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Three-Higgs-doublet models (3HDM) allow for a novel, physically distinct form of CP invariance: CP
symmetry of order 4 (CP4). Due to the large basis change freedom in 3HDM, it is imperative to recognize
the presence of a possibly hidden CP4 in a basis-invariant way. In the present work, we solve this problem
and establish basis-invariant necessary and sufficient conditions for a 3HDM to possess a CP4 symmetry.
We also derive a basis-invariant criterion to decide whether or not a CP4 symmetric 3HDM possesses any
additional CP symmetry, as well as a criterion to decide whether or not CP4 is spontaneously broken.
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I. INTRODUCTION

There has been great interest in the CP properties of
models with extended scalar sectors, because they are
related to two fundamental issues in particle physics.
First, concerning the observed excess of matter over
antimatter; one of the most important open problems in
physics. Explaining it through baryogenesis requires the
fulfillment of the three Sakharov conditions [1]: violation
of baryon number; violation of the C and CP symmetries;
and interactions out of thermal equilibrium. In principle,
these conditions could have been met at the electroweak
phase transition of the Standard Model (SM).
Unfortunately, in the SM, the phase transition is ineffective
and the CP-violation parameter is far too small—see, e.g.,
[2,3]. In contrast, even simple extensions of the scalar
sector allow for baryogenesis at the electroweak phase
transition [4]. Second, experiments at CERN’s LHC have
identified a fundamental scalar: the Higgs boson [5,6].
Given the generation nature of the fermion sector, the next

important question is how many fundamental scalars there
are. These two open questions place the study of the CP
properties of N Higgs doublet models (NHDM) at the
center of current research, for a recent review see [7].
The study of CP violation in the scalar sector has a long

history, starting with T.D. Lee’s suggestion that CP might
be conserved at the Lagrangian level, but broken sponta-
neously by the vacuum [8]. This was achieved in a simple
two Higgs doublet model (2HDM). Since the late 2000s,
there exists a classification of all 2HDM models which can
arise from a symmetry, their vacua, and their CP properties
[9–16]. In the 2HDM with doublets ϕa, a ¼ 1, 2, any
model with a symmetry among the scalars is automatically
invariant under a CP symmetry which, in a suitable basis,
takes the canonical form1:

ϕa ⟶
CP

ϕ�
a; ð1Þ

Clearly, this CP transformation has the property that, when
applied twice, it produces the identity transformation,
ðCPÞ2 ¼ 1. This means that this is a transformation of
order 2, and it remains so in any other basis, even though
the transformation law may differ from (1). We designate
CP transformations of order 2 by CP2. Moreover, a model
obeys CP2 if and only if there is a basis where all
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1Here and in the following we suppress the transformation of
the space-time argument, which transforms in the usual way
ðx0; x⃗Þ⟶CP ðx0;−x⃗Þ for CP transformations of any order.

PHYSICAL REVIEW D 99, 015039 (2019)

2470-0010=2019=99(1)=015039(17) 015039-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.015039&domain=pdf&date_stamp=2019-01-30
https://doi.org/10.1103/PhysRevD.99.015039
https://doi.org/10.1103/PhysRevD.99.015039
https://doi.org/10.1103/PhysRevD.99.015039
https://doi.org/10.1103/PhysRevD.99.015039
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


parameters of the potential are real (the so-called real basis,
which is exactly the basis where (1) holds) [17,18].
The simplest symmetries one can apply to the generic

NHDM are family (also called Higgs-flavor) symmetries

ϕa → Sabϕb; ð2Þ

and generalized CP symmetries (GCP),

ϕa⟶
CP

Xabϕ
�
b; ð3Þ

where a; b ¼ 1;…; N, and S and X are generic unitary
matrices. Generalized CP symmetries appeared in [19].
Their explicit application for the quark sector appeared in
[20], and GCP in the scalar sector was initially explored by
the Vienna group in [21–23].
The form of S in Eq. (2) is basis-dependent and, through

a suitable basis change, it can be simplified into a diagonal
matrix with phases along the diagonal; ϕa → eiαaϕa.
Similarly, the form of X is basis-dependent and can be
simplified by a basis change to a block-diagonal form
[24,25], which has on the diagonal either pure phase factors
or 2 × 2 matrices of the following type2:

�
cα sα
−sα cα

�
as in Ref: ½24�;

or

�
0 eiα

e−iα 0

�
as in Ref: ½25�: ð4Þ

Not all matrices X can be related by a basis-change, though.
Applying a generalized CP-symmetry twice, one ends up
with a family transformation with the matrix XX�, which is
not necessarily equal to the identity matrix. In fact, it may
happen that one would need to apply the CP transformation
k > 2 times to arrive at the identity transformation. The
minimal number k required for that is called the order of the
transformation. We will denote a CP symmetry of order k
as CPk.
Of course, one can combine several family symmetries

into non-Abelian groups, combine several CP symmetries,
or combine family and CP symmetries. Then, typically
only one of the generators can be written in the simplified
form, and the others generally cannot. Models with 2 Higgs
doublets have two interesting characteristics [9,11,14]:
(i) there are only 6 classes of models one can obtain
with symmetries; (ii) all classes obey the usual CP2
symmetry. In particular, applying CPk to the 2HDM one
obtains a model which could have been obtained by
applying CP2 and some other symmetries. Said otherwise,

in the symmetry-constrained 2HDM classes, there is
always a real basis.
The interesting result of [18] is that this is no longer the

case in the 3HDM. Indeed, one can build a CP4 3HDM
potential which has physical CP symmetry, yet complex
phases that cannot be removed by any basis change.
Thus, this model satisfies CP4, but not CP2. The classi-
fication of abelian symmetry groups in the 3HDM was
obtained in [26,27], while the classification of all 3HDM
symmetry-constrained models was performed in [28,29].
Extensions to the 3HDM with Yukawa interactions appear
in [30,31].
Identification of the symmetry-constrained potentials,

their vacua, symmetry breaking, and CP properties is
difficult when working directly with the scalar fields ϕa.
Such studies are much simpler using the bilinear formal-
ism, which we introduce in Sec. II. This formalism
appeared first in the context of the 2HDM in [32] and
[9–13], but it was immediately extended to the NHDM,
e.g., in [32], in Appendix B of [10], and in [33–40]. In
Sec. III we present the impact of CPk symmetries on the
3HDM. In Sec. IV we introduce the notion of complete
alignment in the adjoint space, and show that only few
symmetry-constrained 3HDMs exhibit this property. We
also discuss there what else, in addition to the complete
alignment, is needed to tell CP4 from other symmetry-
based situations. Building on these observations, we
present in Sec. V our main result: the basis-invariant
necessary and sufficient conditions for the presence of
CP symmetry of order 4, in the context of the 3HDM. In
the following section we discuss additional basis-invariant
properties that a CP4-symmetric 3HDM must satisfy in
order to guarantee the absence of accidental symmetries, as
well as a basis-invariant condition for detecting the sponta-
neous breaking of CP4 symmetry. Then we draw our
conclusions. The appendices contain a description of the
symmetry-constrained 3HDM based on CP4, CP4 accom-
panied with CP2, S3, D4 and Oð2Þ.

II. BILINEAR FORMALISM

A. Orbit space

Let us start with a brief recapitulation of the bilinear
formalism, with specific application to 3HDM [35,39]. We
work with N ¼ 3Higgs doublets ϕa, a ¼ 1, 2, 3, all having
the same electroweak quantum numbers. The most general
renormalizable 3HDMpotential can be compactlywritten as

V ¼ Yabðϕ†
aϕbÞ þ Zabcdðϕ†

aϕbÞðϕ†
cϕdÞ: ð5Þ

We construct the following 1þ 8 gauge-invariant bilinear
combinations ðr0; riÞ:

r0 ¼
1ffiffiffi
3

p ϕ†
aϕa; ri ¼ ϕ†

aðtiÞabϕb; i¼ 1;…;8: ð6Þ
2The crux is that, under a unitary basis change of ϕa → ϕ0

a ¼
Uabϕb, one has X → X0 ¼ UXUT (not UXU†). Therefore, only
symmetric matrices XT ¼ X may be completely diagonalized.
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Here, ti ¼ λi=2 are generators of the SUð3Þ algebra
satisfying

