyperons considered in this work. Masses (mR) and widths (ΓR) are extracted from the PDG [95], except for the
Σð2250Þ resonance, whose mass has been adjusted to reproduce the peak position of the bump structure seen in the total cross section
data. For one- and two-star resonances, where no estimates are available, we take the average of the values quoted in PDG. In this
average for the width of the Σð2070Þ5=2þ, we have excluded the 906 MeV width by Kane [128].

Λ states Σ states

State mR (MeV) ΓR (MeV) Rating State mR (MeV) ΓR (MeV) Rating

Λð1810Þ 1=2þ 1810 150 *** Σð1840Þ 3=2þ 1840 100 *
Λð1820Þ 5=2þ 1820 80 **** Σð1880Þ 1=2þ 1880 194 **
Λð1830Þ 5=2− 1830 95 **** Σð1900Þ 1=2− 1900 191 *
Λð1890Þ 3=2þ 1890 100 **** Σð1915Þ 5=2þ 1915 120 ****
Λð2000Þ ?? 2000 167 * Σð1940Þ 3=2þ 1941 400 *
Λð2020Þ 7=2þ 2020 195 * Σð1940Þ 3=2− 1940 220 ***
Λð2100Þ 7=2− 2100 200 **** Σð2000Þ 1=2− 2000 273 *
Λð2110Þ 5=2þ 2110 200 *** Σð2030Þ 7=2þ 2030 180 ****
Λð2325Þ 3=2− 2325 169 * Σð2070Þ 5=2þ 2070 220 *

Σð2080Þ 3=2þ 2080 177 **
Σð2100Þ 7=2− 2100 103 *
Σð2250Þ ?? 2265 100 ***
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εi ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
i þm2

i

p
, with pi and mi denoting the momentum

and mass for i ∈ fN;Ξg, respectively. This proportionality
is valid only when the intermediate hyperon lies on its mass
shell, and it does not quite apply to the low-mass reso-
nances, which are far off-shell in the present reaction. The
above relation shows that the above-threshold unnatural-
parity resonances may be suppressed with respect to the
natural-parity resonances, unless the corresponding cou-
pling constants are much larger.
In the backward automatic shutoff LASSO method, i.e.,

starting from a reasonably good local minimum at λ ¼ 0,
we minimize the χ2T from Eq. (2) with the penalty function
PJ�ðλÞ ¼ λ2

P
R jfRj with respect to couplings weighted

according to Eq. (15) as

f
RJ� ¼ g

RJ�
Γ0

ΓR

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεN∓mRÞðεΞ∓mRÞ
ðεNþmRÞðεΞþmRÞ

q
; if J ¼ 1

2
; 5
2
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðεN�mRÞðεΞ�mRÞ
ðεNþmRÞðεΞþmRÞ

q
; if J ¼ 3

2
; 7
2
;

ð16Þ

where g
RJ� and ΓR stand for the coupling constant and

width of the hyperon resonance R, respectively. The overall
scale normalization is chosen to be Γ0 ¼ 150 MeV.

E. Results

In this section, we present our results on the resonance
content extracted from the available data for the reac-
tion K̄N → KΞ in different isospin channels based on
LASSOþ BIC. The results of LASSO and BIC are col-
lected in Fig. 6. The middle panel shows the result of BIC
with the minimum at λ ¼ λopt ≈ 5. The upper panel displays
the χ2d:o:f: as a function of the penalty parameter λ, see
Eq. (16). The lower panel shows the absolute values of the
weighted resonance couplings f

RJ� as given in Eq. (16).
According to the BIC, the selected resonances are those
whose correspondingweighted couplingsf

RJ� are above the
chosen cutoff of 0.001 at the value of λ where the BIC has a
minimum. In Fig. 6 we observe at λ ¼ λopt a clear distinction
between irrelevant resonances (jfRJP j < 10−3) and relevant
ones that all have couplings of size jfRJP j > 10−1, except for
the mentioned Σð2265Þ5=2− that shows a small but almost
λ-independent coupling (orange line). Indeed, this reso-
nance produces small but significant bump structures in the
data (see Fig. 7). Ten resonances remain out of 21 initial
resonances as indicated in Fig. 6 (lower panel).
The quality of the results of the model favored by

the LASSOþ BIC method is illustrated in Fig. 7. There,
the contributions from those resonances selected by the
LASSOþ BIC are displayed as red (dashed) and magenta
(double-dash-dotted) curves corresponding to the Λ and Σ
resonances, respectively. The brown (dotted) curves are the
total resonance contribution. The green (dash-dotted) curves
correspond to the phenomenological contact interaction
which accounts effectively for the higher-order (loop) terms

