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We propose using neural networks to detect data departures from a given reference model, with no prior
bias on the nature of the new physics responsible for the discrepancy. The virtues of neural networks as
unbiased function approximants make them particularly suited for this task. An algorithm that implements
this idea is constructed, as a straightforward application of the likelihood-ratio hypothesis test. The
algorithm compares observations with an auxiliary set of reference-distributed events, possibly obtained
with a Monte Carlo event generator. It returns a p value, which measures the compatibility of the reference
model with the data. It also identifies the most discrepant phase-space region of the data set, to be selected
for further investigation. The most interesting potential applications are model-independent new physics
searches, although our approach could also be used to compare the theoretical predictions of different
Monte Carlo event generators, or for data validation algorithms. In this work we study the performance of
our algorithm on a few simple examples. The results confirm the model independence of the approach,
namely that it displays good sensitivity to a variety of putative signals. Furthermore, we show that the reach
does not depend much on whether a favorable signal region is selected based on prior expectations.
We identify directions for improvement towards applications to real experimental data sets.
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I. INTRODUCTION

Today in fundamental physics we have at our disposal
powerful theoretical models. They are in principle able to
describe the outcome of all present and near-future experi-
ments. In high-energy physics and cosmology these models
are the Standard Model (SM) and ΛCDM, respectively. In
the following we call them reference models. It is techni-
cally possible for the reference models to describe all
present and future data, but that does not mean that they
will. Future experiments will be able to explore phenomena
that we have never observed before or to measure known
phenomena with unprecedented accuracy. Furthermore, we
are convinced that new physics (i.e., physical laws that are
not yet established) exists because of the open problems of
the reference models. Searching for new physics, which
concretely means searching for discrepancies between the
data and the reference model, is the absolute priority of
our field.

In general the problem can be phrased in terms of many
repeated measurements D ¼ fxig (called events in high-
energy physics) of a multidimensional random variable x.
The statistical distribution for x can be predicted on the
basis of the physical laws that constitute the reference
model. The goal is to test the reference model distribution
against the actual data. Several strategies exist to carry
out this test. However the vast majority of them are not
suited to discover discrepancies because of the nature of
the problem at hand. The main challenge stems from the
fact that the true underlying data distribution, possibly
including new physics effects, will be “similar” to the
reference one. We expect this because of existing con-
straints on new physics. Notice that similar does not mean
that the effect of new physics cannot be large. However if
it is large, it will be localized in a low-probability region
of the space of observations where only a small fraction
of the events is present. Alternatively the effect can be
spread in a large region of the x space, but in this case it
will be a small modification of the reference distribution.
Essentially the problem is that our prior knowledge
suggests that the vast majority of the collected events
will agree with the reference model. At the same time this
prior knowledge is insufficient to know where to look for
discrepancies.
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The most widely employed approach to the problem is to
search for specific new physics models. In any such model,
one can identify a priori the subset of data where large
departures from the reference model should be concen-
trated or know how to exploit small, correlated deviations
across the data set. Once a specific new physics model or a
set of models are specified, one constructs hypothesis tests
using standard techniques (see [1] for a concise review).
The clear advantage of this approach is that it is physically
informative even if the compatibility of the data with the
reference model is confirmed. The disadvantage is that a
statistical test which is designed to be sensitive to one
specific hypothesis is typically insensitive to data depar-
tures of a different nature. This substantiates the widespread
concern that we might not be able to discover new physics,
even if present in the data, because it does not belong to the
class of hypothetical models that we are searching for.
Motivated by the above observation, a number of

attempts have been made [2–14] to construct model-
independent new physics search strategies. However it is
important to remark that a model-independent hypothesis
test is an ill-defined concept in statistics. Testing one
hypothesis unavoidably requires an alternative (in general
composite) hypothesis to compare with. Technically what
is needed is a set of alternative hypothetical distributions,
depending on free parameters, which are also called an
alternative probability “model” in statistics. In physics
instead a model is a set of physical laws that allows one
to predict these distributions. Therefore we call a search
strategy model independent (in the physics sense) when the
alternative distributions do not follow from a physical
model but are selected with other criteria. The most
important criterion is flexibility, namely the ability of the
distributions to adapt themselves, for an appropriate choice
of the free parameters, to the true underlying data distri-
bution. This will ensure sensitivity to a large variety of new
physics scenarios, including those that are not predicted
by any of the models that have been constructed until now.
The idea behind the present paper is to use artificial neural
networks to parametrize the alternative distributions.
Neural networks are increasingly important tools in

high-energy physics. Applications include jet physics
[15–39], new physics searches [40–47], detector simulation
[48–50] and the NNPDF fit to parton distribution functions
[51], where they have been successfully applied for a long
time [52]. The main reason for their success is precisely
their virtues as efficient and unbiased approximants
[53–60]. They are often introduced as a convenient alter-
native to piecewise constant functions (histograms) for the
fit to distributions [61–63]. Employing them to parametrize
alternative distributions for model-independent new phys-
ics searches is thus a highly motivated attempt. To the best
of our knowledge this possibility has not been previously
discussed. Most applications of neural networks to new
physics searches aim at enhancing the sensitivity to

prespecified models of the resonant or nonresonant type.
Using machine learning techniques for model-independent
new physics searches has been proposed in [64]; however
Gaussian mixture models are employed rather than neural
networks and the overall strategy is quite different from
ours. Reference [47] uses neural networks, but with the
purpose of enhancing the sensitivity to resonant bumps that
emerge in a prespecified kinematical variable. What we
do is conceptually very similar to anomaly detection,
where neural networks are already employed extensively.
However the purpose of anomaly detection is to identify
rare events in the data sample. Our purpose is instead to
find an anomalous behavior, relative to the reference
model, of the entire data sample.
The paper is organized as follows. In Sec. II we introduce

the conceptual foundations of our approach, explaining in
detail the advantages of using neural networks for model-
independent new physics searches. We will see that our
strategy is a straightforward application of maximum
likelihood estimation and likelihood-ratio hypothesis test-
ing, which are easily turned into a neural network training
problem as shown in Sec. III. In Sec. IV we perform several
numerical experiments to illustrate the virtues of our
algorithm and its limitations. A slightly different perspec-
tive on the foundations of our method, which offers more
flexibility in the implementation, is discussed in Sec. V.
Our conclusions are reported in Sec. VI, together with a
discussion of other possible applications. These are com-
parisons of different Monte Carlo generators and data
validation algorithms.

II. CONCEPTUAL FOUNDATIONS

Consider repeated measurementsD¼fxig, i¼1;…;ND
of a d-dimensional random variable x, and let nðxjRÞ be its
differential distribution as predicted by the reference model
“R”. Here and in what follows we denote as differential
distribution the probability density function (PDF) of x
normalized to the total number of expected events in the
experiment, namely

nðxÞ ¼ NPðxÞ; N ¼
Z

dxnðxÞ: ð1Þ

Testing the reference model for compatibility with the
observed data set D unavoidably requires comparison with
an alternative hypothesis nðxjwÞ. In general the alternative
hypothesis is composite, labeled by a number of free
parameters w. We are interested in problems where the
distribution according to which the data are truly distributed
is similar (in the sense specified in the introduction) to the
reference one; hence it is convenient to parametrize nðxjwÞ
in terms of nðxjRÞ. Taking also into account that nðxjwÞ is
necessarily positive and that we will use log-likelihood
ratios for hypothesis testing, we best express it as
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nðxjwÞ ¼ nðxjRÞefðx;wÞ; ð2Þ

in terms of a set of real functions F ¼ ffðx;wÞ; ∀ wg.
Once the set of alternative hypotheses is specified in this

parametrized form, the optimal statistical test for the
reference model is defined by the Neyman-Pearson con-
struction [65], based on the maximum likelihood principle.
The idea is to compare the reference with the best-fit
distribution nðxjŵÞ, obtained at the point w ¼ ŵ that
maximizes the likelihood. This leads to the test statistic

tðDÞ ¼ 2 log

�
e−NðŵÞ

e−NðRÞ
Y
x∈D

nðxjŵÞ
nðxjRÞ

�

¼ −2Min
fwg

�
NðwÞ − NðRÞ −

X
x∈D

fðx;wÞ
�
; ð3Þ

where NðRÞ is the expected number of events in the
reference model and NðwÞ is the expected in the alternative
hypothesis, namely

NðwÞ ¼
Z

dxnðxjwÞ ¼
Z

dxnðxjRÞefðx;wÞ: ð4Þ

In order to associate a probability to the value of t (tobs)
obtained with the observed data set, the PDF of t in the
reference hypothesis needs to be computed by repeatedly
evaluating t on a large sample of toy data sets. From this
distribution we obtain the observed p value

pobs ¼
Z

∞

tobs

dtPðtjRÞ; ð5Þ

defined as usual as the probability that the reference model
produces a data set that is more in tension with itself (has
larger t) than the observed data.
The basic idea of the present paper is to parametrize

the alternative hypothesis with neural networks. We take
fðx;wÞ to be fully connected neural networks, with free
parameters w that correspond to the weights and biases
of the network. In order to turn this idea into a concrete
algorithm, the only missing step is to show how the
minimization in Eq. (3) can be transformed into a neural
network training problem. This step is taken in Sec. III,
while here we further elaborate on the conceptual founda-
tions of our method and on the comparison with existing
approaches. A brief introduction to neural networks is
reported in the Appendix.

