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The seesaw and leptogenesis commonly depend on the masses of the same particles and thus are both
realized at the same scale. In this work, we demonstrate a new possibility to realize a TeV-scale neutrino
seesaw and a natural high-scale leptogenesis. We extend the standard model by two gauge-singlet
scalars, a vectorlike isodoublet fermion and one isotriplet Higgs scalar. Our model respects a softly
broken lepton number and an exactly conserved Z2 discrete symmetry. It can achieve three things
altogether: (i) realizing a testable type-II seesaw at the TeV scale with two nonzero neutrino mass
eigenvalues, (ii) providing minimal inelastic dark matter from the new fermion doublets, and
(iii) accommodating a thermal or nonthermal leptogenesis through the singlet scalar decays. We further
analyze the current experimental constraints on our model and discuss the implications for the dark
matter direct detections and the LHC searches.
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I. INTRODUCTION

The seesaw [1,2] extensions of the standard model (SM)
naturally explain the tiny neutrino masses [3], while
accommodating a leptogenesis [4–6] mechanism to gen-
erate the observed cosmic baryon asymmetry [3]. In the
conventional seesaw-leptogenesis scenarios, the scales of
generating neutrino masses and baryon asymmetry are tied
together and determined by the masses of the same
particles. The leptogenesis cannot be realized at the TeV
scale unless it invokes a large fine-tuning to resonantly
enhance the required CP asymmetry. This means that a
natural leptogenesis is achieved at high scale, and the
conventional scenarios link the seesaw to the same lepto-
genesis scale, which prevent the realization of testable
seesaw at the TeV scale.
The strong evidence for nonbaryonic dark matter (DM)

poses another great challenge to modern particle physics
and cosmology [3]. There have been interesting ideas
explaining the DM puzzle. For instance, the minimal
DM models [7–9] can give testable predictions for DM

properties including the DM mass and the DM-nucleon
scattering. However, for models with the new weak
multiplet of nonzero hypercharge, its neutral DM compo-
nent will have gauge interactions with Z0 and thus is
excluded by the direct DM searches [7]. This calls for
viable extensions. Besides, the DM particle may also play
an important role in the generation of neutrino masses
[10–14] and the realization of baryon asymmetry [12].
In this work, we propose an attractive possibility that

new physics for generating a testable TeV-scale seesaw can
accommodate a thermal or inflationary baryogenesis at a
very high scale. At the same time, we provide a viable
minimal inelastic DM candidate at the TeV scale. In our
construction, we will construct a realistic model including
two gauge-singlet scalars, a vectorlike isodoublet fermion
and one isotriplet Higgs scalar besides the SM fields. Our
model has a softly broken lepton number and an exactly
conserved Z2 discrete symmetry, so it differs from other
models [15] with a spontaneous breaking lepton or baryon
number. Under such a softly broken lepton number and the
exact Z2 symmetry, our model can achieve three things
altogether: (i) realizing a testable type-II seesaw at TeV
scale with two nonzero neutrino mass eigenvalues; (ii) pro-
viding a minimal inelastic dark matter from the new
fermion doublets, with the mass-splitting induced by
interactions related to the neutrino mass generations; and
(iii) accommodating a thermal or inflationary leptogenesis
at a high scale through the scalar-singlet decays. Although
the leptogenesis scale is high, realizing the DM relic
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density in our scenario requires the DM mass to be about
1.2 TeV. As wewill show, the present minimal inelastic DM
is a stable Majorana fermion and depends on two new
parameters: the DM mass and the mass difference between
the DM and another particle. (This differs from the previous
minimal DMmodel [7–9] in which the DM is either a scalar
or Dirac fermion, and its tree-level mass is the only new
physics parameter.) The predicted Higgs triplet and DM
fermion of our model can be searched at the LHC and
future high-energy pp colliders. The same DM particle can
be probed by the direct and indirect DM detection experi-
ments [16].
This paper is organized as follows. In Sec. II, we present

the model setup. Then, we study the minimal inelastic DM
in Sec. III and the radiative type-II neutrino seesaw in
Sec. IV. The realization of high scale leptogenesis is
presented Sec. V. Finally, we conclude in Sec. VI.

II. MODEL CONSTRUCTION

In this section, we present the model setup and discuss
the involved (un)broken symmetries. For the current model,
we introduce two gauge-singlet scalars,

σjð1; 1; 0Þ ¼
1ffiffiffi
2

p ðσjR þ iσjIÞ; ðj ¼ 1; 2Þ; ð1Þ

a vectorlike isodoublet fermion (with left-handed compo-
nent ψL and right-handed component ψ 0

L
c),

ψL

�
1;2;þ1

2

�
¼
�
ξþL
χL

�
; ψ 0

L

�
1;2;−

1

2

�
¼
�
χ0L
ξ0−L

�
; ð2Þ

and an isotriplet scalar,

Δð1; 3;−1Þ ¼
� 1ffiffi

2
p δ− δ0

δ−− − 1ffiffi
2

p δ−

�
ð3Þ

On the left-hand side of each equation above, the numbers
in the parentheses describe the representations (or quantum
numbers) of the corresponding field under the SM gauge
group SUð3Þc ⊗ SUð2ÞL ⊗ Uð1ÞY . This model also
respects a softly broken lepton number and an exactly
conserved Z2 discrete symmetry. By definition, only the
scalar singlets σj (j ¼ 1, 2) carry a lepton number −1,
which is opposite to the SM leptons. Under the Z2 discrete
symmetry, the SM fields and the scalar triplet Δ are Z2

even, while the scalar singlets σj and the fermion doublets
ðψL;ψ 0

LÞ are Z2 odd. Thus, we have the following Z2

transformations:

