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In calculating hadronic contributions to precision observables for tests of the Standard Model in lattice
QCD, the electromagnetic current plays a central role. Using a Wilson action with O(a) improvement in
QCD with N; flavors, a counterterm must be added to the vector current in order for its on-shell matrix
elements to be O(a) improved. In addition, the local vector current, which has support on one lattice site,
must be renormalized. At O(a), the breaking of the SU(N;) symmetry by the quark mass matrix leads to a
mixing between the local currents of different quark flavors. We present a nonperturbative calculation of all
the required improvement and renormalization constants needed for the local and the conserved
electromagnetic current in QCD with Ny =241 O(a)-improved Wilson fermions and tree-level
Symanzik improved gauge action, with the exception of one coefficient, which we show to be order

g5 in lattice perturbation theory. The method is based on the vector and axial Ward identities imposed at
finite lattice spacing and in the chiral limit. We make use of lattice ensembles generated as part of the

coordinated lattice simulations initiative.
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I. INTRODUCTION

Precision tests of the Standard Model typically require
reliable theory input from first-principles calculations.
While the electroweak sector can be treated perturbatively,
the virtual contributions of hadrons must be calculated from
QCD nonperturbatively. Ab initio Monte Carlo simulations
of lattice QCD have provided a host of precision quantities
for use in tests of the Standard Model [1]. Example of such
hadronic quantities are the ratio of decay constants f/f,,
the MS quark masses, the running strong coupling constant
a,(My), and the anomalous magnetic moment of the muon,
(9 —2),. For the latter, a major effort by several lattice
collaborations worldwide is ongoing to calculate the
hadronic vacuum polarization and the hadronic light-by-
light contributions [2]. From the QCD point of view, these
contributions amount to two- and four-point correlation
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functions of the electromagnetic current, to be integrated
over with a weight function containing the characteristic
scale of the muon mass.

In continuum QCD, the electromagnetic current is
conserved and does not require renormalization. On the
lattice, a finite renormalization can appear, depending on
the details of the action and of the chosen discretization of
the vector current. In particular, for Wilson fermions, the
single O(a) on-shell improvement term to the action is
known. Wilson fermions also have a “point-split” vector
current, whose support extends over two lattice sites in the
direction of the current, which is exactly conserved at finite
lattice spacing. This appealing property, however, does not
guarantee that transverse correlation functions of the
current have smaller discretization effects than those of
the naive, “local” vector current with support on a single
lattice site, which in the limit of massless quarks receives a
finite renormalization factor Zy(g3). Indeed, the improve-
ment of the vector current—Iocal or point-split—requires
adding the divergence of the tensor current with a coef-
ficient denoted cy, which counteracts the breaking of chiral
symmetry by the Wilson action and suffices to remove all
O(a) cutoff effects in on-shell correlation functions. This
coefficient, whose value depends on the discretization of
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the current, has a finite value at tree level of perturbation
theory in the case of the point-split current, but vanishes for
the local current.

On the other hand, for the local vector current, a
mass dependence of the renormalization factor arises if
O(a) discretization errors are to be removed. This mass
dependence is relevant in precision calculations, given
the pattern of the physical up, down, and strange quark
masses. Concretely, given the electric charge matrix of the
lightest three quark flavors, Q = diag(2/3,-1/3,—1/3),
the electromagnetic current can be written as the linear
combination

1
vem — 34— V8 (1)

V3

where Vi = yry, ’17“ y is the octet of vector currents, with ¢
the Gell-Mann matrices. In isospin-symmetric QCD, the
bare quark mass matrix can be decomposed as

1
My =mg" +—

V3

See Eq. (8) and below for our notation. The renormalization
pattern of the local discretization of the two neutral octet
combinations then reads [3], at O(a),

A (2)

(mg; — mg,

q.!

Vz,R =Zy(l+ 3l_)vamgv + bvamq’,)Vf,’I, (3)
8 A av bV 8.1
V,M.R = ZV 1 + 3bvamq + ?a(mq’l =+ qu,s) V”
1 2 01
13 by + fv 7§a<mq,l —mg )Vy' |, (4)

with V9 = 1y, the flavor-singlet current. Here V' and

V8! are understood to already contain the improvement
term proportional to cy. All coefficients appearing in the
two equations above are functions of the coupling g,. In
this article, we present a nonperturbative determination of
the renormalization factors Zv,, by, and Z]V as well as of ¢y,
while the coefficient fy will remain undetermined. As
explained below, there are, however, good reasons to expect
fv to be numerically very small [3]. The improvement
coefficient cy is determined by imposing continuum chiral
Ward identities, as proposed in quenched QCD in Ref. [4].
We follow the presentation of Ref. [3] for the full
renormalization and improvement in large volumes with
N¢ =2 + 1 Wilson fermions. The mass-dependent renorm-
alization with Ny = 2 Wilson fermions has been computed
in Ref. [5]. Note that the method of Ref. [6] allows only one
to compute a linear combination of the improvement
coefficients for the conserved and local currents, and it
is insufficient to provide a full improvement condition for
either discretization.

Our main motivation for the present calculation is to
determine the two-point function of the electromagnetic
current with only O(a?) discretization effects. This will in
particular allow for a shorter continuum extrapolation of the
leading hadronic contribution to the anomalous magnetic
moment of the muon, and therefore a more cost-effective set
of lattice QCD simulations. Given that phenomenologically
the 7z~ channel, which is described by the timelike
electromagnetic form factor of the pion, accounts for more
than two-thirds of the total hadronic contributions, it is very
natural to impose the renormalization condition on the local
vector current that the electric charge of the pion be unity at
every lattice spacing. This is the main renormalization
condition we will adopt to determine Zy, by, and by,.

We begin by giving an overview of the required theory
background, which allows us to define our notation. We
present the setup for our numerical calculation in Sec. III
and the results in Sec. I'V. We finish with some concluding
remarks in Sec. V. Appendix A presents a determination of
the improvement coefficient ¢, of the axial current, and
Appendix B contains some results on the employed
correlation functions in lattice perturbation theory.

II. RENORMALIZATION AND IMPROVEMENT:
THEORY BACKGROUND

A. Definitions and notations
We use Euclidean Dirac matrices, {y,.,7,} = 26,,. We
consider initially the general case of N; flavors of quarks.
Flavor indices will be denoted by latin letters i, j, .... Let
AW () — . )
H (X) Vi (x)quSl//](x)’
P (x) = i (x)ys;(x) (5)

be the bare axial current and pseudoscalar density. The on-
shell improved operators are given by

(AF)u(x) = A7 (x) + aca (8)0,P (x).
P (x) = Pid(x) (i %)), (6)

where ¢4 is an improvement coefficient. The average bare
PCAC quark mass m;; of quark flavors i and j is defined
through the relation

0

(A7), () PUD(y)) = 2my; (P (x)PUD () + O(a?)