½ti; tj� ¼ ifijktk; and fti; tjg ¼ 1

3
δij13 þ dijktk; ð7Þ

with the SUð3Þ structure constants fijk and the fully
symmetricSUð3Þ invariant tensordijk.With the usual choice
of basis for the Gell-Mann matrices λi, these have the
nonzero components

f123¼ 1; f147¼−f156¼f246¼f257¼f345¼−f367¼
1

2
;

f458¼f678¼
ffiffiffi
3

p

2
; ð8Þ

as well as

d146 ¼ d157 ¼ −d247 ¼ d256 ¼
1

2
;

d344 ¼ d355 ¼ −d366 ¼ −d377 ¼
1

2
;

d118 ¼ d228 ¼ d338 ¼ −d888 ¼
1ffiffiffi
3

p ;

d448 ¼ d558 ¼ d668 ¼ d778 ¼ −
1

2
ffiffiffi
3

p : ð9Þ

Group-theoretically, r0 is anSUð3Þ singlet and ri realizes the
adjoint representation of SUð3Þ. The coefficient in the
definition of r0 is not fixed by this construction. We use
here the definition borrowed from [35] but alternative
normalization factors are possible [39]. The exact choice
is inessential here. In the Gell-Mann basis, the bilinears ri
have the following form:

r1þ ir2¼ϕ†
1ϕ2; r4þ ir5¼ϕ†

1ϕ3; r6þ ir7¼ϕ†
2ϕ3;

r3¼
1

2
ðϕ†

1ϕ1−ϕ†
2ϕ2Þ;

r8¼
1

2
ffiffiffi
3

p ðϕ†
1ϕ1þϕ†

2ϕ2−2ϕ†
3ϕ3Þ: ð10Þ

The real vectors r obtained in this way do not fill the entire
real eight-dimensional space R8 (the adjoint space, whose
vectors will be denoted as x), but a 7D manifold in it, which
is called the orbit space. The points of this space are in one-
to-one correspondence with gauge orbits within the Higgs
fields space ϕa. Algebraically, the orbit space is defined by
the following (in)equalities [35]:

r0 ≥ 0; r20− r2i ≥ 0; dijkrirjrkþ
1

2
ffiffiffi
3

p r0ðr20−3r2i Þ ¼ 0:

ð11Þ
A basis change in the space of Higgs doublets ϕa → Uabϕb
withU ∈ SUð3Þ leaves r0 unchanged and induces an SOð8Þ

rotation of the vector ri. Not all SOð8Þ rotations can be
obtained in this way; they must conserve, in addi-
tion, dijkrirjrk.

B. Constructions in the adjoint space

The map from the gauge invariants ϕ†
aϕb to ri defined by

(6) is invertible. It can be used to link an arbitrary vector a
in the adjoint space R8 with a traceless Hermitian 3 × 3
matrix A via

A ¼ 2aiti; ð12Þ

so that

ai ¼ TrðAtiÞ: ð13Þ

When working in the adjoint space, one has at one’s
disposal three invariant tensors δij, fijk, and dijk, which
allow one to define SUð3Þ-invariant products. Since the
space R8 is in one-to-one correspondence with the space of
traceless Hermitian 3 × 3 matrices, we provide, for com-
pleteness, a brief “dictionary” between the two spaces:

ck ¼ 2fijkaibj ↔ C ¼ −i½A;B�; ð14Þ

dk ¼ 2dijkaibj ↔ D ¼ fA;Bg − 2

3
TrðABÞ13: ð15Þ

The main benefit of working in the adjoint space is that the
Higgs potential (5) is a quadratic form:

V ¼ M0r0 þMiri þ Λ0r20 þ Lir0ri þ Λijrirj: ð16Þ

There is a one-to-one map between the parameters Yab and
Zabcd of the original potential and the coefficients M0, Mi,
Λ0, Li, and Λij in the potential (16). All basis-invariant
structural properties of the 3HDM scalar sector are encoded
in the magnitudes and the relative orientations of the above
objects. It is this geometric picture that turned out to be
extremely revealing in the 2HDM [10–13].
The geometric content of Λ requires special attention.

Within the 2HDM, all rotations of the adjoint space R3 can
be realized as SUð2Þ transformations in the space of Higgs
doublets, that is, by Higgs-basis rotations. Therefore, the
real symmetric 3 × 3 matrix Λ can be always diagonalized
by an appropriate basis change. Thus, in such a basis,Λ can
always be specified based on its three eigenvalues.
In contrast, for a generic 3HDM it is generally not

possible to diagonalize the arbitrary symmetric matrix Λ by
a Higgs-basis change, simply because not all SOð8Þ
rotations of the adjoint space can be generated by SUð3Þ
Higgs-basis rotations. In addition, Λ of the 3HDM contains
a hidden vector which can be extracted by a contraction
with dijk. Group-theoretically, the 36 independent entries
of Λ transform as ð8 ⊗ 8ÞS, which decomposes into
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irreducible representations (irreps) as 1 ⊕ 8 ⊕ 27. The
projectors Pij

i0j0 onto these three irreps are

Pij
1 i0j0 ¼

1

8
δijδi0j0 ; Pij

8 i0j0 ¼
3

5
dijkdki0j0 ;

Pij
27i0j0 ¼

1

2
ðδii0δjj0 þ δij0δji0 Þ − Pij

1 i0j0 − Pij
8 i0j0 : ð17Þ

Thus, Ki ¼ dijkΛjk is a vector in the adjoint space which
transforms as an octet under SUð3Þ. It can happen that
dijkΛjk ¼ 0, in which case the octet is absent in this
decomposition. However, further octets can appear as
dijkðΛ2Þjk, or in higher powers p of Λ, dijkðΛpÞjk. Even
if all these octets vanish, Λ can contain nontrivial content
which can never be converted into a vector.
For later use, let us define several infinite series of

vectors in the adjoint space which can be constructed from
M, L, and Λ:

MðnÞ
i ≔ ðΛnÞijMj; LðnÞ

i ≔ ðΛnÞijLj ð18Þ

KðnÞ
i ≔ dijkðΛnÞjk; Kðm;nÞ

i ≔ ðΛmÞii0di0jkðΛnÞjk; ð19Þ

where integers n and m start from zero. Since they belong
to R8, only up to 8 among them can be linearly indepen-
dent. In specific symmetry-constrained cases, the number
of linearly independent vectors can be smaller. Finally,
using invariant tensors fijk and dijk, one can construct
further vectors.

C. Self-alignment of x8
Consider a vector a in the adjoint space. Its corresponding

Hermitian matrix A can always be diagonalized by a basis
change in the fundamental space, which, back in the adjoint
space, implies that a is brought to the ðx3; x8Þ subspace.
Now consider the star product based on dijk which is

defined by

ða; bÞ ↦ ða � bÞi ≔
ffiffiffi
3

p
dijkajbk: ð20Þ

Remarkably, the star product preserves the ðx3; x8Þ sub-
space via a nonlinear action. That is, if vectors a and b have
nonzero components only in the ðx3; x8Þ subspace, the
same is true for c ¼ a � b, as can easily be verified using
the explicit components of dijk listed in (9).
Here, we use the star product to define the self-alignment

property of a vector a. Having rotated a to the ðx3; x8Þ
subspace, one finds that also c ¼ a � a lies in the same
subspace with components

c3 ¼ 2a3a8; c8 ¼ a23 − a28: ð21Þ

In the polar coordinates on the ðx3; x8Þ plane, this action
preserves the norm of unit vectors and acts on the angular

variable as α ↦ π=2 − 2α. Hence, the three directions
α ¼ π=2, π=6, and 5π=6 are stable under this action
(cf. [35] for more details on this construction). The first
direction corresponds to a being aligned with x8, while the
other two directions can be brought to this form by an
allowed basis change in the fundamental space (cyclic
permutation of three doublets).
Let us denote the property of a direction being stable

under the action of � as self-alignment. We conclude that if
a vector a enjoys the self-alignment property, which can be
checked in any basis, then there exists a Higgs-basis in
which a is aligned with the direction x8.

III. FORMS OF CP-SYMMETRY IN 3HDM

Recall that a general CP transformation in NHDM acts
on the Higgs doublets as ϕa⟶

CP Xabϕ
�
b, with a unitary

matrix X. Focusing specifically on the 3HDM scalar
sector, one can classify all CP transformations into four
kinds. Each kind leads to models with different symmetry
content.

A. CP2

If the CP transformation is of order 2 (XX� ¼ 1), then
there exists a basis (called the real basis) in which X is the
unit matrix. In this basis, the CP transformation takes the
standard form: ϕa⟶

CP ϕ�
a. The necessary and sufficient

condition for the potential (5) to be explicitly CP2-
conserving is that there is a basis in which all coupling
coefficients are real.
In the adjoint space, the standard CP transformation

leaves invariant all vectors in the 5D subspace Vþ ¼
ðx3; x8; x1; x4; x6Þ and flips the sign of all vectors in
the 3D subspace V− ¼ ðx2; x5; x7Þ. Therefore, a 3HDM
potential is explicitly CP2-invariant if and only if there
exists a basis in which the vectors M, L ∈ Vþ and Λ is
block-diagonal with a 5 × 5 block in Vþ and a 3 × 3 block
in V−.
The challenge then is to determine in a basis-invariant

way whether a given potential indeed has this form in some
basis. The necessary and sufficient basis-invariant algebraic
conditions for the existence of a real basis in the 3HDM
were formulated in [33] in terms of eigenvectors of the
matrix Λ.