ðSM;ΔÞ→Z2 ðSM;ΔÞ;
ðσj;ψL;ψ 0

LÞ→
Z2 − ðσj;ψL;ψ 0

LÞ: ð4Þ

Since the Z2 discrete symmetry is exactly conserved, the
scalar singlets σj will not acquire any nonzero vacuum
expectation value (VEV).
For the current analysis, we write down the relevant

Lagrangian terms

L ⊃ −σ†M2
σσ −

1

2
σTM̃2

σσ −M2
ΔTrðΔ†ΔÞ þ μΔϕϕ

Tiτ2Δϕ

−Mψψ
c
Liτ2ψ

0
L þ 1

2
fψc

Liτ2ΔψL −
1

2
f0ψ 0c

Liτ2Δ†ψ 0
L

− yαjLc
Lαiτ2ψLσj þ H:c:; ð5Þ

where τ2 is the second Pauli matrix and σ ¼ ðσ1; σ2ÞT
denotes the singlet scalars. In Eq. (5), the fields ϕ, LL,
and eR denote the Higgs doublet, the left-handed lepton
doublet, and the right-handed lepton in the SM, respec-
tively. Thus, the Higgs doublet ϕ and the left-handed lepton
doublet LL take the following form:

ϕ

�
1;2;þ1

2

�
¼
�
ϕþ

ϕ0

�
; LL

�
1;2;−

1

2

�
¼
�
νL

eL

�
: ð6Þ

It is clear that in Eq. (5) the M̃2
σ mass term is the unique

source of the lepton-number violation, since by construc-
tion only the SM leptons and the scalar singlets σj carry
lepton numbers. We note that requiring the softly broken
lepton number and the exactly conserved Z2 discrete
symmetry has forbidden the following gauge-invariant
terms,

L⊃ −M0ψc
Liτ2LL −

1

2
f00ψ 0c

Liτ2Δ†LL −
1

2
f000Lc

Liτ2Δ†LL

− f000j L̄Lψ
0
Lσj − y0ψ 0

LϕeR þ H:c:; ð7Þ

with eRð1; 1;−1Þ being the right-handed leptons.
For simplicity, we consider the real mass parameters in

the present analysis,

μΔϕ ¼ μ�Δϕ; Mψ ¼ M�
ψ : ð8Þ

Then, we choose the singlet mass matrixM2
σ to be diagonal,

and for simplicity of the analysis, we further assume M̃2
σ to

be diagonal as well,

M2
σ ¼ diagfM2

σ1 ;M
2
σ2g; M̃2

σ ¼ diagfM̃2
σ1 ; M̃

2
σ2g: ð9Þ

Accordingly, we can deduce the mass eigenvalues of the
real and imaginary components of the two singlet scalars
σ1;2 as follows:

Lσ
mass ¼ −

1

2
M2

σjRσ
2
jR −

1

2
M2

σjIσ
2
iI; ð10aÞ

M2
σjR ¼ M2

σj þ M̃2
σj ; M2

σjI ¼ M2
σj − M̃2

σj : ð10bÞ
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For simplicity of demonstration, we also set both Yukawa
couplings f and f0 be real,

f ¼ f�; f0 ¼ f0�; ð11Þ

although one of them is allowed to be complex.

III. MINIMAL INELASTIC DARK MATTER

In this section, we further analyze the model predictions
and the experimental constraints. In particular, we shall
identify a stable Majorana fermion as a viable DM particle
of mass ∼1.2 TeV. We show that the present inelastic DM
model depends on two new parameters: the DM mass and
the mass difference between the DM and another particle.
This differs from the previous minimal DM model [7–9] in
which the DM is either a scalar or Dirac fermion, and its
tree-level mass is the only new physics parameter.
In the present model, the SM Higgs doublet ϕ will

develop a VEV for spontaneous electroweak symmetry
breaking at the weak scale. The scalar triplet Δ has a
positive mass term and will acquire an induced VEV, due to
its cubic interaction with the SM Higgs doublet ϕ via the
μΔϕ term in Eq. (5). So, we will refer the scalar tripletΔ as a
Higgs triplet. The Higgs scalars ϕ andΔ have 10 degrees of
freedom (d.o.f.) in total, including four real neutral scalars,
two singly charged scalars, and one doubly charged scalar,

ϕ ¼
� ϕþ

1ffiffi
2

p ðvϕ þ hϕ þ iϕ0
I Þ
�
; ð12aÞ

Δ ¼
� 1ffiffi

2
p δ− 1ffiffi

2
p ðvΔ þ hΔ þ iδ0I Þ

δ−− − 1ffiffi
2

p δ−

�
; ð12bÞ

with the VEVs vϕ and vΔ from their neutral components.
Among the d.o.f. in the Higgs scalars ϕ and Δ, one neutral
massless eigenstate from ϕ0

I and δ0I as well as one pair of
charged massless eigenstates from ϕ� and δ� will be
absorbed by the longitudinal components of the weak
gauge bosons Z0 and W�. The VEVs vϕ and vΔ should
be subject to the precision constraints [3],

v≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ϕ þ 2v2Δ

q
≃ 246 GeV;

