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We revisit the question of hadronic decays of a giga-electron-volt-mass Higgs-like scalar. A number of
extensions of the Standard Model predict the Higgs sector with additional light scalars. Currently operating
and planned Intensity Frontier experiments will probe for the existence of such particles, while theoretical
computations are plagued by uncertainties. The goal of this paper is to bring the results in a consolidated
form that can be readily used by experimental groups. To this end, we provide a physically motivated fitting
ansatz for the decay width that reproduces the previous nonperturbative numerical analysis. We describe
systematic uncertainties of the nonperturbative method and provide explicit examples of the influence of
extra resonances above 1.4 GeV onto the total decay width.
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I. MOTIVATION

The Standard Model of particle physics provides a
closed and self-consistent description of known elementary
particles interacting via strong, weak, and electromagnetic
forces. The Standard Model coupled with general relativity
has also been very successful in describing the evolution
of the Universe as a whole. However, the impressive
success of the Standard Model at accelerator and cosmic
frontiers has also revealed with certainty that the Standard
Model fails to explain a number of observed phenomena in
particle physics, astrophysics, and cosmology. These major
unsolved challenges are commonly known as “beyond the
Standard Model” (BSM) problems. They include neutrino
masses and oscillations, dark matter, baryon asymmetry of
the Universe, etc.
A range of possible scenarios capable of resolving the

BSM puzzles is extremely wide. At the one end, there
are models such as the neutrino minimal Standard Model
(νMSM) [1,2] that postulate only three extra particles
lighter than electroweak scale, providing resolutions of
major BSM puzzles and leading to a Standard Model–like
quantum field theory up to very high scales [3–5]. At the
other end, there are models in which one is completely
agnostic about the structure of the hidden (“dark”) sectors

and explores portals—mediator particles that both couple
to states in the “hidden sectors” and interact with the
Standard Model. Such portals can be renormalizable (mass
dimension ≤ 4) or be realized as higher-dimensional oper-
ators suppressed by the dimensionful couplings Λ−n, with
Λ being the new energy scale of the hidden sector. Mediator
couplings to the Standard Model sector can be sufficiently
small to allow for the portal particles to be (much) lighter
than the electroweak scale. Such models can be explored
with Intensity (rather than Energy) frontier experiments.
In this paper, we focus on scalar (or “Higgs”) portal

[6]—gauge singlet scalar S interacting with the Higgs
doublet H via the SH†H term. Such particles “inherit”
their interactions from the Higgs boson (albeit suppressed
by a small dimensionless parameter θ). New generation of
Intensity Frontier experiments, such as NA62 [7–9],
SHiP [10,11], MATHUSLA [12,13], FASER [14]),
CODEX-b [15], and SeaQuest [16] will probe for the
existence of such scalars with the masses ∼GeV. The
lifetime of such scalars is dominated by the decay into
light mesons (S → ππ, S → K̄K, etc.) The question of
computation of the decay width of such particles was
studied in the 1980s [17–23] in the context of hadronic
decays of the light Higgs boson. Based on the data for
ψ 0 → ψππ and ϒ0 → ϒππ decays, Ref. [18] argued in
favor of extrapolating the results obtained with the help of
chiral perturbation theory (ChPT) up to 1.5 GeV. At the
same time, the nonperturbative analysis of Ref. [23]
produced results differing from Ref. [18] by as much as
an order of magnitude.
This discrepancy, crucial for the new generation of

experiments, warrants the current work. We critically
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review existing methods of computation of the scalar’s
hadronic width and assess the uncertainties. We mainly
reconfirm findings of Ref. [23] but provide a way to
assess its uncertainties and speculate up to what scales
the nonperturbative approach should be used (read:
trusted).
The paper is organized as follows. In Sec. II, we discuss

briefly the properties of the scalar portal and define the
form factors through which the hadronic decay width Γππ is
expressed. We review computation of the hadronic decay in
the chiral perturbation theory, reproducing the results of
Ref. [18] in Sec. III. The unitarity arguments that allow for
nonperturbative treatment of the relevant form factors are
summarized in Sec. IV. The review of dispersive methods is
given in Sec. V. Section VI summarizes our results and
compares with previous works. Section VII provides the
error estimate and domain of validity. We conclude in
Sec. VIII and provide supplementary material in the
Appendices.

II. SETUP

We start by laying down the ground rules for com-
puting the desired decay rate. We consider a scalar field
S weakly coupled to the Standard Model Higgs field H;
see Ref. [10] for details. For masses below 1 GeV, the
relevant UV couplings of the scalar are only those to quarks
and leptons

Lint ¼ −
S
vS

X
q

mqq̄q −
S
vS

X
l

mll̄l; ð1Þ

since the only interesting decay channels are ππ, μþμ−, and
possibly K̄K. In Eq. (1), vS ≡ v cot θ, where v ¼ 246 GeV
is the Higgs vacuum expectation value (vev) and θ ≪ 1
parametrizes the interaction of the scalar S with the
Standard Model particles.
From the Lagrangian (1), the decay rate S → μþμ− can

be immediately found:

Γμþμ− ¼ 1

8π

m2
μmS

v2S

�
1 −

4m2
μ

m2
S

�
3=2

: ð2Þ

Computing the width due to hadronic decays is somewhat
more involved. The difficulty stems from the strong
coupling of QCD in the regime of interest. Therefore,
considering only the tree-level process—which in the case
of the leptonic decay leads to (2)—is not enough. Quarks
and gluons are not adequate degrees of freedom for
describing the low-energy physics. Instead, to compute
hadronic decay rates, matrix elements of the Lagrangian (1)
between low-energy hadronic states should be computed
directly. For instance, in the case of S → πaπb, where a and
b are isospin indices, the amplitude is defined as

Aπðm2
SÞδab ≡ hπaðp1Þπbðp2ÞjiLintjSi

¼ −
i
vS

hπaðp1Þπbðp2Þj
X
q

mqq̄qj0i: ð3Þ

Integrating it over the phase space gives the decay width

Γππ ¼
3

32π

jAπðm2
SÞj2

mS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

m2
S

s
; ð4Þ

where we summed over all species and took into account
that the particles in the final state are identical.
The sum in (3) contains contributions from light (u, d, s)

and heavy (c, b, t) quarks. The latter can be expressed in
terms of the former and the energy-momentum tensor
by using a clever trick based on the knowledge of the
trace anomaly and the renormalization group invariance
of the energy-momentum tensor (for more details, see
Refs. [18,24,25] and [20,21,26]). It uses two different
representations of the energy-momentum tensor at energies
immediately above and below the c-quark mass. On the one
hand, using the UV description (all quarks), the trace of the
energy-momentum tensor, due to the anomaly, is given by

θμμ ¼ βðαsÞ
4αs

G2 þ
X
all

mqq̄q; αs ¼
g2s
4π

; G2 ¼ Ga
μνGa

μν;

ð5Þ

with the one-loop beta function for the strong coupling αs
defined as

βðαsÞ ¼ −
bα2s
2π

; b ¼ 9 −
2

3
Nh; ð6Þ

where Nh is the number of heavy quarks (in our case 3). On
the other hand, from the IR perspective (after integrating out
heavy quarks), the energy-momentum tensor becomes