(i #j.x # ). (7)
We also defined the subtracted bare quark mass of flavor i,
My = Mo; — Mgy (8)

Often, the hopping parameter «; = (8 + 2amg;)~" is
used to parametrize the bare quark mass m,. The value
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Kee = (8 + 2amg,)~" of the hopping parameter is the value
for which the' mass, defined through Eq. (7), vanishes
in the SU(N;)-symmetric theory. The bare quark mass
matrix is defined as M, = diag(my . ...,moy,), and
similarly for the subtracted bare quark mass matrix,

M, = diag(mg,,....mqy,). Finally, we also introduce
the average quark masses
1 1 X
Mqij =5 (mgi +mg,), mg' = N; 4 my;. (9)

Here we will be concerned with the improvement and
renormalization of the vector current V,(,” ) on the lattice.
Two discretizations are in common use, the local (/) and the

point-split (¢) lattice vector currents,

Vi () = (0 (0), (10a)
Vi () = 3 (740x+ a) 1+ 7, U3 (0w 2)
—wi()(1 = 7) U (w(x + afp)). (10b)

Instead of the point-split vector current, we actually
consider the symmetrized version (cs)

Vil () = > (v () + Vi (x —ap)),  (11)

| =

which has the same properties under spacetime reflec-
tions as the local vector current® [7]. This ensures that
the same counterterms are present to remove O(a)
artifacts,

(V;ij))ﬂ(x) _ V;(jj) (x) + acv(g(z))vyzl(g) (x), (12)

with the local tensor current defined as

y 1.
S = =5 Wiltw vy (13)
and where we use the symmetric lattice derivative,

quﬁ(x) _ d(x+ aﬁ)z—a(ﬁ(x —ab) . (14)

Generically, the renormalization pattern of the quark
bilinears, including O(a) mass-dependent effects, has
been derived in Ref. [3]. For the vector current, and for
writing V,, as a flavor matrix, it reads

'PCAC stands for partially conserved axial current.
“The authors thank Stefan Sint for pointing out this fact.

WV, ) = 2y (@) |(1 + Neby () ams yw(2V)

1
+§bV(gé)tr({/1’an}V/Il)

+ Fy(@(amy(vh)|. (15)
where
7 = G (1 + bgamg) (16)

is the modified bare coupling, which is in one-to-one
correspondence with the lattice spacing, irrespective of
the quark masses [8]. The symbol “tr” refers to the trace
over flavor indices and 1 is any element of the SU(Ny)
Lie algebra. The improvement coefficients cy, by, by,
and fy are functions of the bare coupling only; Zy has
no anomalous dimension and does not depend on the
renormalization scale.

Given that the coefficient b, is so far only known
perturbatively, it is worth noting the following. If one
Taylor expands the function Zy; and only keeps terms up to
O(a), the expression (15) is equivalent to replacing the
argument of Zy by ¢ and then substituting by by

1 % dZy

b (g3) = by(gf) + ﬁfbg(g%) 7y di
0

(17)
Therefore, the renormalization conditions we use for the
vector current are only able to determine the combination
S In a second step, using the perturbative estimate of b,
we obtain a value for by. In the future, when a non-
perturbative determination of b, becomes available, the
value of by can be updated.

In Sec. II B, we describe the strategy used to determine
the renormalization constant Zy and the improvement
coefficients by, b$T, and cy.

B. Vector Ward identities and determination
Of Zv, bv, and bV

We define an infinitesimal local vector transformation by

Sy (y) = da(y)w(y), (18a)

op(y) =

where the matrix 1 acts on flavor space. Using the path
integral definition of an expectation value and noticing
that the previous transformation is a change of integration
variables with unit Jacobian, one obtains the following

identity:
<5zg)> N <055(Sy)>’ (19)

—w(y)a(y)4, (18b)
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where S is the Euclidean action and O is any operator. In  such that Eq. (20) reads
fact, the equality holds on every single gauge-field con-
figuration because only the fermionic part of the action is (ji) (ij)
affected. For Wilson-Clover fermions, it leads to the well- (PU(x)PH(2))(8(y = 2) = 8(y = %))

known vector Ward identity [9] = a*V; ,(PU)(x) V;~(”> (y)PUi)(z)). (23)

<5jg)>:a4V;<tr{/ITV;(y)}O)+a4(z[/(y)[M0,/1]y/(y)(’)>, Summing over the spatial vector y in Eq. (23), the
spatial derivative does not contribute due to the use of

(20)  periodic boundary conditions and only the time derivative

remains. Therefore, the three-point correlation function

(a®y>, PU) (x)VEUD ()P (2)), viewed as a function of
Yo, 1S a piecewise constant function with discrete steps of
+1 at yy=2z9 and —1 at y° =x° In particular, for
Xo > Yo > 2o, the ratio R defined by

where V¢(y) = (¢(y) —#(y —ajt))/a is the backward
lattice derivative in the p-direction, AT denotes the matrix
transpose of 4, and V,‘)’w ) (y) corresponds to the point-split
vector current defined in Eq. (10b). Using an operator O
with support which does not contain the site y and for

[M, 2] = 0, one simply recovers the conservation equation

for the point-split vector current. R(xo = 20, Y0 — 20)
Working in components, we now consider the vector i c.(ii i
transformagtion ’ = (@Y P >(X)V0( )(y)P( 7)) (24)
(@ P ()P (2))

oypi(y) = +ayi(y).  owi(y) = —a()pi(y)  (21)

is unity such that the point-split vector current does not need
any renormalization factor: Z§, = 1 and b, = b§, = £ = 0.
On the other hand, the local vector current is not conserved on
the lattice and needs to be renormalized.