B. CP4

A CP transformation of order 4 is a transformation
ϕa⟶

CP Xabϕ
�
b, whose matrix X, in an appropriate basis,

takes the form3

3Unlike in [18] and subsequent papers, here we assign the
diagonal entry to ϕ3 in accordance with Gell-Mann’s matrices λi,
which also single out the third component.
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X ¼

0
B@

0 1 0

−1 0 0

0 0 1

1
CA: ð22Þ

In this basis, CP4 acts on the adjoint space as

x8 → x8; ðx1; x2; x3Þ→ −ðx1; x2; x3Þ
x4 → x6; x6 → −x4; x5 → −x7; x7 → x5: ð23Þ

In other words, x8 stays unchanged, vectors in ðx1; x2; x3Þ
flip signs (notice that this space does not coincide with V−
of CP2), and vectors in ðx4; x6Þ and ðx5; x7Þ are rotated by
�π=2. For the potential to be CP4 invariant,M and L must
be aligned with x8, while Λ must have the block diagonal
form

Λ ¼

0
B@

□3×3 0 0

0 □4×4 0

0 0 Λ88

1
CA; ð24Þ

with an arbitrary 3 × 3 block in the subspace ðx1; x2; x3Þ
and very specific correlation patterns in the 4 × 4 block of
the ðx4; x5; x6; x7Þ subspace. We will discuss these patterns
in Sec. IV C.
Detecting the presence of CP4 in a basis-invariant way

for a generic 3HDM is a challenging question which we are
setting out to answer in the present work.

C. CP6

CP transformations of order 6 are always equivalent to a
regular CP2 and a Z3 family symmetry, defined so that the
two transformations commute. This is a consequence of the
isomorphism Z6 ≃ Z2 × Z3. In the 3HDM, it turns out that
imposing CP6 leads to another accidental symmetry of
order 2 [27]. Hence, requiring CP6 in the 3HDM results in
an S3 family symmetry, on top of which comes a CP
symmetry. The full symmetry group then is S3 × ZCP

2 .
In this sense, CP6 does not lead to a new 3HDM, as the

same potential can be obtained by imposing S3 and
considering its CP-conserving version. Although this type
of CP symmetry is not the main target of our study, we will
demonstrate below that the basis-invariant features of this
model in the adjoint space are very similar to the CP4
3HDM. Therefore, we will need to investigate this model in
order to find distinctions between the two.

D. Higher-order CP symmetry

One can also build multi-Higgs models based on even
higher order CP-symmetries. Within 2HDMs or 3HDMs,
however, imposing invariance under CPk with k > 6 leads
to continuous accidental family symmetries in addition to
the usual CP2. The only way to impose CPk on NHDMs
without producing any accidental symmetries is to take k to

be a power of 2 and use more than three doublets [41].
Again, the Higgs potential in these models can be con-
structed explicitly in a suitable basis, but the basis-invariant
conditions for the presence of higher-order CP-symmetries
are unknown. We will not pursue this issue in the
present work.

IV. COMPLETE ALIGNMENT IN ADJOINT
SPACE: EXAMPLES

In this section, we show that several symmetry-based
3HDMs display a remarkable structural feature in the adjoint
space: complete alignment of all vectors. This refers to the
situation where all possible vectors in the adjoint space—
such as MðnÞ, LðnÞ, KðnÞ, and Kðm;nÞ, as defined in (18) and
(19), as well as their arbitrarily complicated contractions via
tensor-networks of dijk, fijk, and δij leaving one index
uncontracted—are all parallel to each other. Notice that
complete alignment implies, in particular, self-alignment of
any vector. In this definition, we assume that at least one of
the basic vectors M, L, KðnÞ is nonzero.

A. Necessary conditions for complete alignment

Let us begin with some straightforward criteria which
must be satisfied in order for a model to exhibit complete
alignment.
Assuming complete alignment and using the arguments

of Sec. II C, one can immediately establish that all
vectors must, in an appropriate basis, belong to the x8
subspace, e.g.,

M ¼ ð0;…; 0;M8Þ; L ¼ ð0;…; 0; L8Þ: ð25Þ

For complete alignment to be realized, these vectors must
be eigenvectors of Λ. Therefore, the presence of any
nonzero vector leads to the following block-diagonal
structure of Λ:

Λ ¼
�
□7×7 0

0 Λ88

�
: ð26Þ

Next, the vector Ki ¼ dijkΛjk, if nonzero, must also be
aligned with r8, which means that Ki ¼ 0 for i ¼ 1;…; 7.
These conditions constrain the 7 × 7 block. With the
explicit expressions for dijk in (9) and using the notation
fijg≡ Λij, we deduce the following list of constraints:

K1 ¼ 0 ⇒ f46g þ f57g ¼ 0;

K2 ¼ 0 ⇒ −f47g þ f56g ¼ 0;

K3 ¼ 0 ⇒ f44g þ f55g − f66g − f77g ¼ 0; ð27Þ

and
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K4 ¼ 0 ⇒ f16g − f27g þ f34g ¼ 0;

K5 ¼ 0 ⇒ f17g þ f26g þ f35g ¼ 0;

K6 ¼ 0 ⇒ f14g þ f25g − f36g ¼ 0;

K7 ¼ 0 ⇒ f15g − f24g − f37g ¼ 0: ð28Þ

Notice that the 3 × 3 block within the subspace ðx1; x2; x3Þ
is completely unconstrained, and so are the elements f45g
and f67g. For completeness, it is also useful to collect
2

ffiffiffi
3

p
K8¼ 2ðf11gþf22gþf33gÞ−2f88g−f44g−f55g−

f66g−f77g.
We refer to Eqs. (25)–(28) as the minimal set of

necessary conditions that a model must satisfy in
order to exhibit complete alignment. Satisfying these

minimal conditions does not guarantee that KðnÞ
i ¼

dijkðΛnÞjk for all higher powers of n are aligned with
the other vectors. Imposing conditions (27), (28) to
Kð2Þ, Kð3Þ, etc. leads to a system of coupled algebraic
equations on the entries of Λ which we were unable
to solve.
Instead of deriving these algebraic constraints explicitly,

let us first check several symmetry-based 3HDMs in order
to see which of them give rise to complete alignment. This
exercise will eventually lead us to the necessary and
sufficient basis-invariant conditions for existence of a
CP4 symmetry.

B. Abelian groups are insufficient

We begin with Abelian symmetry groups which were
classified for 3HDMs in [26,27]. To be precise, we consider
here groups with 1D irreps.
All of these models are based on subgroups of the

maximal Abelian family symmetry group Uð1Þ ×Uð1Þ. It
suffices here to check the case with the maximal symmetry,
because if a parameter relation does not hold in the
maximally symmetric Uð1Þ ×Uð1Þ case it will certainly
not hold for any of its subgroups.
In the basis where the generators of the Abelian

symmetries are given by rephasing transformations, the
quadratic part of the potential can only contain terms
ϕ†
aϕaða ¼ 1; 2; 3Þ with arbitrary coefficients m2

aa. In the
adjoint space, these terms lead to nonzero and gen-
erally independent (i.e., not aligned with any special
directions) M3 and M8. The same observation applies
to the vector L. Clearly, this violates the alignment
conditions.
It is irrelevant for this argument whether or not an

additional ordinary CP symmetry is present, because it
does not constrain the ϕ†

aϕa terms. A generalized CP
which mixes doublets may lead to such constraints, but
it will also produce models with higher-dimensional
irreps. We conclude that 3HDMs based on groups with
1D irreps do not generically lead to alignment.

C. CP4 implies complete alignment

From a purely group-theoretical point of view, CP4
generates the cyclic group Z4. However, the action of CP4
on the 3 Higgses cannot be fully diagonalized by a unitary
basis transformation that conserves hypercharge. Thus it
makes sense to speak of ϕ1 and ϕ2 as forming a 2D irrep of
CP4. This is the smallest group featuring a 2D irrep
in 3HDMs.
The CP4-symmetric 3HDM potential written in the basis

where CP4 mixes the first and second doublets à la (22) is
given in Appendix A, where we also discuss simplifications
through further basis-changes. In this basis, the vectors M
and L satisfy the minimal necessary conditions (25). The
matrix Λ has the block-diagonal form (24) with an
arbitrary4 3 × 3 block in the subspace ðx1; x2; x3Þ and with
a 4 × 4 block which can be brought to the form

□4×4→diagðλ4þjλ6j;λ4− jλ6j;λ4þjλ6j;λ4− jλ6jÞ; ð29Þ

by Higgs-basis changes. With this structure, the minimal
necessary conditions in Eqs. (27) and (28) are satisfied.
Furthermore, the higher powers of Λ keep the same block-
diagonal structure and satisfy the alignment conditions to all
orders. Thus, all vectors in Eqs. (18) and (19) are aligned.
Finally, picking any number of vectors among MðnÞ,

LðnÞ, Kðm;nÞ and contracting them in an arbitrarily compli-
cated way via any network of invariant tensors made out of
dijk, fijk, and δij will never give rise to a nonaligned vector.
The proof of this statement relies on a crucial feature of

any simple Lie algebra: any tensor network with loops can
be written as a linear combination of tree-level invariant
tensors (this is called primitiveness assumption in [42]). In
the tree-level network, one can start with the outermost
branches of the form dijkajbk, where a and b are any of the
above vectors. Since they both lie in the x8 subspace, so does
their contraction with dijk. One continues this branch-cutting
procedure to arrive at the conclusion that the only possibly
nonzero component of the uncontracted index is 8. No fijk
can appear in a nonvanishing tree-level contraction of this
kind, simply due to its antisymmetric nature (all appearing
external vectors are already aligned in the 8 direction).
The overall conclusion for the CP4 3HDM is the

following: all adjoint-space vectors that one can possibly
construct are completely aligned.