θμμ ¼ β̄ðαsÞ
4αs

G2 þ
X
light

mqq̄qþOð1=m2
cÞ; ð7Þ

where the reduced beta function corresponds to only light
quarks (u, d, s),

β̄ðαsÞ ¼ −
9α2s
2π

: ð8Þ

As a result, one concludes that

X
heavy

mqq̄q¼−
2

3
Nh

αs
8π

G2 ¼ 2

27
Nh

�
θμμ−

X
light

mqq̄q

�
; ð9Þ

and the interaction Lagrangian can therefore be rewritten as
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Lint ¼ −
S
vS

�
2

27
Nhθ

μ
μ þ

�
1 −

2

27
Nh

�X
light

mqq̄q

�
; ð10Þ

which immediately leads to the expression for the amplitude
(3) in the leading order in αs,

Aπðm2
SÞ ¼

i
vS

�
2

27
Nhθπðm2

SÞ

þ
�
1 −

2

27
Nh

�
½Γπðm2

SÞ þ Δπðm2
SÞ�
�
; ð11Þ

where the following notations for the form factors were
introduced:

ΓπðsÞδab ¼ hπaπbjmuūuþmdd̄dj0i; ð12aÞ

ΔπðsÞδab ¼ hπaπbjmss̄sj0i; ð12bÞ

θπðsÞδab ¼ hπaπbjθμμj0i: ð12cÞ

The problem of computing the width (4) thus boils down
to computing these form factors. In the next sections, we
present several approximations when it can be done using
different techniques such as the ChPT and unitarity. It is
also important to note that the expression (11) does not
capture effects suppressed by heavy quark masses 1=m2

c.

III. ChPT

For very small energies, the form factors (12a)–(12c)
can be easily computed using the chiral perturbation
theory [18,27]. We will not go to great lengths to introduce
the ChPT and refer the reader to numerous sources (for
instance, Refs. [28–30]). Instead, we give just the key
results allowing us to demonstrate how the computation
is done.
The low-energy dynamics of QCD can be described

[in the case of the SUð2Þ × SUð2Þ chiral symmetry] by
introducing an SUð2Þ matrix,

Σ ¼ eiσaπa=fπ ; ð13Þ

parametrized by pion fields πa, with fπ ¼ 93 MeV being
the pion decay constant. The action of the chiral symmetry
group on the space of these matrices is realized by the right
and left multiplications,

Σ0 ¼ ULΣU
†
R: ð14Þ

In building the Lagrangian, one has to make sure that the
symmetry (14) is preserved. It is straightforward to show
that the leading (derivative expansion) order Lagrangian is
given by

L ¼ f2π
4
Tr∂μΣ∂μΣ† þ Bf2π

2
TrðM†Σþ Σ†MÞ; ð15Þ

where M is the quark mass matrix

M ¼
�
mu 0

0 md

�
ð16Þ

and B is a constant. Expanding the Lagrangian up to
quadratic order shows that the pion mass is given by
m2

π ¼ Bðmu þmdÞ. At this order, the trace of the energy-
momentum tensor is given by

θμμ ¼ 2m2
ππ

2 − ð∂πÞ2: ð17Þ

Therefore, the corresponding form factor (12c) becomes

θπðsÞ ¼ sþ 2m2
π: ð18Þ

The other two form factors (12a) and (12b) can be
computed in a similar way:

ΓπðsÞ ¼ m2
π; ΔπðsÞ ¼ 0: ð19Þ

As a result, the amplitude (11) becomes [18]

Aπ ¼
2

9

i
vS

�
m2

S þ
11

2
m2

π

�
; ð20Þ

which—upon using (4)—leads to the following expression
for the S → ππ decay rate:

Γππ ¼
1

216π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
π

m2
S

s
1

mSv2S

�
m2

S þ
11

2
m2

π

�
2

: ð21Þ

By construction, the ChPT is only reliable for suffi-
ciently small energies. It is thus clear that the result (20) is
valid at energies low compared to QCD scale, i.e.,
ΛQCD ≡ 4πfπ ≈ 1 GeV. At the same time, we are inter-
ested in finding the decay rate for scalars with masses
comparable to 1 GeV. To do that, it is not enough to
compute the next-to-leading-order correction in ChPT. In
the next section, we will present a nonperturbative
approach based on dispersion relations.

IV. BEYOND ChPT AND UNITARITY

In the previous section, we showed how the decay rate
of a light scalar into pions can be computed using the
power of the effective field theory. ChPT corrections to the
leading-order result are suppressed by powers of s=Λ2

QCD.
Therefore, perturbative computations become unreliable
at energies close to the cutoff. However, the precise point
where corrections become comparable with the leading-
order computation depends on the specifics of an observable.
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There are indications that for the form factorΓπðsÞ it happens
for energies s much smaller1 than Λ2

QCD.
Using the definition of the quadratic scalar radius of the

pion

hr2iS;π ¼ 6
∂ logΓπðsÞ

∂s
				
s¼0

; ð22Þ

the form factor ΓπðsÞ around s ¼ 0 can be written as

ΓπðsÞ ¼ Γπð0Þ
�
1þ 1

6
shr2iS;π þ…

�
; ð23Þ

where Γπð0Þ is given by Eq. (19). The quadratic scalar radius
of the pion was first computed in Ref. [32] using ChPT at
one loop, with the result hr2iS;π ¼ 0.55� 0.15 fm2. The
method of Ref. [23] (to be discussed shortly) produced
hr2iS;π ¼ 0.600� 0.052 fm2. Later, using a better input for
the pi-pi phases, the analysis was repeated in Ref. [33],
producing

hr2iS;π ¼ 0.61� 0.04 fm2: ð24Þ

Recently, this computation was corroborated by lattice
computations in Ref. [34].2 Such a value of the quadratic
scalar radius implies that ChPT cannot be trusted when
1
6
shr2iS;π ∼ 1 or, equivalently, at

ffiffiffi
s

p
∼ 600–700 MeV

(see also Refs. [20,21]). Therefore, for masses of a scalar
mS ≲ 1 GeV, a nonperturbative approach should be used.

A. Analyticity and unitarity

Such a method by definition should use only the most
general constraints on form factors without alluding—if
possible—to any specific perturbative computation. The
first constraint comes from analyticity. It can be proven (see
Refs. [35,36]) that form factors are analytic functions in the
complex plane of the variable s with the cut s > 4m2

π , and
it can be established (using the high-energy behavior of
QCD [37]) that their behavior at infinity should be ∼1=s.
The second constraint is due to unitarity. To discuss it,

we have to introduce the notion of the scattering matrix for
s waves with isospin zero. For two-to-two (πaπb → πcπd)
scattering, the S matrix, defined as

Sabcdðs; t; uÞ ¼ outhπcðp3Þπdðp4Þjπaðp1Þπbðp2Þiin; ð25Þ

depends on all Mandelstam variables (s, t, and u) and has
an arbitrary tensor structure in the space of isospin indices
a;…; d. However, it can be expanded in partial waves with

fixed angular momentum J and isospin I. We are interested
in scalar (isoscalar) form factors; therefore, we consider
only s-wave isospin-0 (J ¼ I ¼ 0) scattering, by projecting
(25) on the corresponding subspace (see Chap. 19 in
Ref. [28]). It is this component that we refer to as an S
matrix in what follows. For energies below the inelastic
threshold (4mπ), the S matrix is completely determined by
the pion phase shift