A. Model-dependent tests

The Neyman-Pearson formula in Eq. (3) makes clear that
the problem of searching for departures from the reference
model expectations (i.e., for new physics) merely reduces
to the one of selecting an appropriate alternative hypoth-
esis. Different choices produce different test statistics, with
widely different performances. One extreme situation is

when compelling theoretical arguments allow us to select a
single (simple) alternative hypothesis “NP,” with no free
parameters, for how new physics should look like. In this
case Eq. (3) reduces to

tidðDÞ ¼ 2 log

�
e−NðNPÞ

e−NðRÞ
Y
x∈D

nðxjNPÞ
nðxjRÞ

�
: ð6Þ

According to the so-called Neyman-Pearson lemma [65],
tid is the optimal discriminant between the reference and
the new physics hypotheses. It is the one that produces the
smallest median p value if NP is the true distribution of the
data sample.1 We denote this test statistic as “ideal” because
it is the one which is most suited to discover data departures
from the reference model, but we can use it only when the
true data distribution is known a priori.
In the following we employ the ideal test statistic as a

figure of merit to assess the performances of our method.
However apart from this it is clear that it cannot play a role
in the design of model-independent new physics searches,
where the goal is to be as agnostic as possible on the
alternative hypothesis. Notice indeed that any unjustified
assumption on the alternative hypothesis can result in
complete loss of sensitivity. For instance suppose that an
ideal test is constructed by taking NP to be a narrow
resonant peak in an invariant mass distribution, on top of a
smoothly falling SM background. The distribution ratio
nðxjNPÞ=nðxjRÞ appearing in Eq. (6) is nearly equal to 1
(hence its log is zero) in the whole mass range, aside from a
narrow region around the resonance mass where it is larger.
Therefore only the events that fall in that region contribute
to t. This is perfectly fine if the resonance is present in the
data just as we predicted it, because in this case signal
events will fall in that region producing a large t and in turn
a small p value. However if the resonance mass is different
from the one we assumed, signal events will fall outside
that region and they will not contribute to t. Therefore even
if the resonance truly exists in the data, the ideal test would
completely miss it.
Several ways exist to mitigate the model dependence of

the ideal test, still remaining within the domain of “partially
model-dependent” new physics searches. For instance the
BumpHunter [2] approach essentially employs a composite
alternative hypothesis with three free parameters that
correspond to the resonance production rate, width and
mass. The maximum likelihood fit to the parameters gives a
nðxjŵÞ distribution which resembles the one of the true
peak, making signal events automatically fall in the region

1The theorem says that the condition tid > tc defines the
critical region with highest power 1 − β≡ Pðtid > tcjNPÞ at
given size α≡ Pðtid > tcjRÞ [1]. This statement coincides with
the one above because 1 − β is a monotonically increasing
function of α and the median p value is the value of α that
corresponds to β ¼ 1=2.
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where nðxjŵÞ=nðxjRÞ is large such that their contribution to
t is large. This method ensures good sensitivity to a generic
resonance, but of course it is completely blind to signals
that are nonresonant or that display a resonant peak in a
different kinematical variable than the one that has been
selected for the test. More generally one can construct tests
based on signal topologies, by assuming the production of a
certain type of particle (or particles) with certain decay
chains and modeling the production and the decay in terms
of phenomenological parameters.

B. Model independence and neural networks

We call “model-independent” a new physics search where
the alternative hypothesis does not follow from physical
considerations, but rather it is selected for technical con-
venience, with the aim of defining a test that is sensitive to
the largest possible variety of putative signals. We have seen
that being able to mimic the true underlying distribution is
essential for a successful test. Therefore flexibility, i.e., the
ability to approximate many functions, is the first important
requirement on the set of functions F that define the
alternative distribution through Eq. (2). Piecewise constant
functions are the most standard and widely employed
approximants. Hence it is not surprising that this choice
of F produces the binned histogram goodness-of-fit test,2

which is the simplest approach to model-independent new
physics searches. This test is constructed by dividing the
space of observations in bins and taking F to assume a
constant value wα in each bin α ¼ 1;…Nbin. Since each wα

is an independent parameter, the minimization in Eq. (3) can
be trivially performed analytically, giving

tgofðDÞ ¼ 2
XNbin

α¼1

�
NαðRÞ −Oα þOα log

Oα

NαðRÞ
�
; ð7Þ

where Oα is the number of counts observed in each bin and
NαðRÞ denotes the expected number in the reference model
hypothesis.
The binned histogram method suffers from well-known

limitations, the first one being the arbitrariness in the choice
of the binning. A reasonable prescription is to employ the
smallest bin size compatiblewith the experimental resolution
on the variable of interest. The second and more severe
limitation is that the reach of the goodness-of-fit method is
reduced by histogram bins that are in good agreement with
the reference model. This point is conveniently illustrated by
taking the limitwhere the number of countings is large in each
bin, such thatOα areGaussian distributed andEq. (7) reduces
to the χ2 formula.Nondiscrepant bins are thosewhere the true
model coincides with the reference one; therefore their total

contribution to t follows the distribution that is expected in
the reference model, a χ2 with a number of degrees of
freedom (d.o.f.) equal to the number of nondiscrepant bins.
The mean and the variance of the nondiscrepant contribution
are thus equal to the number of nondiscrepant bins. Instead
each bin where there is a discrepancy obviously contributes
on average more than a nondiscrepant bin; however if there
are only a few of them, their total contribution can be much
smaller than the one of the nondiscrepant bins and not
appreciably change the total value of t.
Removing nondiscrepant bins improves the sensitivity

of the test. Hence the binned histogram goodness-of-fit
method only works if applied to a restricted set of bins, i.e.,
to restricted signal regions that have been selected on the
basis of prior expectations on the putative signal. Needless
to say, the test loses any sensitivity if these expectations are
not met by the actual signal.
As mentioned in the introduction, the problem of non-

discrepant bins is not at all an academic one. Existing
constraints on new physics models tell us that the vast
majority of the data collected in present and future high-
energy physics and cosmology experiments will agree with
the reference model (i.e., the SM andΛCDM, respectively).
Still we are unable to identify sharply and systematically
the data where new physics cannot be present, so ideally the
whole set of data will have to be employed in the analysis.
This will produce enough nondiscrepant bins to wash out
essentially any signal that we might expect. Nonetheless
the limitations of the binned histogram method can be
partially amended, usually at the price of introducing
some amount of model dependence. Approaches based
on binned histograms include SLEUTH at D0 [3,4],
searches at H1 [5,6], the VISTA and SLEUTH algorithms
at CDF [8,9], the CMS algorithm MUSiC [10,11], ATLAS
general searches [12–14], and Ref. [7].
Here however we want to explore a different direction by

questioning the starting point of the construction, i.e., the
choice of F as piecewise constant functions. We instead
define F as an artificial neural network. It is quite easy to
argue against piecewise constant functions and in favor
of neural networks and we are not the first ones to do it
[61–63]. Neural networks are often introduced exactly as a
convenient alternative to binned histograms for the esti-
mation of distributions.3

The first argument is that piecewise constant functions
are discontinuous and rapidly oscillating. The best fit to
the data,

fðx; ŵÞ ¼
�
log

Oα

NαðRÞ
if x∈ binα; for α¼ 1;…;Nbin

�
;

ð8Þ
2As the name suggests, this test is typically discussed (see e.g.,

[66]) in the context of parameters fitting, where the histogram is
employed to fit a number “m” of parameters that characterize the
expected distribution.