ρ ¼ v2ϕ þ 2v2Δ
v2ϕ þ 4v2Δ

¼ 1.00040� 0.00024: ð13Þ

With the 3σ lower limit ρ ≥ 0.99968, we deduce

jvΔj ¼
ffiffiffiffiffiffiffiffiffiffiffi
1 − ρ

2ρ

s
v ≤ 3.1 GeV: ð14Þ

From the relevant scalar potential terms in Eq. (5), we
derive vΔ as

vΔ ≃
μΔϕv2ϕffiffiffi
2

p
M2

Δ
; ð15Þ

for MΔ ≫ μΔϕ, or MΔ ≫ vϕ. We see that a small triplet
VEV vΔ is naturally generated in the present model, due to
the seesaw-type suppression in the above formula (15).
According to the Yukawa interactions in Eq. (5), the

small VEV vΔ of Higgs triplet will also contribute to
Majorana masses of the neutral fermions χL and χ0L. Thus,
we derive the following mass terms for charged fermions
ðξ�L ; ξ0�L Þ and neutral fermions ð χL; χ0LÞ:

Lξ χ
mass ¼ −Mψξ

þc
L ξ0−L þMψ χ

c
L χ

0
L

−
vΔ
2

ffiffiffi
2

p ðf χcL χL þ f0 χ0cL χ
0
LÞ þ H:c: ð16Þ

For convenience, we can express the Dirac spinors in terms
of the left-handed Weyl spinors in the ð1

2
; 0Þ representation

of the Lorentz group,

χL ¼
�

χ

0

�
; χ0L ¼

�
χ0

0

�
;

ξ�L ¼
�
ξ�

0

�
; ξ0�L ¼

�
ξ0�

0

�
: ð17Þ

Thus, we can rewrite the mass terms (16) as

Lξ χ
mass ¼ Mψξ

þTϵξ0− −Mψ χ
Tϵ χ0

þ vΔ
2

ffiffiffi
2

p ðf χTϵ χ þ f0 χ0Tϵ χ0Þ þ H:c:; ð18Þ

where ϵ ¼ iτ2 is antisymmetric. We see that the two
charged Weyl spinors ξ� and ξ0� form a Dirac mass term
with mass Mξ ¼ Mψ . Defining the charged Dirac spinor,

ξ̃� ¼
�

ξ�

ϵξ0∓�

�
¼ ξ�L þ ðξ0∓L Þc; ð19Þ

we can express the Dirac mass term Mψξ
þTϵξ0− þ H:c: in

the conventional 4-component form Mψ ξ̃
þξ̃þ. From

Eq. (18), the neutral fermions χ̂ ≡ ð χ; χ0ÞT have the
Majorana mass term − 1

2
χ̂TM χ χ̂ with mass matrix,

M χ ¼
�−fv̄Δ Mψ

Mψ −f0v̄Δ

�
; ð20Þ

where v̄Δ ¼ vΔ=
ffiffiffi
2

p
. Then, we can diagonalize the sym-

metric mass matrix M χ and derive the mass eigenvalues
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M χ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ψ þ v2Δ
8
ðf − f0Þ2

r
−
f þ f0

2
ffiffiffi
2

p vΔ; ð21aÞ

M χ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ψ þ v2Δ
8
ðf − f0Þ2

r
þ f þ f0

2
ffiffiffi
2

p vΔ; ð21bÞ

with Mχ1<Mχ2 for fþf0>0. For the case Mψ ≫
jf � f0jvΔ ¼ OðGeVÞ, we see that the mass eigenvalues
M χ1 and M χ2 are quite degenerate: M χ1 ≈M χ2 ≈Mψ . For
diagonalizing the mass matrix (20), we rotate the fields
ð χ1; χ2Þ into their mass eigenstates ð χ̃1; χ̃2Þ by the unitary
rotation ð χ; χ0ÞT ¼ Uð χ1;i χ2ÞT with

U ¼
�

cos θ sin θ

− sin θ cos θ

�
: ð22Þ

Thus, we determine the rotation angle θ as follows:

tan 2θ ¼ 2
ffiffiffi
2

p
Mψ

ðf − f0ÞvΔ
: ð23Þ

For the case Mψ ≫ jf − f0jvΔ ¼ OðGeVÞ, we have the
rotation angle θ ≃ π

4
.

With these, we can rewrite the mass term (18) in the
diagonalized form:

Lξχ
mass¼Mψ ξ̃

þξ̃þ−
1

2
ðMχ1 χ

T
1 ϵχ1þMχ2 χ

T
2 ϵχ2ÞþH:c: ð24Þ

Then, we can derive gauge interactions of the charged Dirac
fermions ξ̃� and the neutral Majorana fermions χ1;2. In the
usual 4-component notations, we denote χLj ¼ ð χj; 0ÞT
(j ¼ 1, 2). Thus, we can express the gauge interactions of
ξ̃� and χL1;2 as

Lξ χ
G ¼ eξ̃þγμξ̃þAμ þ

g cos 2θW
2 cos θW

ξ̃þγμξ̃þZμ

þ g
2 cos θW

χL1γ
μ χL2Zμ −

g
2
χL1γ

μξ̃þW−
μ

−
g
2
χL2γ

μξ̃þW−
μ þ H:c:; ð25Þ

where we have set θ ≃ π
4
, which holds well for

Mψ ≫ ðf þ f0ÞvΔ.
As Eq. (14) restricts the Higgs triplet VEV vΔ within a

few GeV, we find that the mass splitting between the
Majorana fermions ð χ1; χ2Þ is constrained as

ΔM χ ¼M χ2 −M χ1 ¼
1ffiffiffi
2

p ðfþf0ÞvΔ

¼ 17.1GeV
�
fþf0

2
ffiffiffiffiffiffi
4π

p
��

vΔ
3.1GeV

�
≲17.1GeV; ð26Þ

which is much smaller than the χ1;2 masses themselves.
This means that the Majorana fermions χ1;2 are quaside-
generate and thus are pseudo-Dirac fermions.
In the next section, we shall show that the Higgs triplet