30(x.2) = 0(x,2)8(y —x) = O(x,2)6(y —2),  (22) In Ny =2 + 1 QCD with a quark mass matrix given by

Sa(y) (2), by imposing either of the ratios
|

for one specific flavor i Then, using O(x,z) =
PUD(x)Pli)(z) as a probe operator with i # j, one finds

(@, PP (D) L (VER" () = VoD (0))PU2(2))
(@3-, PO (x)P12) (7)) ’

(@Y, PRV () (VR () = Ve () P13 (2)
(@S, PBD (x) P13 (2))

to equal unity on the lattice at finite quark masses, one can determine the renormalization factor of the local isovector
current V,34 = %(V,(,“) - 222))’ including the O(a) mass-dependent terms, as given explicitly in Eq. (3). We note that this
renormalization condition does not require the knowledge of ¢y and that the two choices for the “spectator quark”
correspond to two different renormalization prescriptions. Using ensembles with different values of mq; = my, and
mg3 = Mg, each parameter can be determined independently. We remark that Zy;, by, and Bi,ff could also be determined in

the same way from the matrix element of

R, (xo = 20, Y0 — 20) = (25a)

RK(XO —Z20,Y0 — Zo) = (25b)

1(11 1,(22 1,33
@Yy PO 1 (Vo 0) + Vo () = 2Vi (0) P19 (z)
(@32 POV (x) P (2))
since the flavor-singlet charge operator does not contribute on a kaon state. On the other hand, to obtain sensitivity

to the coefficient fy, an external state with a nonvanishing baryon number is required; for instance one may require
the ratio

RK(xO —20,Y0 — Zo) = (26)

(@Y, AU () (VERD (y) = VeR) () A1 (2))
(@, AT () AT (7))

RA** (XO —20,Y0 — Z()) = (27)
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FIG. 1.
projected onto vanishing spatial momentum.

to vanish. Without the vector current improvement term
proportional to fv, Ry++ would receive a contribution of
order a from disconnected diagrams; the role of the
coefficient fy, which multiplies the flavor-singlet vector
current, under which the A™* baryon is charged, is to
cancel this contribution. Therefore, the magnitude of fy is
determined by the size of disconnected diagrams with the
insertion of a single vector current. In perturbation theory,
fv is therefore of order g§, because at least three gluons
must be emitted from the quark loop.3

C. Axial Ward identities and determination of cy

Once the renormalization factor Zy and improvement
coefficients by and bS' are known, the improvement
coefficient ¢y can be determined by enforcing an axial
Ward identity. In the continuum theory, the latter can be
derived from the specific transformation

Sy (x) =—a(x)ysyr(x), 0 (x)=—(x)a(x)ys. (28)

As the operator to be chirally rotated, we choose O(y) =
A,(,B)(y), and we have

A (v) = al) Vi (). (29)
|

to
(23)
Yo Ay Yo
L A(()lZ) ”
31 31
éxt) (?éxt) 77777 20

The chiral Ward identity in the continuum and in the limit m;, = 0. Continuous horizontal lines indicate that the operator is

Choosing a(x) to be unity inside the slab 7; < xy < t, and
zero outside, the variation of the action (per unit @) is
given by

T
55012 — _ / * 0 / Ex(2mg 2Py (1) - 0,402 (x)).
A

(30)

with #; <yg <t,. We perform the integral over the
divergence of the axial current explicitly in the continuum
using Gauss’s theorem. With the additional constraint
29 & [t1, 1], we then obtain the following Ward identity:

/ By (351242 (30.3) 020 (20.0))

- / Ey v (000D (2.0, (1)

valid in the continuum [4], and impose it to hold on the
lattice, at fixed quark mass and bare lattice coupling, up to
higher order corrections O(a?). The Ward identity in the
chiral limit is illustrated in Fig. 1. For each discretization of
the vector current (@ = [, ¢s), we define our estimator

with

_ (5,885M2453 (0.9 O (20, 0) = 25V 5, Vi (30.0) O (20 0))
2y5,a0,2,7 (30.) 05 (20.0))

(32)

A (13 v T v
Z0 (R mg 1) = Zy (@) (1 + 358 (@R)am + by (gF)amq 13) (33)

3One—gluon exchange does not contribute because the color factor vanishes. To see that the two-gluon exchange also vanishes, one
may use the ys-hermiticity of the quark propagator, ysS(x, y)ys = S(v, x)7, the fact that the free quark propagator S(x, y) is Hermitian
for fixed (x, y) and ysy,ys = —,. to show that the two orientations with which the quark propagators contribute to the quark loop come

with opposite signs and cancel each other.
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for the local vector current and Z i,l 3( GG m3 mg 13) = 1 for

the conserved vector current. In Eq. (32) we use the
symmetric lattice derivative, as in Eq. (14). Other choices
would differ by an O(a) ambiguity in the definition of cy.
The renormalized axial and pseudoscalar operators for
i # j are, respectively, given by

Py (x) = 1P (x),

Zp(1 + 3bpam?’ + bpam (34a)

4.ij
AR () = Za(1 4 3baamyy + baamg ;) A[] (x),

in terms of the improved operators defined in Eq. (6). The
renormalized quark mass is defined through the relation

(34b)

Zp(1 +3bpamav +bpamyg;;)
=m 13
Rz +3bpam® +byamy ;)

mi;

(i#j).  (35)

such that the combination mR.lngz) is insensitive to Zp,

bp, and bp. The renormalization factor Z, and the improve-
ment parameters b, and b, have been determined non-
perturbatively in Refs. [10-12].

In Eq. (32), the operator O can be either the vector

Ot = V,(fl) (29,0) or the tensor operator O, = Z;j)l) (20,0)
and does not need to be O(a)-improved. In perturbation
theory, the choice of the tensor operator is superior, since in
the continuum, the right-hand side of the Ward identity
vanishes in the chiral limit; on the lattice, the improvement
term then involves the two-point function of the tensor
current and its task is to cancel the vector-tensor correla-
tion, which is O(a) and originates from chiral symmetry
breaking at the cutoff scale. As we will see in the next
section, in the nonperturbative QCD vacuum, both choices
are equally well suited for separations between the oper-
ators of order of 0.5 fm, because the vector-tensor corre-
lation is then nonvanishing even in the continuum.

There is one subtlety here. In Eq. (30), we sum over all
time slices in the range [f;, 7,] which implies the presence of
a contact term for xy, = y,. Therefore, on-shell O(a)-
improvement is not sufficient to remove all O(a) contri-
butions and the limit 72, — 0 must be taken to remove this
contact term. This is done by computing the effective ¢, for
different light quark masses using Eq. (32) and then
extrapolating to the chiral limit.

Finally, in Appendix A we briefly describe a way to
determine the improvement coefficient c, using an axial
Ward identity. Our nonperturbative determination of cp,
which we can compare to the literature [13], serves as a
cross-check of our numerical setup.