in the scattering amplitude [45]. The blue curves correspond
to the full total contributions. The overall χ2d:o:f: is 2.25.
To demonstrate the influence of each resonance (selected

by LASSOþ BIC), we switch each one off individually,
comparing the prediction of the total cross sections as
depicted in Fig. 8. The corresponding numerical changes of
the overall χ2d:o:f: are collected in Table II. We see in Fig. 8
that the Σð2030Þ mostly affects the cross sections in the
range of W ∼ 2.0 to 2.4 GeV. Also, in Table II, we see that
among the ten resonances selected by LASSOþ BIC, this
resonance affects the overall χ2d:o:f: the most (by∼60%). It is
clearly needed in our model to reproduce the data.
Moreover, as pointed out in Ref. [45], it affects the recoil
polarization as well. It should also be mentioned that this
resonance helps to reproduce the measured KþΞ− invariant
mass distribution in γp → KþKþΞ− [129], by filling in the
valley in the otherwise double-bump structured invariant
mass distribution, a feature that is not observed in the data
[130]. The other resonances have much smaller effects on
the total cross sections, as well as on the overall χ2d:o:f:; the
latter is affected by less than 10% (cf. Table. II). Five
of them [Σð1940Þ3=2þ, Σð2100Þ7=2−, Λð2020Þ7=2þ,
Σð1840Þ3=2þ, Λð1890Þ3=2þ] affect the χ2d:o:f: by about
6% to 10%. Here, except for the Σð1890Þ3=2þ resonance,
which has four-star rating, the other four resonances
are all one-star resonances. The remaining resonances
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FIG. 7. Quality of the model favored by LASSOþ BIC for the K−p → KþΞ− and K−p → K0Ξ0 reactions compared with the
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[Σð2265Þ5=2−,Σð2070Þ5=2þ,Σð1915Þ5=2þ,Λð2100Þ7=2þ]
affect the overall χ2d:o:f: by less than 5%. In particular,
the Λð2100Þ7=2þ resonance affects the χ2d:o:f: by less than
0.5%. Note that although theΣð2265Þ5=2− resonance affects
the overall χ2d:o:f: by only about 4.4%, it is very much
required to reproduce the small bump structure observed in
the total cross section in the K−p → KþΞ− reaction, see
Fig. 8 and discussion above. This comparison shows that
simple LASSOþBIC resonance selection criterion does not
directly translate to the one by examining the total χ2d:o:f:.
Furthermore, the PDG ranking of hyperon resonances is
uncorrelated with the LASSOþ BIC selection criterion used
in this work.
In the analysis of Ref. [45], the Σð2030Þ7=2þ,

Σð2265Þ5=2− andΛð1890Þ3=2þ resonances were identified
to be the most relevant ones to reproduce the data. There,
only the above-threshold four-star hyperon resonances
were considered initially, in addition to the three-star
resonance Σð2265Þ5=2−. Then, considering many possible
combinations of these resonances, it has been found that
the above mentioned three resonances were needed to
reproduce the data. In the present analysis, the blindfold
search for the above-threshold resonances based on the
LASSOþ BIC method, also finds these three resonances to
be required. However, in addition, the method finds seven
more resonances. Among these seven resonances, five are
rated one-star and two are rated four-star. The latter two
resonances, Σð1915Þ5=2þ and Λð2100Þ7=2−, which have
not been found in the analysis of Ref. [45], however, have
onlyminor influence and affect the overall χ2d:o:f: by less than
1.7% and 0.5%, respectively.
To close this section we re-iterate that the result of

finding ten relevant resonances depends on (a) the chosen
background and (b) whether or not the resonances masses
and widths were held constant at their initial values. Choice
(a) ensures that results are comparable to Ref. [45] but is, of
course, not unique. Restriction (b) is owed to the sparse

data for the K−p → KΞ reaction. In general, model
selection cannot fully address the bias-variance tradeoff
that depends on the flexibility of the background para-
metrization (see also Ref. [39]).

IV. CONCLUSION

Many theory approaches rely on the correct deter-
mination of the resonance spectrum from experiment.
The least absolute shrinkage and selection operator
(LASSO) produces, for each penalty λ, a model with
minimal resonance content. As the penalty is convex,
the automatized method tests not only resonance by
resonance but also combinations thereof—something
that cannot be fully achieved manually. Using synthetic
data and criteria from information theory, we have
tested forward and backward selection as well as
different kinds of penalties. At the given data precision,
most variants were able to reproduce the spectrum.
Forward selection also provides an efficient way of
finding good local minima for this nonlinear optimiza-
tion problem.
LASSO was then applied to real data of the reac-