SðsÞ ¼ e2iδπðsÞ; 4m2
π < s < 16m2

π: ð26Þ

As energy grows, channels 2π → 4π, 2π → 6π, and then
2π → K̄K open up. Correspondingly, the S matrix can be
represented by a finite-dimensional matrix, Sij, with i and j
running in the space of channels [38]. It is observed
experimentally that the mixing with multiparticle (four
and more) states for energies below Λdat ¼ 1.4–1.6 GeV is
small [39,40]. Therefore, in this region, there are effectively
only two relevant channels ðππ → ππ; ππ → K̄KÞ.
In the case of two channels—the generalization to an

arbitrary number of channels seems straightforward—
unitarity constraints for form factors, similar to the optical
theorem (see, e.g., the textbook [41], Sec. 6-3-4) for
amplitudes, can be derived in the following way. We define

ϕ1ðsÞδab ≡ hπaπbjXj0i;

ϕ2ðsÞδαβ ≡ 2ffiffiffi
3

p hKαKβjXj0i; ð27Þ

where X is any of the operators appearing in ((12a)–(12c).
The relative factor 2=

ffiffiffi
3

p
is due to the normalization of the

isospin-0 eigenstates

jππi ¼ 1ffiffiffi
3

p
X3
a¼1

jπaπai; and jKKi ¼ 1

2

X4
a¼1

jKαKαi:

ð28Þ

Also, we introduce the T matrix via

SijðsÞ≡δijþ2iTijðsÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σiðsÞσjðsÞ

q
Θðs−4m2

i ÞΘðs−4m2
jÞ;
ð29Þ

where ΘðsÞ is the Heaviside theta function (representing
the opening of the corresponding channel), and the factors
σiðsÞ

σiðsÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
i

s

r
ð30Þ

are responsible for the phase space volume. One can be
straightforwardly convinced that the unitarity of the S
matrix [which is represented schematically in Fig. 1(a)]
translates into the following constraint on T:

1It is known that final-state interaction effects can be rather
strong [31].

2It is precisely the result of Ref. [33] and lattice computations
that will be used in the following sections to fix unknown
coefficients in several form factors.

MONIN, BOYARSKY, and RUCHAYSKIY PHYS. REV. D 99, 015019 (2019)

015019-4



ImTkiðsÞ ¼
X2
j¼1

T�
ijðsÞTkjðsÞσjðsÞΘðs − 4m2

jÞ;

4m2
π < s < Λ2

dat: ð31Þ

In a complete analogy, the following relation between the
imaginary part of the form factors (27) and the scattering
matrix [Fig. 1(b)] can be obtained,

ImϕiðsÞ ¼
X2
j¼1

T�
ijðsÞϕjðsÞσjðsÞΘðs − 4m2

jÞ;

4m2
π < s < Λ2

dat; ð32Þ

which we rewrite in an equivalent form,

ϕiðsÞ ¼
X2
j¼1

GijðsÞϕ�
jðsÞ; 4m2

π < s < Λ2
dat; ð33Þ

upon defining

Gij≡δijþ2iTijðsÞσjðsÞΘðs−4m2
jÞ for i;j¼ 1;2: ð34Þ

For energies above Λdat, other channels come into play,
correspondingly modifying the constraints [in particular,
extending the sum in (31)–(33) to j > 2].
In deriving the system of Equations (32), one does not

rely on perturbative computations. Therefore, the analogue
of the system with all channels taken into account together
with analyticity encapsulate all the necessary nonperturba-
tive information about the form factors. In the next section,
we will discuss several cases when the solution of (32) can
be found.

V. REVIEW OF DIFFERENT METHODS
AND THEIR RESULTS

The system (32) is similar (though not exactly the same)
to a more general Hilbert problem of finding a holomorphic
vector function ϕiðsÞ of finite degree at infinity with a
specific boundary condition (discontinuity) on the cut(s). It
is proven (see Ref. [42] and the book [43])3 that the number

of linearly independent canonical (having no zeros at finite

points) solutions, denoted byΩð1Þ
i ðsÞ;Ωð2Þ

i ðsÞ;…, coincides
with the number of channels. The general solution can be
represented as a linear combination of the canonical ones,

ϕðsÞ ¼ P1ðsÞΩð1Þ þ P2ðsÞΩð2Þ þ…; ð35Þ

with PiðsÞ being polynomials. Moreover, the degree at
infinity of the function

DðsÞ ¼ detijΩ
ðjÞ
i ðsÞ ð36Þ

is completely fixed by the asymptotic behavior of the
corresponding S matrix [see a comment after Eq. (44)].
However, only in a limited number of cases (specific form
of discontinuity, or in our case of the Smatrix), the solution
can be found. Below, we describe several such cases, first
showing how the solution can be derived in general and
then using the real data for each of them.

A. One-channel solution

The first example in which the solution can be found
explicitly is a hypothetical case of only one channel. As
was discussed above, the Smatrix in this case is completely
specified by just one phase, and the system of equa-
tions (32) reduces to only one equation:

ϕðsÞ ¼ e2iδðsÞϕ�ðsÞ; s ∈ R: ð37Þ

Since the scattering phase δðsÞ ¼ 0 below the threshold
4m2

π, the function ϕðsÞ satisfies the following condition in
the whole complex plane with the cut

ϕðs�Þ ¼ ϕ�ðsÞ: ð38Þ

Assuming that the function ϕðsÞ has zeros at s1; s2;…; sN ,
it is easy to show that the function

ΩðsÞ ¼ ϕðsÞQ
N
i¼1ðs − siÞ

ð39Þ

has obviously no zeros and satisfies the same equa-
tion (37).4 As a result,

Im logΩðsÞ ¼ δðsÞ; s ∈ R; ð40Þ

and the normalized Ωð0Þ ¼ 1 canonical solution, which in
this case is called the Omnès factor, can be easily
reconstructed by integrating logΩðsÞ with one subtraction
along the contour in Fig. 2,

(a) (b)

FIG. 1. Unitarity conditions for form factors and S matrix.

3For a more recent presentation, see Refs. [44–48].
4Complex zeros come in pair with their complex conjugates

due to (38); thus, the product in (39) is real.
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logΩðsÞ
s

¼ 1

π

Z
∞

4m2

ds0

s0
δðs0Þ

s0 − s − iε
; ð41Þ

or equivalently

ΩðsÞ ¼ exp

�
s
π

Z
∞

4m2

ds0

s0
δðs0Þ

s0 − s − iε

�
: ð42Þ

It follows from (39) that the most general solution (which
can have zeros) is given by the product of the Omnès factor
and a polynomial PϕðsÞ with real coefficients, the zeros of
which are fixed by that of ϕðsÞ,

ϕðsÞ ¼ PϕðsÞΩðsÞ: ð43Þ

It is straightforward to show that the asymptotic behavior
of the Omnès factor is fixed by the scattering phase,
appearing in (42), at infinity. Namely,

ΩðsÞ →
s→∞

s−δð∞Þ=π: ð44Þ

It follows from (29) and (34) that in general the deter-
minant (36) satisfies the one-channel equation (37) with the
phase given by argðdetij SijÞ=2. Therefore, its asymptotic
behavior (see a comment in the beginning of this section) is
fixed to be