3We thank G. Cowan for explaining this so clearly in his
lecture [67].
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can have large gradients, which randomly assume positive
and negative values in adjacent bins, because of statistical
fluctuations. Functions of this sort are not at all credible
hypotheses on how the true distribution really looks like.
Nevertheless these are the ones that we compare with the
reference model when we carry out the goodness-of-fit test.
Neural networks are on the contrary smooth functions.
The second advantage of neural networks is that they are

more “efficient” approximants. Consider a peak of width
σ ≪ 1 in the distribution of a one-dimensional variable.
Reproducing this feature requires a number of bins, i.e., of
free parameters, of order 1=σ ≫ 1.4 A neural network can
instead reproduce (see for instance the Appendix and
Ref. [68] for a pedagogical introduction) an arbitrarily
sharp peak with only three neurons, i.e., with a limited
number of parameters.
Last, but not least, there is the problem of the curse of

dimensionality. The number of events that are needed to
approximate a function by means of an histogram grows
exponentially with the dimensionality of the variable x.
While a complete proof is still missing, evidence suggests
(see for instance [58–60]) that neural networks can break
the curse of dimensionality, requiring fewer events to
approximate multivariate distributions. This is of course
an extremely desirable property because we would like to
search for new physics employing as many variables as
possible, reducing in this way the risk of losing sensitivity
because of an erroneous choice of observables. On the other

hand we have at our disposal a limited number of events to
train the neural network.

III. THE ALGORITHM

The algorithm aims at comparing a given data sample
D ¼ fxig, i ¼ 1;…;ND, with the reference model predic-
tion for the distribution of x, nðxjRÞ. Normally the prediction
does not come in analytical form but rather in the form of a
reference sample R ¼ fxig, with i ¼ 1;…;NR, which is
distributed according to the reference model. One data and
one reference sample are thus the inputs of our algorithm,
which produces as output the test statistic tðDÞ in Eq. (3) and
the best-fit log-ratio fðx; ŵÞ. The former quantity will
eventually be employed to construct the hypothesis test
and turned into a p value as explained at the beginning of
Sec. II. The latter function measures the data disagreement
with observation locally in phase space. It can thus be
employed to select the most discrepant data for further
investigation and to perform a number of sanity checks. A
schematic representation of the algorithm is shown in Fig. 1.
A summary of the notation introduced in Sec. II and in the
remainder of this section can be found in Table I.
In the construction of the algorithm we make no explicit

assumption on how the reference sample is produced;
however we do assume that it is quite large, e.g.,
NR ¼ 100NðRÞ, in order to eliminate its statistical fluc-
tuations. This is not an issue if the reference sample is
produced by a first-principles Monte Carlo event generator,
but it might become a problem if instead the reference
sample is obtained by extrapolation from a control region.
In this case the impact of statistical fluctuations in the

FIG. 1. A schematic representation of the implementation of our strategy.

4A similar estimate applies if we take F to be the Fourier
series. Extending the series up to frequencies of order 1=σ ≫ 1 is
needed to see the peak.
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reference sample, which we ignore in what follows, should
be duly taken into account.
Two problems need to be solved in order to evaluate the

test statistic in Eq. (3) with the elements at our disposal.
The first one is that nðxjRÞ is not known in analytical form;
hence we do not know how to compute the integral for
NðwÞ in Eq. (4). The second one is that in order to carry out
the minimization numerically, exploiting the powerful
existing tools for neural network training, we should first
express Eq. (3) as a loss function. However we can solve
both problems at the same time. We estimate NðwÞ by the
Monte Carlo method, namely we write5

NðwÞ ¼ NðRÞ
NR

X
x∈R

efðx;wÞ: ð9Þ

Equation (3) thus becomes

tðDÞ ¼ −2Min
fwg

�
NðRÞ
NR

X
x∈R

ðefðx;wÞ − 1Þ −
X
x∈D

fðx;wÞ
�

≡ −2Min
fwg

L½fð·;wÞ�; ð10Þ

where L has precisely the form of a loss function. It can be
written as a single sum over events by introducing a target
variable y which is set to 0 for the events inR and to 1 and
for those in D. Explicitly, we have

L½f� ¼
X
ðx;yÞ

�
ð1 − yÞNðRÞ

NR
ðefðxÞ − 1Þ − yfðxÞ

�
: ð11Þ

The minimization of L with respect to the neural network
parameters w can thus be carried out as a standard
supervised training process. The test statistic is simply
minus 2 times the loss at the end of training. The trained
neural network fðx; ŵÞ is the maximum likelihood fit to the
data and reference distributions log-ratio. It is the best
approximant, within the neural network parametrization, of
the true underlying data distribution nðxjTÞ:

fðx; ŵÞ ≃ log

�
nðxjTÞ
nðxjRÞ

�
: ð12Þ

Notice that training unavoidably requires some sort of
regularization because our loss function (11) is unbounded
from below; namely it approaches negative infinity if f
diverges at some value of x belonging to the D (i.e., y ¼ 1)
class. Notice that the problematic situation occurs only
when the divergence in f is sharply localized, such that
fðxÞ stays finite for all x ∈ R. Otherwise the positive
exponent that we have in the loss function for the R (i.e.,
y ¼ 0) class overcompensates the negative divergence.
We avoid these dangerous configurations by enforcing
an upper bound (set by the so-called “weight clipping”
parameter W) on the absolute value of each weight. This
forbids the neural network to diverge and to produce sharp
features on a scale Δx≲ 1=W. Given that infinitely sharp
features cannot show up in the true distribution because of
experimental resolution smearing, for any concrete prob-
lem it will be possible to chooseW large enough not to limit
the approximation capabilities of the neural network. We
use W ¼ 100 in the following.
To obtain a p value that tests the agreement between data

and the reference model we proceed as discussed at the
beginning of Sec. II. First we train the network using the
actual data sample and a large reference sample distributed
according to the R model, as pictorially shown in Fig. 1.
This gives us the observed value of the test statistic tobs.
Then we repeat the training on many toy experiments
generated according to the reference distribution; i.e., we
use the same reference sample, network architecture and
training parameters as before, but we substitute the data
sample with toy reference samples. For each of these
samples we compute t and thus obtain PðtjRÞ. The p
value is then computed in the usual way [see Eq. (5)].
Before moving forward it is worth clarifying some

assumptions that our method relies on. First, we assumed
knowledge of the expected number of events, NðRÞ, which

TABLE I. Summary of notation.

Distributions

nðxjRÞ Distribution of the variable x in the
reference model R

nðxjNPÞ Distribution of the variable x in the new
physics model NP

nðxjTÞ True distribution of x
nðxjŵÞ Distribution of x estimated by the neural

network (NN)

Events

NðRÞ Number of expected events in the reference
model R

NðŵÞ Number of events in the data estimated by
the NN

Test statistic

tðDÞ Test statistic computed by the NN on the
data sample D

tidðDÞ Ideal test statistic (requires prior
knowledge of the signal)

PðtjRÞ Probability distribution of the test statistic t
in the reference model R

PðtjNPÞ Probability distribution of the test statistic t
in the new physics model NP

NormalizationR
nðxÞdx ¼ N nðxÞ: Event distributionR
PðxÞdx ¼ 1 PðxÞ: Probability distribution

5There is an equality in the equation that follows because we
assume a large enough reference sample to reduce the
Monte Carlo integration error to a negligible level.
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appears in the definition of the loss function in Eq. (11). This
can be problematic because the total event rate is often not
well predicted by high-energy physics simulations. The
simplest way out is to take NðRÞ equal to the number of
data that have been observed in the actual experiment. This is
conservative as it assumes perfect agreement of the observed
number of events with the reference model prediction. In
what follows we keep working under the assumption that
NðRÞ is known a priori, but this assumption can be easily
eliminated as previously explained. Furthermore in real-life
applications (and in most of the examples we discuss) the
signal component is small and the total number of events is
not a significant discriminant.
Much more problematic is assuming the Monte Carlo to

provide a perfect description of the reference distribution
shape. This is not realistic because Monte Carlo generators
are subject to systematic uncertainties, which for large
enough statistics unavoidably result in a significant tension
with the data. These uncertainties are routinely modeled as
nuisance parameters and treated with the profile likelihood
ratio formalism [69,70]. The basic idea is that we should
first of all identify the value of the nuisance parameters that
best describe the data, taking of course also into account
auxiliary measurements and not only the data set of interest.
Next we use these values in the reference distribution
prediction of Eq. (3). A proper tune of the reference model
Monte Carlo to the data is a prerequisite for any new
physics search; hence this problem is in some sense
orthogonal to the one that we are addressing. However
the interplay and the possible synergies between the two
aspects should be carefully studied. Especially the pos-
sibility of incorporating in the network the fit to data of
some of the nuisance parameters to reduce systematic
uncertainties. This is left to future work.

A. Summary of the algorithm

(1) Train the network on the data, using the loss function
in Eq. (11).
(a) Input.—One data sample D and one reference

sample R.
(b) Output.—(i) Value of the test statistic on the

data sample tobs and (ii) log-ratio of the data and
reference probability distribution functions
fðx; ŵÞ ≃ log½nðxjTÞ=nðxjRÞ�.