tion K−p → KΞ. After pruning the data in a self-consistent
way to remove outliers, a clear minimum in the Bayesian
information criterion (BIC) was found, leading to the
selection of 10 out of 21 resonances. Remarkably, a
minimum in BIC forms even if the χ2 is not good
(χ2d:o:f: ≈ 2.3), i.e., the method seems to be robust.
However, while LASSO is a useful tool for model
selection, it does not solve the bias-variance problem
regarding the parametrization of the background; the
challenge persists to construct a parametrization that
fulfills as many S-matrix properties as possible to
constrain the amplitude. As an outlook, further testing
regarding the impact of systematic uncertainties is
advisable as well as the testing of further variants of
LASSO versions in connection with stability selection
[131] to attach probabilities to resonance signals.
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TABLE II. Effects of individual resonances on χ2d:o:f:
corresponding to Fig. 8. The third column shows the χ2d:o:f:
obtained when the corresponding resonance is switched off.
δχ2 ≡ ðχ2 − χ2fullÞ=χ2, χ2full ¼ 2.25.

resonance switched off rating χ2d:o:f: δχ2ð%Þ
none (full result) � � � 2.25 � � �
Σð2030Þ7=2þ **** 5.59 59.76
Σð1940Þ3=2þ * 2.49 9.60
Σð2100Þ7=2− * 2.46 8.36
Λð2020Þ7=2þ * 2.41 6.63
Σð1840Þ3=2þ * 2.41 6.52
Λð1890Þ3=2þ **** 2.40 6.18
Σð2265Þ5=2− *** 2.35 4.37
Σð2070Þ5=2þ * 2.33 3.36
Σð1915Þ5=2þ **** 2.29 1.69
Λð2100Þ7=2− **** 2.26 0.48
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APPENDIX A: OBSERVABLES

For completeness, the observables in terms of
partial-wave amplitudes τ from Eq. (1) are quoted.
The differential cross section dσ=dΩ and polarization
P ≔ jP⃗fj for an unpolarized target P⃗i ¼ 0 are given by

dσ
dΩ

¼ ðjgj2 þ jhj2Þ kf
ki

and P
dσ
dΩ

¼ kf
ki

ðgh� þ g�hÞ;

ðA1Þ

where ki=f denotes the magnitude of the initial/final
state three-momentum, respectively. The spin-non-flip
and spin-flip amplitudes gI and hI for the total Isospin
I ¼ 0 and I ¼ 1 of the reaction K̄N → KΞ can be
expressed as an expansion in pertinent partial-wave
amplitudes (τJ�I ) with respect to the total (J) and orbital
angular momentum L where the � superscript corre-
sponds to L ¼ J � 1=2:

gI ¼
XJmax

J¼1=2

ð2J þ 1Þ
2

ffiffiffiffiffiffiffiffiffi
kfki

p
�
dJ1

2
1
2

ðθÞ cos
�
θ

2

�
ðτJ−I þ τJþI Þ þ dJ−1

2
1
2

ðθÞ sin
�
θ

2

�
ðτJ−I − τJþI Þ

�
;

hI ¼ −i
XJmax

J¼1=2

ð2J þ 1Þ
2

ffiffiffiffiffiffiffiffiffi
kfki

p
�
dJ1

2
1
2

ðθÞ sin
�
θ

2

�
ðτJ−I þ τJþI Þ − dJ−1

2
1
2

ðθÞ cos
�
θ

2

�
ðτJ−I − τJþI Þ

�
:

The series is truncated at the maximal angular momentum Jmax ¼ 5
2
for the analysis of synthetic data (Sec. II) and

Jmax ¼ 7
2
for the real data (Sec. III).

APPENDIX B: SYNTHETIC DATA

Figures 9–11 show the synthetic data produced from the partial-waves in Fig. 1 as described in the Sec. II A.

2000 2500 3000
0

200

400

600

800

1000

1200

W [MeV]

σ
[ µ

b]

2000 2500 3000
0

200

400

600

800

1000

1200

W [MeV]

FIG. 9. Synthetic data (blue dots with error bars) for the total cross sections for the reaction K−p → KþΞ− (left) and K−p → K0Ξ0

(right). The generating function is shown in red, while the gray vertical lines depict the resonance masses.

