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In calculating hadronic contributions to precision observables for tests of the Standard Model in lattice
QCD, the electromagnetic current plays a central role. Using a Wilson action with OðaÞ improvement in
QCD with Nf flavors, a counterterm must be added to the vector current in order for its on-shell matrix
elements to be OðaÞ improved. In addition, the local vector current, which has support on one lattice site,
must be renormalized. At OðaÞ, the breaking of the SUðNfÞ symmetry by the quark mass matrix leads to a
mixing between the local currents of different quark flavors. We present a nonperturbative calculation of all
the required improvement and renormalization constants needed for the local and the conserved
electromagnetic current in QCD with Nf ¼ 2þ 1 OðaÞ-improved Wilson fermions and tree-level
Symanzik improved gauge action, with the exception of one coefficient, which we show to be order
g60 in lattice perturbation theory. The method is based on the vector and axial Ward identities imposed at
finite lattice spacing and in the chiral limit. We make use of lattice ensembles generated as part of the
coordinated lattice simulations initiative.
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I. INTRODUCTION

Precision tests of the Standard Model typically require
reliable theory input from first-principles calculations.
While the electroweak sector can be treated perturbatively,
the virtual contributions of hadrons must be calculated from
QCD nonperturbatively. Ab initio Monte Carlo simulations
of lattice QCD have provided a host of precision quantities
for use in tests of the Standard Model [1]. Example of such
hadronic quantities are the ratio of decay constants fK=fπ ,
the MS quark masses, the running strong coupling constant
αsðMZÞ, and the anomalous magnetic moment of the muon,
ðg − 2Þμ. For the latter, a major effort by several lattice
collaborations worldwide is ongoing to calculate the
hadronic vacuum polarization and the hadronic light-by-
light contributions [2]. From the QCD point of view, these
contributions amount to two- and four-point correlation

functions of the electromagnetic current, to be integrated
over with a weight function containing the characteristic
scale of the muon mass.
In continuum QCD, the electromagnetic current is

conserved and does not require renormalization. On the
lattice, a finite renormalization can appear, depending on
the details of the action and of the chosen discretization of
the vector current. In particular, for Wilson fermions, the
single OðaÞ on-shell improvement term to the action is
known. Wilson fermions also have a “point-split” vector
current, whose support extends over two lattice sites in the
direction of the current, which is exactly conserved at finite
lattice spacing. This appealing property, however, does not
guarantee that transverse correlation functions of the
current have smaller discretization effects than those of
the naive, “local” vector current with support on a single
lattice site, which in the limit of massless quarks receives a
finite renormalization factor ZVðg20Þ. Indeed, the improve-
ment of the vector current—local or point-split—requires
adding the divergence of the tensor current with a coef-
ficient denoted cV, which counteracts the breaking of chiral
symmetry by the Wilson action and suffices to remove all
OðaÞ cutoff effects in on-shell correlation functions. This
coefficient, whose value depends on the discretization of
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the current, has a finite value at tree level of perturbation
theory in the case of the point-split current, but vanishes for
the local current.
On the other hand, for the local vector current, a

mass dependence of the renormalization factor arises if
OðaÞ discretization errors are to be removed. This mass
dependence is relevant in precision calculations, given
the pattern of the physical up, down, and strange quark
masses. Concretely, given the electric charge matrix of the
lightest three quark flavors, Q ¼ diagð2=3;−1=3;−1=3Þ,
the electromagnetic current can be written as the linear
combination

Ve:m:
μ ¼ V3

μ þ
1ffiffiffi
3

p V8
μ; ð1Þ

where Va
μ ¼ ψ̄γμ

λa

2
ψ is the octet of vector currents, with λa

the Gell-Mann matrices. In isospin-symmetric QCD, the
bare quark mass matrix can be decomposed as

Mq ¼ mav
q þ 1ffiffiffi

3
p ðmq;l −mq;sÞλ8: ð2Þ

See Eq. (8) and below for our notation. The renormalization
pattern of the local discretization of the two neutral octet
combinations then reads [3], at OðaÞ,

V3
μ;R ¼ ZVð1þ 3b̄Vamav

q þ bVamq;lÞV3;I
μ ; ð3Þ

V8
μ;R ¼ ZV

��
1þ 3b̄Vamav

q þ bV
3
aðmq;l þ 2mq;sÞ

�
V8;I
μ

þ
�
1

3
bV þ fV

�
2ffiffiffi
3

p aðmq;l −mq;sÞV0;I
μ

�
; ð4Þ

with V0
μ ¼ 1

2
ψ̄γμψ the flavor-singlet current. Here V3;I

μ and
V8;I
μ are understood to already contain the improvement

term proportional to cV. All coefficients appearing in the
two equations above are functions of the coupling g̃0. In
this article, we present a nonperturbative determination of
the renormalization factors ZV, bV, and b̄V as well as of cV,
while the coefficient fV will remain undetermined. As
explained below, there are, however, good reasons to expect
fV to be numerically very small [3]. The improvement
coefficient cV is determined by imposing continuum chiral
Ward identities, as proposed in quenched QCD in Ref. [4].
We follow the presentation of Ref. [3] for the full
renormalization and improvement in large volumes with
Nf ¼ 2þ 1Wilson fermions. The mass-dependent renorm-
alization with Nf ¼ 2 Wilson fermions has been computed
in Ref. [5]. Note that the method of Ref. [6] allows only one
to compute a linear combination of the improvement
coefficients for the conserved and local currents, and it
is insufficient to provide a full improvement condition for
either discretization.

Our main motivation for the present calculation is to
determine the two-point function of the electromagnetic
current with only Oða2Þ discretization effects. This will in
particular allow for a shorter continuum extrapolation of the
leading hadronic contribution to the anomalous magnetic
moment of the muon, and therefore a more cost-effective set
of lattice QCD simulations. Given that phenomenologically
the πþπ− channel, which is described by the timelike
electromagnetic form factor of the pion, accounts for more
than two-thirds of the total hadronic contributions, it is very
natural to impose the renormalization condition on the local
vector current that the electric charge of the pion be unity at
every lattice spacing. This is the main renormalization
condition we will adopt to determine ZV, bV, and b̄V.
We begin by giving an overview of the required theory

background, which allows us to define our notation. We
present the setup for our numerical calculation in Sec. III
and the results in Sec. IV. We finish with some concluding
remarks in Sec. V. Appendix A presents a determination of
the improvement coefficient cA of the axial current, and
Appendix B contains some results on the employed
correlation functions in lattice perturbation theory.