D. Known perturbative results

The known perturbative results in QCD with N, colors
and N; flavors of quarks are the following. The result
by = 0.012000(2)N¢g3 + O(g]), independently of the pure

gauge action, was obtained in [14]. For degenerate quarks,
only the combination by + N;by appears, and the perturba-
tive series for by starts at order 3. For the tree-level improved

. . . N2-1
Liischer-Weisz action, the results are (Cp = 5
C

Zy = 1-0.075427 x Cgg3 +O(gt),  (36a)
by = 0.0886(2) x CrgZ + O(g), (36b)
cl, = —0.01030(4) x Crg? + O(gd). (36¢)

The tree-level value of ¢§ is 1.

III. NUMERICAL SETUP

We use the Ny =2 + 1 coordinated lattice simulations
(CLS) lattice ensembles [17] whose main parameters are
given in Table I. They have been produced using the
OPENQCD code* of Ref. [18] using the Wilson-Clover
action for fermions and the tree-level Symanzik improved
gauge action. The parameter cqw has been determined
nonperturbatively in Ref. [19]. We consider four values of
the bare coupling f = 3.40, 3.46, 3.55, and 3.70 which
correspond to lattice spacings in the range 0.050-0.085 fm
[20]. Ensembles using (anti)periodic boundary conditions
(PBC) and open-boundary conditions (OBC) in the time
direction have been generated on three different chiral
trajectories. Two trajectories with constant m{’ and m, , =
m™® can be used to extrapolate results to the physical limit
with physical masses of the light and strange quarks. A
third trajectory uses degenerate light and strange quarks
with mg; = mg . Concerning cv, it is enough to consider
ensembles on a smgle chiral trajectory (e.g., mg" = const).
However, to determine the two improvement coefﬁclents
by and bE!T, we have to consider at least two different chiral
trajectories.

For the calculation of the renormalization factor Zy, we
need to compute the following three-point correlation
function, projected on vanishing momentum:

Cpyp (xo Yo, Zo)

_ aﬁz

and two-point correlation functions

Ve (v0,9) P07 (29,0)).  (37)

Cpp(x0.20) = GSZ<P(ij)(xo’x)P(ij)T(Zo,0)>v (38a)

Cap(X0,20) = a3Z<A(()ij) (x0, X) PUDT(29,0)).

X

(38b)

*http://luscher.web.cern.ch/luscher/openQCDY.
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Correlation functions are calculated using U(1) stochastic
sources with time dilution [21]. On each gauge configu-
ration, we generate an ensemble of N, stochastic sources
with support on a single time slice as well as satisfying

_ -3 ab
S = a5, )

where each component 1is normalized to one,
nf;(x)rr]nf;(x)[,] =1 (no summation). This can be imple-
mented by using U(1) noise for each color and spinor
index on site x of the lattice. For ensembles with open
boundary conditions in the time direction, time trans-
lation is lost. In this case, the source is placed at z, =
T/4 away from the boundary (r = 0), and the two-point
correlation functions are obtained for all values of
xg € [0,7/2], keeping the sink time away from the
second boundary (¢ = T). For the three-point correlation
function, the sink time is placed at xqo = 37/4 and is
computed for all y,.

For each stochastic source s with support in time slice z,
we solve the Dirac equation and denote the solution vector
@S (x;20) = a® >, S(x,2)ni(z). Correlation functions are
given by

ZTr

a’

S;(x, 2)]

(l/)
Cpp (X0, 20)

= W ; (x; ZO)T‘D (x: 20), (40a)
C&Q (0. 20) ZTT (%, 2) }’OS (x,2)]
@
AR @3 (x;20) 7o®@3(x3 20),  (40b)
CI(oV)p(xo yo,Zo ZTY (x Y)J/OS (y’ )}
xyz

Cl3 F o5
) WZ% (v3 %0, 20)70®; (x: 20),
X
(40c)

with V = L3 the spatial volume. We have used the ys-
Hermiticity of the fermion propagator S(x, y) rsS(y,x)Tys,
and CIJS is a sequential propagator given by ®* % (Vs %0, 20) =

a Zx_z sS;(y.x)ysS;(x,z)ns(z). In practice, since the
stochastic sources do not introduce a bias, the number
of sources N, on each gauge configuration can be small.
We choose N, = 12 such that the numerical cost would be
the same if we used the usual point source method with a
single source location.

TABLE II.  Values of zg, t;, t,, and y for the calculation of the
three-point correlation function as defined in Eq. (31). In the last
column, we give the two values of y, used to interpolate to a line
of constant physics as explained in the text. Note that ensembles
at f = 3.46 were generated using a periodic boundary condition
in the time direction, whereas other ensembles were generated
using open boundary conditions.

p T/(2a) 20/a [t1.1]/a Yo/a
3.40 48 41 [46,54] 49-50
3.46 32 0 [6,15] 10-11

48 0 [6,15] 10-11
3.55 48 41 [48,59] 52-53

64 57 [64,75] 68—69
3.70 64 53 [62,76] 68-69

To compute the correlation functions in Egs. (30) and
(31) we instead use point sources and the method of
sequential propagators for the three-point correlation func-
tions. A point source is first created on time slice z. Then, a
sequential inversion is performed using the variation of the
action between time slices #; and ¢, as a sequential source.
We thereby have access to all y, values in the range [z, 1,].
To increase statistics, we also average over equivalent
polarizations k = 1, 2, 3. The values of #, t,, zg, and y,
used in our simulations are summarized in Table II. We
have computed the correlation functions entering Eq. (31)
to leading order in lattice perturbation theory (see
Appendix B) in order to test our lattice QCD code.