DðsÞ →
s→∞

s− arg detijSijð∞Þ=2π: ð45Þ

The degree at infinity of the determinant is given by the
sum of degrees of all canonical solutions. It is obvious for a
set of independent one-channel equations, corresponding to
the S matrix without mixing between the channels. The
determinant in this case is simply a product of Omnès
factors.
To use the solution (43) for finding the physical form

factors, one has to know the scattering phase in (42) and the
polynomial PϕðsÞ. The region where one-channel approxi-
mation could make sense is s < 4m2

K . Therefore, the real

pion scattering phase (Fig. 3) can be used at most up to the
kaon threshold. Having no a priori favorable way to
extrapolate the phase beyond this point, it is customary
to extend it asymptotically to the nearest integral value in
units of π (see Fig. 4).
As for the polynomial PϕðsÞ, obviously it is not fixed by

the described procedure. There is no way to even to know
the degree of the polynomial without additional informa-
tion. We use the minimal construction (polynomials of the
lowest degree possible), satisfying constraints coming from
lattice and ChPT computations, namely, the quadratic
scalar radius (24) and form factors behavior at small energy
(18), (19). As a result, we get for the form factor involving
u and d quarks

Γ1ch
π ðsÞ ¼ m2

πΩ1chðsÞ; ð46Þ

which corresponds to the quadratic scalar radius hr2i1chS;π ¼
0.62 fm2. There is an ambiguity in implementing a

FIG. 2. Integration contour.

FIG. 3. Pion-pion scattering phase from Ref. [40].

FIG. 4. Scattering phase shift: black dots correspond to the data
from Ref. [40], and black curve is the interpolation. The blue line
corresponds to one-channel approximation with the cutoff at kaon
threshold with asymptotic value π at infinity.
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constraint on θπðsÞ. Indeed, from the expression (18), it is
clear that the following two conditions are possible:

θπð−2m2
πÞ ¼ 0 ð47aÞ

and

θ0πð0Þ ¼ 1: ð47bÞ

These two differ by m2
π=Λ2

QCD corrections, and we adopt

θ1chπ ðsÞ ¼ ðsþ 2m2
πÞΩ1chðsÞ: ð48Þ

Lastly, the form factor ΔπðsÞ is given by

Δ1ch
π ðsÞ ¼ dFsΩ1chðsÞ; ð49Þ

with dF a constant (for a way to estimate its value, see
below). It is clear from (44) that only one of the form
factors above has the proper asymptotic Γ1chðsÞ !

s→∞
s−1.

This fact testifies that one-channel approximation does not
properly describe the underlying dynamics and cannot be
complete. We compare different methods in Sec. VI.

B. Two channels: Numerical analysis

For a general two-channel problem, the form factors
(12a)–(12c) could be obtained by considering proper linear
combinations of the canonical solutions. For normalization

ΩðjÞ
i ð0Þ ¼ δji ; ð50Þ

where the lower index specifies the component of the
corresponding solution, one could obtain the form factors
reproducing ChPT results for low energy in the form

Γ2ch
π ðsÞ ¼ m2

πΩ
ð1Þ
1 þ 2ffiffiffi

3
p ΓKð0ÞΩð2Þ

1 ð51aÞ

Δ2ch
π ðsÞ ¼ 2ffiffiffi

3
p ΔKð0ÞΩð2Þ

1 ; ð51bÞ

θ2chπ ðsÞ¼ð2m2
πþpsÞΩð1Þ

1 þ 2ffiffiffi
3

p ðθKð0ÞþqsÞΩð2Þ
1 ; ð51cÞ

with coefficients p and q related to slopes of θ0π;Kð0Þ.
However, as was already mentioned, an explicit

analytic solution ΩðjÞ
i ðsÞ to the system (32) is generally

not available. Therefore, one resorts to numerics. For the
two channels, the S matrix is a 2 × 2 unitary matrix,

S ¼
 

ηe2iδπ i
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
eiðδπþδKÞ

i
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
eiðδπþδKÞ ηe2iδK

!
; ð52Þ

where δπ;K are the scattering phases of ππ → ππ and K̄K →
K̄K and η is the elasticity parameter, characterizing the
mixing between the two channels. All these parameters are
extracted from experimental data (see, e.g., Refs. [39,40,49]
and Fig. 5).
It is precisely the mixing due to the elasticity parameter

that precludes one from finding a solution analytically.
Indeed, were it not for ηðsÞ ≠ 1, the system of equa-
tions (32) would factorize into two independent one-
channel equations (37) that could be solved explicitly.
However, one can still derive the analytic form of the
determinant (36) even for a nontrivial elasticity parameter.
Indeed, assuming asymptotic values for the scattering
phases δπð∞Þ ¼ 2π, δKð∞Þ ¼ 0, it follows immediately
from (45) that the determinant of the canonical solutions
decays at infinity as s−2.
In Ref. [23], the following iterative procedure for

solving the system was suggested (further developed in
Refs. [44,46]). In the zeroth approximation, the functions

ϕð0Þ
1 ðsÞ, ϕð0Þ

2 ðsÞ are initialized by constants: ϕð0Þ
1 ðsÞ ¼ 1 and

ϕð0Þ
2 ðsÞ ¼ λ ∈ R. The real and imaginary parts of ϕiðsÞ at

the step nþ 1 are computed via

Imϕðnþ1Þ
i ðsÞ ¼ Re

�X
j

T�
ijðsÞϕðnÞ

j ðsÞσjðsÞΘðs − 4m2
jÞ
�
;

s ∈ R; ð53Þ

(a) (b)

FIG. 5. Two channel S-matrix parameters.
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and

Reϕðnþ1Þ
i ðsÞ ¼ 1

π
⨍∞
4m2

π

ds0
ImϕðnÞ

i ðs0Þ
s0 − s

: ð54Þ

Since the two numerically obtained solutions tend to zero
for s → �∞, it was assumed that these are the two
canonical solutions, behaving as s−1 at infinity, in agree-
ment with s−2 behavior of the determinant discussed
above. Plugging those solutions into (51), one gets the
form factors ΓDGL

π ðsÞ, ΔDGL
π ðsÞ, θDGLπ ðsÞ. The slope of pion

form factor was taken to be θ0πð0Þ ¼ 1, and other unknown
parameters in (51) are obtained using SUð3Þ × SUð3Þ
ChPT; in particular, the following values were chosen:

ΓKð0Þ ¼
m2

π

2
; ΔKð0Þ ¼ m2

K −
m2

π

2
; θKð0Þ ¼ 2m2

K;

θ0Kð0Þ ¼ 0.9 − 1.1: ð55Þ
As we can see, the polynomial needed to fix the low-

energy behavior of the form factor (51c) has degree 1, so
the form factor θDGLπ ðsÞ does not have the proper asymp-
totic at infinity, which is again the signal of incompleteness
of the approach (see the discussion in Ref. [23]).
We would like to bring to the readers’ attention that,

while the numerical procedure produces two decaying at
infinity solutions, it has not been proven that so-obtained
solutions are the canonical ones. There may not even exist
canonical solutions all decaying at infinity; it is only the
determinant (morally speaking, the product) that has a
specific asymptotic behavior. It is obvious if the limit
ηðsÞ ¼ 1 is considered. In that case, the two canonical
solutions, according to asymptotic of pion and kaon
scattering phases, behave as s−2 and s0 correspondingly.
By construction, the method gives access to form factors
only for s ∈ R; hence, it is not obvious how to check that
no additional singularities (and zeros) have been generated
and the two solutions are analytic in the whole complex
plane with the cut.