D. D4 implies complete alignment

The 3HDM allows one to implement the symmetry
group D4 ≃ Z4 ⋊ Z2. It has been proven in [27] that
imposing a Z4 symmetry automatically leads to explicit
CP conservation. Therefore, the D4-symmetric 3HDM is

4If desired, one can use the remaining SOð2Þ reparametrization
freedom generated by t2 to eliminate some entries without
disrupting the 4 × 4 block structure.
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also CP-conserving, with an order-2 CP symmetry.
However, since the total symmetry group of the model
is D4 × ZCP

2 it also includes a conserved order-4 CP
transformation. Therefore, the D4-symmetric 3HDM can
be viewed as a particular case of the CP4 3HDM. Since the
alignment property certainly is not lost if the symmetry is
enhanced, we find that also theD4 model features complete
alignment. In the real basis ofD4, the action of CP4 is given
exactly by (22); see Appendix D for explicit generators and
the form of Λ.

E. S3 implies complete alignment

Consider now a 3HDM with an S3 family symmetry and
with explicit CP-violation. The general potential of the S3
3HDM is shown in the Z3 diagonal basis in Appendix C or
the real basis in Appendix D. The vectors M and L again
satisfy the minimal necessary conditions (25), while the
matrix Λ takes the form:

Λ ¼

0
BBBBBBBBBBBBB@

a · · c s c s ·

· a · s −c −s c ·

· · b · · · · ·

c s · d · f g ·

s −c · · d g −f ·

c −s · f g d · ·

s c · g −f · d ·

· · · · · · · h

1
CCCCCCCCCCCCCA

; ð30Þ

where dots indicate zero entries. It is straightforward to
verify that all conditions (27) and (28) are satisfied,
showing that Ki is aligned with x8. What is more important
is that the pattern in (30) reproduces itself in all powers

of Λ. Therefore, also all vectors KðnÞ
i are aligned with x8.

By the same arguments as used for the CP4 3HDM, we
conclude that this model features complete alignment,
despite not having a CP4 transformation.
We stress that this model is generally CP-violating.

Enforcing the symmetry group S3 × ZCP
2 is equivalent to

setting s ¼ 0.5 In this case, the subspace ðx2; x5; x7Þ
decouples from the rest, as was discussed in Sec. III A,
but it has no effect on alignment. As mentioned before, we
could have also arrived at this case by imposing a single
generalized CP-symmetry CP6. We conclude, therefore,
that complete alignment is not sufficient for the existence of
a CP4 symmetry.

F. Distinguishing CP4 from S3
The conclusion of the previous subsection implies that

complete vector alignment in the adjoint space cannot, by

itself, single out the CP4 3HDM models. One needs more
basis-invariant information to distinguish it from the
S3 3HDM.
We prove here that the eigensystem of Λ readily offers

these criteria. There are two versions of checks: using only
eigenvalues and using eigenvectors.6

We saw that Λ of the CP4 3HDM has a completely
generic symmetric 3 × 3 block, a very constrained 4 × 4
block with two pairs of eigenvalues λ4 � λ6, and the Λ88

entry. Thus, the eigenvalue degeneracy pattern of a generic
CP4 3HDM is 1þ 1þ 1þ 1þ 2þ 2. In the case of CP-
violating S3 3HDM, the eigenvalues of (30) always come
with the degeneracy pattern 1þ 1þ 2þ 2þ 2, which is
best seen in a different basis where generators of S3 are
real, see Eq. (D6). Thus, if, in addition to the complete
alignment, we observe the eigenvalue degeneracy pattern
1þ 1þ 1þ 1þ 2þ 2, we immediately conclude the
presence of CP4.
This criterion allows us to detect a generic CP4. It may

happen that a valid CP4 model has some accidental
degeneracy among its eigenvalues, which would prevent
the application of this criterion. To cope with these cases,
we propose to look at the eigenvectors of Λ, which are
definitely different for CP4 and S3 models, regardless of the
eigenvalues.
Indeed, the subspace ðx1; x2; x3Þ is in a special position

with respect to the direction x8. Take two adjoint space
vectors a and b such that a ∈ ðx1; x2; x3Þ and b is along x8.
Then, the vectors are f-orthogonal: Fi ≡ fijkajbk ¼ 0.
Conversely, when b is along x8 and a is perpendicular
to b (aibi ¼ 0) then Fi ¼ 0 implies that a belongs to
ðx1; x2; x3Þ.
One can check both statements, using the structure

constants in Eq. (8). Alternatively, one can use the map
of Sec. II B to construct the corresponding traceless
Hermitian 3 × 3matrices A and B. They have the following
structure:

A ¼

0
B@

� � 0

� � 0

0 0 0

1
CA; B ∝

0
B@

1 0 0

0 1 0

0 0 −2

1
CA: ð31Þ

These matrices commute and TrðABÞ ¼ 0. Conversely, if a
traceless matrix commutes with B, and it has no piece
proportional to B, then it must be of the form A.
Thus, we arrive at the following basis-invariant distinc-

tion between the CP4 and S3 3HDMs: although both
possess an eigenvector along x8, only the CP4 3HDM
possesses three other mutually orthogonal eigenvectors

5If both s ¼ 0 and c ¼ 0 the potential has a continuous
symmetry.

6The fact that we cannot diagonalize Λ by the basis change in
the space of doublets ϕa does not matter. We are not claiming
here that we can bring Λ to the diagonal form. We are just saying
that any real symmetric matrix can always be expanded via its
eigensystem.
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which are both orthogonal and f-orthogonal to it. This
criterion resolves the ambiguity.

G. Groups with triplet representations

We have seen from examples that complete alignment
follows from groups with doublet representations, includ-
ing CP4; see remarks in Sec. IV C. All these groups lie
inside SUð3Þ ⋊ ZCP

2 . If we consider realizable groups with
triplet representations, all of them containing either A4 or
Δð27Þ [40], we know that

Mi ¼ Li ¼ Ki ¼ 0: ð32Þ

Indeed, it is easy to see from the branching rules that there
are no invariants of these groups within the adjoint of
SUð3Þ and a nonzero vector contracted with ri would
not be invariant. Now, invariance of the potential (16)
implies

DijðgÞMj ¼ Mi; DijðgÞLj ¼ Li;

Dii0 ðgÞDjj0 ðgÞΛi0j0 ¼ Λij; ð33Þ

for any group element g acting through a representation D
on vectors. The fact that all vectors transform in the same
way as Mi, Li, Ki together with the invariance properties
(33) imply that any vector Fi ¼ FiðM;L;ΛÞ built from the
basic quantities of the potential is also invariant under the
group. Thus, all vectors in Eqs. (18) and (19) vanish as
well, a fact that can also be checked explicitly. Therefore,
imposing invariance under a group with triplet representa-
tion leads to constraints stronger than complete alignment
and so we will not consider these groups further in this
paper.

V. DETECTING A CP4 SYMMETRY

In the previous section we showed that the CP4 3HDM
leads to the complete alignment and, in addition, the
eigenvectors and eigenvalues of Λ possess certain charac-
teristic properties. Now, based on these results, we prove
the converse statements, namely, that if certain basis-
invariant properties are satisfied, the model possesses a
CP4 symmetry.
We will give two versions of these conditions. First, we

will formulate and prove the main Theorem, which
unambiguously detects the presence of a CP4 symmetry
in all cases where it is present. Checking these necessary
and sufficient conditions requires, in addition to the
complete alignment, verification that the eigenvectors of
the matrix Λ satisfy certain properties. Then, we will show
a simplified version of these conditions, which involve the
eigenvalues but not the eigenvectors of Λ and, therefore,
may be computationally less expensive. These simplified
conditions can detect a CP4 symmetry in a generic situation

but will miss the CP4 symmetry at certain special points in
parameter space.

A. Necessary and sufficient conditions
for a CP4 symmetry

Theorem 1: Consider the vectorsM, L, and the matrix
Λ defined in (16). Compute the eigenvectors of Λ. The
model possesses a CP4 symmetry if and only if all of the
following conditions are satisfied:

(i) there exists an eigenvector of Λ, denoted vð8Þ which
is self-aligned in the sense of Sec. II C: dijkv

ð8Þ
j vð8Þk is

parallel to vð8Þi ;
(ii) there exist exactly three other mutually orthogonal

eigenvectors of Λ, denoted vðαÞ with α ¼ 1, 2, 3,

which are f-orthogonal to vð8Þ: fijkv
ð8Þ
j vðαÞk ¼ 0;

(iii) the vectorsM, L,Ki¼dijkΛjk, andK
ð2Þ
i ¼dijkðΛ2Þjk,

if nonzero, are parallel to vð8Þ.
Proof.—We break the proof in two steps: the structural

and the calculational ones. Step 1. As we explained in
Sec. III B, the existence of a CP4 symmetry implies, among
other, that, in a suitable basis, the matrix Λ takes the block-
diagonal form (24), with subspaces (x8) and ðx1; x2; x3Þ
decoupled from each other and from the rest. These two
conditions can be formulated in a basis-invariant way and
checked in any basis.
First, using the results of Sec. II C, the self-aligned

eigenvector vð8Þ can be always pointed by a basis change
along the direction x8. In this basis, the matrix Λ takes the
form (26). Second, using the results of Sec. IV F on
eigenvectors, we conclude that the three mutually orthogo-
nal eigenvectors of Λ which are f-orthogonal to vð8Þ can
only belong to the ðx1; x2; x3Þ subspace. Thus, the other
four eigenvectors lie in the ðx4; x5; x6; x7Þ subspace, and
one arrives at the desired block-diagonal structure (24).
Higher powers of the matrix Λ also possess this block-
diagonal form.
Step 2. The 4 × 4 block in the ðx4; x5; x6; x7Þ subspace

must exhibit a certain pattern in order to be compatible
with CP4 symmetry. This pattern can be fixed by the
conditions that the first seven components of the vectors