IV. RESULTS
A. Results for Zy, by, and I;ﬁ,ff

Away from the boundary, it is convenient to use the
variables t = xy — zp and #; = yo — z. For each ensemble,
the value of ZV is estimated from the ratio of three- to two-
point correlation functions, defined through Eq. (24) with a
local vector current. We choose j = [ (spectator quark),
which define our renormalization scheme. The ratio has the
asymptotic behavior

1

R(l, tl)tl.t—tl—joo Zi}g)

(41)

and is fitted to a constant in the plateau region where
discretization effects are small. For ensembles with
antiperiodic boundary conditions in time, we use
Cpyp(X0,Y0320) = Cpvp(X0,Y0320) = Cpyp(X0, Y0 +T520) to
impose the vector Ward identity on each gauge configu-
ration which can have a nonzero charge due to thermal
fluctuations. Typical plots for the ensembles N200 and
N300 are given in Fig. 2, and the results for all ensembles
are summarized in Table I. In a second step, the renorm-
alization constant Zy;, and the improvement coefficients by
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FIG. 2. Plateaus for the ratio R(r = %,tl) and ¢y defined through Egs. (41) and (32) for the lattice ensemble N300.

and b!" at a given value of the bare coupling g are obtained
using the fit ansatz

(12
Zi, >(9(2)’m3v’mq,12)

= Zy(g5) (1 + 365" (gg)am’ + by(g5)amq ). (42)

The ensembles included in the fit satisfy |am, ;| < 0.01 and
ami’ < 0.01 such that higher order corrections are
expected to be small. The results for each value of § are
given in Table III, and the statistical error includes the
error on k.. The fits for two values of beta are shown
on Fig. 3. We note that the coefficient by is significantly
larger than the one-loop perturbative estimate given in
Eq. (36b) and that bS" < by. This was expected since the
perturbative value starts only at two loops in perturbation
theory. We provide the covariance matrices for the different
values of the coupling considered in this work:

TABLE IIL

Results for the renormalization constant Zy and improvement coefficients by, by,

cov(Zy, by, b$T; p = 3.40)
+6.04 x 1078  —1.05 x 107
=] -1.05x10"% +1.93x10™*
-5.02x107% +1.30x10™*

—5.02 x 107°
+1.30x107* |,
+5.50 x 107*
(43a)
cov(Zy, by, l_f{,ff;/} =3.40)
+4.16 x 107 +9.92 x 1078
= | 49.92x 10 41.90x 10~*
—6.68 x 1078 —6.64 x 107>

—6.68 x 1078
—6.64 x 1075 |,
+2.97 x 1073
(43b)
cov(Zy, by, bSit; p = 3.55)
+3.17 x 1077 -2.85x 1077
=1 -285x 1077 +9.21x 107
-1.27x 1077 4137 x 1073

-1.27 x 1077

+1.37 x 107 |,

+1.37 x 107
(43c)

b, and cy for

different values of the bare coupling. For Zy, by, and l_af,ff the first (second) line corresponds to the results obtained
with the light (strange) quark as a spectator quark. For cy, both results for the local and conserved vector currents are
given. The value of critical hopping parameter ., at f = 3.40 is extracted from [22].

B 3.40 3.46

Ker 0.1369115(27) 0.1370645(10)

Zy 0.70908(25) 0.71998(6)
0.70912(19) 0.71998(6)

by 1.648(14) 1.622(14)
1.546(10) 1.526(13)

Bt 0.206(23) 0.108(05)
0.240(17) 0.140(05)

by 0.227(23) 0.125(05)
0.260(17) 0.157(05)

el —0.069(32) —0.008(20)

< 0.389(23) 0.438(16)

3.55
0.1371726(13)
0.73454(6)
0.73453(6)
1.541(10)
1.460(09)
0.053(04)
0.081(04)
0.067(04)
0.095(04)

—0.031(32)
0.422(26)

3.70
0.1371576(8)
0.75413(6)
0.75413(6)
1.488(12)
1.427(12)
0.029(06)
0.049(06)
0.040(06)
0.060(06)
—0.039(29)
0.416(24)
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Tr[M,] = 0.01492 :
o714 | Tr[M,] = 0.01357 e
Te[M,] = 0.01217 + o
& 0712} ‘
N .
" / Zy = 0.70908(25)
g by = 1.648(14)
0.708 | o
Z b = 0.227(23)
»
0.706 : s . \
—0.004 —0.002 0 0.002 0.004 0.006
aqu
FIG. 3.

ansatz (42) for two different values of the bare coupling.

cov(Zy, by, bSiT; p = 3.70)

+3.60 x 107 +2.10x 1077 —1.48 x 10~/

=] +210x 1077 +1.38x10™* —6.14 x 107

-1.48 x 1077 —6.14 x 1075 +3.26 x 107
(43d)

Finally, we perform a Padé fit to obtain the renormalization
factor and the improvement coefficients as a function of the
bare coupling gj. Our final results read

1+ p1G3 + pag

Zy(g3) = 1 = 0.10057g3 x A (44a)
0
, 1+ nig
by(g) = 1+ 0.11813g3 x T (44b)
290
4
7 P19
BN () = 0 (44c)

1+ pagg’

which automatically reproduce the one-loop calculations
and where the parameters and covariance matrices are
given by

—0.2542
p(Zy) = | —0.0961 |,
—0.4796
+1.31619 +4.92750 +6.15758
cov(Zy) = | +4.92750 +66.8321 +75.3218 | x 105,
+6.15758 +75.3218 +85.2733
(45a)

B =355
0.742 : : : : : : :
Te[M,] = 0.01922 e P
oa | TM,) = 001705 ey & ]
’ Tr[M,) = 0.01494 = e
Te[M,] = 0.01383 o e
0.738 | Tr[M,] = 0.00983 P 1
g Te[M,] = 0.00584 o
N //
0.736 | s 1
A Zy = 0.73454(6)
. . by = 1.541(10)
0.734 /. e e
p be = 0.053(4)

0.001 0.002 0.003 0.004 0.005 0.006
amg

0.732 L
—0.002 —0.001 0

Results of the fits used to determine the renormalization constant Zy, and improvement coefficients by and l_ai,ff using the fit

b (—0.184)
PINVI =\ o444 )

+36.7139  +12.6698
cov(by) = x 107,  (45b)
+12.6698 +4.41224
_ +0.00112
peft) = ,
(YY) ( ~0.5577 )

+1.061463  +14.53004

cov(bSih) = <
+14.53004 +248.5266

) x 1078, (45¢)

To ensure that O(a) ambiguities vanish smoothly toward
the continuum limit, the renormalization of the vector
current must be performed along a line of constant physics
(LCP). Since the CLS ensembles have different volumes,

we checked explicitly that the impact on the renormaliza-

tion factor is extremely small. The observable Z$2> has

been computed on two sets of ensembles (H105/N101 and
H200/N202) generated using the same lattice parameters
but with different volumes, and the results quoted in
Table I are in perfect agreement within statistical errors.
Second, the correlation functions in Eq. (24) are computed
with a source located at zo = 7/4 to suppress boundary
effects. For the ensemble N101, we have performed
three sets of simulations with different source locations,
z0=T/4, T/4—4a, T/4—-8a, and the results are

Z\ = 0.70910(6), 0.70911(5), and 0.70919(6), respec-
tively. The last results, where the source is close to the
boundary, is slightly higher and might be affected by
boundary effects. Those tests make us confident that with
the procedure in Eq. (41) we indeed extract the matrix
element in infinite volume.