J. LANDAY et al. PHYS. REV. D 99, 016001 (2019)

016001-14



1 2 3
0

100

200

300

400

θ [rad]

d
/d

[µ
b/

sr
] W = 2583.96 MeV

0
10
20
30
40
50
60

d
/d

[µ
b/

sr
] W = 2359.96 MeV

0
10
20
30
40
50

d
/d

[µ
b/

sr
] W = 2135.96 MeV

0
20
40
60
80

100
120
140

d
/d

[µ
b/

sr
] W = 1911.96 MeV

1 2 3

θ [rad]

W = 2611.96 MeV

W = 2387.96 MeV

W = 2163.96 MeV

W = 1939.96 MeV

1 2 3

θ [rad]

W = 2639.96 MeV

W = 2415.96 MeV

W = 2191.96 MeV

W = 1967.96 MeV

1 2 3

θ [rad]

W = 2667.96 MeV

W = 2443.96 MeV

W = 2219.96 MeV

W = 1995.96 MeV

1 2 3

θ [rad]

W = 2695.96 MeV

W = 2471.96 MeV

W = 2247.96 MeV

W = 2023.96 MeV

1 2 3

θ [rad]

W = 2723.96 MeV

W = 2499.96 MeV

W = 2275.96 MeV

W = 2051.96 MeV

1 2 3

θ [rad]

W = 2751.96 MeV

W = 2527.96 MeV

W = 2303.96 MeV

W = 2079.96 MeV

1 2 3

θ [rad]

W = 2779.96 MeV

W = 2555.96 MeV

W = 2331.96 MeV

W = 2107.96 MeV

1 2 3

–40
–20

0
20
40
60

[rad]

P
dσ

/d
[µ

b/
sr

] W = 2359.96 MeV
–40

–20

0

20

40

P
d

/d
[µ

b/
sr

] W = 1911.96 MeV

1 2 3

[rad]

W = 2415.96 MeV

W = 1967.96 MeV

1 2 3

[rad]

W = 2471.96 MeV

W = 2023.96 MeV

1 2 3

[rad]

W = 2527.96 MeV

W = 2079.96 MeV

1 2 3

[rad]

W = 2583.96 MeV

W = 2135.96 MeV

1 2 3

[rad]

W = 2639.96 MeV

W = 2191.96 MeV

1 2 3

[rad]

W = 2695.96 MeV

W = 2247.96 MeV

1 2 3

[rad]

W = 2751.96 MeV

W = 2303.96 MeV

FIG. 10. Synthetic data for the differential cross sections (top) and polarizations (bottom) for the reaction K−p → KþΞ− depicted by
blue dots with error bars. The generating function is shown by the red lines.

TOWARDS THE MINIMAL SPECTRUM OF EXCITED BARYONS PHYS. REV. D 99, 016001 (2019)

016001-15



[1] M. Ronniger and B. C. Metsch, Eur. Phys. J. A 47, 162
(2011).

[2] J. Ferretti, A. Vassallo, and E. Santopinto, Phys. Rev. C 83,
065204 (2011).

[3] L. Ya.Glozman andD. O.Riska, Phys.Rep.268, 263 (1996).
[4] R. Bijker, F. Iachello, and A. Leviatan, Ann. Phys. (N.Y.)

236, 69 (1994).

[5] S. Capstick and N. Isgur, Phys. Rev. D 34, 2809 (1986);
AIP Conf. Proc. 132, 267 (1985).

[6] R. G. Edwards, N. Mathur, D. G. Richards, and S. J.
Wallace (Hadron Spectrum Collaboration), Phys. Rev. D
87, 054506 (2013).

[7] G. P. Engel, C. B. Lang, D. Mohler, and A. Schäfer (BGR
Collaboration), Phys. Rev. D 87, 074504 (2013).

1 2 3
0

50

100

150

200

250

[rad]

d
/d

[µ
b/

sr
]

W = 2583.96 MeV

50

100

d
/d

[µ
b/

sr
] W = 2359.96 MeV

0

20

40

60

80

d
/d

[µ
b/

sr
] W = 2135.96 MeV

0
20
40
60
80

100
d

/d
[µ

b/
sr

] W = 1911.96 MeV

1 2 3

[rad]

W = 2611.96 MeV

W = 2387.96 MeV

W = 2163.96 MeV

W = 1939.96 MeV

1 2 3

[rad]

W = 2639.96 MeV

W = 2415.96 MeV

W = 2191.96 MeV

W = 1967.96 MeV

1 2 3

[rad]

W = 2667.96 MeV

W = 2443.96 MeV

W = 2219.96 MeV

W = 1995.96 MeV

1 2 3

[rad]

W = 2695.96 MeV

W = 2471.96 MeV

W = 2247.96 MeV

W = 2023.96 MeV

1 2 3

[rad]

W = 2723.96 MeV

W = 2499.96 MeV

W = 2275.96 MeV

W = 2051.96 MeV

1 2 3

[rad]

W = 2751.96 MeV

W = 2527.96 MeV

W = 2303.96 MeV

W = 2079.96 MeV

1 2 3

[rad]

W = 2779.96 MeV

W = 2555.96 MeV

W = 2331.96 MeV

W = 2107.96 MeV

1 2 3

–30
–20
–10

0
10
20
30

[rad]