II. RENORMALIZATION AND IMPROVEMENT:
THEORY BACKGROUND

A. Definitions and notations

We use Euclidean Dirac matrices, fγμ; γνg ¼ 2δμν. We
consider initially the general case of Nf flavors of quarks.
Flavor indices will be denoted by latin letters i; j;…. Let

AðijÞ
μ ðxÞ ¼ ψ̄ iðxÞγμγ5ψ jðxÞ;

PðijÞðxÞ ¼ ψ̄ iðxÞγ5ψ jðxÞ ð5Þ

be the bare axial current and pseudoscalar density. The on-
shell improved operators are given by

ðAðijÞ
I ÞμðxÞ ¼ AðijÞ

μ ðxÞ þ acAðg20Þ∂μPðijÞðxÞ;
PðijÞ
I ðxÞ ¼ PðijÞðxÞ ði ≠ jÞ; ð6Þ

where cA is an improvement coefficient. The average bare
PCAC quark mass mij of quark flavors i and j is defined
through the relation

h∂μðAðijÞ
I ÞμðxÞPðjiÞðyÞi ¼ 2mijhPðijÞ

I ðxÞPðjiÞðyÞi þ Oða2Þ
ði ≠ j; x ≠ yÞ: ð7Þ

We also defined the subtracted bare quark mass of flavor i,

mq;i ¼ m0;i −mcr: ð8Þ

Often, the hopping parameter κi ≡ ð8þ 2am0;iÞ−1 is
used to parametrize the bare quark mass m0;i. The value
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κcr ≡ ð8þ 2amcrÞ−1 of the hopping parameter is the value
for which the1 mass, defined through Eq. (7), vanishes
in the SUðNfÞ-symmetric theory. The bare quark mass
matrix is defined as M0 ¼ diagðm0;1;…; m0;Nf

Þ, and
similarly for the subtracted bare quark mass matrix,
Mq ¼ diagðmq;1;…; mq;Nf

Þ. Finally, we also introduce
the average quark masses

mq;ij ¼
1

2
ðmq;i þmq;jÞ; mav

q ¼ 1

Nf

XNf

i¼1

mq;i: ð9Þ

Here we will be concerned with the improvement and

renormalization of the vector current VðijÞ
μ on the lattice.

Two discretizations are in common use, the local (l) and the
point-split (c) lattice vector currents,

Vl;ðijÞ
μ ðxÞ ¼ ψ̄ iðxÞγμψ jðxÞ; ð10aÞ

Vc;ðijÞ
μ ðxÞ ¼ 1

2
ðψ̄ iðxþ aμ̂Þð1þ γμÞU†

μðxÞψ jðxÞ
− ψ̄ iðxÞð1 − γμÞUμðxÞψ jðxþ aμ̂ÞÞ: ð10bÞ

Instead of the point-split vector current, we actually
consider the symmetrized version ðcsÞ

Vcs;ðijÞ
μ ðxÞ ¼ 1

2
ðVc;ðijÞ

μ ðxÞ þ Vc;ðijÞ
μ ðx − aμ̂ÞÞ; ð11Þ

which has the same properties under spacetime reflec-
tions as the local vector current2 [7]. This ensures that
the same counterterms are present to remove OðaÞ
artifacts,

ðVðijÞ
I ÞμðxÞ ¼ VðijÞ

μ ðxÞ þ acVðg20Þ∇̃νΣ
ðijÞ
μν ðxÞ; ð12Þ

with the local tensor current defined as

ΣðijÞ
μν ¼ −

1

2
ψ̄ i½γμ; γν�ψ j; ð13Þ

and where we use the symmetric lattice derivative,

∇̃νϕðxÞ ¼
ϕðxþ aν̂Þ − ϕðx − aν̂Þ

2a
: ð14Þ

Generically, the renormalization pattern of the quark
bilinears, including OðaÞ mass-dependent effects, has
been derived in Ref. [3]. For the vector current, and for
writing Vμ as a flavor matrix, it reads

trðλVμÞR ¼ ZVðg̃20Þ
h
ð1þ Nf b̄Vðg20Þamav

q ÞtrðλVI
μÞ

þ 1

2
bVðg20Þtrðfλ; aMqgVI

μÞ

þ fVðg20ÞtrðλaMqÞtrðVI
μÞ
i
; ð15Þ

where

g̃20 ≡ g20ð1þ bgamav
q Þ ð16Þ

is the modified bare coupling, which is in one-to-one
correspondence with the lattice spacing, irrespective of
the quark masses [8]. The symbol “tr” refers to the trace
over flavor indices and λ is any element of the SUðNfÞ
Lie algebra. The improvement coefficients cV, bV, b̄V,
and fV are functions of the bare coupling only; ZV has
no anomalous dimension and does not depend on the
renormalization scale.
Given that the coefficient bg is so far only known

perturbatively, it is worth noting the following. If one
Taylor expands the function ZV and only keeps terms up to
OðaÞ, the expression (15) is equivalent to replacing the
argument of ZV by g20 and then substituting b̄V by

b̄effV ðg20Þ≡ b̄Vðg20Þ þ
1

Nf
bgðg20Þ

g20
ZV

dZV

dg20
: ð17Þ

Therefore, the renormalization conditions we use for the
vector current are only able to determine the combination
b̄effV . In a second step, using the perturbative estimate of bg,
we obtain a value for b̄V. In the future, when a non-
perturbative determination of bg becomes available, the
value of b̄V can be updated.
In Sec. II B, we describe the strategy used to determine

the renormalization constant ZV and the improvement
coefficients bV, b̄effV , and cV.

B. Vector Ward identities and determination
of ZV , bV , and b̄V

We define an infinitesimal local vector transformation by

δψðyÞ ¼ λαðyÞψðyÞ; ð18aÞ

δψ̄ðyÞ ¼ −ψ̄ðyÞαðyÞλ; ð18bÞ

where the matrix λ acts on flavor space. Using the path
integral definition of an expectation value and noticing
that the previous transformation is a change of integration
variables with unit Jacobian, one obtains the following
identity: �

δO
δαðyÞ

�
¼

�
O

δS
δαðyÞ

�
; ð19Þ1PCAC stands for partially conserved axial current.