As noted above, we could also choose j=s for
the spectator quark, and the values of the improvement
coefficients by and b$" would differ by an O(a)-ambiguity.
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Scaling for Zy Scaling for by Scaling for by
1.02 11 4
! 3 35 2
2y sun/ Zy - e Lo A — L BT
1015} y(z)=1— 0.089’10 +~1.01f2 — : b’v/b{; —— 3 b‘V/b{,v ——
y(r)=1-036a"+505a° — - B
1.06 ] 25 y(z) =1-14.4a+ 1438 qz
1.01 y(z) =1-8.7a+46.6 a*

1.04
1.005

1.02 4 1

0 0.001  0.002 0.003 0.004 0.005 0.006 0.007 0.008 0 0.01
2 e
a* [fm?)

006 0.07 0.08 0.09 0 001 002 003 004 005 006 007 008 009
a [fm]

0.02  0.03 0.04 0.05
a [fm]

FIG. 4. Left panel: Continuum limit of the ratio Z{,_Sub /Zy where Z{,_Sub was computed in [12] and where Zy refers to our own
determination. Middle panel: b}, and b3, correspond to our determinations with the light or strange spectator quarks, respectively, and b is
the value computed in [23]. Right panel: Bg is the value computed in [23]. We have defined the dimensionless parameter @ = a/0.5 fm.

To study this effect, we have repeated the analysis with
j =, and the results are given in Table III. We do not
observe any difference for the renormalization constant Zv,
at our level of precision [both results should differ only by
an O(a?) ambiguity]. For by and b$if, we observe variations
by factors of at most 1.07 and 1.7, respectively. In Fig. 4,
the continuum limit behavior of the ratio between the two
results obtained using either a light or a strange spectator
quark is shown in blue. For by, we observe the expected
linear scaling with the lattice spacing. For by, the ratio goes
to one only if one includes higher order discretization
effects, which appear to be sizable.

1. Comparison of results with previous work

The renormalization factor Zy has been determined
independently in [12] wusing the chirally rotated
Schrodinger functional framework. In Fig. 4, we plot the
ratio ZY, .,/ Zy where Z{, . is extracted from [12] using
the line of constant physics called L; and where the
denominator corresponds to our own determination. This
ratio goes rapidly to one in the continuum limit, even

though the expected O(a?) scaling is not observed.
However, the maximum deviation, obtained at f = 3.40,
is less than 1.6%. Empirically, the available data for the
departure of the ratio from unity can be described by the
sum of a linear term and a quadratic term in the lattice
spacing (not expected theoretically), or by the sum of a
quadratic term and a cubic term. The latter fit in fact
describes the data slightly better; see Fig. 4. It also yields
coefficients of reasonable size if one evaluates the lattice
spacing say in units of 0.5 fm.

The coefficients by and b$" have also been determined
recently in Ref. [23] using a different setup, based on the
QCD Schrédinger functional. A comparison with our
results is given in Fig. 6. For by, we observe a deviation
of about 5%, similar to the O(a) dependence on the
spectator-quark estimated above. In Fig. 4, we show the
continuum limit behavior of the ratio with our own results,
and we observe the expected linear scaling. However, for
BSHt, the difference with the results quoted in Ref. [23] is
significant, especially at large couplings g3. Again, as can
be seen on Fig. 4, we do not observe a linear scaling in a for
the ratio of the two determinations, and higher order

6 =3.40 6 =3.55
0.8 . 0.8 . T
oy G Ap—
0.6 | e 0.6 | ce ]
0.4 / 0.4 F - ¥ —
0.2 F e 0.2 g
0+ - g 0k 5 - - 3
—0.2 F g —0.2 + e
—04 g —-04 g
0 0.002 0.004 0.006 0.008 0.01 0.012 0 0.001  0.002 0.003 0.004 0.006 0.006 0.007
anm amia

FIG. 5. Chiral extrapolations of the improvement coefficients ¢!, and ¢, respectively, for the local and conserved vector currents, for

two different values of the bare coupling.
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FIG. 6. The dependence of the renormalization constant Zy and improvement coefficients by, b$iT, and ¢y on the bare coupling g3 The
blue and red points correspond to the local and conserved vector currents, respectively. The plain lines and error bands correspond to our
Padé fits. For by and bSff we also compare our results with previous lattice determinations [10,23].

corrections cannot be neglected. It suggests that this
parameter suffers from a large ambiguity.

From a practical point of view, one should remember
that a typical value of amg" is 0.005 on the f = 3.55
ensembles, so that with 35 ~0.16 even a 100% ambi-
guity on by has an impact below the permille level.
Conversely, it could be that O(a?) effects compete with
these terms, resulting in a substantial O(a) contamination
in our determination of A$. For the physics applications
discussed in the Introduction, it is interesting to compare

our values for the renormalization factor Z&,] 2 of the
isovector current to those one would obtain using the Zy
values of [12] and the by and b$" values from [23]. We find
that our direct estimates are always slightly lower and that
the relative difference depends almost only on g(z): itis about
1.3% at f = 3.40, 0.8% at f = 3.46, 0.37% at = 3.55,
and 0.12% at = 3.70. We conclude that these differences
are of reasonable size, compatible with the expected a?
(and higher order) ambiguity introduced by the choice of a
specific renormalization condition.