(2) Generate several toy data samples “D” that mimic
the expected outcome of the experiment if the
reference model is true. Train the same network
on these toy data samples, using all the same
parameters for training.
(i) Input.—The same reference sample as above

and the toy data samples.
(ii) Output.—Distribution of the test statistic in the

reference hypothesis PðtjRÞ. See e.g., Fig. 3.
(3) Use PðtjRÞ and tobs to compute the p value: p ¼R∞

tobs
PðtjRÞdt. See e.g., Figs. 4 and 6, where the p

values are reported as Z scores. In those figures
we plot a whole set of p’s obtained on hundreds of
different data samples to assess the performance of
our algorithm.

(4) If p is sufficiently small to signal a tension with the
reference hypothesis, use the log-ratio fðx; ŵÞ to
learn the nature of the discrepancy.

B. Performances on a simple case study

We now turn to a first illustration of the performances of
our algorithm. We start with a simple example, which we
study more quantitatively and systematically in the next
section. We consider an univariate problem x ∈ ½0; 1�.
The reference model (or background) is a steeply falling
exponential distribution

PðxjRÞ ∝ e−8x; and NðRÞ ¼
Z

1

0

dxnðxjRÞ ¼ 2000≡B:

ð13Þ

We consider the possible presence in the data of a small
resonant signal component S ¼ 10, distributed as

PðxjSÞ∝e−
ðx−x̄Þ2
2σ2 ; with x̄¼0.8 and σ¼0.02: ð14Þ

The new physics distribution for x therefore is

nðxjNPÞ ¼ Sþ B
1þ S=B

�
PðxjRÞ þ S

B
PðxjSÞ

�
; ð15Þ

with a signal over background ratio S=B ¼ 5 × 10−3 and a
total number of expected events NðNPÞ ¼ Sþ B ¼ 2010.
The model is depicted in the left panel of Fig. 5. We
generate one large (NR ¼ 200 000) reference sample R
according to the reference PDF and several data samples D
that follow either the reference or the new physics dis-
tributions. The number of data events is selected at random
taking into account Poisson fluctuations around the
expected numbers NðRÞ ¼ 2000 and NðNPÞ ¼ 2010. We
train a four-neuron (1,4,1) neural network6 on each data
set and we obtain the corresponding tðDÞ and fðx; ŵÞ as
previously described. Since nðxjRÞ is fully known, in our
toy example we can also compute the best-fit distribution
nðxjŵÞ using the log-ratio learned by the neural network in
Eq. (2). An initial learning rate of 10−3 is chosen, and
training is stopped after 150 000 rounds. The results are
displayed in Fig. 2 for six representative data samples. The
ones on the first and on the second row have been obtained
from the NP and from the R distributions, respectively.

6The notation for the neural network architecture is explained
in more detail in the Appendix. The (1,4,1) network has one-
dimensional input and output and a hidden layer with four
neurons.
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The figure illustrates a number of interesting points.
First of all, we see that in all cases the distribution learned
by the neural network is very much correlated with the
data sample that was used for training. Still it does not
follow the data too closely, producing smooth curves that
are quite “credible” hypotheses on the true underlying
distribution. This should be contrasted with the discon-
tinuous piecewise constant distribution, i.e., the envelope
of the histogram, that one would effectively rely on if the
same data sets were studied with the binned histogram
method. We also see that in the bulk region, i.e., at small
x, the neural network is able to reproduce very accurately
the true distribution, thanks to the large statistic. This is
important because mismodeling the bulk would produce a
large spurious contribution to t, that would obscure the
genuine signal in the tail. The NP-generated data samples
produce an excess in the tail of the distribution, which is
more or less in agreement with the true peak at x ¼ 0.8,
depending on how many events happened to fall in that
region. The distributions obtained with the background
data samples can also depart considerably from the
reference distribution (which is the true one for back-
ground samples); however the departures occur in regions
where only few events are present and hence they give a
limited contribution to t. We also remark that the size of t
is in clear correspondence with how different the refer-
ence distribution and the distribution learned by the
neural network are. The six values shown in the figure
already indicate that t possesses some discriminating
power between the signal and the background. We study
this systematically in the following section.

IV. NUMERICAL EXPERIMENTS

In this section we test our method by performing several
numerical experiments on one- and two-dimensional sam-
ples. A summary of the notation needed to interpret the
figures in this section can be found in Table I. In all the
new physics scenarios discussed here we have generated
hundreds of toy data samples to assess the median
significance of the algorithm and its correlation with the
ideal significance. So the single value of the test statistic,
tobs, that one would observe in a real experiment is
presented as a distribution given a putative new physics
model. Correspondingly the single observed p value
(or Z score) becomes an entire distribution.
The numerical experiments performed here have been

selected with the aim of illustrating the following aspects.
(i) Model independence.—The goal of our approach is

to be sensitive to a signal that is unknown a priori.
Ideally it should detect any kind of new physics that
could be present in the data. We verify this through
several examples in Sec. IVA.

(ii) (In)sensitivity to cuts.—It is impossible to identify
the appropriate search region without prior assump-
tions on the nature of the signal. Furthermore we
argued in Sec. III that the loss of sensitivity due to
the presence of a large number of data points in
agreement with the reference model is the main
limitation of the binned histogram goodness-of-fit
approach. In Sec. IV B we show that instead the
performances of our method do not depend on
whether a favorable signal region is selected based
on prior knowledge of the signal.

FIG. 2. The distribution learned by a neural network with a single four-neuron hidden layer (solid line), compared with the distribution
used to generate the data (dashed line) and the binned histogram of the training data set. The value of the test statistic tðDÞ obtained by
the network is reported in the upper right corner of each plot. The higher values of tðDÞ in blue signal that the network is discriminating
between data sets containing new physics (top row) and data sets following the reference hypothesis (bottom row).
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(iii) Two dimensions.—We apply our method to two-
dimensional distributions, with the aim of studying
to what extent the reach deteriorates if the relevant
variable that differentiates the signal from the back-
ground is not known a priori. The results are
presented in Sec. IV C.

(iv) Dependence on hyperparameters.—The neural net-
work architecture, the initial learning rate and the
number of training rounds are the free parameters
of our algorithm, collectively denoted as hyper-
parameters. We study the performance dependence
on these parameters in Sec. IV D.

Before discussing these points, a general methodological
remark is in order. It is not completely straightforward to
quantify the performances of our method. Clearly in each
example we can compute the median p value of our test, but
this is a valid figure of merit only in comparison with some
independent quantification of the actual difference between
the reference distribution and the new physics that we
assumed in the example. This aspect is particularly impor-
tant for comparing the sensitivity of our test to new physics
signals of different nature, for instance comparing the
sensitivity to a peak with the one to an anomalous growth
of the distribution in the tail. What we need is to assess in
absolute terms how difficult it is to discover new physics
in the example under consideration. For this purpose we
employ the “ideal” test, defined in Eq. (6). Namely for each
toy example we evaluate tid, defined by exploiting the
complete knowledge of the new physics distribution, on a
large set of reference-distributed toy data samples. This
gives us the PDF of tid in the reference hypothesis. Next we
use this distribution to compute the ideal p value pid for
each one of the toy data samples generated according to the
new physics distribution. The ideal p value can then be
compared with the one obtained with our test, either
individually on each sample or globally in terms of the
median over repeated toys. Notice that the ideal test is the
one with smallest median p value, since it is obtained using
a complete knowledge of the signal. Therefore we cannot
hope to obtain a similar significance with our test, where we

assume no previous knowledge of the signal whatsoever.
Still we can assess the success or failure of our method by
how much significance we lose in comparison with the
ideal test.

A. Model independence

In all the examples considered in the present subsection,
x ∈ ½0; 1� and its reference distribution is the exponential in
Eq. (13). Physically we might interpret x as an invariant
mass measured at the LHC, with its steeply falling SM
distribution modeling parton luminosities. Since the refer-
ence distribution is the same for all example signals, the
preparatory stages of our test can be carried out once and
for all. These consist in generating a NR ¼ 200 000
reference sample and in computing the test statistic PDF
by training the neural network on toy Monte Carlo samples
generated according to the reference model. A (1,4,1)
neural network is employed, the initial learning rate is
10−3 and 150 000 training rounds are performed using the
RMSPROP algorithm [71]. Evaluating tðDÞ on 1000 refer-
ence-distributed toys produces the PDF in the left panel of
Fig. 3. Thanks to this distribution we can compute the p
value associated with tðDÞ evaluated on the data samples
generated according to the new physics distribution.
Notice however that we can meaningfully estimate the p

value only if t does not exceed the maximal value obtained
with our toy Monte Carlo samples. If t is larger, we can
only set a lower bound on the p value, which we obtain
from the 68% upper limit for 0 successes (binomially
distributed) and N trials, i.e., p < 1 − ð0.32Þ1=N . With the
N ¼ 1000 Monte Carlo samples at our disposal, this
corresponds to p < 1.1 × 10−3 or to a significance
Z > 3.05σ.7 However PðtjRÞ is quite well approximated
by a χ2 distribution with 13 d.o.f., which is not surprising
because 13 is the number of free parameters of the (1,4,1)
network that we are employing. We return to this point in

FIG. 3. Left panel: Test statistic distribution in the reference model, compared with the χ2 PDF with 13 d.o.f. The relation between
the χ2 and our test statistic is discussed in Secs. IVA and IV D. Right panel: Ideal test statistic distribution in the reference and in our
first new physics scenario: NP1.