C. Resonance approximation

There is a class of T matrices for which explicit solutions
of (32) can be constructed. Taking into account Eq. (29), we
observe immediately that

ϕiðsÞ ¼
X
j

cjðsÞTjiðsÞ; ð56Þ

with ckðsÞ being real functions on s ∈ R, formally solves
the system (31). Generally, the T matrix has a left-hand
cut,5 and the expression (56) cannot represent any of the
form factors. However, if there exists an analytic function

TðsÞ with only the right-hand cut and approximating
properly the scattering data (see Figs. 6 and 7), then the
formula (56) provides us with a proper solution to (32).
The function considered in Refs. [19,22] has the reso-

nance form; e.g., there are poles. However, these are, as
usual, restricted to the second (unphysical) sheet. The
function is built in the following way. Assuming that T
is symmetric, one can show using (31) that in matrix
notations the relation

ImT−1 ¼ −σ; s ∈ R; ð57Þ

with σ ¼ diagðσ1ðsÞ; σ2ðsÞ…Þ, is satisfied. It follows
from the above equation that the T matrix can be formally
written as

T ¼ ðA − iσÞ−1; s ∈ R; ð58Þ

with A an arbitrary real-valued (on R) matrix.
In both Refs. [19,22], the simplest choice was made,

AijðsÞ ¼
Pð1Þ
ij ðsÞffiffiffi
s

p ; ð59Þ

with Pð1Þ
ij ðsÞ being first-order polynomials. The functions

ckðsÞ were also chosen to be linear, with coefficients
fixed by the low-energy behavior of form factors (18)
and (19).
In particular, for the one-channel T-matrix resonance

representation

T−1ðsÞ ¼ M2 − sþ Γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

π − s
p
ffiffiffi
s

p
Γ

; ð60Þ

the normalized Ωres1ð0Þ ¼ 1 solution was found in
Ref. [19],6

FIG. 6. One-channel resonance approximation for the scatter-
ing phase (red) with parameters from Ref. [19].

5The right-hand cut s ≥ 4m2 corresponds to u ≤ 0 for t ¼ 0
(s channel), which, due to the crossing, implies the existence of
the left-hand cut s ≤ 0.

6There is a factor 2 difference in the notation for the width
between our notation and the one used in the paper cited.
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Ωres1ðsÞ ¼
M2 þ 2mπΓ

M2 − sþ Γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

π − s
p ; ð61Þ

with the parameters for mass and width of the resonance
M ¼ 0.8 GeV and Γ ¼ 0.65 GeV. Using that

Γres1
π ðsÞ ¼ m2

πΩres1
π ðsÞ; ð62Þ

it is straightforward to show that these parameters hr2iS;π ¼
0.56 fm2 for the quadratic scalar radius of the pion.
Meanwhile, to reproduce the value (24), one takes
M ¼ 0.85 GeV and Γ ¼ 0.8 GeV. The other two form
factors are

Δres1
π ðsÞ ¼ 0; θres1π ðsÞ ¼ ðsþ 2m2

πÞΩres1
π ðsÞ: ð63Þ

For two-channel resonance approximation, the T matrix
was chosen to have the form [22]

T−1 ¼

0
B@

M2
1
−sþΓ1

ffiffiffiffiffiffiffiffiffiffi
4m2

π−s
pffiffi
s

p
Γ1

−λ
ffiffiffi
s

p

−λ
ffiffiffi
s

p M2
2
−sþΓ2

ffiffiffiffiffiffiffiffiffiffiffi
4m2

K−s
pffiffi
s

p
Γ2

1
CA; ð64Þ

with constants M1 ¼ 0.87 GeV, Γ1 ¼ 0.7 GeV, M2 ¼
0.92 GeV, and Γ2 ¼ 1 GeV now describing positions
and widths of two resonances and λ ¼ −0.2 being respon-
sible for the coupling between the two channels.7 Knowing
the form of the T matrix, one builds canonical solutions
normalized as in (50), and then the form factors similar
to (51).8

The form (59) of the matrix A is not unique, and the
corresponding solution (56) can be used to approximate
real form factors works inasmuch as ansatz (60)
and (64) fit the experimental data. It is evident from
Fig. 6 that the one-channel resonance approximation does
not account for data points above the kaon threshold.

For the two-channel resonance approximation of Ref. [22],
depicted in Fig. 7, the situation is only somewhat better.
Therefore, there is no good reason to expect that the

resonance approximation gives quantitatively reliable
approximations for the form factors. However, since the
scattering data are qualitatively reproduced, it is a good
model to test other techniques and assumptions. In par-
ticular, it can be deduced that form factor θπðsÞ is almost
insensitive to variations of the parameters in (51), while
form factors ΓπðsÞ and ΔπðsÞ depend substantially on the
values of ΓKð0Þ and ΔKð0Þ.

D. Modified one-channel approximation

In this section, we present yet another approximate
solution to the Muskhelishvili-Omnès problem. It is based
on a specific feature of the data, namely, the fact that the
elasticity parameter ηðsÞ appearing in the definition of the S
matrix (52) is consistent with η ¼ 1 almost everywhere
apart from 2mK ≲ ffiffiffi

s
p ≲ 1.1 GeV [49–51] [see Fig. 5(b)].

This in turn implies that Eq. (37), i.e.,

ϕπðsÞ ¼ e2iδπðsÞϕ�
πðsÞ; ð65Þ

is satisfied almost everywhere except for a narrow window
just above the kaon threshold. We therefore take the scalar
form factor ϕπðsÞ in the form (42) with all the experimental
data for the pion scattering phase and not only up to the
kaon threshold as for the one-channel approximation
discussed in Sec. VA. Above

ffiffiffi
s

p ¼ Λdat, we extrapolate
the phase in a smooth manner to 2π, which is now the
nearest integral value in units of π. We call this a modified
one-channel approximation. It has been previously dis-
cussed in Refs. [45–48,52,53].
As before, we use ChPT and (24) to find minimal

polynomials defining form factors

Γmod
π ðsÞ ¼ m2

π
sΓ − s
sΓ

ΩmodðsÞ; ð66aÞ

Δmod
π ðsÞ ¼ dFsΩmodðsÞ; ð66bÞ

θmod
π ðsÞ ¼ ðsþ 2m2

πÞΩmodðsÞ; ð66cÞ

where dF is a yet unfixed constant and
ffiffiffiffiffi
sΓ

p ¼ 1.1 GeV.

(a) (b) (c)

FIG. 7. Two-channel resonance approximation (purple) for the S matrix with parameters from Ref. [22].

7Our notations are slightly different from the ones used in
the paper cited.