VEV vΔ is also responsible for the neutrino mass gen-
erations through a radiative type-II seesaw at TeV scale.
Such a TeV-scale Higgs triplet can be tested at the LHC.
The LHC could further probe the structure of the neutrino
mass matrix if the VEV of this Higgs triplet is not bigger
than 10−4 GeV [17]. In this case, the mass splitting (26)
should receive an upper bound,

ΔM χ ≲ 550 keV; ð27Þ

for jfj; jf0j < ffiffiffiffiffiffi
4π

p
and vΔ ≲ 10−4 GeV. On the other hand,

even if the Majorana fermions χ1;2 are degenerate and thus
compose a Dirac fermion χ ¼ χL þ χ0cL , the radiative
corrections from the electroweak gauge interactions will
induce a mass splitting between the charged fermions ξ̃�

and the neutral fermion χ,

ΔM ¼ Mξ̃� −M χ ¼
g2sin2θW
16π2

MψF

�
mZ

Mψ

�
; ð28Þ

where θW denotes the weak mixing angle and mZ is the
mass of gauge boson Z0. The function F is defined as

FðrÞ ¼
(
r4 ln r − r2 − rðr2 − 4Þ12ðr2 þ 2Þ ln rþ

ffiffiffiffiffiffiffi
r2−4

p
2

; ðfor r ≥ 2Þ;
r4 ln r − r2 þ rð4 − r2Þ12ðr2 þ 2Þ arctan

ffiffiffiffiffiffiffi
4−r2

p
r ; ðfor r ≤ 2Þ:

ð29Þ

For Mψ ≫ mZ, the radiative mass splitting ΔM is well
approximated as

ΔM ≃
1

2
αemmZ ≃ 356 MeV; ð30Þ

where αem ¼ e2=4π ≃ 1=128 is the fine structure constant
at the scale μ ¼ mZ. If the tree-level mass splitting (26) is
smaller than the radiative mass splitting (30), such as the
choice (27), the charged fermions ξ̃� can decay into the
neutral fermion χ with a virtual W� boson. Subsequently,
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the heavier Majorana fermion χ2 can decay into the lighter
Majorana fermion χ1 with a virtual Z boson. Alternatively,
if the mass splitting (26) is larger than the mass splitting
(30), the heavier χ2 can simultaneously decay into ξ̃� and
W�, and then ξ̃� will decay into the lighter χ1 plus W�. In
either case, all of the decay chains can be completed before
the big bang nucleosynthesis (BBN) epoch. For instance,
we may consider the loop-induced process χ2 → χ1γ,
which always exists [for any mass difference in (26) or
(28)] and the decay rate of which may be slower than (or
comparable to) the tree-level processes mentioned above. If
this loop-induced decay process is much faster than the
BBN epoch, then the above analysis is fine. We note that
the χ1- χ2-γ vertex can arise from the dimension-5 effective
operator,

L ⊃ −
i
Λ

χ̄1σ
μν χ2Aμν; with

1

Λ
∼

ðg
2
Þ2e

16π2M χ
: ð31Þ

Thus, we can estimate the decay width,

Γðχ2 → χ1γÞ∼
α3

sin4θW

ðΔM χÞ3
M2

χ

≃8.5×10−22 GeV

�
ΔM χ

550 keV

�
3
�

M χ

1.2 TeV

�
−2

≫HðTÞjT¼TBBN

≃4.5×10−25 GeV

�
TBBN

1MeV

�
2

: ð32Þ

This shows that the typical decay rate of χ2 → χ1γ can be
much faster than the BBN epoch for the mass difference
ΔM χ ∼ 550 keV or larger. In Eq. (32), the Hubble constant
HðTÞ is given by

HðTÞ ¼
�
8π3g�
90

�1
2 T2

MPl
; ð33Þ

with MPl ≃ 1.22 × 1019 GeV being the Planck mass and
g� ¼ 10.75 denoting the relativistic d.o.f. during the BBN
epoch.
The lighter Majorana fermion χ1 will remain stable and

leave a relic density in the present Universe. Equations (26)
and (30) show that the charged fermions ξ̃� and neutral
fermions χ1;2 can be fairly quasidegenerate. Thus, for
computing the relic density, we should take into account
not only the annihilations of the lightest χ1 but also the
annihilations and coannihilations involving the heavier ξ̃�

and χ2. Such annihilation and coannihilation processes can
be induced by either gauge interactions or Yukawa inter-
actions. As we will explain after Eq. (34), our model can
realize the case in which the gauge interactions dominate
the annihilation and coannihilation processes, while the
processes from Yukawa interactions can be negligible.

The processes induced by gauge interactions can contain
in their final states the electroweak gauge bosons, the Higgs
bosons, and the fermions. Thus, the corresponding effective
cross section is a sum of the leading contributions with the
final states of gauge bosons (G), Higgs bosons (H), and
fermions (F),

hσvi ≃ hσviG þ hσviH þ hσviF
≃
87α22 þ 24α2αY þ 45α2Y

64π−1M2
χ1

; ð34Þ

where ðα2;αYÞ ¼ 1
4π ðg2; g02Þ, and ðg; g0Þ denote theweak and

hypercharge gauge couplings, respectively. As we have
checked, the above gauge interaction contributions agree
with Ref. [7]. The Yukawa interactions can induce the
s-channel annihilations χ1 χ1 → ϕϕ and the t-channel anni-
hilations χ1 χ1 → ΔΔ†, as well as the related coannihi-
lation channels. In our analysis, we consider the Higgs triplet
mass to be around the scale of DMmass (withMΔ < 2M χ1)
and the Yukawa couplings to be reasonably small [f,
f0 ¼ Oð0.1 − 0.01Þ]. Thus, we find that the (co)annihilation
processes χ1;2 χ1;2 → ϕϕ are suppressedby theproduct of the
Δϕϕ coupling and s-channel propagator factor, which is
proportional to ðμΔϕ=M2