2The authors thank Stefan Sint for pointing out this fact.
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where S is the Euclidean action and O is any operator. In
fact, the equality holds on every single gauge-field con-
figuration because only the fermionic part of the action is
affected. For Wilson-Clover fermions, it leads to the well-
known vector Ward identity [9]�

δO
δαðyÞ

�
¼a4∇�

μhtrfλ⊺Vc
μðyÞgOiþa4hψ̄ðyÞ½M0;λ�ψðyÞOi;

ð20Þ

where ∇�
μϕðyÞ ¼ ðϕðyÞ − ϕðy − aμ̂ÞÞ=a is the backward

lattice derivative in the μ-direction, λ⊺ denotes the matrix

transpose of λ, and Vc;ðijÞ
μ ðyÞ corresponds to the point-split

vector current defined in Eq. (10b). Using an operator O
with support which does not contain the site y and for
½M; λ� ¼ 0, one simply recovers the conservation equation
for the point-split vector current.
Working in components, we now consider the vector

transformation

δψ iðyÞ ¼ þαðyÞψ iðyÞ; δψ̄ iðyÞ ¼ −αðyÞψ̄ iðyÞ ð21Þ

for one specific flavor i. Then, using Oðx; zÞ ¼
PðjiÞðxÞPðijÞðzÞ as a probe operator with i ≠ j, one finds

δOðx; zÞ
δαðyÞ ¼ Oðx; zÞδðy − xÞ −Oðx; zÞδðy − zÞ; ð22Þ

such that Eq. (20) reads

hPðjiÞðxÞPðijÞðzÞiðδðy − zÞ − δðy − xÞÞ
¼ a4∇�

y;μhPðjiÞðxÞVc;ðiiÞ
μ ðyÞPðijÞðzÞi: ð23Þ

Summing over the spatial vector y in Eq. (23), the
spatial derivative does not contribute due to the use of
periodic boundary conditions and only the time derivative
remains. Therefore, the three-point correlation function

ha3Py P
ðjiÞðxÞVc;ðiiÞ

0 ðyÞPðijÞðzÞi, viewed as a function of
y0, is a piecewise constant function with discrete steps of
þ1 at y0 ¼ z0 and −1 at y0 ¼ x0. In particular, for
x0 > y0 > z0, the ratio R defined by

Rðx0 − z0; y0 − z0Þ

¼ ha6Px;yP
ðjiÞðxÞVc;ðiiÞ

0 ðyÞPðijÞðzÞi
ha3PxP

ðjiÞðxÞPðijÞðzÞi ; ð24Þ

is unity such that the point-split vector current does not need
any renormalization factor:Zc

V ¼ 1 and b̄cV ¼ bcV ¼ fcV ¼ 0.
On theother hand, the local vector current is not conservedon
the lattice and needs to be renormalized.
In Nf ¼ 2þ 1 QCD with a quark mass matrix given by

(2), by imposing either of the ratios

Rπðx0 − z0; y0 − z0Þ ¼
ha6Px;yP

ð21ÞðxÞ 1
2
ðVl;ð11Þ

0;R ðyÞ − Vl;ð22Þ
0;R ðyÞÞPð12ÞðzÞi

ha3PxP
ð21ÞðxÞPð12ÞðzÞi ; ð25aÞ

RKðx0 − z0; y0 − z0Þ ¼
ha6Px;yP

ð31ÞðxÞðVl;ð11Þ
0;R ðyÞ − Vl;ð22Þ

0;R ðyÞÞPð13ÞðzÞi
ha3PxP

ð31ÞðxÞPð13ÞðzÞi ð25bÞ

to equal unity on the lattice at finite quark masses, one can determine the renormalization factor of the local isovector

current V3
μ ¼ 1

2
ðVð11Þ

μ − Vð22Þ
μ Þ, including the OðaÞ mass-dependent terms, as given explicitly in Eq. (3). We note that this

renormalization condition does not require the knowledge of cV and that the two choices for the “spectator quark”
correspond to two different renormalization prescriptions. Using ensembles with different values of mq;1 ¼ mq;2 and
mq;3 ¼ mq;s, each parameter can be determined independently. We remark that ZV, bV, and b̄effV could also be determined in
the same way from the matrix element of

R̃Kðx0 − z0; y0 − z0Þ ¼
−ha6Px;yP

ð31ÞðxÞ 1
3
ðVl;ð11Þ

0;R ðyÞ þ Vl;ð22Þ
0;R ðyÞ − 2Vl;ð33Þ

0;R ðyÞÞPð13ÞðzÞi
ha3PxP

ð31ÞðxÞPð13ÞðzÞi ; ð26Þ

since the flavor-singlet charge operator does not contribute on a kaon state. On the other hand, to obtain sensitivity
to the coefficient fV, an external state with a nonvanishing baryon number is required; for instance one may require
the ratio

RΔþþðx0 − z0; y0 − z0Þ ¼
ha6Px;yΔð111ÞðxÞðVl;ð22Þ

0;R ðyÞ − Vl;ð33Þ
0;R ðyÞÞΔ̄ð111ÞðzÞi

ha3PxΔð111ÞðxÞΔ̄ð111ÞðzÞi ð27Þ
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to vanish. Without the vector current improvement term
proportional to fV, RΔþþ would receive a contribution of
order a from disconnected diagrams; the role of the
coefficient fV, which multiplies the flavor-singlet vector
current, under which the Δþþ baryon is charged, is to
cancel this contribution. Therefore, the magnitude of fV is
determined by the size of disconnected diagrams with the
insertion of a single vector current. In perturbation theory,
fV is therefore of order g60, because at least three gluons
must be emitted from the quark loop.3

C. Axial Ward identities and determination of cV
Once the renormalization factor ZV and improvement

coefficients bV and b̄effV are known, the improvement
coefficient cV can be determined by enforcing an axial
Ward identity. In the continuum theory, the latter can be
derived from the specific transformation

δψ1ðxÞ¼−αðxÞγ5ψ2ðxÞ; δψ̄2ðxÞ¼−ψ̄1ðxÞαðxÞγ5: ð28Þ

As the operator to be chirally rotated, we choose OðyÞ ¼
Að23Þ
μ ðyÞ, and we have

δAð23Þ
μ ðyÞ ¼ αðyÞVð13Þ

μ ðyÞ: ð29Þ

Choosing αðxÞ to be unity inside the slab t1 < x0 < t2 and
zero outside, the variation of the action (per unit α) is
given by