Ki ¼ dijkΛjk and Kð2Þ
i ¼ dijkðΛ2Þjk are zero, or in other

words that these two vectors, even if nonzero, lie in the x8
subspace.
Indeed, the conditions (28) are automatically satisfied,

while the conditions (27) shape the 4 × 4 block to the
following form:

a · 14 þ

0
BBB@

b d c −s
d −b −s −c
c −s b0 d0

−s −c d0 −b0

1
CCCA: ð34Þ
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All 7 free parameters here are independent. Since no further constraint follows from the vector K, we
consider Kð2Þ. The corresponding matrix Λ2 also has the block-diagonal form with the 4 × 4 block consisting of the
two matrices already shown in (34) together with the new contribution

0
BBB@

b2 þ d2 þ c2 þ s2 0 cðbþ b0Þ − sðdþ d0Þ −cðd − d0Þ − sðb − b0Þ
· b2 þ d2 þ c2 þ s2 cðd − d0Þ þ sðb − b0Þ cðbþ b0Þ − sðdþ d0Þ
· · b02 þ d02 þ c2 þ s2 0

· · · b02 þ d02 þ c2 þ s2

1
CCCA: ð35Þ

where we use dots to denote the symmetric entries below
the diagonal for clarity. Applying the same constraints (27)
to this matrix, we obtain the conditions

b2 þ d2 ¼ b02 þ d02; cðbþ b0Þ ¼ sðdþ d0Þ;
sðb − b0Þ ¼ −cðd − d0Þ: ð36Þ

They amount to new independent conditions. If we define

λ6 ≡ b − id; λ7 ≡ b0 − id0; λ5 ≡ cþ is; ð37Þ

the conditions (36) are recast in the form

jλ6j ¼ jλ7j; Re½λ�5ðλ6 þ λ7Þ� ¼ 0; Im½λ�5ðλ6 − λ7Þ� ¼ 0:

ð38Þ

The last two conditions can be combined into λ�5λ6 ¼ −λ5λ�7,
which implies the relation between ψ5;6;7 (the arguments of
λ5;6;7): ψ6 þ ψ7 ¼ 2ψ5 þ π. These constraints on the argu-
ments and absolute values coincide with (A4) of the CP4
3HDM given in Appendix A. The 4 × 4 block (34) takes the
same form as (A7), and overall we recover the matrix Λ
exactly of the same type as in the CP4 3HDM. Since the
4 × 4 block of the form (A7) can always be brought to the
diagonal form (29), all higher-power vectors KðnÞ, if non-
zero, are also aligned with x8. Finally, if the vectorsM andL
are non-zero, they are also aligned with x8 and therefore do
not spoil the CP4 invariance. Thus, the model indeed
possesses a CP4 symmetry and the proof is complete. ▪

B. Detecting a generic CP4

Checking the necessary and sufficient conditions for-
mulated in Theorem 1 requires determination of the full
eigensystem of the matrix Λ. However, in most cases,
the presence of a CP4 symmetry can be deduced already
from the complete alignment and the eigenvalues of Λ,
without computation of eigenvectors. This statement
comes from the observation made in Sec. IV F that the
eigenvalues of the CP4 3HDM exhibit the degeneracy
pattern 1þ 1þ 1þ 1þ 2þ 2, which is impossible in the
other completely aligned 3HDM without CP4, the S3
3HDM. Let us now make this statement precise.

Theorem 2 (Generic CP4): Consider vectors M, L,
and the matrix Λ defined in (16). If the vectors M, L, and
KðnÞ with 1 ≤ n ≤ 7, at least one of which is nonzero,
respect complete alignment, and if, in addition, Λ has four
non-degenerate eigenvalues, then the model has a CP4
symmetry.
Proof.—As in Theorem 1, one first needs to establish the

block-diagonal structure (24). However, since we do not
explicitly rely on the eigenvectors of Λ, the proof proceeds
differently.
Step 1. Take a nonzero vector amongM, L, and KðnÞ. For

definiteness we assume Ki ¼ dijkΛjk ≠ 0 but any will do.7

Since complete alignment implies self-alignment for all
vectors, K is self-aligned and we use the arguments of
Sec. II C to conclude that, after an appropriate basis change,
K can be made to lie exclusively in the x8 subspace.
Furthermore, complete alignment implies that K is an
eigenvector of Λ, which leads us to the block-diagonal
structure (26). By assumption, all vectors KðnÞ are also
aligned with x8, and therefore the entries of Λn for all n
must satisfy conditions (27) and (28).
Step 2. Now we prove that, under the assumptions of this

theorem, the 7 × 7 block splits into 3 × 3 and 4 × 4 blocks
as in (24). Let us write Λ within this 7D subspace via
eigenvalues and eigenvectors:

Λij ¼
X
α

Λαe
ðαÞ
i eðαÞj : ð39Þ

Here, α runs over all eigenvalues, even if some of them are
zero. Now, it may happen that some eigenvalues Λα are
degenerate with multiplicities mα > 1. In order to take that
into account, let us rewrite (39) as

Λij ¼
X
α

ΛαP
ðαÞ
ij ; PðαÞ

ij ¼
Xmα

kα¼1

eðkαÞi eðkαÞj : ð40Þ

Now the first summation runs over all distinct eigenvalues
Λα, while the second summation runs over all eigenvectors

7A situationwhere all vectors vanish can be symmetry protected
only by a symmetry inside SUð3Þ with a three-dimensional
representation; see Sec. IVG.
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corresponding to this eigenvalue. The total number p of
distinct eigenvalues within the 7D subspace is at most 7

and at least 4 by assumption. The matrices PðαÞ
ij are the

projectors on the corresponding subspaces; they satisfy

PðαÞPðβÞ ¼ δαβPðαÞ;
X
α

PðαÞ ¼ 17: ð41Þ

Next, also the matricesΛ to the power n are expanded in the
form (40) with eigenvalues ðΛαÞn. So, the condition that
dijkðΛnÞjk ¼ 0 within the 7D subspace ðx1;…; x7Þ means
that all linear combinations

X
α

ðΛαÞnSðαÞk ¼ 0; where SðαÞk ≔ dijkP
ðαÞ
ij : ð42Þ

Writing linear combinations (42) for n ¼ 1;…; p, we

obtain each time a linear combination of p vectors SðαÞk
in the 7D space. Since all Λα are distinct, this implies that

each individual vector SðαÞk ¼ 0.
The above statement applies to all vectors SðαÞk which

correspond to nonzero eigenvalues Λα. However, even if Λ
has a zero eigenvalue, which we denote as Λ0 ¼ 0, the

corresponding vector Sð0Þk ¼ 0, too. Indeed, since the
projectors sum up to 17, and since dijkδij ¼ 0 within the
7D subspace, we get:

Sð0Þk ¼dijkP
ð0Þ
ij ¼dijk

�
δij−

X
α≠0

PðαÞ
ij

�
¼dijkδij−

X
α≠0

SðαÞk ¼0:

ð43Þ

The essence of the above trick deserves emphasis:
Instead of constraining a generic matrix Λ and its powers,
we constrain their eigenspace projectors PðαÞ, for which
taking powers has no effect.
Now, consider a nondegenerate eigenvalue Λ1. Then

Pð1Þ
ij ¼ eð1Þi eð1Þj , and we are looking for solutions of

eð1Þi eð1Þj dijk ¼ 0 within the 7D subspace. We can solve this
set of equations via the same Eqs. (27) and (28), where each
entry fijg is now understood as the product of the two
components of the same eigenvector, eiej. Solving simul-
taneously the three conditions (27), we conclude that the
components e4;5;6;7 ¼ 0, while e1;2;3 are unconstrained.
Thus, an eigenvector corresponding to a nondegenerate
eigenvalue (in the 7D subspace) must lie within the sub-
space ðx1; x2; x3Þ and nowhere else.
Therefore, if we require the full matrix Λ to possess four

nondegenerate eigenvalues, this can only happen if one of
the corresponding four eigenvectors lies in x8 and the other
three belong to the ðx1; x2; x3Þ subspace. The remaining
four eigenvectors, by orthogonality, then must belong to
the ðx4; x5; x6; x7Þ subspace, and they must have at least

pairwise degenerate eigenvalues. Thus, we arrive at the split
block-diagonal form (24).
Step 3 goes exactly as step 2 of Theorem 1 and completes

the proof. ▪
Theorem 2 proposes sufficient conditions for a 3HDM to

contain a CP4 symmetry. One first needs to check that the
vectorsM, L, KðnÞ are self-aligned and parallel, and that the
common direction is an eigenvector of Λ. Then, one needs
to compute the eigenvalues of Λ. If there are four non-
degenerate eigenvalues, we detect the presence of a CP4
symmetry.
If there are fewer than four non-degenerate eigenvalues,

this method fails as it can miss a valid CP4-symmetric
model. This algorithm also fails in the case when M, L,
KðnÞ are all zero vectors, since in this case it is impossible to
identify the self-aligned eigenvector without actually com-
puting the full eigensystem. However, this only happens at
exceptional isolated points in the parameter space or when
a symmetry with triplet representation is present. For a
generic scan in the parameter space, the sufficient con-
ditions still represent a useful check.