ΔÞ2 ∝ v2Δ=v
4
ϕ, where v2Δ=v

2
ϕ ≪ 1

[due to Eq. (14)] and MΔ is chosen significantly away from
the resonant production of Δ. For the (co)annihilation
processes such as χ1 χ1 → ΔΔ† and χ1Δ → χ1Δ, the
effective cross sections will be suppressed by the Yukawa
coupling factors ðf4; f04; f2f02Þ for f, f0 ¼ Oð0.1 − 0.01Þ.
With the above consideration, our model realizes the conven-
tional minimal DM scenario, with gauge interactions domi-
nating the DM annihilation and coannihilation processes as
in Eq. (34).
For the current study, the corresponding DM relic

density can be expressed as [18,19]

nχ1

s
≃

xf
hσviM χ1MPl

�
180

πg�

�1
2

; xf≃ ln
hσviM χ1MPl

60
ffiffiffiffiffi
g�

p ; ð35Þ

where n χ1 is the DM number density at the freeze-out
temperature Tf, s is their total entropy, MPl ≃ 1.22 ×
1019 GeV is the Planck mass, and the ratio xf¼Mχ1=Tf.
The quantity g� denotes the effective relativistic d.o.f. in the
thermal equilibrium at the freeze-out temperature, and thus
g� ¼ 106.75. For the ΛCDM cosmology, the latest Planck
data give ΩDMh2 ¼ 0.120� 0.001 [20]. With the generic
relation,

n χ1

s
¼ 0.436 eV

M χ1

Ω χ1h
2

0.120
; ð36Þ

and using Eqs. (34) and (35), we compute the mass of the
lightest fermion χ1 as a stable DM particle,
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M χ1 ≃ 1.24 TeV: ð37Þ

Because of the small VEV jvΔj ≤ 3.1 GeVand the value
of rotation angle θ ≃ π

4
, the spin-dependent elastic scattering

of the DM particle χ1 off the nucleon will be far below the
experimental sensitivities. As for the spin-independent
elastic scattering, its cross section can be computed at
one-loop level and estimated as [7]

σSI ≃ 3 × 10−46 cm2; ð38Þ

which is reachable by the future direct detection experi-
ments [16]. Furthermore, the DM particle χ1 and its
heavier partner χ2 have a spin-independent inelastic
scattering off the nucleon at tree level. If the χ1 − χ2 mass
splitting would vanish, the spin-independent inelastic
scattering cross section would take the form [21]

σ0 ¼
m2

pG2
F

128π

�ðA − ZÞ − ð1 − 4sin2θWÞZ
A

�
2

¼ 1.16 × 10−40 cm2

�ðA − ZÞ − ð1 − 4sin2θWÞZ
A

�
2

ð39Þ

and would already be excluded by the direct DM searches.
In the above equation, mp ≃ 938 MeV is the proton mass,
GF ≃ 1.16638 × 10−5 GeV−2 is the Fermi constant, and
ðZ; AÞ denote the (charge, mass) numbers of the target
nuclei. On the other hand, our inelastic DM model predicts
small but nonzero χ1 − χ2 mass splitting in the range of
Eq. (26) or Eq. (27). Hence, the corresponding inelastic
DM scattering can escape from the current experimental
constraints. Other inelastic DM models have a similar
feature regarding the experimental direct detection con-
straints, as discussed in the literature [22–25].

IV. RADIATIVE TYPE-II NEUTRINO SEESAW

After the electroweak symmetry breaking, we can gen-
erate a Majorana mass term for the left-handed neutrinos
via a radiative type-II seesaw, as given by the one-loop
diagram in Fig. 1,

Lν
mass ¼ −

1

2
νcLmννL þ H:c: ¼ 1

2
νTmννþ H:c:; ð40Þ

where νL ¼ ðν
0
Þ and ν is a left-handed Weyl spinor in

the ð1
2
; 0Þ representation of the Lorentz group. We note

that in Fig. 1 the lepton-number violation (ΔL ¼ 2)
arises from the σ propagator with the mass insertion
M̃2

σj ∝ M2
σjR −M2

σjI . The Majorana nature of the neutrino
mass generation originates from the vertices Δ − ψL − ψL

and Δ† − ψ 0
L − ψ 0

L. From Fig. 1, we compute the one-loop
radiative neutrino masses as follows:

ðmνÞαβ ¼
M χ1

16π2
X
j

yαjyβj

�
M2

σjR

M2
σjR −M2

χ1

ln

�
M2

σjR

M2
χ1

�

−
M2

σjI

M2
σjI −M2

χ1

ln

�
M2

σjI

M2
χ1

��

−
M χ2

16π2
X
j

yαjyβj

�
M2

σjR

M2
σjR −M2

χ2

ln

�
M2

σjR

M2
χ2

�

−
M2

σiI

M2
σjI −M2

χ2

ln

�
M2

σjI

M2
χ2

��
: ð41Þ

As we will show later, we are interested in the case in
which the scalars ðσjR; σjIÞ can realize the high-scale
leptogensis and thus are much heavier than the fermions
ð χ1; χ2Þ. In this case, we can simplify the above mass
formula as