7We adopt the standard definition Z ¼ Φ−1ð1 − pÞ, whereΦ−1

is the quantile of the Gaussian distribution.
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Sec. IV D; for the moment we just exploit this fact to extend
our estimate of the significance to values of t above the
maximum. Namely, for those we report the estimate of the
significance obtained with the χ2 approximation instead of
the lower bound obtained with the toys.
The first new physics model that we discuss (dubbed

NP1 in what follows) is the one introduced in Eqs. (14) and
(15). It mimics the presence of a resonance in the tail of
the SM invariant mass distribution. We generate 300 toy
Monte Carlo samples according to the new physics dis-
tribution in Eq. (15), and we train a neural network for each,
with the same algorithm used for the reference-distributed
data. The resulting distribution for t, PðtjNP1Þ, is displayed
in the right panel of Fig. 4. By comparing with PðtjRÞ we
see that our test statistic has a considerable discriminating
power between the two hypotheses. The median t in the
NP1 toy samples is 36, which is slightly above the
maximum value that we obtained with the reference data.
The median significance for the NP1 signal hypothesis is
thus above 3.05σ, and it can be estimated to be 3.2σ using
the χ2 approximation.
For a better assessment of the performances of our

method we compare them to those of the ideal test
presented in Sec. II [see the discussion below Eq. (6)].
We estimate the ideal test statistic PDF by means of a very
large set of 10 000 000 reference model toy data samples,
and we compare it with the values of tid on the 300 new
physics data samples with which we trained the network.
The result is shown in the left panel of Fig. 3. The
sensitivity of the ideal test is as expected much higher
than ours. The median tid on new physics samples is 23 and
it corresponds to an ideal significance Zid ¼ 4.7σ. We can
thus conclude that the difference in sensitivity amounts to
roughly 1.5σ. This is confirmed if we look at the correlation
between Zid and Z on each individual data sample, reported
in the right panel of Fig. 4. Notice that the vertical band of
points that seemingly breaks the correlation is an artifact

due to new physics samples with a tid that is larger than the
maximum tid obtained in the 10 000 000 reference toys. For
these samples, a lower bound on Zid of 5.2σ (corresponding
to zero observed over 10 000 000 trials at 68% C.L.) is
reported in the plot.
The second example (NP2) is nonresonant new physics,

showing up as a quadratic growth with energy in the tail of
the reference model distribution. In this case the signal is
distributed as

PðxjS2Þ ∝ x2e−8x; ð16Þ

and the total expected number of signal event is taken to
be S ¼ 90. The signal and background are combined to
define the NP2 distribution as in Eq. (15). The model is
depicted in the central panel of Fig. 5. The median ideal
significance for the chosen value of S equals 4.4σ, very
much comparable with the one of the NP1 signal. This
ensures a fair comparison between the two. The perfor-
mances of our algorithm, shown in the left column of
Fig. 6, are essentially identical to those we obtained for
NP1. The median significance is 3.1σ and the correlation
between Zid and Z again reveals a significance loss of
around 1.5σ.
Finally, we discuss another resonant signal, emerging

this time in the bulk of the reference model distribution.
The signal distribution is

PðxjS2Þ ∝ e−
ðx−x̄Þ2
2σ2 ; with x̄ ¼ 0.2; σ ¼ 0.02; ð17Þ

and S ¼ 35. The model is depicted in the right panel of
Fig. 5. The median ideal significance is 4.1σ. We see in the
right column of Fig. 6 that accordingly the median
significance of our algorithm (2.6σ) is slightly reduced
compared to NP1 and NP2. The correlation between Zid and
Z is equally sharp.

FIG. 4. Left panel: Test statistic distribution in the NP1 new physics model PðtjNP1Þ, compared with the reference one PðtjRÞ. The
two models are defined in Eqs. (13) and (14), respectively, and shown in Fig. 5. The larger values of t in PðtjNP1Þ compared to PðtjRÞ
signal that our algorithm is sensitive to this new physics scenario. These two distributions are used to obtain the Z score on the y axis in
the right panel. Right panel: Correlation between the significances (expressed in number of σ’s) of our test and of the ideal test defined in
Sec. II, for the NP1 model. The gray shaded area corresponds to the region where the ideal significance cannot be computed with the
number of toy data sets generated. We also show the median significance of our algorithm (Median NN) and the ideal one.
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The comparative study of three new physics models
carried out in this section provides a clear confirmation of
the model-independent nature of our approach.

B. (In)sensitivity to cuts

The point is conveniently illustrated in the NP1 example.
Since the signal is sharply localized at x ¼ 0.8, one might
expect that restricting the analysis to events in the tail of the
distribution, for instance to those with x > 0.3 or x > 0.5,
will give us a better reach. This would have indeed been the
case for the goodness-of-fit test. Our method is instead
insensitive to the cut, as Fig. 7 shows.
The median significance is 3.1σ for both x > 0.3 and

x > 0.5. Also the Zid-Z correlation plot that we do not
show here is essentially identical to the one without a cut

displayed in Fig. 4. These results have been obtained using
the same procedure outlined in the previous section for the
case without a cut on x. We employed the same learning
rate, training algorithm, number of training rounds and
network architecture (a single hidden layer with four
neurons). The only change is in the number of expected
events. However notice that we were not conceptually
obliged to choose the same hyperparameters as in the no-
cut case. In particular the smaller number of events might
have suggested using a smaller network. It is encouraging
that a selection cut does not improve the significance. If our
method had been sensitive only in signal-enriched regions
(x > 0.5 for example, where S=B ≈ 0.3), we would have
not solved the problems that plague the binned histogram
test, discussed in Sec. II. Suppose, for concreteness, that we

FIG. 5. The distributions of the three new physics models used in this work plus the reference one.

FIG. 6. Top row: Test statistic distribution in the NP2 (left) and NP3 (right) new physics models, compared with the reference one. The
two models are defined in Eqs. (16) and (17). Bottom row: Correlation between the significances (expressed in number of σ’s) of our test
and of the ideal test defined in Sec. II, for the NP2 (left column) and NP3 (right column) new physics models. The gray shaded area
corresponds to the region where the ideal significance can not be computed with the number of toy data sets generated. We also show the
median significance of our algorithm (Median NN) and the ideal one.
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had analyzed data in the x > 0.5 search region, finding a
considerable tension with the reference model. The imme-
diate question, related to the look-elsewhere effect [1],
would be whether adding data in the x ∈ ½0; 0.5� region
would wash out the tension or not. We verified that in our
examples this would not be the case, on average, even if
new physics is only present at x > 0.5. Enlarging the search
region to the full x ∈ ½0; 1� range would at most increase the
tension, giving us sensitivity to the possible presence of
new physics (such as for instance NP3) that does not show
up in the restricted data set.

C. Two dimensions

We now consider a two-dimensional random variable
x ¼ ðM; cÞ, with M ∈ ½0; 1� and c ∈ ½−1; 1�. The variable
M is interpreted as the invariant mass, while c is the cosine
of the scattering angle in the center of mass frame. These
two variables conveniently characterize two-body final
states in LHC events. The distributions of M are chosen
among the ones that we previously introduced in the
univariate examples. Namely, in the reference model M
is exponentially distributed as in Eq. (13), while the
putative new physics signal is the resonant peak in

Eq. (14), duly combined with the background as in
Eq. (15). The variable c is uniformly distributed both in
the reference and in the new physics model; hence it
possesses no discriminating power. This setup makes the
comparison between 1D and 2D performances particularly
meaningful and straightforward. The results obtained in the
previous section can indeed be regarded as those that we
have if the two-dimensional data set is analyzed with the
prior bias that M is the only relevant variable. The present
section instead discusses what we can get without this prior.
The test statistic distributions are reported in Fig. 8. The

results are obtained with a (2,3,1) network, trained with the
same initial learning rate, training algorithm and training
rounds as before. A considerable loss in sensitivity is
observed in comparison with the 1D case in Fig. 3. The
significance rarely reaches 3σ, and the median is 1.4σ. The
correlation between Z and Zid is less sharp, and large-Zid
samples often end up having low significance. This results
from the combination of two distinct effects. The first one is
that the values of t resulting from the neural network
training on new physics samples are significantly smaller,
and the second is that t is larger on the reference samples.
Let us discuss the two effects separately.
The new physics median t is now 29, while it was 36 in

1D. This result might seem inconsistent, in light of the fact
that the 2D network for M and c contains configurations,
obtained by setting to zero all the weights for c, that are
fully equivalent to a 1D network for M. However the 1D
network obtained in this way has a (1,3,1) architecture,
while a (1,4,1) network is employed in Fig. 3. A (1,3,1)
network in 1D, discussed in the next section, indeed
produces a median new physics t of 31, very close to
the 2D one.8 Therefore the new physics median t we find in
2D is not in sharp contradiction with 1D results. Still it is
somewhat surprising that it is not larger than the 1D one

FIG. 7. Left panel: Test statistic distribution in the reference hypothesis, PðtjRÞ, for x ≥ 0; x > 0.3 and x > 0.5. Right panel: Test
statistic distribution in the new physics hypothesis NP1 (narrow peak in the tail) for x ≥ 0; x > 0.3 and x > 0.5. No substantial
difference is observed in the distributions of the test statistic. As a consequence the expected reach is independent of the cut.