δSð12Þ ¼ −
Z

t2

t1

dx0
Z

d3xð2mR;12P
ð12Þ
R ðxÞ − ∂μA

ð12Þ
R;μ ðxÞÞ;

ð30Þ

with t1 < y0 < t2. We perform the integral over the
divergence of the axial current explicitly in the continuum
using Gauss’s theorem. With the additional constraint
z0 ∉ ½t1; t2�, we then obtain the following Ward identity:

Z
d3yhδSð12ÞAð23Þ

R;k ðy0; yÞOð31Þ
ext ðz0; 0Þi

¼
Z

d3yhVð13Þ
R;k ðy0; yÞOð31Þ

ext ðz0; 0Þi; ð31Þ

valid in the continuum [4], and impose it to hold on the
lattice, at fixed quark mass and bare lattice coupling, up to
higher order corrections Oða2Þ. The Ward identity in the
chiral limit is illustrated in Fig. 1. For each discretization of
the vector current (α ¼ l, cs), we define our estimator

ĉαVðmq; g20Þ ¼
hPyδS

ð12ÞAð23Þ
R;k ðy0; yÞOð31Þ

ext ðz0; 0Þ − Ẑð13Þ
V

P
yV

α;ð13Þ
k ðy0; yÞOð31Þ

ext ðz0; 0Þi
Ẑð13Þ
V hPya∂νΣ

ð13Þ
kν ðy0; yÞOð31Þ

ext ðz0; 0Þi
ð32Þ

with

Ẑð13Þ
V ðg20; mav

q ; mq;13Þ ¼ ZVðg20Þð1þ 3b̄effV ðg20Þamav
q þ bVðg20Þamq;13Þ ð33Þ

FIG. 1. The chiral Ward identity in the continuum and in the limit m12 ¼ 0. Continuous horizontal lines indicate that the operator is
projected onto vanishing spatial momentum.

3One-gluon exchange does not contribute because the color factor vanishes. To see that the two-gluon exchange also vanishes, one
may use the γ5-hermiticity of the quark propagator, γ5Sðx; yÞγ5 ¼ Sðy; xÞ†, the fact that the free quark propagator Sðx; yÞ is Hermitian
for fixed ðx; yÞ and γ5γμγ5 ¼ −γμ, to show that the two orientations with which the quark propagators contribute to the quark loop come
with opposite signs and cancel each other.
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for the local vector current and Ẑð13Þ
V ðg20; mav

q ; mq;13Þ ¼ 1 for
the conserved vector current. In Eq. (32) we use the
symmetric lattice derivative, as in Eq. (14). Other choices
would differ by an OðaÞ ambiguity in the definition of cV.
The renormalized axial and pseudoscalar operators for
i ≠ j are, respectively, given by

PðijÞ
R ðxÞ ¼ ZPð1þ 3b̄Pamav

q þ bPamq;ijÞPðijÞ
I ðxÞ; ð34aÞ

AðijÞ
k;RðxÞ ¼ ZAð1þ 3b̄Aamav

q þ bAamq;ijÞAðijÞ
k;I ðxÞ; ð34bÞ

in terms of the improved operators defined in Eq. (6). The
renormalized quark mass is defined through the relation

mij ¼mR;ij
ZPð1þ3b̄Pamav

q þbPamq;ijÞ
ZAð1þ3b̄Aamav

q þbAamq;ijÞ
ði≠ jÞ; ð35Þ

such that the combination mR;12P
ð12Þ
R is insensitive to ZP,

bP, and b̄P. The renormalization factor ZA and the improve-
ment parameters bA and b̄A have been determined non-
perturbatively in Refs. [10–12].
In Eq. (32), the operator Oext can be either the vector

Oext¼Vð31Þ
k ðz0;0Þ or the tensor operatorOext ¼ Σð31Þ

k0 ðz0; 0Þ
and does not need to be OðaÞ-improved. In perturbation
theory, the choice of the tensor operator is superior, since in
the continuum, the right-hand side of the Ward identity
vanishes in the chiral limit; on the lattice, the improvement
term then involves the two-point function of the tensor
current and its task is to cancel the vector-tensor correla-
tion, which is OðaÞ and originates from chiral symmetry
breaking at the cutoff scale. As we will see in the next
section, in the nonperturbative QCD vacuum, both choices
are equally well suited for separations between the oper-
ators of order of 0.5 fm, because the vector-tensor corre-
lation is then nonvanishing even in the continuum.
There is one subtlety here. In Eq. (30), we sum over all

time slices in the range ½t1; t2�which implies the presence of
a contact term for x0 ¼ y0. Therefore, on-shell OðaÞ-
improvement is not sufficient to remove all OðaÞ contri-
butions and the limit m12 → 0must be taken to remove this
contact term. This is done by computing the effective ĉV for
different light quark masses using Eq. (32) and then
extrapolating to the chiral limit.
Finally, in Appendix A we briefly describe a way to

determine the improvement coefficient cA using an axial
Ward identity. Our nonperturbative determination of cA,
which we can compare to the literature [13], serves as a
cross-check of our numerical setup.

D. Known perturbative results

The known perturbative results in QCD with Nc colors
and Nf flavors of quarks are the following. The result
bg ¼ 0.012000ð2ÞNfg20 þ Oðg40Þ, independently of the pure

gauge action, was obtained in [14]. For degenerate quarks,
only the combination bV þ Nf b̄V appears, and the perturba-
tive series for b̄V starts at order g40. For the tree-level improved

Lüscher-Weisz action, the results are (CF ¼ N2
c−1
2Nc

) [15,16]

ZV ¼ 1 − 0.075427 × CFg20 þ Oðg40Þ; ð36aÞ

bV ¼ 0.0886ð2Þ × CFg20 þ Oðg40Þ; ð36bÞ

clV ¼ −0.01030ð4Þ × CFg20 þ Oðg40Þ: ð36cÞ

The tree-level value of ccsV is 1
2
.