8The authors of Ref. [22] follow a different procedure. They
use the ChPT result directly for the amplitude (20) to impose the
corresponding boundary conditions. This effectively leads to
ΔπðsÞ ¼ 0.
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As we discussed in the Sec. VA, once the canonical
solution is known, all other solutions are parametrized by a
polynomial. Therefore, as a cross-check, the method of this
section should reproduce the result of the numerical
procedure from the Sec. V B; otherwise, it would not even
qualify as a valid approximation. This is precisely what
happens, with the only subtlety being that in order to
account for the mismatch in asymptotic behaviors of
θDGLπ ðsÞ and θmod

π ðsÞ it is necessary to multiply the latter
by a linear function,

θmod
π ðsÞ→ sθ−s

sθ
θmod
π ðsÞ≈θDGLπ ðsÞ; with sθ ¼ 1.3GeV2:

ð67Þ

VI. RESULTS AND COMPARISON

In this section, we compare results for the form factors
and corresponding decay rates obtained using different
methods. In Fig. 8, we plot the absolute value of the form
factor ΓπðsÞ in units ofm2

π . It is evident that all methods are
numerically consistent up to s ¼ 4m2

π . With the exception
of the one-channel approximation, they all exhibit a
characteristic dip in the vicinity of

ffiffiffi
s

p ¼ 1 GeV. It could
be argued that all the results are comparable up to

ffiffiffi
s

p
≈

0.6–0.7 GeV (and disagree above). Also, it is clear from
Fig. 8(b) that even a slight variations of the parameter sΓ of
the modified one-channel approximation, causing insig-
nificant changes in the slope at s ¼ 0, or equivalently in the
quadratic scalar radius of the pion,9 lead to the dramatic

difference around
ffiffiffi
s

p ¼ 1 GeV. Similarly, we observe
from Fig. 8(a) that seemingly slight variations of param-
eters in (51) lead to appreciable changes of the form factor.
In Fig. 9, we plot both the real and imaginary parts of the

form factor θπðsÞ. We see that the one-channel approxi-
mation produces the result close to that of the two-channel
numerical treatment, while the deviation of the modified
one-channel approximation becomes clear rather early. The
reason is that the combination that reproduces the numerical
analysis of Ref. [23] is not the form factor θmod

π ðsÞ itself but is
rather given by (67), having an additional zero. In Fig. 10, we
plot the combination (67) with

ffiffiffiffiffi
sθ

p ¼ 1.1 GeV.
In Fig. 11, we plot the form factor ΔπðsÞ. The modi-

fied one-channel approximation again passes the cross-
checking, for it reproduces the numerical two-channel
result of Refs. [23,46]. On the other hand, the one-channel
approximation is clearly inadequate when applied to that
specific form factor. Contrary to ΓπðsÞ and θπðsÞ, where the
one-channel approximation could be argued to—at least
qualitatively—coincide with the two-channel analysis up toffiffiffi
s

p ¼ 0.6 GeV, in the case of ΔπðsÞ, it fails already at
rather small values of the center-of-mass energy. A possible
reason for that can be the presence of a relatively broad
f0ð980Þ resonance very close to the kaon threshold, which
is not captured at all by the one-channel approximation, for
it does not take into account the real data above 4m2

K . The
disproportionate change of the form factor ΔπðsÞ when
compared to that of ΓπðsÞ and θπðsÞ indicates an enhanced
relative significance of the s-quark effects for the process
at hand.
Lastly, we present the results for the decay rate in

Fig. 12. For both, one- and modified one-channel approx-
imations (49) and (66b), we use dF ¼ 0.09 from Ref. [23].

(a) (b)

FIG. 8. Absolute value of ΓπðsÞ in units of m2
π obtained using different methods. In both plots, the black curve is the same, taken from

Ref. [46].

9The parameter
ffiffiffiffiffi
sΓ

p ¼ 1.1 GeV corresponds to the central
value of (24), while

ffiffiffiffiffi
sΓ

p ¼ 1 GeV, effectively reproducing the
result of Ref. [46], leads to hr2iS;π ¼ 0.57 fm2, which is at the
edge of the error interval.
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A somewhat different value (also discussed in Ref. [23]),
obtained in the limit of the heavy s quark, dF ¼
2=29 ≈ 0.068, changes the result only slightly. As is also
evidenced from plots for the form factors [Figs. 8(b), 10,
and 11], the modified one-channel approximation with an
additional zero (67) characterized by

ffiffiffiffiffi
sθ

p ¼ 1.3 GeV andffiffiffi
s

p
Γ ¼ 1 GeV reproduces numerical results of Ref. [23]

[Fig. 12(a)]. It is clear that all methods (except the two-
channel resonance approximation) produce results signifi-
cantly different from the ChPT just above 4m2

π. We take
that as an indication that ChPT results should likely be
modified at rather low energies. A similar situation occurs
in the case of η → π0πþπ− decay, in which the final-state
interaction effects are proven to be large [31].

VII. DISCUSSION

A. Rough error estimate

Unarguably, the two-channel numerical solution makes
use of the experimental data the most; however, it does not

(a) (b)

FIG. 9. Real and imaginary parts of the form factor θπðsÞ for different methods: one-channel approximation (blue), modified one-
channel approximation (green), and the black curve taken from Ref. [23].

(a) (b)

FIG. 10. Reproducing the numerical result for the form factor θπðsÞ from Ref. [23] with the modified one-channel approximation by
using an additional zero (67) with sθ ¼ 1.3 GeV2.

FIG. 11. Absolute value of the form factor ΔπðsÞ in units of
dFs: one-channel approximation (blue), the result for the two-
channel numerical procedure from Ref. [46] (black), and the
modified one-channel approximation (66) (green) coinciding
with the numerical procedure up to

ffiffiffi
s

p
≈ 1 GeV.
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mean it produces reliable results. It is important to quantify
the uncertainties and to figure out the domain of validity of
the result. Even though examples of Sec. VI (see Fig. 8)
show that form factors may appreciably depend on the
parameters in (51), we will not discuss these corrections,
referring the reader to Ref. [23], claiming that variations of
the parameters (51) do not influence the decay rate
significantly. Similarly, the dependence of the result on
different inputs for the phase shifts and different interpo-
lations of the data is not discussed, since it was addressed in
Ref. [23] (see Fig. 12).
Instead, we discuss another source—the primary one

from our perspective—of uncertainty, which plagues all
the discussed methods. It is our ignorance about the
UV dynamics, for we do not know the S matrix aboveffiffiffi
s

p ¼ Λdat. The importance of scattering data above that
scale is clear, for none of the methods (except the modified
one-channel approximation taken at face value) produces the
correct asymptotic of the form factors. This is an indication
that these methods cannot present the complete picture. The
role of high-energy dynamics is clearly important.
From a more technical perspective, the knowledge of the

high-energy behavior of the scattering amplitudes is crucial
in all the dispersion methods, involving integrals to infinity.
Usually, though (say, for scattering amplitudes or cross
sections), it is expected that if the UV dynamics kicks in at
a relatively high-energy scale it should not affect the IR.
However, for the case of form factors, not only do we not
know where those effects appear, but also the information
about the UV behavior of the scattering date might not be
enough. The specificity of the dispersion relation in this
case is that, crudely speaking, it takes into account the
phase remaining oblivious to zeros (reproduced by poly-
nomials) of the form factors. Even if we knew scattering

phases at arbitrary high energies, there is no information on
where to put zeros (for more, see Appendix B).
Nevertheless, neglecting the last remark, we try estimat-

ing the error coming only from changes in scattering data at
higher energies. To do that, instead of solving the system of
two coupled channels with a different asymptotic for
scattering phases, it is easier to consider the approximation
to the solution provided by the modified one-channel
approximation (66) and (67), which is amenable to analytic
treatment. The scattering phase is known up to s ¼ Λ2

dat.
We assumed that at infinity it asymptotes to 2π. The ratio
between the Omnès factor obtained with the help of the
so-defined phase (42) and the physical one is given by

ΩπðsÞ
Ωphys

π ðsÞ ¼ exp

�
s
π

Z
∞

Λ2
dat

ds0

s0
δπðs0Þ − δphysπ ðs0Þ

s0 − s − iε

�
: ð68Þ

Focusing only on situations in which the asymptotic
behavior is different, it is easy to estimate the correction
at small s,

Ωphys
π ðsÞ ≈ ΩπðsÞ

�
1þ c

s
Λ2
diff

�
; ð69Þ

where Λdiff is the scale in which the values of δπðsÞ and
δphysπ ðsÞ differ by π (e.g., where a new resonance comes into
play) and c is an order-1 constant.