P
d

/d
[µ

b/
sr

] W = 2359.96 MeV

–20

0

20

40

P
d

/d
[µ

b/
sr

] W = 1911.96 MeV

1 2 3

[rad]

W = 2415.96 MeV

W = 1967.96 MeV

1 2 3

[rad]

W = 2471.96 MeV

W = 2023.96 MeV

1 2 3

[rad]

W = 2527.96 MeV

W = 2079.96 MeV

1 2 3

[rad]

W = 2583.96 MeV

W = 2135.96 MeV

1 2 3

[rad]

W = 2639.96 MeV

W = 2191.96 MeV

1 2 3

[rad]

W = 2695.96 MeV

W = 2247.96 MeV

1 2 3

[rad]

W = 2751.96 MeV

W = 2303.96 MeV

150

40

0

FIG. 11. Synthetic data for the differential cross sections (top) and polarizations (bottom) for the reaction K−p → K0Ξ0 depicted by
blue dots with error bars. The generating function is shown by the red lines.

J. LANDAY et al. PHYS. REV. D 99, 016001 (2019)

016001-16

https://doi.org/10.1140/epja/i2011-11162-8
https://doi.org/10.1140/epja/i2011-11162-8
https://doi.org/10.1103/PhysRevC.83.065204
https://doi.org/10.1103/PhysRevC.83.065204
https://doi.org/10.1016/0370-1573(95)00062-3
https://doi.org/10.1006/aphy.1994.1108
https://doi.org/10.1006/aphy.1994.1108
https://doi.org/10.1103/PhysRevD.34.2809
https://doi.org/10.1063/1.35361
https://doi.org/10.1103/PhysRevD.87.054506
https://doi.org/10.1103/PhysRevD.87.054506
https://doi.org/10.1103/PhysRevD.87.074504


[8] G. P. Engel, C. B. Lang, M. Limmer, D. Mohler, and A.
Schafer (BGR Collaboration), Phys. Rev. D 82, 034505
(2010).

[9] C. Chen, B. El-Bennich, C. D. Roberts, S. M. Schmidt, J.
Segovia, and S. Wan, Phys. Rev. D 97, 034016 (2018).

[10] G. Eichmann, C. S. Fischer, and H. Sanchis-Alepuz,
Phys. Rev. D 94, 094033 (2016).

[11] Y. Lu, C. Chen, C. D. Roberts, J. Segovia, S.-S. Xu, and
H.-S. Zong, Phys. Rev. C 96, 015208 (2017).

[12] G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer,
and C. S. Fischer, Prog. Part. Nucl. Phys. 91, 1 (2016).

[13] D. Sadasivan, M. Mai, and M. Döring, arXiv:1805.04534.
[14] P. C. Bruns, M. Mai, and U.-G. Meißner, Phys. Lett. B 697,

254 (2011).
[15] A. Martinez Torres, K. P. Khemchandani, U.-G. Meißner,

and E. Oset, Eur. Phys. J. A 41, 361 (2009).
[16] M. Döring, Nucl. Phys. A786, 164 (2007).
[17] M. Döring, E. Oset, and D. Strottman, Phys. Rev. C 73,

045209 (2006).
[18] A. Pilloni, C. Fernandez-Ramirez, A. Jackura, V. Mathieu,

M. Mikhasenko, J. Nys, and A. P. Szczepaniak (JPAC
Collaboration), Phys. Lett. B 772, 200 (2017).

[19] D. Samart, W.-H. Liang, and E. Oset, Phys. Rev. C 96,
035202 (2017).

[20] V. R. Debastiani, S. Sakai, and E. Oset, Phys. Rev. C 96,
025201 (2017).

[21] J. Nys, T. Vrancx, and J. Ryckebusch, J. Phys. G 42,
034016 (2015).

[22] Y. Wunderlich, R. Beck, and L. Tiator, Phys. Rev. C 89,
055203 (2014).

[23] R. L. Workman, Phys. Rev. C 83, 035201 (2011).
[24] A. M. Sandorfi, S. Hoblit, H. Kamano, and T. S. H. Lee,

J. Phys. G 38, 053001 (2011).
[25] Y. Wunderlich, A. Švarc, R. L. Workman, L. Tiator, and R.

Beck, Phys. Rev. C 96, 065202 (2017).
[26] R. L. Workman, L. Tiator, Y. Wunderlich, M. Döring, and

H. Haberzettl, Phys. Rev. C 95, 015206 (2017).
[27] R. L. Workman, M.W. Paris, W. J. Briscoe, and I. I.

Strakovsky, Phys. Rev. C 86, 015202 (2012).
[28] R. L. Workman, R. A. Arndt, W. J. Briscoe, M.W. Paris,

and I. I. Strakovsky, Phys. Rev. C 86, 035202 (2012).
[29] L. Tiator,M.Döring,R. L.Workman,M.Hadžimehmedović,

H. Osmanović, R. Omerović, J. Stahov, and A. Švarc,
Phys. Rev. C 94, 065204 (2016).

[30] R. A. Arndt, W. J. Briscoe, I. I. Strakovsky, and R. L.
Workman, Phys. Rev. C 74, 045205 (2006).