ðmνÞαβ ≃
ΔM χ

16π2
X
j

yαjyβj ln

�
M2

σjR

M2
σjI

�
; ð42Þ

forM2
σjR ≠ M2

σjI ≫ M2
χ1;2. Inspecting Eqs. (41) and (42), we

see that the neutrino massmν vanishes ifMσjR ¼ MσjI . This
is expected because the lepton-number violation (ΔL ¼ 2)
of the neutrino mass term is generated by the mass insertion
of the σ field in Fig. 1, M̃2

σj ∝ M2
σjR −M2

σjI . Furthermore,
Eq. (41) shows that mν ¼ 0 if M χ1 ¼ M χ2 , since the
contributions of χ1 and χ2 to the loop diagram of Fig. 1
take the same form but with opposite signs. This is manifest
in Eq. (42), in which the neutrino mass is proportional to
the mass difference ΔM χ and thus the triplet VEV,
mν ∝ ΔM χ ∝ vΔ. In addition, we note that for M2

σjR;I ≫
M2

χ1;2 the mass scale of the loop diagram in Fig. 1 is
controlled by the heavy mass of σj, so the resultant
approximate neutrino-mass formula (42) is controlled by
the heavy σj mass and does not depend on the small
TeV-scale masses of ð χ1; χ2Þ, except the overall

FIG. 1. One-loop diagram for generating the radiative neutrino
masses through the type-II seesaw in the present model.
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mass-difference factor ΔM χ ∝ vΔ due to the VEV of the
external triplet field Δ. This feature is important for our
following interpretation of neutrino mass generation via
type-II seesaw around Eqs. (43) and (44).
To generate the required size of neutrino masses

mν ¼ Oð0.1 eVÞ, we set the Yukawa couplings as y≳
Oð10−4Þ for ΔM χ ≲ 17.1 GeV, or y≳Oð10−2Þ for
ΔM χ ≲ 550 keV, since the logarithm function usually
has a value of Oð1Þ. Note that, here, we have a rank-2
neutrino mass matrix mν with two nonzero eigenvalues
because the model only contains two scalar singlets σ1;2
and their Yukawa couplings yαj form a 3 × 2 matrix. (This
feature is similar to the minimal type-I neutrino seesaw
with two right-handed heavy Majorana neutrinos [26].) If
the light neutrinos have three nonzero mass eigenvalues,
then we can readily extend the present model with three
singlet scalars σj (j ¼ 1, 2, 3), which will not affect the
main feature of the present model.
The neutrino mass generation (42) may be also under-

stood as a type-II seesaw. Since the scalar singlets ðσ1; σ2Þ
have masses around the leptogenesis scale (cf. Sec. V) and
are extremely heavy, we can expand the exact mass
formula (41) to obtain Eq. (42). As we explained below
Eq. (42), the loop diagram of Fig. 1 is controlled by the
heavy mass of the singlet σj, and the resultant approximate
formula (42) does not depend on the small masses of the
light fields ð χ1; χ2Þ in the loop diagram, except the overall
mass-difference factor ΔM χ ∝ vΔ due to the VEV of the
external triplet field Δ. Thus, it is instructive to view this as
integrating out the heavy singlets ðσ1; σ2Þ, and we obtain
the low-energy effective Yukawa interactions between the
Higgs triplet Δ and the SM lepton doublets LL,

LY
eff ¼ −

1

2
feffLc

Liτ2ΔLL þ H:c:; ð43Þ

where feff is the effective Yukawa coupling with

ðfeffÞαβ ¼
f þ f0

16π2
X
j

yαjyβj ln

�
M2

σjR

M2
σjI

�
; ð44Þ

forMΔ≪MσjR ≠MσjI. We may call the above as a radiative
type-II neutrino seesaw since it is realized at one-loop level.
For such neutrino mass generation with a fairly small
Higgs triplet VEV, vΔ ≲ 0.1 MeV, it can be tested at the
LHC [17].
For a further remark, we inspect the effective coupling

(44) and note that feff and the corresponding Majorana
neutrino mass would vanish if the mass splitting M2

σjR −
M2

σjI ð¼2M̃2
σjÞ were equal to zero. This is because the mass

splitting between the real and imaginary components of σj
arises from the soft lepton number breaking via the mass
term of M̃2

σj, as we explained below Eq. (42). When the σj
mass goes to infinity for any fixed finite massdifference
between ðσjR; σjIÞ, we see that the effective coupling (44)
also approaches zero, which is consistent with the decou-
pling theorem.

V. REALIZING NATURAL HIGH-SCALE
LEPTOGENESIS

In the present model, we can realize a leptogenesis
through the decays of the real scalars σiR or σiI. The
relevant Feynman diagrams are shown in Fig. 2. Thus, we
compute the decay widths at tree level,

ΓσiR ≡
X
α

½ΓðσiR → LLα þ ψLÞ þ ΓðσiR → Lc
Lα þ ψc

LÞ�

¼ 1

8π
ðy†yÞiiMσiR ; ð45aÞ

ΓσiI ≡
X
α

½ΓðσiI → LLα þ ψLÞ þ ΓðσiI → Lc
Lα þ ψc

LÞ�

¼ 1

8π
ðy†yÞiiMσiI : ð45bÞ

FIG. 2. Decays of the singlet scalars σj ¼ 1ffiffi
2

p ðσR þ iσIÞ into the SM lepton doublets LL and the new fermion doublet ψL.
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Then, we evaluate the CP asymmetries at one-loop order,