FIG. 8. Test statistic distribution in the NP2d;0 new physics
model, compared with the reference one. We expect 2010 events
in the new physics model as in the one-dimensional case.

8In one dimension the smaller new physics t for the (1,3,1)
network does not result in a degradation of the sensitivity because
the reference model t distribution is also shifted to lower values,
as discussed in the next subsection.
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because the weights associated to c should in principle
allow one to find a deeper minimum for the loss function.
This is what happens on reference model samples, whose
2D distribution is shifted to a much higher value than those
in 1D for the (1,3,1) network (see Figs. 8 and 10).
The reference model t distribution is not only shifted

with respect to the (1,3,1) network, which follows a χ2 with
nine d.o.f., but also with respect to the χ213, in spite of the
fact that the (2,3,1) network that we employed has 13 free
parameters. We further elaborate on this point in Sec. IV D
and in the conclusions.
The result indicates that improvements in the implemen-

tation of our method can be made before considering
applications to multivariate data sets. There are many
possible directions of investigation in terms of training
algorithm and network architecture that we believe would
improve the sensitivity in higher dimensions. We discuss
them in the conclusions. However even with this loss
in sensitivity, our method should still be explored as a
viable alternative to binned histogram model-independent
searches which are dramatically affected by the curse of
dimensionality.
Furthermore the concrete impact of the loss in signifi-

cance that we observe should not be overemphasized. Even
if no significant tension is typically found in the 2D data
sets under consideration, the signal could still be discov-
ered by running the experiment longer and collecting more
events. With twice more luminosity, i.e., B ¼ 4000 and
S ¼ 20, we obtain a median significance of 2.3σ.

D. Dependence on hyperparameters

The aim of this section is to illustrate how the perfor-
mances depend on the algorithm hyperparameters such as
the initial learning rate, the number of training rounds and
the architecture of the neural network.
Our method is founded on maximizing a likelihood

function proportional to minus our loss function. Therefore
the parameters of the training algorithm should be selected
as those that produce the smallest loss and, in turn, the
largest t in Eq. (10). We verified that lowering the learning

rate below our benchmark value of 10−3 does not increase t.
For higher values the loss oscillates as training proceeds
and it does not converge. Similarly we verified that 10 times
more training rounds than the 150 000 benchmark do not
change the performances. Less training instead would
be insufficient. This is shown in Fig. 9 for reference-
distributed data. The same is found with new physics
samples.
The situation is more interesting if we vary the network

architecture. In the left panel of Fig. 10 we show how the
test statistic distribution in the reference hypothesis
changes with the number of neurons, while keeping the
number of training rounds fixed at 150 000. As we increase
the free parameters in the network, t increases. This has to
be expected in light of the well-known result by Wald and
Wilks [72,73] (see also [70] for a more modern discussion),
according to which the maximum log-likelihood ratio test
statistics is distributed in the asymptotic limit as a χ2 with a
number of d.o.f. which is equal to the number of free
parameters in the maximum likelihood fit.9 In our case the
free parameters [i.e., w in Eq. (10)] are 10 for the (1,3,1)
network, 13 for the (1,4,1) network and 31 in the (1,10,1)
case. The (1,3,1) and (1,4,1) distributions follow the
asymptotic formula with the corresponding number of
parameters, while the (1,10,1) distribution is slightly below
the expectation. However this is most likely due to
insufficient training. With 1.5 million training rounds the
(1,10,1) distribution tends to align with the χ231, as shown in
the right panel of Fig. 10.10 The limited computing power at
our disposal and the need to perform the training thousands
of times on toy data sets did not allow us to check if an
even longer training would take the (1,10,1) distribution
even closer to χ231.
It should be noticed that the asymptotic formulas only

hold in the formal limit of infinite statistics, and there are no

FIG. 9. Test statistic distribution in the reference hypothesis, PðtjRÞ, for networks with one hidden layer and four neurons. Left panel:
15 × 103 training rounds compared to 150 × 103. Right panel: 1.5 × 106 training rounds compared to 150 × 103.

9We are of course referring to the case in which the data are
distributed according to the hypothesis that is being tested, i.e.,
the reference hypothesis in the present case.

10More training rounds do not change the distribution for
smaller networks, as previously mentioned.
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sharp criteria to establish how many events are concretely
needed for them to apply. Therefore the agreement we
observe is not a consistency check. It simply means that the
statistics in our 1D example is sufficient, at least for networks
with up to ten neurons, to reproduce the asymptotic
distribution. It is legitimate to expect departures from the
χ2 for much larger networks. However we could not verify
this fact because the required training time increases with the
network capacity, as we have seen. Departures from the χ2

formula were instead found in the 2D example; see for
instance Fig. 8 and Sec. IV C. We discuss in the conclusions
why it would be important to develop an understanding of
this difference between the 1D and the 2D examples.
More concretely, we are interested to know how the

sensitivity of the test depends on the neural network
architecture. We find that t increases with the network
capacity also for new physics generated samples. The
median t in the data samples is 31 for the (1,3,1) network,
36 for (1,4,1) and 56 for (1,10,1). This compensates for the
growth of t in the reference model, making the significance
roughly invariant. We find a median significance of 3.2σ,
3.1σ and 3σ for the three-, four- and ten-neuron networks,
respectively. Notice however that 1.5 million training
rounds have to be employed in the ten-neuron case, making
the algorithm 10 times slower. With 150 000 rounds we
would have obtained a slightly lower significance of 2.7σ.

V. ALTERNATIVE LOSS FUNCTIONS

In Secs. II and III we constructed our algorithm as a
straightforward application of the maximum likelihood
method. Here we describe an alternative derivation, slightly
less direct and conceptually rewarding, which however
offers more freedom in the implementation. In particular, it
allows us to employ different loss functions than the one in
Eq. (11). The starting point is the definition of t in Eq. (3),
which we rewrite below for convenience:

tðDÞ ¼ 2 log

�
e−NðŵÞ

e−NðRÞ
Y
x∈D

nðxjŵÞ
nðxjRÞ

�
: ð18Þ

This equation instructs us to construct the test statistic as
the log-ratio between the reference distribution and the
“best-fit” distribution nðxjŵÞ, obtained from the data set
under consideration. In Eq. (3) we are using as best-fit
distribution the one that maximizes the likelihood (this is
why we could add the second equality and express t as the
minimum of the likelihood ratio). However Eq. (18) still
defines a viable test statistic even if we employ a different
method to estimate nðxjŵÞ.
Neural network estimators of nðxjŵÞ, or equivalently of

fðx; ŵÞ, can be obtained using different loss functions, the
one in Eq. (11) being only one of many possibilities. The
loss function that is most widely employed in classification
problems is the so-called “cross-entropy”

L½f� ¼
X
ðx;yÞ

�
y log½1þ e−fðxÞ� þ ð1− yÞNðRÞ

NR
log½1þ efðxÞ�

�

¼
X
x∈D

log ½1þ e−fðxÞ� þNðRÞ
NR

X
x∈R

log ½1þ efðxÞ�:

ð19Þ

The reason why this is a viable choice can be easily
understood as follows. In the asymptotic limit, i.e., when
the data and the reference sets are large, the sums in
Eq. (19) approach expectation values over the variable x.
The distribution of the reference sample R is nðxjRÞ by
construction. The data sample D is instead distributed
according to the “true” data distribution nðxjTÞ, which is
precisely the one we would like to estimate. Equation (19)
thus approaches the functional