[31] R. A. Arndt, Y. I. Azimov, M. V. Polyakov, I. I. Strakovsky,
and R. L. Workman, Phys. Rev. C 69, 035208 (2004).

[32] Y. I. Azimov, R. A. Arndt, I. I. Strakovsky, and R. L.
Workman, Phys. Rev. C 68, 045204 (2003).

[33] A. V. Anisovich, V. Burkert, J. Hartmann, E. Klempt, V. A.
Nikonov, E. Pasyuk, A. V. Sarantsev, S. Strauch, and U.
Thoma,Phys. Lett. B 766, 357 (2017).

[34] L.WilkinsonandG. E.Dallal, Technometrics23, 377 (1981).
[35] L. De Cruz, J. Ryckebusch, T. Vrancx, and P. Vancraeyveld,

Phys. Rev. C 86, 015212 (2012).
[36] L. De Cruz, T. Vrancx, P. Vancraeyveld, and J. Ryckebusch,

Phys. Rev. Lett. 108, 182002 (2012).
[37] J. Nys, J. Ryckebusch, D. G. Ireland, and D. I. Glazier,

Phys. Lett. B 759, 260 (2016).

[38] B. Guegan, J. Hardin, J. Stevens, and M. Williams,
J. Instrum. 10, P09002 (2015).

[39] M. Williams, J. Instrum. 12, P09034 (2017).
[40] R. Tibshirani, J. R. Stat. Soc. 73, 273 (2011).
[41] T. Hastie, R. Tibshirani, and J. Friedman, The Elements

of Statistical Learning: Data Mining, Inference, and
Prediction (Springer, New York, 2009).

[42] G. James, D. Witten, T. Hastie, and R. Tibshirani, An
Introduction to Statistical Learning: With Applications in
R (Springer, New York, 2013).

[43] J. Landay, M. Döring, C. Fernández-Ramírez, B. Hu, and
R. Molina, Phys. Rev. C 95, 015203 (2017).

[44] Y. Wunderlich, F. Afzal, A. Thiel, and R. Beck, Eur. Phys.
J. A 53, 86 (2017).

[45] B. C. Jackson, Y. Oh, H. Haberzettl, and K. Nakayama,
Phys. Rev. C 91, 065208 (2015).

[46] A. Jackura et al. (JPAC and COMPASS Collaborations),
Phys. Lett. B 779, 464 (2018).

[47] D. Molina, M. De Sanctis, and C. Fernandez-Ramirez,
Phys. Rev. D 95, 094021 (2017).

[48] M. Mai, B. Hu, M. Doring, A. Pilloni, and A. Szczepaniak,
Eur. Phys. J. A 53, 177 (2017).

[49] H. Kamano, S. X. Nakamura, T. S. H. Lee, and T. Sato,
Phys. Rev. D 84, 114019 (2011).

[50] A. V. Anisovich, R. Beck, E. Klempt, V. A. Nikonov, A. V.
Sarantsev, and U. Thoma, Eur. Phys. J. A 48, 15 (2012).

[51] P. Collins et al., Phys. Lett. B 771, 213 (2017).
[52] A. V. Anisovich et al., Eur. Phys. J. A 53, 242 (2017).
[53] H. Kamano, S. X. Nakamura, T. S. H. Lee, and T. Sato,

Phys. Rev. C 88, 035209 (2013).
[54] H. Kamano, S. X. Nakamura, T. S. H. Lee, and T. Sato,

Phys. Rev. C 90, 065204 (2014).
[55] H. Kamano, S. X. Nakamura, T. S. H. Lee, and T. Sato,

Phys. Rev. C 92, 025205 (2015); 95, 049903(E) (2017).
[56] D. Rönchen, M. Döring, H. Haberzettl, J. Haidenbauer,

U.-G. Meißner, and K. Nakayama, Eur. Phys. J. A 51, 70
(2015).

[57] D. Rönchen, M. Döring, F. Huang, H. Haberzettl, J.
Haidenbauer, C. Hanhart, S. Krewald, U.-G. Meißner,
and K. Nakayama, Eur. Phys. J. A 50, 101 (2014); 51, 63(E)
(2015).

[58] D. Rönchen, M. Döring, F. Huang, H. Haberzettl, J.
Haidenbauer, C. Hanhart, S. Krewald, U.-G. Meißner,
and K. Nakayama, Eur. Phys. J. A 49, 44 (2013).