III. NUMERICAL SETUP

We use the Nf ¼ 2þ 1 coordinated lattice simulations
(CLS) lattice ensembles [17] whose main parameters are
given in Table I. They have been produced using the
OPENQCD code4 of Ref. [18] using the Wilson-Clover
action for fermions and the tree-level Symanzik improved
gauge action. The parameter cSW has been determined
nonperturbatively in Ref. [19]. We consider four values of
the bare coupling β ¼ 3.40, 3.46, 3.55, and 3.70 which
correspond to lattice spacings in the range 0.050–0.085 fm
[20]. Ensembles using (anti)periodic boundary conditions
(PBC) and open-boundary conditions (OBC) in the time
direction have been generated on three different chiral
trajectories. Two trajectories with constant mav

q and mq;s ¼
mphys

q;s can be used to extrapolate results to the physical limit
with physical masses of the light and strange quarks. A
third trajectory uses degenerate light and strange quarks
with mq;l ¼ mq;s. Concerning cV, it is enough to consider
ensembles on a single chiral trajectory (e.g., mav

q ¼ const).
However, to determine the two improvement coefficients
bV and b̄effV , we have to consider at least two different chiral
trajectories.
For the calculation of the renormalization factor ZV, we

need to compute the following three-point correlation
function, projected on vanishing momentum:

CPVPðx0; y0; z0Þ
¼ a6

X
x;y

hPðijÞðx0; xÞVðjjÞ
0 ðy0; yÞPðijÞ†ðz0; 0Þi; ð37Þ

and two-point correlation functions

CPPðx0; z0Þ ¼ a3
X
x

hPðijÞðx0; xÞPðijÞ†ðz0; 0Þi; ð38aÞ

CAPðx0; z0Þ ¼ a3
X
x

hAðijÞ
0 ðx0; xÞPðijÞ†ðz0; 0Þi: ð38bÞ

4http://luscher.web.cern.ch/luscher/openQCD/.

GÉRARDIN, HARRIS, and MEYER PHYS. REV. D 99, 014519 (2019)

014519-6

http://luscher.web.cern.ch/luscher/openQCD/
http://luscher.web.cern.ch/luscher/openQCD/
http://luscher.web.cern.ch/luscher/openQCD/
http://luscher.web.cern.ch/luscher/openQCD/


TA
B
L
E
I.

Pa
ra
m
et
er
s
of

th
e
si
m
ul
at
io
ns
:
th
e
ba
re

co
up
lin

g
β
¼

6
=g

2 0
,t
he

la
tti
ce

re
so
lu
tio

n,
th
e
ho
pp
in
g
pa
ra
m
et
er

κ,
th
e
pi
on

m
as
s
m

π
,a
nd

th
e
PC

A
C
m
as
s.
Ẑ
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Correlation functions are calculated using U(1) stochastic
sources with time dilution [21]. On each gauge configu-
ration, we generate an ensemble of Ns stochastic sources
with support on a single time slice as well as satisfying

lim
Ns→∞

1

Ns

XNs

s¼1

ηaαðxÞs½ηbβðyÞs�� ¼ a−3δαβδabδx;y; ð39Þ

where each component is normalized to one,
ηaαðxÞ�½r�ηaαðxÞ½r� ¼ 1 (no summation). This can be imple-

mented by using U(1) noise for each color and spinor
index on site x of the lattice. For ensembles with open
boundary conditions in the time direction, time trans-
lation is lost. In this case, the source is placed at z0 ¼
T=4 away from the boundary (t ¼ 0), and the two-point
correlation functions are obtained for all values of
x0 ∈ ½0; T=2�, keeping the sink time away from the
second boundary (t ¼ T). For the three-point correlation
function, the sink time is placed at x0 ¼ 3T=4 and is
computed for all y0.
For each stochastic source swith support in time slice z0,

we solve the Dirac equation and denote the solution vector
Φs

i ðx; z0Þ ¼ a3
P

z Sðx; zÞηsi ðzÞ. Correlation functions are
given by

CðijÞ
PP ðx0; z0Þ ¼

a6

V

X
x;z

Tr½Siðx; zÞ†Sjðx; zÞ�

¼ a3

NsV

X
s;x

Φs
i ðx; z0Þ†Φs

jðx; z0Þ; ð40aÞ

CðijÞ
AP ðx0; z0Þ ¼

a6

V

X
x;z

Tr½Siðx; zÞ†γ0Sjðx; zÞ�

¼ a3

NsV

X
x

Φs
i ðx; z0Þ†γ0Φs

jðx; z0Þ; ð40bÞ

CðijÞ
PVPðx0; y0; z0Þ ¼

a9

V

X
x;y;z

Tr½Siðx; zÞ†Sjðx; yÞγ0Sjðy; zÞ�

¼ a3

NsV

X
x

Φ̃s†
ji ðy; x0; z0Þγ0Φs

jðx; z0Þ;

ð40cÞ

with V ¼ L3 the spatial volume. We have used the γ5-
Hermiticity of the fermion propagator Sðx;yÞ¼γ5Sðy;xÞ†γ5,
and Φ̃s

ji is a sequential propagator given by Φ̃s
jiðy; x0; z0Þ ¼

a6
P

x;z γ5Sjðy; xÞγ5Siðx; zÞηsðzÞ. In practice, since the
stochastic sources do not introduce a bias, the number
of sources Ns on each gauge configuration can be small.
We choose Ns ¼ 12 such that the numerical cost would be
the same if we used the usual point source method with a
single source location.

To compute the correlation functions in Eqs. (30) and
(31) we instead use point sources and the method of
sequential propagators for the three-point correlation func-
tions. A point source is first created on time slice z0. Then, a
sequential inversion is performed using the variation of the
action between time slices t1 and t2 as a sequential source.
We thereby have access to all y0 values in the range ½t1; t2�.
To increase statistics, we also average over equivalent
polarizations k ¼ 1, 2, 3. The values of t1, t2, z0, and y0
used in our simulations are summarized in Table II. We
have computed the correlation functions entering Eq. (31)
to leading order in lattice perturbation theory (see
Appendix B) in order to test our lattice QCD code.

IV. RESULTS

A. Results for ZV , bV , and b̄effV

Away from the boundary, it is convenient to use the
variables t ¼ x0 − z0 and t1 ¼ y0 − z0. For each ensemble,
the value of ẐV is estimated from the ratio of three- to two-
point correlation functions, defined through Eq. (24) with a
local vector current. We choose j ¼ l (spectator quark),
which define our renormalization scheme. The ratio has the
asymptotic behavior

Rðt; t1Þ⟶
t1;t−t1→∞

1

Ẑð12Þ
V

ð41Þ

and is fitted to a constant in the plateau region where
discretization effects are small. For ensembles with
antiperiodic boundary conditions in time, we use
CPVPðx0;y0;z0Þ→CPVPðx0;y0;z0Þ−CPVPðx0;y0þT;z0Þ to
impose the vector Ward identity on each gauge configu-
ration which can have a nonzero charge due to thermal
fluctuations. Typical plots for the ensembles N200 and
N300 are given in Fig. 2, and the results for all ensembles
are summarized in Table I. In a second step, the renorm-
alization constant ZV, and the improvement coefficients bV

TABLE II. Values of z0, t1, t2, and y0 for the calculation of the
three-point correlation function as defined in Eq. (31). In the last
column, we give the two values of y0 used to interpolate to a line
of constant physics as explained in the text. Note that ensembles
at β ¼ 3.46 were generated using a periodic boundary condition
in the time direction, whereas other ensembles were generated
using open boundary conditions.