FIG. 10. Left panel: Test statistic distribution in the reference hypothesis, PðtjRÞ, for networks with one hidden layer and three, four or
ten neurons, compared to the χ2 with the same number of d.o.f. as the network. The training parameters are the same for all architectures
(15 000 training rounds, 0.001 initial learning rate, RMSPROP algorithm). Right panel: Test statistic distribution in the reference
hypothesis for the network architecture with ten neurons. We compare the result with 150 thousand and 1.5 million training rounds. The
figure shows how our networks reproduce the asymptotic formulas for the test statistic expected from the theorems in [72,73]. However
larger networks require more training rounds.
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L½f� ≃
Z

dxnðxjTÞ log ½1þ e−fðxÞ�

þ
Z

dxnðxjRÞ log ½1þ efðxÞ�: ð20Þ

Let us now take the limit in which the neural network is
very large, such that fðx;wÞ effectively spans the whole set
of infinitely differentiable functions of x. In this limit
the minimum of L½f� is where the functional derivative
δL½f�=δf vanishes. Therefore the neural network trained
with the loss function in Eq. (19) is approximately

fðx; ŵÞ ≃ log

�
nðxjTÞ
nðxjRÞ

�
: ð21Þ

Since fðx; ŵÞ provides an approximation of the true data
distribution, it can be meaningfully used to construct the
test statistic. Notice that now t, unlike in the maximum
likelihood approach (10), cannot be directly obtained from
the value of the loss function at the end of training. On the
contrary it must be evaluated from the definition in
Eq. (18), using the trained neural network fðx; ŵÞ and
evaluating separately the integral of Eq. (4). This is done
with the Monte Carlo method

NðwÞ ¼ NðRÞ
NR

X
x∈R

efðx;ŵÞ; ð22Þ

using the same reference sample that is employed for
training.
Similar considerations hold for other loss functions such

as the square loss or, of course, the maximum likelihood
loss in Eq. (11). All of them approach, in the asymptotic
limit, integral functionals whose minima give Eq. (21).
Choosing one or the other is from this viewpoint merely a
matter of technical convenience. We explored quite exten-
sively the possibility of using the cross-entropy loss. This
was actually our first attempt, which we eventually aban-
doned in favor of maximum likelihood, that was found to
have better performances in all the examples we studied. At
the technical level the advantage of maximum likelihood is
that the test statistic is directly related with the minimum of
the loss function. We have seen that this is not the case for
other choices of the loss function; hence there is a much
less direct connection between t and the quantity that is
minimized by the training algorithm.
Maximum likelihood is normally considered to be the

optimal hypothesis test, in accordance with our findings.
However it should be kept in mind that for composite
alternative hypotheses there is no rigorous notion of
optimal test [65].
In spite of the fact that maximum likelihood was

eventually found to be more effective, the possibility of
employing other loss functions should be kept in mind
for further evolutions of our algorithm, or for different

applications. For instance, we mentioned that another
possible application of our method could be the comparison
between two samples obtained with different Monte Carlo
generators. Since in this case there is no sharp notion of
which one is the “data” and which one is the “reference”
sample, one could argue in favor of a more symmetric loss
function such as the cross-entropy or square loss. This is
left to future work.

VI. CONCLUSIONS AND OUTLOOK

We studied the possibility of using neural networks to
identify data departures from the prediction of a given
reference model, making effectively no assumption on the
alternative model that is responsible for the discrepancy. A
concrete implementation of the idea was presented, in the
form of an algorithm that straightforwardly follows from
the maximum likelihood hypothesis test. The inputs of the
algorithm are the data collected by an experiment and a
reference sample that follows the reference model distri-
bution. The reference data set can be obtained from a
Monte Carlo event generator or from data in a control
region. Its double role is to replace the analytical knowl-
edge of the reference model distribution, which is typically
not available, and to turn likelihood maximization into a
supervised training process. The output of the algorithm is
the ratio between the best-fit data distribution and the
reference one and a test statistic variable t. The former can
be used to select data that display the highest level of
discrepancy with the reference model. The latter measures
the disagreement between the reference model and the data
and it can be used for a hypothesis test.
We performed simple numerical experiments to assess

the virtues of our construction and its limitations. We
confirmed the model-independent nature of our method, by
showing that it has good sensitivity to different hypothetical
new physics signals. We also verified that our method does
not suffer from the presence of data that agree well with the
reference model prediction, even if those constitute the vast
majority of the sample. For the applications that we have in
mind, as explained in the introduction and in Sec. II B, this
is an essential property. Finally we found that the sensitivity
does not depend much on the capacity of the neural
network. The results above are obtained in a few simple,
one-dimensional, examples. A more extensive investigation
would be useful to put them on firmer ground.
We also quantified the sensitivity degradation due to

including in the network input an additional variable that
does not possess discriminating power between the refer-
ence and the new physics models. Some amount of
degradation is unavoidable; however the one we observed
does not reflect the full potential of our approach. On the
other hand the sensitivity scales well with the statistics, by
doubling the number of events we recover a sensitivity that
is comparable to the one-dimensional case. Even at a fixed
number of events we are confident that the situation can be
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improved by refining our approach. This belief is motivated
by the fact that the sensitivity loss in two dimensions comes
from a significant departure, towards larger values, of the
reference model t distribution with respect to the χ2

prediction. We do not have a complete understanding of
this phenomenon, but we conjecture that it is due to
overfitting and to a nonoptimal choice of the neural
network architecture. Overfitting could be the explanation
because it produces bumps and other sharp features that
contribute significantly to t, which are due to a few events
that happen to be concentrated in some region of the phase
space. Since they result from few events, these contribu-
tions to t can violate the asymptotic formula. The behavior
is observed in two dimensions and not in one because two-
dimensional data are much more sparse and, hence, easier
to overfit. If rather than a fully connected (2,3,1) network
we had employed an architecture where the variable c has
less links than the variable M, the performances on the
example discussed in Sec. IV C would have clearly been
better. One might consider the limiting situation where all
weights that connect c to the network are set to zero,
effectively going back to the one-dimensional (1,3,1)
network for which good performances were observed in
Sec. IV D. At present it is unclear that this observation
could be turned into a systematic optimization strategy.
However we notice possible connections with the problem
of identifying and eliminating the redundant parameters
of a neural network, which goes under the name of
“compression” in the machine learning literature [74].
Another direction of investigation is related with the

alternative viewpoint on our approach that we discussed in
Sec. V. What we are doing is learning from the data a
likelihood ratio. We then use it to construct the test statistic.
Whether or not the likelihood ratio is learned using the
maximum likelihood loss function is irrelevant from this
viewpoint. This suggests that we should look for synergies
with recent works [43–45,75] where the problem of
approximating likelihood ratios with neural networks has
been studied. These studies could also help to model the
systematic uncertainties of the reference Monte Carlo,
through the formalism of nuisance parameters. We argued
in Sec. III that the problem of systematics is orthogonal to
the one that we are addressing and that it could be solved
with standard tools. However studying its interplay with
what we are doing would clearly be an important step.
At the purely computational level, the limiting factor of

our algorithm is the training time. This can be considerable
because we have employed a large number of reference
data for training, typically 100 times the actual data.
However one could try to employ the reference sample
more efficiently. When we write NðwÞ as in Eq. (4) we are
effectively using the most naive Monte Carlo integration
strategy; more refined techniques might give the same
accuracy with much smaller reference samples. For in-
stance one might employ weighted events, obtained by

binning the large original reference sample. If the binning is
compatible with the resolution on x, and in turn with the
weight clipping of the neural network, Eq. (9) could be
evaluated accurately using hundreds of reference events
rather than hundreds of thousands. Clearly the loss function
in Eq. (11) should be updated accordingly.
In this paper we exclusively discussed our method as a

possible approach to model-independent new physics
searches. However other applications could be envisaged.
The first one is constructing an automated tool that
compares the predictions of different Monte Carlo gen-
erators, using one of the two generators as “data” and the
other as “reference.” This might allow one to identify subtle
discrepancies that might instead escape ordinary compar-
isons based on the inspection of selected variables.
Monte Carlo generator comparison is much easier to
implement than model-independent new physics searches
because the data sample size is easier to increase. One
might also consider our approach for data validation
algorithms. The goal there is to establish if raw data
produced during a certain, relatively short, period of time
were collected under appropriate conditions, or if instead a
contingent problem occurred in the data acquisition system.
One should thus compare them with previously collected
data, which might be used as the reference sample. This
should be relatively easy to achieve because the data are
abundant and because the reference sample is perfect by
definition. Hence one would not need to worry about
systematic uncertainties in the reference. We believe that
these directions deserve further study.