B. Domain of validity

Armed with (69), we can estimate how reliable the
results are at a specific scale. The benchmark for errors
is set by other corrections: the derivation of Sec. II is
performed at the leading order in the heavy quark mass

(a) (b)

FIG. 12. Branching ratio as a function of mass mS ¼
ffiffiffi
s

p
: ChPT (dashed black) and one-channel resonance approximation with

parameters from Ref. [19] (red). Two sets of data points taken from Ref. [23] correspond to different paramtetrizations of scattering data.
The shaded grey region between the two data sets indicates uncertainty of the numerical procedure.
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m−2
c and the strong coupling αs. Next-to-leading cor-

rections can be found correspondingly in Refs. [24,54].
The relative correction due to QCD loops is estimated to be
5% − 10% [54]. At the same time, we see from Fig. 12 that
the discrepancy in the decay rate between different solu-
tions obtained in Ref. [23] does not exceed 30% up to
1 GeV. Therefore, the relative error of 10% − 15% for form
factors seems to be a good starting point,10 and the scale
∼Λdiff=2 is where the naively estimated corrections due to
UV phase shifts (69) exceed this benchmark.
For an example, we see from Fig. 13(a) that the behavior

of the ΔπðsÞ form factor is perfectly consistent with (69)
with c ¼ 1 and Λ2

diff ¼ 4m2
K . The reason for that is the

occurrence of the resonance f0ð980Þ, leading to a sharp
increase in the scattering phase around the kaon threshold.
At the same time, Fig. 13(b) shows that, even though the
actual two-channel result lies within corrections dictated
by (69), the latter ones are obviously an overestimate, and
the scale in which one- and two-channel results deviate
from each other is larger than is expected naively, which
effectively means that in this case c < 1. That in turn
leads to a better agreement between the results for the
decay rate.
To estimate how wide the domain of validity is for

two-channel numerical analysis of Ref. [23] (equivalently,
the modified one-channel approximation), it is necessarily
to know whether, similar to f0ð980Þ, resonances aboveΛdat
play a significant role for scattering phases. While
f0ð1370Þ is rather wide and we may not see its effect,
there are claims that f0ð1500Þ is visible in the scattering
data [55]. At the same time, it is unknown whether the

resonances f0ð1710Þ, f0ð2110Þ, f0ð2200Þ, and f0ð2330Þ,
listed in Ref. [56], affect the scattering phase. As a result, if
indeed f0ð1500Þ affects the scattering phase, the cutoff
Λdiff would be given by 1.5 GeV. On the other hand, if none
of those resonances changes the behavior of the scattering
phase, the cutoff will be at least 2.5 GeV.
We plot the decay rate as a function of the scalar massmS

with the corresponding corrections in Fig. 14. We note
that the error estimate (69) should be considered as an
upper bound, for as in Fig. 13(b), the actual corrections,
with the dynamics of all channels taken into account, can
be noticeable reduced. The reason is that changing the
asymptotic of the scattering phase by π necessitates using a
polynomial of one degree higher (introducing an additional
zero) to preserve the correct asymptotic behavior of the
form factor at infinity, unless it was incorrect in the first
place. The relative correction results in the two effects
(partially) canceling each other:

�
1þ c

s
Λ2
diff

��
1 −

s
s0

�
¼ 1þ c

s
Λ2
diff

−
s
s0

: ð70Þ

We see that the error depends on where the position s0 ≥
Λ2
diff of the additional zero is. If it is very close to the cutoff

s0 ≈ Λ2
diff—what happens for Γmod

π ðsÞ—the error is signifi-
cantly reduced, while if it lies far in the UV, or the behavior
of the form factor was incorrect before modifying the
phase—hence, there is no need to use a different poly-
nomial with an extra zero [this is precisely the case for
Δ1ch

π ðsÞ]—the error is given by (69).

C. Experimental data for ψ 0 and ϒ0 decays

Even though all methods discussed (taken at face value)
produce results substantially different from the ChPT, there
are arguments in favor of extrapolating the ChPT up to

(a) (b)

FIG. 13. Error estimates: results for Γπ (a) and Δπ (b) in the one-channel approximation (blue) with a relative error (69) shown in
dashed blue. Two-channel numerical results are shown in black from Ref. [46]. The modified one-channel approximation with an
additional zero is shown in green. The black vertical line corresponds to

ffiffiffi
s

p ¼ 2mπ .

10As discussed above, in the interval 16m2
π < s < Λ2

dat,
the restriction of the S matrix to two channels is only approxi-
mately unitary. Mixing with multipion states leads to about 6%
corrections according to Ref. [45].
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ffiffiffi
s

p ¼ 0.6 GeV. In Ref. [18], it is assumed that the decay
rate Γππ is dominated by the form factor θπðsÞ. At the same
time, according to the data from ϒ0 → ϒππ [57] and ψ 0 →
ψππ [58,59] decays, the form factor θπðsÞ behaves linearly
in the relevant interval of energies [60–62]. Thus, it is
concluded that there is no deviation from ChPT prediction
at these energies. However (see Fig. 15), the behavior of the
form factor θπðsÞ obtained via dispersion relations is also
close to linear. It would be helpful to find the slope of the
form factor in the interval 2mπ ≤

ffiffiffi
s

p ≲ 0.6 GeV using the
data for mentioned decays. That could potentially resolve
the issue and will be considered elsewhere.

VIII. CONCLUSION

In this work, we have revisited the problem of computing
the hadronic decay width of a Higgs-like scalar with mass

of order mS ∼ 1 GeV. At these energies, decays S → ππ
or S → K̄K cannot be adequately described by ChPT. It
was previously demonstrated [23] that nonperturbative
methods, reconstructing the form factors from the data
on meson scattering, yield the results that are indeed
different from the leading-order ChPT calculations [18],
significantly enhancing the decay rate starting from several
hundreds of mega-electron-volts. The tradeoff is that the
data on meson scattering, used as an input, should be
provided for arbitrarily high energies, which is of course
not possible. In practice, having the data only up to a certain
energy produces an approximation to the exact function.
The assessment of the uncertainties of the estimate [23] has
never been performed before.
The results of this work are summarized as follows. We

reconsidered the nonperturbative evaluation of the hadronic
decay width, paying special attention to the uncertainties
of the method. Even though above 1 GeV there are at least
two relevant channels (ππ and K̄K), in this paper, we used
the (modified) one-channel approximation to reproduce the
results of the two-channel numerical analysis of Ref. [23].
This one-channel approximation works well because the
elasticity parameter, controlling the coupling between the
two channels, differs from 1 only in a narrow region above
the kaon threshold. That effectively renders the two
channels independent outside of this narrow region. The
approximate one-channel solution is advantageous as it is
known analytically for any scattering phase. The corre-
sponding parameters reproducing Ref. [23] are dF ¼ 0.09,
sθ ¼ 1.3 GeV2, and sΓ ¼ 1 GeV2. Therefore, it is straight-
forward to estimate corrections coming from different
UV behaviors of the scattering phase. We analyzed differ-
ent scenarios, and our main result is presented in Fig. 14,
showing the upper bound for the error coming from the
unknown UV dynamics.