β T=ð2aÞ z0=a ½t1; t2�=a y0=a

3.40 48 41 [46,54] 49–50
3.46 32 0 [6,15] 10–11

48 0 [6,15] 10–11
3.55 48 41 [48,59] 52–53

64 57 [64,75] 68–69
3.70 64 53 [62,76] 68–69
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and b̄effV at a given value of the bare coupling g0 are obtained
using the fit ansatz

Ẑð12Þ
V ðg20; mav

q ; mq;12Þ
¼ ZVðg20Þð1þ 3b̄effV ðg20Þamav

q þ bVðg20Þamq;12Þ: ð42Þ

The ensembles included in the fit satisfy jamq;lj < 0.01 and
amav

q < 0.01 such that higher order corrections are
expected to be small. The results for each value of β are
given in Table III, and the statistical error includes the
error on κcr. The fits for two values of beta are shown
on Fig. 3. We note that the coefficient bV is significantly
larger than the one-loop perturbative estimate given in
Eq. (36b) and that b̄effV ≪ bV. This was expected since the
perturbative value starts only at two loops in perturbation
theory. We provide the covariance matrices for the different
values of the coupling considered in this work:

covðZV; bV; b̄effV ; β ¼ 3.40Þ

¼

0
B@

þ6.04 × 10−8 −1.05 × 10−6 −5.02 × 10−6

−1.05 × 10−6 þ1.93 × 10−4 þ1.30 × 10−4

−5.02 × 10−6 þ1.30 × 10−4 þ5.50 × 10−4

1
CA;

ð43aÞ
covðZV; bV; b̄effV ; β ¼ 3.46Þ

¼

0
B@

þ4.16 × 10−9 þ9.92 × 10−8 −6.68 × 10−8

þ9.92 × 10−8 þ1.90 × 10−4 −6.64 × 10−5

−6.68 × 10−8 −6.64 × 10−5 þ2.97 × 10−5

1
CA;

ð43bÞ
covðZV; bV; b̄effV ; β ¼ 3.55Þ

¼

0
B@

þ3.17 × 10−9 −2.85 × 10−7 −1.27 × 10−7

−2.85 × 10−7 þ9.21 × 10−5 þ1.37 × 10−5

−1.27 × 10−7 þ1.37 × 10−5 þ1.37 × 10−5

1
CA;

ð43cÞ

FIG. 2. Plateaus for the ratio Rðt ¼ T
2
; t1Þ and ĉV defined through Eqs. (41) and (32) for the lattice ensemble N300.

TABLE III. Results for the renormalization constant ZV and improvement coefficients bV, b̄effV , and cV for
different values of the bare coupling. For ZV, bV, and b̄effV the first (second) line corresponds to the results obtained
with the light (strange) quark as a spectator quark. For cV, both results for the local and conserved vector currents are
given. The value of critical hopping parameter κcr at β ¼ 3.40 is extracted from [22].

β 3.40 3.46 3.55 3.70
κcr 0.1369115(27) 0.1370645(10) 0.1371726(13) 0.1371576(8)
ZV 0.70908(25) 0.71998(6) 0.73454(6) 0.75413(6)

0.70912(19) 0.71998(6) 0.73453(6) 0.75413(6)
bV 1.648(14) 1.622(14) 1.541(10) 1.488(12)

1.546(10) 1.526(13) 1.460(09) 1.427(12)
b̄effV 0.206(23) 0.108(05) 0.053(04) 0.029(06)

0.240(17) 0.140(05) 0.081(04) 0.049(06)
b̄V 0.227(23) 0.125(05) 0.067(04) 0.040(06)

0.260(17) 0.157(05) 0.095(04) 0.060(06)
clV −0.069ð32Þ −0.008ð20Þ −0.031ð32Þ −0.039ð29Þ
ccsV 0.389(23) 0.438(16) 0.422(26) 0.416(24)
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covðZV; bV; b̄effV ; β ¼ 3.70Þ

¼

0
B@

þ3.60 × 10−9 þ2.10 × 10−7 −1.48 × 10−7

þ2.10 × 10−7 þ1.38 × 10−4 −6.14 × 10−5

−1.48 × 10−7 −6.14 × 10−5 þ3.26 × 10−5

1
CA:

ð43dÞ

Finally, we perform a Padé fit to obtain the renormalization
factor and the improvement coefficients as a function of the
bare coupling g20. Our final results read

ZVðg20Þ ¼ 1 − 0.10057g20 ×
1þ p1g20 þ p2g40

1þ p3g20
; ð44aÞ

bVðg20Þ ¼ 1þ 0.11813g20 ×
1þ p1g20
1þ p2g20

; ð44bÞ

b̄effV ðg20Þ ¼
p1g40

1þ p2g20
; ð44cÞ

which automatically reproduce the one-loop calculations
and where the parameters and covariance matrices are
given by

pðZVÞ ¼

0
B@

−0.2542
−0.0961
−0.4796

1
CA;

covðZVÞ ¼

0
B@

þ1.31619 þ4.92750 þ6.15758

þ4.92750 þ66.8321 þ75.3218

þ6.15758 þ75.3218 þ85.2733

1
CA× 10−6;

ð45aÞ

pðbVÞ ¼
�−0.184
−0.444

�
;

covðbVÞ ¼
�þ36.7139 þ12.6698

þ12.6698 þ4.41224

�
× 10−4; ð45bÞ

pðb̄effV Þ ¼
�þ0.00112

−0.5577

�
;

covðb̄effV Þ ¼
�þ1.061463 þ14.53004

þ14.53004 þ248.5266

�
× 10−8: ð45cÞ

To ensure that OðaÞ ambiguities vanish smoothly toward
the continuum limit, the renormalization of the vector
current must be performed along a line of constant physics
(LCP). Since the CLS ensembles have different volumes,
we checked explicitly that the impact on the renormaliza-

tion factor is extremely small. The observable Ẑð12Þ
V has

been computed on two sets of ensembles (H105/N101 and
H200/N202) generated using the same lattice parameters
but with different volumes, and the results quoted in
Table I are in perfect agreement within statistical errors.
Second, the correlation functions in Eq. (24) are computed
with a source located at z0 ¼ T=4 to suppress boundary
effects. For the ensemble N101, we have performed
three sets of simulations with different source locations,
z0 ¼ T=4, T=4 − 4a, T=4 − 8a, and the results are