ACKNOWLEDGMENTS

We would like to thank M. Pierini and M. Zanetti for
collaboration during the early stages of this work. We also
thank N. Arkani-Hamed, L. Biggio, V. Hirschi, M. Papucci,
L. Rosasco and N. Toro for useful discussions. We would
also like to thank T. Cohen for very useful comments on the
manuscript. R. T. D. is supported by the U.S. Department of
Energy under Contract No. DE-AC02-76SF00515.

APPENDIX: A SHORT INTRODUCTION
TO NEURAL NETWORKS

As mentioned in Sec. II, a neural network is a set of
functions. In our notation each architecture corresponds to
a family of real functions F a⃗ ¼ ffa⃗ðx;wÞ; ∀ wg of the
d-dimensional variable x, labeled by a vector a⃗ of integers
that specifies the neural network. The functions depend
on Npar real parameters w, generically called “weights” in
what follows.
This family of functions, i.e., the neural network, is

constructed as the composition of elementary blocks,
called layers. In our notation, which follows the one of
Mathematica [76], layers can be either of the elementwise
or of the linear type. An elementwise layer applies a scalar
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function to all the elements of the input vector, producing
an output with the same dimensionality as the input. In our
implementation all elementwise layers (i.e., all our activa-
tion functions [61,62]) are logistic sigmoids:

σðzÞ ¼ 1

1þ e−z
: ðA1Þ

As the name suggests, a linear layer performs a linear
transformation and the dimensionality of its output (dO)
can be different from the one of the input (dI). It can be
represented as

½λdO;dIðz⃗Þ�αO ¼
XdI
αI¼1

wαI
αOzαI þ w̄αO ; ðA2Þ

where αO runs from 1 to dO. The free parameters of a linear
layer are the dO times dI entries of the w

αI
αO matrix, plus the

dO shifts w̄αO , for a total of dOðdI þ 1Þ parameters. We
denote all of them as weights in spite of the fact that the w̄’s
are often called “biases” in the machine learning literature.
A neural network is the composition of layers, alternat-

ing linear and elementwise ones:

fa⃗ð·;wÞ ¼ λaL¼1;aL−1∘σ∘ � � � ∘σ∘λa2;a1∘σ∘λa1;a0¼d: ðA3Þ
If the network is fully connected, i.e., the dimension of the
output of layer n − 1 equals that of the input of layer n, for
every layer, then the total number of free parameters that
the network depends on is

Nparða⃗Þ ¼
XL
n¼1

anðan−1 þ 1Þ: ðA4Þ

The neural network function is applied to the variable x;
hence the input of the first linear layer has dimensionality
a0 ¼ d. The neural network output that we are interested
in must be a real number; hence aL ¼ 1. We are instead free
to choose the remaining L − 1 entries of the ðLþ 1Þ-
dimensional vector a⃗. Notice thatL only counts the number
of linear layers in the network. However we often refer to it
as the number of layers, matching in this way the more
standard terminology in which one layer is the composition
of a linear transformation with σ. For instance, a two-layer
neural network acting on a one-dimensional input variable
x is represented by the vector a⃗ ¼ ð1; Nneu; 1Þ, where Nneu
is the number of neurons.
In Eq. (A2) each neuron corresponds to a different value

of αO. So a⃗ ¼ ð1; Nneu; 1Þ depends on 3Nneu þ 1 free
parameters and its explicit functional form is

fð1;Nneu;1Þðx;wÞ ¼
XNneu

α¼1

ðwð2ÞÞασ½ðwð1ÞÞαxþ ðw̄ð1ÞÞα� þ w̄ð2Þ:

ðA5Þ

For the applications considered in this paper we have
employed simple networks of this class. However we
have tested also deeper networks (L > 2) for d > 1 finding
comparable performances.
Once we have built the network, we need to train it.

This is not different from fitting free parameters w given
experimental observations. In analogy with maximum
likelihood parameter estimation, we write down a loss
function that at the minimum gives estimators of the values
of w that best describe the data. Then we need to find the
minimum.
The choice of loss function is determined by the specific

problem at hand. In Sec. III we have already discussed what
we consider the most motivated construction for our model-
independent searches and in Sec. V we showed a variation
based on more standard classification problems. Here we
illustrate the point with a simpler example for the readers
that are not familiar with the subject. For concreteness we
discuss what one would do for supervised learning and
refer the reader interested in semisupervised, unsupervised
and reinforcement learning to [61,62,77,78].
Imagine that you have two sets of pictures one of cats

and one of dogs. You would like the network to output 1 if
given a cat and 0 for a dog. In this case the input x can be an
array of numbers, each representing a different pixel of
the picture. Then an obvious choice for the loss function
would be

L½f� ¼
X
x∈cats

½1 − fa⃗ðxjwÞ�2 þ
X

x∈dogs
½fa⃗ðxjwÞ�2: ðA6Þ

At the minimum of L, fa⃗ðxcatjŵÞ ¼ 1 and fa⃗ðxdogjŵÞ ¼ 0.
It is very easy to prove it, by taking a functional derivative
of L with respect to f. What is actually implemented
in a computer consists in taking the derivatives of L
with respect to the weights going backwards from the
last layer.
Note that the form of the loss function in (A6) is just

illustrative. As we have also mentioned in the main body
of the text, in practical applications the cross-entropy,
the Kullback-Leibler divergence and their variations are
more widely used. One quality that they have over the χ2

used in (11) is that their logarithms cancel the exponential
saturation of sigmoids and hyperbolic tangents at least
for the last layer, making the derivatives larger and the
minimization process faster for certain values of
the input.
Since the loss functions obtained by nesting layers are

in general nonconvex, there are no algorithms that are
guaranteed to find a global minimum. The prevailing
approach consists in finding a “good enough" local mini-
mum by using stochastic gradient descent. Gradient descent
simply consists in taking a derivative of the loss function
and updating the weights by moving them a small amount ϵ
in the direction in which the derivative decreases. This
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technique was proposed by Cauchy in 1847 [79]. The
parameter ϵ is called the learning rate. It can be fixed
a priori or changed adaptively during training. Since
computing the derivative over the entire training sample
is usually computationally unfeasible, it is typically com-
puted on a subsample chosen at random. This is what goes
under the name of stochastic gradient descent [62,77].
The RMSPROP algorithm [71] that we employ is based on
stochastic gradient descent.
The process of evaluating L on a subset of the cats and

dogs sample, taking its derivatives and updating the values
of the weights is known as training and the sample used for
the process is known as the training sample. This comes in
as many repetitions as it takes to obtain an acceptable
degree of accuracy. The accuracy of classifiers, as the one
in this simple example, can be tested on a separate sample,
(you guessed it) the testing sample. In the applications
discussed in the paper, where we are not solving a
classification problem, we can perform a different test,
by comparing the neural network estimation of the data
distribution with its true functional form.
It can be proven that a function built following the

procedure outlined at the beginning of this section can
approximate with arbitrary accuracy any continuous func-
tion in a compact domain of RN . For a more precise
statement of the relevant theorems we refer to [63,80–82].
Here we would like to present a heuristic argument that will
also make clear why neural networks provide a good
parametrization for the problem described in this work.
Take two neurons with a logistic sigmoid activation

function and send their output to a third one. For simplicity
consider a one-dimensional input for the first layer. The
function that describes this small neural network is

fð1;2;1ÞðxÞ ¼ w0
1σðz1ðxÞÞ þ w0

2σðz2ðxÞÞ þ b0;

ziðxÞ ¼ wixþ bi; ðA7Þ

where i ¼ 1, 2 labels the two initial neurons. For w0
1 ¼

−w0
2 ¼ w0 and b0 ¼ 0 we have

fð1;2;1ÞðxÞ ¼ w0½σðw1xþ b1Þ − σðw2xþ b2Þ�: ðA8Þ

This is plotted as a function of x in Fig. 11. It is
approximately zero for x≳ −b2=w2 and x≲ −b1=w1 and
roughly constant and equal to w0 otherwise.
As illustrated in Fig. 11, by increasing w1 and w2 we can

make the transition between zero and w0 arbitrarily sharp.
By adjusting b1 and b2 we can make the domain over which
fð1;2;1ÞðxÞ is nonzero as narrow as we want. So we can make
this three-neuron unit generate a smooth peak, a broad
plateau or a rectangular function. By combining many of
these units we can approximate any continuous function as
a juxtaposition of rectangular functions. In higher dimen-
sions we can repeat this argument by adding two more
neurons for each new direction. We can send all their
outputs into a single final neuron and construct a multi-
dimensional rectangular function in the same way.
As discussed in Sec. II this also shows why neural

networks are promising candidates for new physics searches.
Even if we do not know a priori the type of signal that we
are looking for, a network with very few parameters can
reproduce an arbitrarily sharp feature, remaining smooth in
its absence. Fewer free parameters mean a smaller look-
elsewhere effect and a larger sensitivity.
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