VI. DISCUSSION AND CONCLUSIONS

A. Subtleties with degenerate eigenvalues

Theorem 1 does not only present the necessary and
sufficient conditions for a 3HDM to possess a CP4
symmetry, but also proposes a concrete algorithm which
can be employed in any basis. However, when implement-
ing it, one may face a technical difficulty when the model
has degeneracy among eigenvalues beyond the generic
1þ 1þ 1þ 1þ 2þ 2 pattern.
First, Λ88 may be degenerate with other eigenvalues

of Λ. In this case it may happen that only one direction
out of the entire corresponding eigenspace satisfies the
self-alignment property. In order not to miss a valid CP4
symmetry in such situations, one may need to parametrize
the vectors of this eigenspace and check if any of them
exhibits self-alignment.
Next, there may exist more than one direction in the

eigenspace corresponding to a degenerate eigenvalue
exhibiting the self-alignment property. One can pick up
any of them, denote it as vð8Þ, and then search for three
other mutually orthogonal eigenvectors which would be
both orthogonal and f-orthogonal to vð8Þ. However if we
fail to find such triplet of eigenvectors, it does not yet mean
that the model has no CP4 symmetry. It may be just the
wrong choice of the self-aligned direction which was
associated with vð8Þ. One then would need to check all
possible assignments for vð8Þ. Only if none of them leads to
the desired triplet of eigenvectors we can claim that the
model has no CP4 symmetry.
These complications call upon a refined concrete algo-

rithm which would be capable of detecting a CP4 symmetry
in all possible situations of accidental degeneracies among
eigenvalues. Constructing such algorithm is delegated to a
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future work. For now, we stress that these complications are
just technical and do not jeopardize the proof of Theorem 1.

B. CP4 symmetry vs. CP4 3HDM

Theorem 1 gives the necessary and sufficient conditions
for a 3HDM to possess a CP4 symmetry. However, in
addition to CP4, a model could possess other symmetries.
The total symmetry group then would be larger and, as
shown in [29], it would always automatically contain a CP2
symmetry. Thus, the CP4 symmetry would lose its defining
role, as the same model could be built by imposing CP2 and
an appropriate family symmetry.
If one wants to single out the CP4 3HDM model [18]

where CP4 is the only symmetry, one first must check the
presence of a CP4 symmetry and then verify the absence of
any additional CP2. In Appendix B, we describe all options
for extending a CP4 symmetric 3HDM by CP2. The
different options depend on whether CP2 and CP4 com-
mute or not. In the commuting case, the minimal enhance-
ment of the total symmetry group is to D4 × ZCP

2 , which is
also studied in Appendix D. In the noncommuting case,
the minimal resulting symmetry is ðZ2 × Z2Þ ⋊ ZCP

2 . In
Appendix B 3, we describe a basis-invariant algorithm
to distinguish these models from the pure CP4 model
which works in both cases. For this, one needs to construct
f-products amongst two pairs of eigenvectors of the
ðx4; x5; x6; x7Þ subspace and check if any of them is an
eigenvector of Λ. This feature then allows for a straightfor-
ward algorithmic implementation to distinguish between
pure CP4 and higher symmetries.
The problem of basis-invariant recognition of an addi-

tional CP2 symmetry in CP4 3HDM has recently also been
tackled in [43]. Starting with a CP4 3HDM and assuming
that the CP4 symmetry is unbroken, the authors discovered
a basis-invariantN in the form of a high-degree polynomial
of the quartic coefficients of the potential and the vacuum
expectation values of the doublets. This invariant is zero
if and only if the model possesses an additional CP2
symmetry that commutes with CP4. In Appendix B 3, we
derive an algorithm, which is short, transparent, covers both
commuting and noncommuting cases, and does not rely on
vacuum expectation values.

C. Spontaneous breaking of CP4

Suppose the presence of a CP4 symmetry together with
the absence of any additional CP2 symmetry is detected in
a basis-invariant way. Then, there exits an immediate basis-
invariant criterion to decide whether a chosen vector of
vacuum expectation values, hϕai ¼ va, is CP4 conserving
or not. In particular, there is no need to explicitly recon-
struct the CP4 transformation.
The criterion for CP4 conservation after minimization is

that the vector hri is self-aligned and parallel to M, L, and
K’s and is, therefore, an eigenvector of Λ. If this property
does not hold, CP4 is spontaneously broken. This criterion

follows because in the standard CP4 basis of (22) a CP4
conserving vacuum expectation value has (after appropriate
rephasing) the form hϕi ¼ vð0; 0; 1Þ which implies that hri
is aligned to x8.

D. Conclusions

In summary, we brought up and solved the question of
basis-invariant recognition of the presence of a CP4
symmetry in 3HDM. Since this question cannot be solved
with the traditional technique of constructing CP-odd basis
invariants and then setting them to zero, we developed a
new approach, which makes use of the adjoint space
constructions and, in particular, the eigensystem of the
matrix Λ. The final result is a set of necessary and sufficient
conditions for the presence of a CP4 symmetry formulated
as Theorem 1. In generic settings, the presence of CP4 can
also be determined with a computationally less expensive
approach which only requires the knowledge of eigenval-
ues but not eigenvectors of Λ. In addition, we have
presented necessary and sufficient basis-invariant criteria
to detect the presence of other symmetries beyond CP4, as
well as to determine whether CP4 is spontaneously broken
by the Higgs vacuum expectation value.
The presented algorithms can be implemented in param-

eter scans of the scalar sector of 3HDM. In particular, they
offer an efficient path to explore the intriguing phenom-
enology of CP4 3HDM without the need to stay in one
particular basis.
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APPENDIX A: CP4 3HDM POTENTIAL: FROM
THE MOST GENERAL TO THE SIMPLEST

Here, we summarize the results on the Higgs potential of
the CP4 3HDM [18] and the basis-change freedom avail-
able for its simplification. For a recent related study,
see [43].
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Given a CP transformation of order 4 acting on the
Higgs fields as ϕa ↦ Xabϕ

�
b with some matrix X satisfying

XX� ≠ 1, ðXX�Þ2 ¼ 1, we can always find a basis in which
X takes the following form:

X ¼

0
B@

0 1 0

−1 0 0

0 0 eiβ

1
CA: ðA1Þ

The general 3HDM potential invariant under CP4 with this
matrix X is V ¼ V0 þ VCP4 [27], where

V0 ¼ −m2
11ðϕ†

1ϕ1 þ ϕ†
2ϕ2Þ −m2

33ϕ
†
3ϕ3

þ λ1½ðϕ†
1ϕ1Þ2 þ ðϕ†

2ϕ2Þ2� þ λ2ðϕ†
3ϕ3Þ2

þ λ3ðϕ†
3ϕ3Þðϕ†

1ϕ1 þ ϕ†
2ϕ2Þ þ λ03ðϕ†

1ϕ1Þðϕ†
2ϕ2Þ

þ λ4ðjϕ†
1ϕ3j2 þ jϕ†

2ϕ3j2Þ þ λ04jϕ†
1ϕ2j2; ðA2Þ

and

VCP4 ¼ λ5ðϕ†
1ϕ3Þðϕ†

2ϕ3Þ þ
λ6
2
ðϕ†

1ϕ3Þ2 þ
λ7
2
ðϕ†

2ϕ3Þ2

þ λ8
2
ðϕ†

1ϕ2Þ2 þ λ9ðϕ†
1ϕ2Þðϕ†

1ϕ1 − ϕ†
2ϕ2Þ þ H:c:

ðA3Þ

Here, m2
11, m

2
22, and λ1;2;3;4 are real while λ5 through λ9 can

be complex. Their phases are denoted as ψ5;…;9 and their
sines and cosines are denoted as s5;…;9 and c5;…;9. Not all of
them are independent, though. The following conditions
must be met:

jλ6j ¼ jλ7j; ψ6 þ ψ7 ¼ 2ψ5 þ π ¼ −2β: ðA4Þ

In the adjoint space, we find that Mi ¼ ð0;…; 0;M8Þ and
Li ¼ ð0;…; 0; L8Þ, with

M8 ¼
2ffiffiffi
3

p ðm2
11 −m2

33Þ;

L8 ¼
4

3
ðλ1 − λ2Þ þ

2

3
ðλ03 − λ3Þ: ðA5Þ

The matrix Λ has the block-diagonal form (24) with the
blocks

Λ88 ¼
2λ1 þ 4λ2 − 4λ3 þ λ03

3
;

□3×3 ¼

0
B@

λ04 þ jλ8jc8 −jλ8js8 2jλ9jc9
· λ04 − jλ8jc8 −2jλ9js9
· · 2λ1 − λ03

1
CA ðA6Þ

and

□4×4 ¼ λ4 · 14 þ

0
BBB@

jλ6jc6 −jλ6js6 jλ5jc5 −jλ5js5
· −jλ6jc6 −jλ5js5 −jλ5jc5
· · jλ6jc7 −jλ6js7
· · · −jλ6jc7