Ẑð12Þ
V ¼ 0.70910ð6Þ, 0.70911(5), and 0.70919(6), respec-

tively. The last results, where the source is close to the
boundary, is slightly higher and might be affected by
boundary effects. Those tests make us confident that with
the procedure in Eq. (41) we indeed extract the matrix
element in infinite volume.
As noted above, we could also choose j ¼ s for

the spectator quark, and the values of the improvement
coefficients bV and b̄effV would differ by an OðaÞ-ambiguity.

FIG. 3. Results of the fits used to determine the renormalization constant ZV and improvement coefficients bV and b̄effV using the fit
ansatz (42) for two different values of the bare coupling.
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To study this effect, we have repeated the analysis with
j ¼ s, and the results are given in Table III. We do not
observe any difference for the renormalization constant ZV
at our level of precision [both results should differ only by
an O(a2) ambiguity]. For bV and b̄effV , we observe variations
by factors of at most 1.07 and 1.7, respectively. In Fig. 4,
the continuum limit behavior of the ratio between the two
results obtained using either a light or a strange spectator
quark is shown in blue. For bV, we observe the expected
linear scaling with the lattice spacing. For b̄V, the ratio goes
to one only if one includes higher order discretization
effects, which appear to be sizable.

1. Comparison of results with previous work

The renormalization factor ZV has been determined
independently in [12] using the chirally rotated
Schrödinger functional framework. In Fig. 4, we plot the
ratio Zl

V;sub=ZV where Zl
V;sub is extracted from [12] using

the line of constant physics called L1 and where the
denominator corresponds to our own determination. This
ratio goes rapidly to one in the continuum limit, even

though the expected Oða2Þ scaling is not observed.
However, the maximum deviation, obtained at β ¼ 3.40,
is less than 1.6%. Empirically, the available data for the
departure of the ratio from unity can be described by the
sum of a linear term and a quadratic term in the lattice
spacing (not expected theoretically), or by the sum of a
quadratic term and a cubic term. The latter fit in fact
describes the data slightly better; see Fig. 4. It also yields
coefficients of reasonable size if one evaluates the lattice
spacing say in units of 0.5 fm.
The coefficients bV and b̄effV have also been determined

recently in Ref. [23] using a different setup, based on the
QCD Schrödinger functional. A comparison with our
results is given in Fig. 6. For bV, we observe a deviation
of about 5%, similar to the OðaÞ dependence on the
spectator-quark estimated above. In Fig. 4, we show the
continuum limit behavior of the ratio with our own results,
and we observe the expected linear scaling. However, for
b̄effV , the difference with the results quoted in Ref. [23] is
significant, especially at large couplings g20. Again, as can
be seen on Fig. 4, we do not observe a linear scaling in a for
the ratio of the two determinations, and higher order

FIG. 4. Left panel: Continuum limit of the ratio Zl
V;sub=ZV where Zl

V;sub was computed in [12] and where ZV refers to our own
determination.Middle panel: blV and bsV correspond to our determinations with the light or strange spectator quarks, respectively, and bFV is
the value computed in [23]. Right panel: b̄FV is the value computed in [23]. We have defined the dimensionless parameter ã ¼ a=0.5 fm.

FIG. 5. Chiral extrapolations of the improvement coefficients clV and ccV, respectively, for the local and conserved vector currents, for
two different values of the bare coupling.
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corrections cannot be neglected. It suggests that this
parameter suffers from a large ambiguity.
From a practical point of view, one should remember

that a typical value of amav
q is 0.005 on the β ¼ 3.55

ensembles, so that with 3b̄effV ≃ 0.16 even a 100% ambi-
guity on b̄V has an impact below the permille level.
Conversely, it could be that Oða2Þ effects compete with
these terms, resulting in a substantial OðaÞ contamination
in our determination of b̄effV . For the physics applications
discussed in the Introduction, it is interesting to compare

our values for the renormalization factor Ẑð12Þ
V of the

isovector current to those one would obtain using the ZV

values of [12] and the bV and b̄effV values from [23]. We find
that our direct estimates are always slightly lower and that
the relative difference depends almost only on g20: it is about
1.3% at β ¼ 3.40, 0.8% at β ¼ 3.46, 0.37% at β ¼ 3.55,
and 0.12% at β ¼ 3.70. We conclude that these differences
are of reasonable size, compatible with the expected a2

(and higher order) ambiguity introduced by the choice of a
specific renormalization condition.

B. Results for the improvement coefficient cV
For y0 not too close from t1 and t2, we can extract the

value of ĉV for each lattice ensemble. In practice, since we
want to use a line of constant physics, we choose y0 − z0 ¼
0.77 fm and interpolate linearly between two neighboring
time slices when necessary. Deviations from LCP due to the
different sizes of the lattices used should be very mild since
we are working in large volumes. The values of z0, t1, and
t2 in Eqs. (30) and (31) as well as the values of y0 used in
the interpolation are quoted in Table II. Similar results are
obtained using either the vector operator or the tensor
operator as a probe operator in Eq. (31). In practice, we use

the linear combination Oext ¼ Vð31Þ
k ðz0; 0Þ þ Σð31Þ

k0 ðz0; 0Þ
which helps to improve the statistical precision. For ZA,
we use the results called Zl

A;sub using the L1-LCP from [12].
For bA we used the published values in [10], and for b̄A we
use values from [24] [in practice, we use b̄effA which
includes the bg-term for ZA, as in Eq. (17)]. The results
for ĉV for each ensemble are given in Table I and differ
from cV by the presence of a contact term which vanishes in