B. Results for the improvement coefficient cy

For y, not too close from #; and t,, we can extract the
value of ¢y for each lattice ensemble. In practice, since we
want to use a line of constant physics, we choose yy — zp =
0.77 fm and interpolate linearly between two neighboring
time slices when necessary. Deviations from LCP due to the
different sizes of the lattices used should be very mild since
we are working in large volumes. The values of z, #;, and
t, in Egs. (30) and (31) as well as the values of y, used in
the interpolation are quoted in Table II. Similar results are
obtained using either the vector operator or the tensor
operator as a probe operator in Eq. (31). In practice, we use
the linear combination O = V,(fl)(zo, 0) + Z,g)l)(zo, 0)
which helps to improve the statistical precision. For Z,,
we use the results called ZfA,sub using the L;-LCP from [12].
For b, we used the published values in [10], and for b, we
use values from [24] [in practice, we use bST which
includes the b,-term for Z,, as in Eq. (17)]. The results
for ¢y for each ensemble are given in Table I and differ
from cy by the presence of a contact term which vanishes in
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the chiral limit, as explained in Sec. II C. The improvement
coefficient cy is obtained using a linear extrapolation in the
light-quark PCAC mass m,, at constant m{’, and the results
for each value of the bare coupling are summarized in
Table III. As can be seen in Fig. 5, we observe a very mild
chiral dependence. The error is dominated by the statistical
precision of the correlation functions and the error on by.
The uncertainty on Z, and b, appears to have a negligible
impact at our level of precision. Finally, we perform linear
or quadratic fits in gj to determine cy as a function of the
bare coupling. The results for the local and the conserved
vector currents read

cL () = —0.01030Cee2 x (1+0.15(35)@),  (46a)
() :%x (1-0.093(13)g2). (46b)

The parametrization is consistent with the perturbative
predictions collected in Sec. IID. Our values for ¢, are
significantly smaller (in magnitude) than the preliminary
values determined in [25] by applying a similar improve-
ment condition in the Schrédinger functional. It could be
due to a large O(a) ambiguity in the definition of cy.
However, our values for Zy also differ by more that 1
standard deviation from the ones computed in [25]. Since
Zy enters in the determination of cy, this could partly
explain the disagreement. For example, if we use the
preliminary results for Zy given in [25], our value would
be ¢{, = —0.146 for H105 and ¢}, = —0.178 for N200.
These observations highlight the need for good control over
Zy to determine precisely cl,. Since the point-split vector
current is conserved, Z{, = 1, this issue is absent for the
determination of c<;.

V. CONCLUSION

We have determined nonperturbatively the renormaliza-
tion constant and improvement coefficients of the local and
point-split nonsinglet vector currents with Ny =2+ 1
O(a)-improved Wilson quark action and the tree-level
Symanzik improved gauge action. Only one coefficient,
fv,1s missing but is also expected to be small, as it starts at
O(g}) in perturbation theory; in this regard, we note that for
the two other mass-dependent improvement coefficients,
by and by, the hierarchy expected from perturbation theory
is indeed observed in our nonperturbative results. All these
parameters are required for the full O(a)-improvement of
the vector current and the reduction of discretization effects
in lattice simulations. They are essential in the calculation
of the hadronic vacuum polarization (HVP) contribution to
the muon g — 2, where a precision below 1% is aimed in the
near future.

Full O(a)-improvement of the vector current requires
one to consider the renormalization factor Zy(gy) at the

value of the renormalized coupling g, instead of the bare
coupling go. We have taken this difference into account by
replacing the improvement coefficient by by the effective
parameter b$", thus avoiding the use of the unknown
coefficient b,.

We have obtained the renormalization factor and
improvement coefficients by imposing vector and axial
Ward identities at finite lattice spacing and bare quark
masses on a set of large volume ensembles. Deviations
from the line of constant physics in our renormalization
scheme have been studied and shown to be small for Zy,
bv, and Bv.

Our final results for the different f values used in CLS
simulations are summarized in Table III. We also provide
interpolating formulas through Egs. (44) and (46). As a
cross-check of our methods, we have recomputed the
improvement coefficient ¢, and find good agreement with
the results of Ref. [13], which employ an improvement
condition set up in the Schrodinger functional.

Our calculation is the first nonperturbative determination
of the improvement coefficients ¢y with Ny =2+ 1
Wilson quarks for both the local and (the symmetrized
version of) the point-split vector currents. The value for the
local vector current is small, and both values, for the local
and point-split vector currents, are close to their perturba-
tive values.

The comparison with the recent findings of Ref. [23]
shows that a potentially large O(a)-ambiguity in by
remains, but that it should vanish smoothly in the approach
to the continuum limit. For the vector current renormaliza-
tion, we find important corrections to the expected asymp-
totic O(a?) scaling for the difference between our results
and the recent determination of Ref. [12]. However, we
note the relative discrepancy is rather small, and smaller
than that observed for two different normalization con-
ditions for the axial current [11,12].

In the future, other improvement coefficients may be
determined for the lattice action used here, thanks to the
availability of an extensive set of CLS lattice ensembles. In
particular, the Ny =2+ 1 hadronic contribution to the
running of the weak mixing angle involves the flavor-
singlet vector current, whose improvement coefficient ¢y is
unknown. A method to determine the latter based on a
chiral Ward identity was proposed in [3].
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TABLE IV. Results for the improvement coefficient c, at
different values of the bare coupling.

B 3.40
cx  —0.060(4)

3.46
—0.038(4)

3.55
—0.033(5)

3.70
—0.021(3)
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APPENDIX A: DETERMINATION OF THE
AXTAL IMPROVEMENT COEFFICIENT c,

In this appendix, we use a similar setup to determine the
improvement coefficient ¢, of the axial vector current [see
Eq. (6)]. The latter was previously determined nonpertur-
batively in [11] in the framework of the Schrodinger
functional. This study can be seen as a consistency check
of our method.

Within our numerical setup, described in Sec. III, we can
replace the axial vector current and the external operator
O, in Eq. (31) by any other operator without new
inversion of the Dirac operator. Therefore, we consider
the following axial Ward identity:

/ By(5VE) (10,508 (20.0)

with O3) = PGD. The variation of the action is given by
Eq. (30), and similarly to Eq. (31), with the constraint

Yo € [t1,1,]. Here, Vﬁg) and Agj’)) are the renormalized and
O(a)-improved vector and axial vector currents defined in
Eq. (6). If one knows Zy, by, b$iT, b, and b », then c , can be
determined by imposing this equation to hold on the lattice
up to O(a?) discretization effects, as done in Eq. (32) for cy.

Using the same procedure as for ¢y and with the local
vector current, we obtain the results summarized in Table I
for a subset of the ensembles. Similar to cy, the chiral
dependence is very mild and the contribution from the
contact term in the left-hand side of Eq. (A1) is removed by
taking the limit m;, — 0. We obtain the results quoted in
Table I'V. As can be seen on Fig. 7, our results are close to
the values quoted in [11] obtained using a different method.
We point out that, in Eq. (A1), the variation of the action
5812) was computed with the value of c, published in
Ref. [11] such that the two determinations are not strictly
independent. Since this improvement coefficient has an
O(a)-ambiguity, we can attribute this small difference to
the different schemes used.