εσiR ≡
P

α½ΓðσiR → LLα þ ψLÞ − ΓðσiR → Lc
Lα þ ψc

LÞ�
ΓσiR

¼ 1

24π

Imf½ðy†yÞij�2g
ðy†yÞii

��
S

�
M2

σjR

M2
σiR

�
þ V

�
M2

σjR

M2
σiR

��

−
�
S

�
M2

σjI

M2
σiR

�
þ V

�
M2

σjI

M2
σiR

���
; ð46aÞ

εσiI ≡
P

α½ΓðσiI → LLα þ ψLÞ − ΓðσiI → Lc
Lα þ ψc

LÞ�
ΓσiI

¼ −
1

24π

X
j≠i

Imf½ðy†yÞij�2g
ðy†yÞii

��
S

�
M2

σjR

M2
σiI

�
þ V

�
M2

σjR

M2
σiI

��

−
�
S

�
M2

σjI

M2
σiI

�
þ V

�
M2

σjI

M2
σiI

���
; ð46bÞ

where SðxÞ and VðxÞ are the self-energy and vertex
corrections, respectively,

SðxÞ ¼ 2

x − 1
; ð47aÞ

VðxÞ ¼ð1þ 2xÞ
�
2þ ð1þ 2xÞ ln x

1þ x

�
: ð47bÞ

For an example, we set the masses of the four real scalars
ðσ1R; σ1IÞ and ðσ2R; σ2IÞ with the following hierarchy:

M2
σ1I ≪ M2

σ1R ≪ M2
σ2I ≪ M2

σ2R : ð48Þ

Thus, the final baryon asymmetry should mainly come
from the decays of the lightest singlet scalar σ1I. In this
case, we find that the relevant CP asymmetry becomes

εσ1I ≃
1

8π

Imf½ðy†yÞ12�2g
ðy†yÞ11

M2
σ1I

M2
σ2I

: ð49Þ

Note that, due to the trilinear scalar vertex ϕϕΔ in Eq. (5)
and the radiative Yukawa vertex LLLLΔ in Eq. (43), the
Higgs triplet Δ will mediate some ΔL ¼ 2 processes:
LLLL ↔ ϕϕ, Lc

LL
c
L ↔ ϕ�ϕ�, and LLϕ

� ↔ Lc
Lϕ. Before

the sphalerons (for leptogenesis) stop working, these
additional lepton number–violating processes should keep
out of the equilibrium and thus do not wash out the
produced lepton asymmetry from σ1I decays. This will
require

ΓΔL¼2 < HðTÞ; ð50Þ

for T > Tsph. Here, the Hubble constant HðTÞ is given by

HðTÞ ¼ ð8π3g�
90

Þ12 T2

MPl
, withMPl ≃ 1.22 × 1019 GeV being the

Planck mass and g� ¼ Oð100Þ denoting the relativistic
d.o.f. during the leptogenesis epoch. As for the rate of
lepton number–violating interactions, ΓΔL¼2, we can
estimate

ΓΔL¼2 ∼
Trðf†efffeffÞjμΔϕj2

T

¼ 4M4
ΔTrðm†

νmνÞ
v4ϕT

; ðfor T > MΔÞ; ð51aÞ

ΓΔL¼2 ∼
Trðf†efffeffÞjμΔϕj2T3

M4
Δ

¼ 4Trðm†
νmνÞT3

v4ϕ
; ðfor T < MΔÞ: ð51bÞ

For a numerical demonstration, we define

K ¼ Γσ1I

2HðTÞ
				
T¼Mσ1I

; ð52Þ

whereHðTÞ is the Hubble constant given by Eq. (33). In the
weak washout region, the final baryon asymmetry can be
described as [18]

ηB ¼ nB
s
≃ −

28

79
×
εσ1I
g�

; ð53Þ

for K ≪ 1. Here, nB and s denote the baryon number
density and the entropy density, respectively, while the
factor − 28

79
is the sphaleron lepton-to-baryon coefficient.

In the present model, we have g� ¼ 119.75 accounting for
the SM fields plus one Higgs triplet (Δ) and two fermion
doublets (ψL and ψ 0

L). The latest Planck observation
gives [20],

ηB ¼ ð6.12� 0.03Þ × 10−10: ð54Þ

For illustration, it is useful to define a simple effective
coupling ȳTL to characterize the size of the relevant Yukawa
couplings for the LL-ψL-σ vertex (especially, its order of
magnitude), without invoking the detailed structure of
Yukawa matrix,

ȳ2TL ≡ −
Imf½ðy†yÞ12�2g

ðy†yÞ11
: ð55Þ

Thus, we have

ȳTL ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
158g�ηB

7

r �
Mσ2I

Mσ1I

�
: ð56Þ

With this, we impose the baryon asymmetry data (54)
and estimate the allowed range of the effective Yukawa
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coupling ȳTL as a function of the scalar mass ratio
R ¼ Mσ2I =Mσ1I . We plot this as the black curve (called
case A) in Fig. 3 for the range of 5 ≤ R ≤ 102. We input the
experimental central value of Eq. (54). We also vary the
value of ηB within �3σ range but find no visible effect in
Fig. 3. From Fig. 3, we see that the typical size of Yukawa
couplings (ȳTL) can be naturally around Oð10−1 − 10−2Þ.
For an explicit numerical sample, we can choose the

sample inputs,

Mσ1I ¼ 10−1Mσ2I ¼ 1.5 × 1013 GeV;

Mσ1R ¼ 10−1Mσ2R ¼ 7.5 × 1013 GeV;

ΔM χ ¼ 550 keV; ȳTL ¼ 2.27 × 10−2: ð57Þ

Thus, we have

εσ1I ≃ 2.1 × 10−7; ηB ≃ 6.1 × 10−10; ð58Þ

where the produced baryon asymmetry ηB is consistent
with the recent Planck observation [20] in Eq. (54). We can
also estimate K ¼ Oð0.1Þ.
Then, we take another approach and realize a nonthermal

leptogenesis. For this, we use the imaginary scalar com-
ponent σ1I to play the role of an inflaton [27]. In this case, a
final baryon asymmetry can be induced [18],