[59] M. Shrestha and D.M. Manley, Phys. Rev. C 86, 055203
(2012).

[60] H. Zhang, J. Tulpan, M. Shrestha, and D. M. Manley,
Phys. Rev. C 88, 035205 (2013).

[61] H. Zhang, J. Tulpan, M. Shrestha, and D. M. Manley,
Phys. Rev. C 88, 035204 (2013).

[62] S. S. Kamalov, S. N. Yang, D. Drechsel, O. Hanstein, and
L. Tiator, Phys. Rev. C 64, 032201 (2001).

[63] W.-T. Chiang, S. N. Yang, L. Tiator, M. Vanderhaeghen,
and D. Drechsel, Phys. Rev. C 68, 045202 (2003).

[64] L. Tiator, S. S. Kamalov, S. Ceci, G. Y. Chen, D. Drechsel,
A. Svarc, and S. N. Yang, Phys. Rev. C 82, 055203 (2010).

[65] D. Drechsel, O. Hanstein, S. S. Kamalov, and L. Tiator,
Nucl. Phys. A645, 145 (1999).

[66] D. Drechsel, S. S. Kamalov, and L. Tiator, Eur. Phys. J. A
34, 69 (2007).

TOWARDS THE MINIMAL SPECTRUM OF EXCITED BARYONS PHYS. REV. D 99, 016001 (2019)

016001-17

https://doi.org/10.1103/PhysRevD.82.034505
https://doi.org/10.1103/PhysRevD.82.034505
https://doi.org/10.1103/PhysRevD.97.034016
https://doi.org/10.1103/PhysRevD.94.094033
https://doi.org/10.1103/PhysRevC.96.015208
https://doi.org/10.1016/j.ppnp.2016.07.001
http://arXiv.org/abs/1805.04534
https://doi.org/10.1016/j.physletb.2011.02.008
https://doi.org/10.1016/j.physletb.2011.02.008
https://doi.org/10.1140/epja/i2009-10834-2
https://doi.org/10.1016/j.nuclphysa.2007.02.004
https://doi.org/10.1103/PhysRevC.73.045209
https://doi.org/10.1103/PhysRevC.73.045209
https://doi.org/10.1016/j.physletb.2017.06.030
https://doi.org/10.1103/PhysRevC.96.035202
https://doi.org/10.1103/PhysRevC.96.035202
https://doi.org/10.1103/PhysRevC.96.025201
https://doi.org/10.1103/PhysRevC.96.025201
https://doi.org/10.1088/0954-3899/42/3/034016
https://doi.org/10.1088/0954-3899/42/3/034016
https://doi.org/10.1103/PhysRevC.89.055203
https://doi.org/10.1103/PhysRevC.89.055203
https://doi.org/10.1103/PhysRevC.83.035201
https://doi.org/10.1088/0954-3899/38/5/053001
https://doi.org/10.1103/PhysRevC.96.065202
https://doi.org/10.1103/PhysRevC.95.015206
https://doi.org/10.1103/PhysRevC.86.015202
https://doi.org/10.1103/PhysRevC.86.035202
https://doi.org/10.1103/PhysRevC.94.065204
https://doi.org/10.1103/PhysRevC.74.045205
https://doi.org/10.1103/PhysRevC.69.035208
https://doi.org/10.1103/PhysRevC.68.045204
https://doi.org/10.1016/j.physletb.2016.12.014
https://doi.org/10.1080/00401706.1981.10487682
https://doi.org/10.1103/PhysRevC.86.015212
https://doi.org/10.1103/PhysRevLett.108.182002
https://doi.org/10.1016/j.physletb.2016.05.069
https://doi.org/10.1088/1748-0221/10/09/P09002
https://doi.org/10.1088/1748-0221/12/09/P09034
https://doi.org/10.1111/j.1467-9868.2011.00771.x
https://doi.org/10.1103/PhysRevC.95.015203
https://doi.org/10.1140/epja/i2017-12255-0
https://doi.org/10.1140/epja/i2017-12255-0
https://doi.org/10.1103/PhysRevC.91.065208
https://doi.org/10.1016/j.physletb.2018.01.017
https://doi.org/10.1103/PhysRevD.95.094021
https://doi.org/10.1140/epja/i2017-12368-4
https://doi.org/10.1103/PhysRevD.84.114019
https://doi.org/10.1140/epja/i2012-12015-8
https://doi.org/10.1016/j.physletb.2017.05.045
https://doi.org/10.1140/epja/i2017-12443-x
https://doi.org/10.1103/PhysRevC.88.035209
https://doi.org/10.1103/PhysRevC.90.065204
https://doi.org/10.1103/PhysRevC.92.025205
https://doi.org/10.1103/PhysRevC.95.049903
https://doi.org/10.1140/epja/i2015-15070-7
https://doi.org/10.1140/epja/i2015-15070-7
https://doi.org/10.1140/epja/i2014-14101-3
https://doi.org/10.1140/epja/i2015-15063-6
https://doi.org/10.1140/epja/i2015-15063-6
https://doi.org/10.1140/epja/i2013-13044-5
https://doi.org/10.1103/PhysRevC.86.055203
https://doi.org/10.1103/PhysRevC.86.055203
https://doi.org/10.1103/PhysRevC.88.035205
https://doi.org/10.1103/PhysRevC.88.035204
https://doi.org/10.1103/PhysRevC.64.032201
https://doi.org/10.1103/PhysRevC.68.045202
https://doi.org/10.1103/PhysRevC.82.055203
https://doi.org/10.1016/S0375-9474(98)00572-7
https://doi.org/10.1140/epja/i2007-10490-6
https://doi.org/10.1140/epja/i2007-10490-6