APPENDIX B: AXTAL WARD IDENTITIES
IN THE FREE THEORY

In the following, we give the tree-level expressions in
lattice perturbation theory for the correlation functions
involved in the chiral Ward identities, Eqs. (31) and
(Al). We have used these expressions to test the lattice
QCD code implementing the Ward identities.

We provide a more general expression in that we allow
for a general spatial momentum; on the other hand, we
restrict ourselves to the equal-mass case, m; = m, =
m3 = m. At order gg with a Wilson quark action, the

13 31 ; ;
_ / dBy( Al >(yo, y>0(£xt)(z070)>v (A1) correlation functions do not depend on c,. We use the
RO .
standard notation
p=3.55 calgd)
0.02 | ‘ ‘ ‘ ‘ T 0.02 [ ' ' .
CA e A e
0.01 | ALPHA [PRD 16|
0r 0+ 1-loop PT -----
001 LT T
—0.02 - !
—0.02 1 |
—0.03 !
/,?’—T_/F‘ —0.04 | Lo}
—0.04 | |
—0.05 ¢ ~0.06 | J
—0.06
—0.07 L L L L L L L —0.08 L \ \ . . .
0 0001 0002 0003 0004 0005 0006 0.007 1.3 1.4 15 1.6 17 1.8 1.9 2
amiz gg

FIG. 7. Left: Extrapolation of ¢, for one value of the bare coupling g(%. Right: Improvement coefficient c, as a function of the bare
coupling g3 with a (1,1)-Padé model. We also plot the results obtained by the ALPHA Collaboration in Ref. [11] using a different

method.
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2 . a o 1 1 o
Py = Esin%, Py = ;sin ap,, (B1) ?sinh2(awp) =p + C(p)>. (B6)
as well as
The free fermion propagator in the time-momentum rep-
| . . L _
A(p) = 1+ am + Eazﬁz’ (B2) resentation reads, with the convention sign(0) = 0,

Blp) = m* + (1 +am)p® + 5@ 9357, (B3)  S) =W lP0)

k<l B d3p e—ﬂ’p|xo—yo\+ip‘(x—,V)
B B (27‘[)3 D
a(., B(p) p
Clp)=m+—p*> -2,

v 2 (I’ A(p)> X <sgn(x0 - YO)éSinh(awp)yO —iy-p

D, = \/Bp)(44(p) + @B(p) .

2 . + C(p) + 65, y, B s1nh(aa)p)> , (B7)
= ZA(p) sinh(aaw), ). (B4)

Let +iw, be the pole in p, of the fermion propagator. We  where [, denotes integration over the Brillouin zone,
note the identities —t<pi<Z
In all three-point functions in this appendix, we assume

4 sinh?(aw, /2) = B(p) (B5) % < min(yg, Xy). The correlation functions relevant to the
a’ P Alp)’

(p) Ward identity (A1) are
|
. d*q C(q)sinhw,,,+ C(p+q)sinh(w,)
a3 O A ()P (2) = sign(n ) [ Eehalontd, - (B3)
zy: ’ 5 (27)° DyDp.q
) d3q e—2mq9(xo—%)(xo—}’o)+(Zo—yo)<mp+q+“’q)
a® P @) (A12( Y23 y P3(7)) = 8/ flp.q), B9
S APVROP @) =8 [ o8 DD .0) (B9)
with
o ° )
Clg)g-k—Clp+q)q |- Xy < Yo,
f(p’q)_{ (9) P+ 99 lk=p+q O 0 < Yo (B10)
C(g)(sinh(w,) sinh(w,4) + ¢ -k + C(q)C(p + q))r—pig X0 > Yo
In Eq. (B9), we have assumed x, # y,. Finally, under the same assumptions we obtain
GolXo — 20, Yo — 20.p) = a®Y_ePED (PR (x)VE(y)P*(2))
Xz
89( )/ d3q e~ 20,0(x0=y0) (x0=Y0) +(20=Y0) (Wp+g F0) (p ) (Bll)
= - X0 — Yo ap.q),
s (27)? D(%Dpﬂ
with
9(p.q) = sinh(w,)(sinh(w,) sinh(wy) —l—t} -k + C(q)C(k))k:ﬁq. (B12)

The special case x, = y, must be treated separately,

d3q e_(yO_ZO)(wp+q+wq) Sinh(a)q)

(2z)* DD,

([sinh(w,) + C(g)]sinh(@g) + C(k)] + ¢ -k)yp g (BI13)

Go(yo—20.Y0—20-P) = —SA
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The correlation functions relevant to the Ward identity Eq. (31) are

d3q e_<wp+wp+q>‘z()_)’0|

a®y eP @y (v (1))531 (7)) = —4sign(y, — z /
Zy: (V37 (0)Z3(2)) gn(yo — 20) 8(2”)3
and, for X0 #y() and kL = (k],kz), fl = (l/ﬂl,fz),

a®y e @D (AR (x)AP ()23 (2)) = ~16
X,z

D,D

A’k e 2 (x0=y0)0(x0=y0)—(@r+@p_) (Yo—20

(C(g)sinhw, , +C(p +q)sinhw,), (Bl4)

9~ pt+q

)
fAp. k),

B (271')3

(B15)
Dl%Dp—k

F(p. k) = 5 {sinh(oog) (COR) sinh(a0, )0 = yp) = Sinb () ()03 ~ x0))

—Ck)kst3 +Clk)k, - ¢, + C(k)ZC(f)}f:p_k, (B16)
° 2
C(k)(ky + C(k)? >
fA(O,k)_{ ks +CP) x> 30 B17)
—C(k)k Xo < Yo
Further, for x, # yy, we have
GA(xg = 20. Y0 — 20-P) = a®»_eP (PR (x)AB (y)23}(2))
Xz
Bk e~ 20x(x0=y0)0(xo=yo)+ @k +wp1)(z0=Yo)
= —160(xy — k), B18
(x0=30) [ 555 o ¢p.K) (B15)
1 o o o o
(k)= —Esinh(a)k)(sinh(wk) sinh(wy) — k33 +ky - €1 + Ck)C(£)) p—pi> (B19)
° 2
#(0.k) = —sinh(ewy) (ks + C(k)?). (B20)
Finally, for xy = y,,
d3k e('Uk+ﬂ’p—k)(Zo—YO)
G*(yo — 20- Y0 — 20-p) = —4 inh
(Yo = 20: Y0 = 20-P) A (277 DD, sinh wy
x [ks?s =k, - £, — CCy — sinhay sinh @, — Cy sinh @y — Gy sinha],_, . (B21)
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