1
CCCA;

ðA7Þ

where the dots below the diagonal indicate the repeated
entries of a symmetric matrix. We see that the blocks in the
subspaces x8 and ðx1; x2; x3Þ are completely unconstrained,
while the 4 × 4 block in the subspace ðx4; x5; x6; x7Þ
depends on 5 free parameters: λ4, jλ5j, jλ6j, as well as
three phases ψ5, ψ6, ψ7 subject to one condition (A4).
The CP4 3HDM potential (A3) can be simplified by the

residual freedom of basis changes that preserve the matrix
X of (A1) up to rephasings.8 In particular, one can set
β ¼ 0, make λ6 ¼ λ7 real and positive, and eliminate λ5
[44], so that the potential (A3) becomes

VCP4 ¼
λ6
2
½ðϕ†

1ϕ3Þ2 þ ðϕ†
2ϕ3Þ2 þ ðϕ†

3ϕ1Þ2 þ ðϕ†
3ϕ2Þ2�

þ
�
λ8
2
ðϕ†

1ϕ2Þ2 þ λ9ðϕ†
1ϕ2Þðϕ†

1ϕ1 − ϕ†
2ϕ2Þ þH:c:

�
:

ðA8Þ

The coefficients λ8 and λ9 stay complex. Note that there is
no basis in which all coefficients are simultaneously real
[18]. This amounts to bringing the 4 × 4 block to a diagonal
pairwise degenerate form,

□4×4 → diagðλ4 þ λ6; λ4 − λ6; λ4 þ λ6; λ4 − λ6Þ; ðA9Þ

while the Λ88 entry and the 3 × 3 block keep their general
form. This basis choice clearly demonstrates that higher
powers of Λ feature the same block diagonal pattern: a
generic 3 × 3 block, a generic 88 component, and a
diagonal pairwise degenerate 4 × 4 block. This structure
is still form-invariant under the SOð2Þ reparametrization
group generated by t2.

APPENDIX B: DISTINGUISHING THE CP4 3HDM
FROM MODELS THAT ALSO POSSESS CP2

Let us see how the CP4 3HDM is further constrained
by imposing additional symmetries and how we can detect
this in a basis invariant way. To do this, we start working
in a basis in which the CP4 symmetry is generated by
the matrix X in (22). The full classification of discrete
symmetry-based 3HDMs is presented in [28,29]. Upon
imposing additional symmetries the total symmetry group
is enhanced to one of these models or to a model with
continuous symmetry.

8The corresponding groups are the SUð2Þ that acts on the first
two doublets and the Uð1Þ generated by t8.
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It is common to all extensions of the CP4 model that they
automatically contain conserved CP2 transformations.
Therefore, starting with the CP4 3HDM, a minimal
extension of the symmetry group is to just add a CP2
transformation. The newly arising combined CP trans-
formation, ðCP2Þ−1 · CP4 · CP2, then is again of order 4.
Requiring that there is a minimal symmetry enhancement,
it should generate the same group as the original CP4
transformation. There are two options to do this: the
resulting order-4 CP transformation can either be the
original CP4 or its inverse. We will now derive the total
resulting symmetry for either case and establish a basis-
invariant criterion to detect the presence of the resulting
extra symmetries.

1. Commuting CP4 and CP2

If ðCP2Þ−1 · CP4 · CP2 ¼ CP4, the two CP transforma-
tions commute. In a basis where the CP4 transformation is
given by the matrix X in Eq. (22), the desired CP2
transformation is generated by a matrix X2 that solves
X2X�X2 ¼ X. The most general solution reads

X2 ¼

0
B@

eiα cosφ i sinφ 0

i sinφ e−iα cosφ 0

0 0 �1

1
CA; ðB1Þ

with two free real parameters α and φ. The possible minus
sign in the third component can always be removed by
a global rephasing of ϕ. Since X is invariant under all
SUð2Þ basis changes in the first two components, so is the
equation that we have used to derive X2. Hence, the matrix
X2 must be form-invariant under these basis changes.
Therefore, we can repeat the steps of Appendix A and
write the potential in a basis where it takes the form (A8)
without changing the form of (B1). Within this basis, we
then require that the CP2 transformation generated by X2

should only minimally enhance the symmetry. This means
we require that it should not impose any constraint on λ6 or
equivalently, leave the 4 × 4 block of Λ invariant. This
requirement then restricts the free parameters of (B1) to α,
φ ¼ 0, π.9 That is, in the basis (A8) the minimal symmetry
enhancement is given by a CP2 transformation that
corresponds to conjugation with the identity matrix. The
other possibility of having X2 ¼ diagð−1;−1; 1Þ is equiv-
alent because this element is already contained in the group
generated by CP4.
The product of the CP transformations, a4 ≔ CP2 · CP4,

then is a family symmetry of order 4 with transformation

matrix X. Imposing this transformation on the potential
(A8) forces the coefficients λ8, λ9 to be real. For the matrix
Λ, the reality of all coefficients implies that the 3 × 3 block
(A6) splits into a 2 × 2 block in the subspace ðx1; x3Þ and
the Λ22 entry. In other words, the direction x2 becomes an
eigenvector of Λ. This additional special eigenvector is
enough to determine the presence of a symmetry beyond
CP4 in a basis invariant way as we will discuss below.
We remark that upon imposing the minimal CP2

extension here, there appears an accidental symmetry such
that the total symmetry group of the model actually is
D4 × ZCP

2 [27,40]. An alternative approach, therefore,
would be to study the D4-symmetric 3HDM from the start
and we do this in Appendix D. We note that when the D4

transformations are fixed, there is no reparametrization
freedom left and in the basis of (A9) with standard real
representation for D4, Λ is completely diagonal.
As a digression from the main line of arguments, let us

review how the Higgs family symmetry group accidentally
enlarges to D4, [27,40]. If a 3HDM possesses a Z4 family
symmetry generated by a4, then there appears an accidental
CP20 symmetry which does not commute with a4. This is
best seen in the basis where a4 ¼ diagð−i; i; 1Þ and the
desired CP20 is based on a diagonal matrix. However, all
CP symmetries we have identified so far can be generically
written as ak4 · CP4. All of them commute with a4 and,
therefore, none of them can play the role of CP20. Back in
the original basis, the desired CP20 is based on the
orthogonal matrix X2 given below in Eq. (B3). Stripping
it off the conjugation, one gets the desired symmetry a2
of the same form. Now, since a−12 a4a2 ¼ a−14 , they, by
themselves, generate the family symmetry group
ha2; a4i ≃D4, on top of which we have the standard CP
symmetry. Since D4 is expressed in the real basis, this CP
commutes with it, making the total symmetry group
D4 × ZCP

2 .

2. Noncommuting CP4 and CP2

If ðCP2Þ−1 · CP4 · CP2 ¼ ðCP4Þ−1, the most general
transformation matrix of the new CP2 symmetry is given
by the solution to the equation X2X�X2 ¼ XT, which is

X2 ¼

0
B@

eiα cosφ sinφ 0

sinφ −e−iα cosφ 0

0 0 �1

1
CA: ðB2Þ

Again, X2 is form-invariant under the basis changes
which lead to (A8) and we again decide to work in that
basis. The potential minus sign in the third component can
again be removed by a global rephasing. The requirement
of minimal symmetry enhancement then restricts α ¼ 0; π,
implying that the minimal additional symmetry is given by
CP2 generated by complex conjugation together with a
matrix

9Taking any other choice within the general solution for CP2
will also commute with CP4, but these choices will unavoidably
enhance the symmetry even further. Clearly it is necessary for our
argument to detect the minimal possible symmetry enhancement
of CP4, while the argument is not spoiled by the possibility of an
even larger possible symmetry.
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X2 ¼

0
B@

cosφ sinφ 0

sinφ − cosφ 0

0 0 1

1
CA: ðB3Þ

In this case, λ8 and λ9 are constrained in such a way that the
3 × 3 block of Λ acquires an eigenvector in the ðx1; x3Þ
plane. By the remaining SOð2Þ basis freedom generated by
t2 this eigenvector can always be aligned with either the x1
or x3 directions. In the former case φ ¼ 0 in (B3), implying
real λ8 and imaginary λ9, while in the latter case φ ¼ π=2,
implying λ9 ¼ 0 without constraining λ8.
No additional accidental symmetries appear in this case,

and the total symmetry group is given by ðZ2 × Z2Þ ⋊ ZCP
2 ,

where the family symmetry group Z2 × Z2 is generated by
CP2 · CP4 and CP4 · CP2.