(a) (b)

FIG. 14. Branching ratio: data points and shaded grey regions are the same as in Fig. 12; ChPT result (dashed black) and the modified
one-channel approximation (green) with dF ¼ 0.09, sθ ¼ 1.3 GeV2, and sΓ ¼ 1 GeV2 with shaded green regions indicating 30% error
bars. Dashed lines correspond to naively corrected results with a factor (1� s=Λ2

diff ) according to (69); black vertical lines show where
the leading correction becomes 100%.

FIG. 15. Approximately linear behavior of θπðsÞ: One-channel
solution (blue), modified one-channel solution (green), two-
channel numeric solution (solid black), and ChPT (black dashed).

MONIN, BOYARSKY, and RUCHAYSKIY PHYS. REV. D 99, 015019 (2019)

015019-14



It seems unarguable that the leading ChPT result proves
to be inadequate in describing the process (even in a close
vicinity of the ππ threshold). The reason is (see also
Ref. [23]) the presence of a rather broad f0ð980Þ resonance.
However, we should stress once again (see also comments
in Sec. VII and Appendix B) that our analysis is performed
neglecting the structure of zeros for all form factors. It is not
inconceivable that those can lead to significant changes of
form factors, and additional investigation is in order.
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APPENDIX A: EXTRAPOLATING
THE LEADING ChPT RESULT

The estimate of the scale where the leading ChPT result
breaks down is based on the paper [63] and done as follows.
It is assumed that the decay rate is dominated by θðsÞ and is
thus related to the spectral density

ρðq2Þ ¼ ð2πÞ4
X
n

jh0jθμμð0Þjnij2δ4ðq − qnÞ; ðA1Þ

evaluated at q2 ¼ m2
S. The spectral density is given by the

imaginary part of the two-point correlation function of the
energy-momentum tensor (5), which in turn in the chiral
limit is expressed in terms of the gluon field strength,
namely,

ρðq2Þ ¼ 2ImΠðq2Þ

¼ 2i
Z

d4xeiqx


T
βðαÞ
4α

G2ðxÞ βðαÞ
4α

G2ð0Þ
�
: ðA2Þ

At low energies, spectral density (A1) is saturated by
Goldstone bosons and can be computed taking into
account (18),

ρðsÞ ¼ N2
l − 1

16π
s2 þOðs3Þ; ðA3Þ

with Nl being the number of light quarks. On the other
hand, it follows (see Ref. [63]) that the following sum rule
is satisfied,Z

ds
s
½ρðsÞ − ρpertðsÞ� ¼ bαhG2ð0Þi; ðA4Þ

where ρpertðsÞ is the perturbative contribution, the counter-
part on the rhs of which is implicitly present in the form of

the renormalization of hG2ð0Þi needed to make it finite. It is
expected that for large enough energies ρðsÞ is accurately
represented by ρpertðsÞ. Therefore, the integral (A4) is
saturated at low energies. Thus, doing the integral with
the leading-order (LO) approximation (A3) and taking into
account the value for hG2ð0Þi from Refs. [64,65] allows
one to estimate the cutoff where the true value of ρðsÞ
substantially deviates from the LO (A3), which happens to
be around 1.4 GeV.
The reasoning presented above is somewhat reminiscent

of that for the fine-tuning problem and certainly gives an
upper bound for when the LO approximation breaks down.
However, it may happen earlier. Higher order in momentum
corrections may kick in to bring the scale, in which the
approximation cannot be trusted anymore, down.

APPENDIX B: MODELING PHASE

In this Appendix, we demonstrate how different UV
behaviors of the scattering phase affect form factors. For
that, we consider the following hypothetical situation. We
assume that the scattering phase is known up to 1.5 GeV,
and it is extrapolated to 2π above.11 The actual behavior of
the physical phase at the same time is modeled by three
different scenarios depicted in Fig. 16.
The first model [Fig. 16(a)] assumes only one relatively

narrow and far (occurring at 2.5 GeV) resonance. The
corresponding Omnès factor, obtained using the for-
mula (43), is depicted in Fig. 17. We see that the effect
of the phase change is significant only in the vicinity of the
resonance. Moreover, the leading-order correction (69)
almost perfectly reproduces the result up to 1.6–1.7 GeV.
As the resonance moves closer (1.7 GeV), the model in

Fig. 16(b), it affects appreciably the Omnès factor [see
Fig. 18(a)] already around 1 GeV, and the correction (69)
accounts for the difference at most up to 1.1–1.2 GeV. Yet
different behavior is captured by the model with two over-
lapping (at 1.7 and 1.9 GeV) resonances [Fig. 16(c)]. The
Omnès factor, as it is seen in Fig. 18(b), is affected evenmore.
The correction (69) should take into account both resonances
now, leading to the effective Λ̃diff ¼ 1.2 GeV.
What these three models show is that the Omnès

factor obtained with incomplete data definitely cannot be
extended above the corresponding cutoff Λdiff . At the same
time, its low-energy behavior is not affected much by the
UV behavior of the scattering phase.
Now, we turn to the corresponding expression for the

form factor ϕðsÞ. Assuming that it is normalized to 1 at
s ¼ 0 and has the asymptotic behavior at large energies
1=s2, we see that for models with one and two additional
resonances it has the following exact form correspondingly,

11The phase is chosen to qualitatively reproduce the real-world
behavior.
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ϕphysðsÞ ¼
�
1 −

s

sphys1

�
ΩphysðsÞ; and

ϕphysðsÞ ¼
�
1 −

s

sphys1

��
1 −

s

sphys2

�
ΩphysðsÞ; ðB1Þ

with certain unknown parameters sphys1;2 , while, due to
insufficiency of the data, we approximate the form factor by

ϕðsÞ ¼ ΩðsÞ: ðB2Þ

(a) (b) (c)

FIG. 16. Scattering phase behavior modeled by several resonances: “experimental” data (green) and physical phase (black).

(a) (b)

FIG. 17. Omnès factors for the model in Fig. 16(a): corresponding to experimental data (green) and physical (black). Dashed lines
represent naive corrections (1� s=Λ2

diff ) according to (69), with Λdiff ¼ 2.5 GeV.

(a) (b)

FIG. 18. Omnès factors for model in Figs. 16(b)and 16(c): corresponding to experimental data (green) and actual (black). Dashed lines
correspond to naively corrected results (1� s=Λ2

diff ) according to (69).
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As we see from (70) accuracy of the approximation can be enhanced if an additional zero occurs close to the resonance.
From Figs. 19(a) and 19(c) illustrate such a scenario. On the other hand, for a generic situation, the form factor is not
reproduced correctly.

(a) (b)

(c)

(e) (f)

(d)

FIG. 19. The form factor for different models: panels (a) and (b) correspond to Fig. 16(a), panels (c) and (d) correspond to Fig. 16(b),
and panels (e) and (f) correspond to Fig. 16(c). Black curves represent the physical form factor (B1) for different values of sphys1;2 , while
green is the approximation from (B2).
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