ηB ¼ −
28

79

TRH

Mσ1I

εσ1I ; ð59Þ

with TRH being the reheating temperature [18],

TRH ≡ Tðt ¼ Γ−1
σ1I Þ

¼
�

90

8π3g�

�1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy†yÞ11MPlMσ1I

16π

s
: ð60Þ

For illustration of this model, we may define a simple
effective coupling ȳnTL to characterize the size of the
relevant Yukawa couplings for the LL-ψL-σ vertex,

ȳ3nTL ≡ −
Imf½ðy†yÞ12�2gffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðy†yÞ11
p : ð61Þ

Thus, we can express ȳnTL as follows:

ȳnTL ¼
�
ηB

158π

7

�
8π3g�
90

�1
4

�
16πMσ1I

MPl

�1
2

�1
3
�
Mσ2I

Mσ1I

�2
3

: ð62Þ

Next, imposing the baryon asymmetry data (54), we can
estimate the allowed range of the effective Yukawa cou-
pling ȳnTL as a function of the scalar mass ratio
R ¼ Mσ2I =Mσ1I . In Fig. 3, we plot this as the lower set
of curves in (yellow, green, blue, red) colors (called case B)
from the bottom to top, corresponding to Mσ1I ¼
ð1013; 1014; 1015; 5 × 1015Þ GeV, for 5 ≤ R ≤ 102.
For an explicit numerical sample of this model, we make

the parameter choice

Mσ1I ¼ 20−1Mσ2I ¼ 4.5 × 1013 GeV;

Mσ1R ¼ 20−1Mσ2R ¼ 2.3 × 1014 GeV;

ΔM χ ¼ 550 keV; ȳnTL ¼ 10−2; ð63Þ

and derive

ηB ≃ 6.1 × 10−10; ð64Þ

which is consistent with the Planck observation (54) [20].
For illustration, we further choose a typical input ðy†yÞ1=211 ¼
10−2 and estimate

εσ1I ≃ 10−9; TRH ≃ 7.6 × 1012 GeV: ð65Þ

In the above samples, we choose ΔM χ ¼ 550 keV and
the effective Yukawa coupling ȳTL, ȳnTL ¼ Oð10−2Þ. Thus,
from the radiative mass formula (42) of light neutrinos, we
see that the light neutrino mass scale of mν ¼ Oð0.1 eVÞ
can be realized, which is consistent with the oscillation
data [3] and cosmological constraints [20]. Also, for the
above numerical samples, we have checked that the
condition (50) is satisfied for the parameter choice (57)
and (63). In particular, Eq. (51a) will match the condition
(50) during the leptogenesis epoch T ≫ MΔ and the low-
temperature period T ∼MΔ. When the temperature falls to
T < MΔ, the rate will become as Eq. (51b) and is reduced

0 20 40 60 80 100
10 3

10 2

10 1

1

R

Case B

Case A

FIG. 3. The characteristic size of effective Yukawa coupling ȳ
as a function of the scalar mass ratio R ¼ Mσ2I =Mσ1I under the
constraint of baryon asymmetry (54), where ȳ ¼ ȳTL is defined
in Eq. (55) for case A and ȳ ¼ ȳnTL in Eq. (61) for case B.
In case B, the (yellow, green, blue, red) curves from the
bottom to top correspond to the lowest singlet scalar mass
Mσ1I ¼ ð1013; 1014; 1015; 5 × 1015Þ GeV.
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by a factor T4=M4
Δ < 1. This means that Eq. (51b) also

matches the condition (50).

VI. CONCLUSIONS

Understanding the origins of the neutrino masses, the
baryon asymmetry, and the dark matter altogether poses an
important challenge to particle physics today. In the
conventional seesaw framework, the neutrino mass gen-
eration and the leptogenesis for baryon asymmetry are tied
to the same high-energy scale. This means that a low-scale
neutrino mass generation could not be consistent with a
high-scale leptogenesis. In the present work, we demon-
strated an attractive new possibility that a radiative neutrino
mass generation can be achieved at the TeV scale, while a
thermal or inflationary leptogenesis naturally happens at
the high scale. Furthermore, our model realizes a viable
minimal inelastic dark matter at the TeV scale, where the
mass splitting between the DM particle and its heavier
partner can be naturally generated by the interactions
related to the neutrino mass generation.
In Sec. II, we presented the model construction, which

extends the standard model with two gauge-singlet scalars
ðσ1; σ2Þ, a vectorlike isodoublet fermion ðψL;ψ 0c

L Þ and one
isotriplet Higgs Δ. This model holds a softly broken lepton
number and an exactly conserved Z2 discrete symmetry.
Then, in Sec. III, we showed that the lighter Majorana
fermion χ1 can serve as a stable DM candidate and provide

the observed relic density in the present Universe with its
mass M χ1 ≃ 1.24 TeV. This fermionic DM χ1 can be
searched by the current direct/indirect DM detection
experiments [16] and by the ongoing LHC experiments
as well as the future high-energy pp colliders [28]. In
Sec. IV, we demonstrated how our model can naturally
realize the minimal type-II seesaw and radiatively generate
the light neutrino masses mν ¼ Oð0.1 eVÞ at the TeV scale
[cf. Fig. 1 and Eq. (42)]. Finally, in Sec. V, we studied the
realization of a natural thermal or inflationary leptogenesis
through decays of the lightest singlet scalar σ1I at a high
scale around Oð1013 GeVÞ.
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