3. Basis-invariant recognition of an extra CP2

Summarizing the above cases of various CP2 symmetries
in addition to CP4, we can state that all of them lead to a
simplification of the 3 × 3 block (A6), namely, (at least)
one of the three directions x1, x2, x3 becomes an eigen-
vector of Λ in the symmetry basis studied above. Such a
basis is still compatible with the basis (A9) where the 4 × 4
block is diagonal but the latter is defined only up to SOð2Þ
reparametrization transformations. In one of these cases,
the D4 symmetry can be immediately spotted by checking
whether the 3 × 3 block has x2 as an eigenvector. For the
case of ðZ2 × Z2Þ ⋊ ZCP

2 , one has to check if the subspace
ðx1; x3Þ contains an eigenvector. We will now show how to
formulate these criteria in a basis-independent way.
This can be done using the f-product of eigenvectors

from the ðx4; x5; x6; x7Þ subspace. Indeed, we work in the
basis where Λ is diagonal in this subspace, see Eq. (A9), so
that an eigenvector eðα¼4;5;6;7Þ is aligned with xα¼4;5;6;7. The
two subspaces with degenerate eigenvalues are ðx4; x6Þ and
ðx5; x7Þ. Let us define generic eigenvectors within these
two subspaces as

qðγÞ ¼ eð4Þ cos γ þ eð6Þ sin γ;

pðδÞ ¼ eð5Þ cos δþ eð7Þ sin δ: ðB4Þ

First, taking two mutually orthogonal eigenvectors corre-
sponding to the same eigenvalue unambiguously defines
the x2 direction:

fijkq
ðγÞ
j qðγþπ=2Þ

k ¼ fijkp
ðδÞ
j pðδþπ=2Þ

k lies along x2: ðB5Þ

Next, the f-product of generic p and q lies in the
ðx1; x3; x8Þ subspace:

fijkq
ðγÞ
j pðδÞ

k ¼ 1

2
ðsinðγþδÞ;0;cosðγþδÞ;…;

ffiffiffi
3

p
cosðγ−δÞÞ:

ðB6Þ

The f-product of the other pair of vectors

fijkq
ðγþπ=2Þ
j pðδþπ=2Þ

k

¼ 1

2
ð− sinðγ þ δÞ; 0;− cosðγ þ δÞ;…;

ffiffiffi
3

p
cosðγ − δÞÞ:

ðB7Þ

Therefore, their sum and difference split the ðx1; x3Þ sub-
space from the x8 direction:

fijkq
ðγÞ
j pðδÞ

k − fijkq
ðγþπ=2Þ
j pðδþπ=2Þ

k

¼ ðsinðγ þ δÞ; 0; cosðγ þ δÞ;…; 0Þ: ðB8Þ

By simultaneously varying γ and δ, one can scan all
directions in this subspace and check if any of them is
an eigenvector of Λ.
Thus, a general algorithm to detect any extra symmetry

beyond CP4 is the following. Using pairs of eigenvectors
from the ðx4; x5; x6; x7Þ subspace, construct the x2 direction
and the ðx1; x3Þ subspace. If any of them contains an
eigenvector ofΛ, we have an additional CP2 symmetry, and
the model is not the pure CP4 3HDM. If none of them
contains an eigenvector ofΛ, we have the pure CP4 3HDM.

APPENDIX C: S3-SYMMETRIC 3HDM

The S3-symmetric 3HDM was first proposed back in
1978 [45,46] and has been studied in numerous papers
since then [7]. Several conventions exist to write the
potential of this model. Here we stick to the notation
of [28,29,40] where the Z3 subgroup is diagonal. The
symmetry group S3 is generated by a3 and b with the form

a3 ¼

0
B@

ω2 · ·

· ω ·

· · 1

1
CA; b ¼

0
B@

· 1 ·

1 · ·

· · 1

1
CA; ðC1Þ

where ω ≔ e2πi=3. Here and for all matrices below dots
indicate zero entries. The Higgs potential is written as
V ¼ V0 þ VS3 , with the same V0 as in (A2) and

VS3 ¼ λ5ðϕ†
1ϕ3Þðϕ†

2ϕ3Þ
þ λ10½ðϕ†

2ϕ1Þðϕ†
3ϕ1Þþðϕ†

1ϕ2Þðϕ†
3ϕ2Þ�þH:c: ðC2Þ

The coefficient λ5 can be always made real, but then λ10
remains, in general, complex. Notice that the λ5 term is the
same as in the CP4 3HDM.
In the adjoint space, one has the same form of M and L

as before, while the matrix Λ now takes now the form

IVANOV, NISHI, SILVA, and TRAUTNER PHYS. REV. D 99, 015039 (2019)

015039-14



Λij ¼

0
BBBBBBBBBBBBBBB@

λ04 · · Reλ10 Imλ10 Reλ10 Imλ10 ·

· λ04 · Imλ10 −Reλ10 −Imλ10 Reλ10 ·

· · 2λ1 − λ03 · · · · ·

Reλ10 Imλ10 · λ4 · λ5 · ·

Imλ10 −Reλ10 · · λ4 · −λ5 ·

Reλ10 −Imλ10 · λ5 · λ4 · ·

Imλ10 Reλ10 · · −λ5 · λ4 ·

· · · · · · · Λ88

1
CCCCCCCCCCCCCCCA

; ðC3Þ

with Λ88 ¼ 2λ1=3þ 4ðλ2 − λ3 þ λ03Þ=3. It is straightfor-
ward to verify that the conditions (27) and (28) are all
satisfied, implying that K is aligned with x8.

APPENDIX D: Oð2Þ SYMMETRY
AND SUBGROUPS

We describe here the Oð2Þ group and its various
subgroups which include S3 and D4. Different from
Appendix C, S3 here will be given in the real basis.

The form of the vectors M, L is easy to recover: SOð2Þ
invariance leads to

M ∼ L ∼ ð0; �; 0; 0; 0; 0; 0; �Þ: ðD1Þ
Oð2Þ invariance eliminates the second component and the
same applies to the subgroups S3 or D4.
The SOð2Þ symmetry can be generated by a trans-

formation ϕ ↦ expðit2θÞϕ, with the standard Gell-Mann
matrix t2, recall Eq. (7). Invariance under this group
constrains the quartic couplings to

Λ ¼

0
BBBBBBBBBBBBBBB@

Λ11 · · · · · · ·

· Λ22 · · · · · Λ28

· · Λ11 · · · · ·

· · · Λ44 Λ45 · −Λ56 ·

· · · Λ45 Λ55 Λ56 · ·

· · · · Λ56 Λ44 Λ45 ·

· · · −Λ56 · Λ45 Λ55 ·

· Λ28 · · · · · Λ88

1
CCCCCCCCCCCCCCCA

: ðD2Þ

Further imposition of

b̃ ¼ diagð1;−1; 1Þ; ðD3Þ

enlarges SOð2Þ to Oð2Þ and implies Λ28 ¼ Λ56 ¼ 0. The
combination SOð2Þ × ZCP

2 is even stronger and addition-
ally implies Λ45 ¼ 0 and we get a diagonal structure for Λ
with degenerate eigenvalues with multiplicities (1,2,2,2,1).
We have complete alignment from Oð2Þ symmetry irre-
spective of additional CP.
Among the Zn symmetries in the 3HDMs, only the cases

n ¼ 2, 3, 4 are realizable [27]. Embedded in the SOð2Þ
above, we can use the following matrices as generators of
Z3 and Z4:

ã3 ¼

0
B@

− 1
2

−
ffiffi
3

p
2

·ffiffi
3

p
2

− 1
2

·

· · 1

1
CA; ã4 ¼

0
B@

· 1 ·

−1 · ·

· · 1

1
CA: ðD4Þ

We discard Z2 because it will not lead to a non-
Abelian group when combined with b̃. Note that ã3 is
the same as a3 in (C1) after a change of basis g̃ ¼ UrgU

†
r ,

with

Ur ¼

0
B@

1ffiffi
2

p 1ffiffi
2

p ·

iffiffi
2

p − iffiffi
2

p ·

· · 1

1
CA: ðD5Þ
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The same applies to b̃ in (D3) and b in (C1). Combination of ã3 or ã4 with b̃ leads respectively to S3 ¼ D3 orD4. Invariance
under these two groups leads to a Λ structurally different from theOð2Þ invariant one. Invariance under S3 ¼ hã3; b̃i allows
terms off the central blocks:

Λ ¼

0
BBBBBBBBBBBBBBB@

Λ11 · · · · Λ16 Λ17 ·

· Λ22 · · · · · ·

· · Λ11 −Λ16 −Λ17 · · ·

· · −Λ16 Λ44 Λ45 · · ·

· · −Λ17 Λ45 Λ55 · · ·

Λ16 · · · · Λ44 Λ45 ·

Λ17 · · · · Λ45 Λ55 ·

· · · · · · · Λ88

1
CCCCCCCCCCCCCCCA

: ðD6Þ

In contrast, invariance under D4 ¼ hã4; b̃i allows the 3 × 3 block to have nondegenerate eigenvalues:

Λ ¼

0
BBBBBBBBBBBBBBB@

Λ11 · · · · · · ·

· Λ22 · · · · · ·

· · Λ33 · · · · ·

· · · Λ44 · · · ·

· · · · Λ55 · · ·

· · · · · Λ44 · ·

· · · · · · Λ55 ·

· · · · · · · Λ88

1
CCCCCCCCCCCCCCCA

: ðD7Þ

This is clearly a particular form of the CP4 invariant block structure in (24) with 4 × 4 block in the form (29). Canonical CP
is clearly a symmetry and CP4 in (22) is easily identified as ã4 · CP.
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