[67] V. Shklyar, H. Lenske, and U. Mosel, Phys. Rev. C 93,
045206 (2016).

[68] X. Cao, V. Shklyar, and H. Lenske, Phys. Rev. C 88,
055204 (2013).

[69] T. Mart and S. Sakinah, Phys. Rev. C 95, 045205 (2017).
[70] C. Fernandez-Ramirez, I. V. Danilkin, D. M. Manley, V.

Mathieu, and A. P. Szczepaniak, Phys. Rev. D 93, 034029
(2016).

[71] S. Wesolowski, N. Klco, R. J. Furnstahl, D. R. Phillips, and
A. Thapaliya, J. Phys. G 43, 074001 (2016).

[72] R. J. Furnstahl, N. Klco, D. R. Phillips, and S. Wesolowski,
Phys. Rev. C 92, 024005 (2015).

[73] M. Mai and U.-G. Meißer, Nucl. Phys. A900, 51 (2013).
[74] D. Ruić, M. Mai, and U.-G. Meißner, Phys. Lett. B 704,

659 (2011).
[75] M. Mai, P. C. Bruns, B. Kubis, and U.-G. Meissner,

Phys. Rev. D 80, 094006 (2009).
[76] D. Agadjanov, M. Doring, M. Mai, U.-G. Meißner, and A.

Rusetsky, J. High Energy Phys. 06 (2016) 043.
[77] R. A. Briceno, J. J. Dudek, R. G. Edwards, and D. J.

Wilson, Phys. Rev. D 97, 054513 (2018).
[78] Z.-H. Guo, L. Liu, U.-G. Meißner, J. A. Oller, and A.

Rusetsky, Phys. Rev. D 95, 054004 (2017).
[79] D. J. Wilson, R. A. Briceno, J. J. Dudek, R. G. Edwards,

and C. E. Thomas, Phys. Rev. D 92, 094502 (2015).
[80] M. Döring, M. Mai, and U.-G. Meißner, Phys. Lett. B 722,

185 (2013).
[81] M. Döring, J. Haidenbauer, U.-G. Meißner, and A.

Rusetsky, Eur. Phys. J. A 47, 163 (2011).
[82] M. Mai and M. Döring, arXiv:1807.04746.
[83] M. Döring, H.-W. Hammer, M. Mai, J.-Y. Pang, A.

Rusetsky, and J. Wu, Phys. Rev. D 97, 114508 (2018).
[84] M. Mai and M. Döring, Eur. Phys. J. A 53, 240 (2017).
[85] R. A. Briceno, J. J. Dudek, R. G. Edwards, and D. J.

Wilson, Phys. Rev. Lett. 118, 022002 (2017).
[86] H.-W. Hammer, J.-Y. Pang, and A. Rusetsky, J. High

Energy Phys. 10 (2017) 115.
[87] H.-W. Hammer, J.-Y. Pang, and A. Rusetsky, J. High

Energy Phys. 09 (2017) 109.
[88] M. Döring, C. Hanhart, F. Huang, S. Krewald, and U. G.

Meißner, Nucl. Phys. A829, 170 (2009).
[89] S. Ceci, M. Döring, C. Hanhart, S. Krewald, U. G.

Meißner, and A. Svarc, Phys. Rev. C 84, 015205 (2011).
[90] M. Döring, C. Hanhart, F. Huang, S. Krewald, and U.-G.

Meißner, Phys. Lett. B 681, 26 (2009).
[91] R. Tibshirani, J. R. Stat. Soc. Ser. B 58, 267 (1996).
[92] G. Schwarz, Ann. Stat. 6, 461 (1978).
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