FIG. 6. The dependence of the renormalization constant ZV and improvement coefficients bV, b̄effV , and cV on the bare coupling g20. The
blue and red points correspond to the local and conserved vector currents, respectively. The plain lines and error bands correspond to our
Padé fits. For bV and b̄effV we also compare our results with previous lattice determinations [10,23].
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the chiral limit, as explained in Sec. II C. The improvement
coefficient cV is obtained using a linear extrapolation in the
light-quark PCACmassm12 at constantmav

q , and the results
for each value of the bare coupling are summarized in
Table III. As can be seen in Fig. 5, we observe a very mild
chiral dependence. The error is dominated by the statistical
precision of the correlation functions and the error on b̄A.
The uncertainty on ZA and bA appears to have a negligible
impact at our level of precision. Finally, we perform linear
or quadratic fits in g20 to determine cV as a function of the
bare coupling. The results for the local and the conserved
vector currents read

clVðg20Þ ¼ −0.01030CFg20 × ð1þ 0.15ð35Þg20Þ; ð46aÞ

ccsV ðg20Þ ¼
1

2
× ð1 − 0.093ð13Þg20Þ: ð46bÞ

The parametrization is consistent with the perturbative
predictions collected in Sec. II D. Our values for clV are
significantly smaller (in magnitude) than the preliminary
values determined in [25] by applying a similar improve-
ment condition in the Schrödinger functional. It could be
due to a large OðaÞ ambiguity in the definition of cV.
However, our values for ZV also differ by more that 1
standard deviation from the ones computed in [25]. Since
ZV enters in the determination of cV, this could partly
explain the disagreement. For example, if we use the
preliminary results for ZV given in [25], our value would
be ĉlV ¼ −0.146 for H105 and ĉlV ¼ −0.178 for N200.
These observations highlight the need for good control over
ZV to determine precisely clV. Since the point-split vector
current is conserved, Zc

V ¼ 1, this issue is absent for the
determination of ccsV .

V. CONCLUSION

We have determined nonperturbatively the renormaliza-
tion constant and improvement coefficients of the local and
point-split nonsinglet vector currents with Nf ¼ 2þ 1
OðaÞ-improved Wilson quark action and the tree-level
Symanzik improved gauge action. Only one coefficient,
fV, is missing but is also expected to be small, as it starts at
Oðg60Þ in perturbation theory; in this regard, we note that for
the two other mass-dependent improvement coefficients,
bV and b̄V, the hierarchy expected from perturbation theory
is indeed observed in our nonperturbative results. All these
parameters are required for the full OðaÞ-improvement of
the vector current and the reduction of discretization effects
in lattice simulations. They are essential in the calculation
of the hadronic vacuum polarization (HVP) contribution to
the muon g − 2, where a precision below 1% is aimed in the
near future.
Full OðaÞ-improvement of the vector current requires

one to consider the renormalization factor ZVðg̃0Þ at the

value of the renormalized coupling g̃0 instead of the bare
coupling g0. We have taken this difference into account by
replacing the improvement coefficient b̄V by the effective
parameter b̄effV , thus avoiding the use of the unknown
coefficient bg.
We have obtained the renormalization factor and

improvement coefficients by imposing vector and axial
Ward identities at finite lattice spacing and bare quark
masses on a set of large volume ensembles. Deviations
from the line of constant physics in our renormalization
scheme have been studied and shown to be small for ZV,
bV, and b̄V.
Our final results for the different β values used in CLS

simulations are summarized in Table III. We also provide
interpolating formulas through Eqs. (44) and (46). As a
cross-check of our methods, we have recomputed the
improvement coefficient cA and find good agreement with
the results of Ref. [13], which employ an improvement
condition set up in the Schrödinger functional.
Our calculation is the first nonperturbative determination

of the improvement coefficients cαV with Nf ¼ 2þ 1
Wilson quarks for both the local and (the symmetrized
version of) the point-split vector currents. The value for the
local vector current is small, and both values, for the local
and point-split vector currents, are close to their perturba-
tive values.
The comparison with the recent findings of Ref. [23]

shows that a potentially large OðaÞ-ambiguity in b̄V
remains, but that it should vanish smoothly in the approach
to the continuum limit. For the vector current renormaliza-
tion, we find important corrections to the expected asymp-
totic Oða2Þ scaling for the difference between our results
and the recent determination of Ref. [12]. However, we
note the relative discrepancy is rather small, and smaller
than that observed for two different normalization con-
ditions for the axial current [11,12].
In the future, other improvement coefficients may be

determined for the lattice action used here, thanks to the
availability of an extensive set of CLS lattice ensembles. In
particular, the Nf ¼ 2þ 1 hadronic contribution to the
running of the weak mixing angle involves the flavor-
singlet vector current, whose improvement coefficient c̄V is
unknown. A method to determine the latter based on a
chiral Ward identity was proposed in [3].
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APPENDIX A: DETERMINATION OF THE
AXIAL IMPROVEMENT COEFFICIENT cA

In this appendix, we use a similar setup to determine the
improvement coefficient cA of the axial vector current [see
Eq. (6)]. The latter was previously determined nonpertur-
batively in [11] in the framework of the Schrödinger
functional. This study can be seen as a consistency check
of our method.
Within our numerical setup, described in Sec. III, we can

replace the axial vector current and the external operator
Oext in Eq. (31) by any other operator without new
inversion of the Dirac operator. Therefore, we consider
the following axial Ward identity:Z

d3yhδSð12ÞVð23Þ
R;0 ðy0; yÞOð31Þ

ext ðz0; 0Þi

¼
Z

d3yhAð13Þ
R;0 ðy0; yÞOð31Þ

ext ðz0; 0Þi; ðA1Þ

with Oð31Þ
ext ¼ Pð31Þ. The variation of the action is given by

Eq. (30), and similarly to Eq. (31), with the constraint

y0 ∉ ½t1; t2�. Here, Vð23Þ
R;0 and Að13Þ

R;0 are the renormalized and
OðaÞ-improved vector and axial vector currents defined in
Eq. (6). If one knowsZV, bV, b̄effV , bA, and b̄A, then cA can be
determined by imposing this equation to hold on the lattice
up to O(a2) discretization effects, as done in Eq. (32) for cV.
Using the same procedure as for cV and with the local

vector current, we obtain the results summarized in Table I
for a subset of the ensembles. Similar to cV, the chiral
dependence is very mild and the contribution from the
contact term in the left-hand side of Eq. (A1) is removed by
taking the limit m12 → 0. We obtain the results quoted in
Table IV. As can be seen on Fig. 7, our results are close to
the values quoted in [11] obtained using a different method.
We point out that, in Eq. (A1), the variation of the action
δSð12Þ was computed with the value of cA published in
Ref. [11] such that the two determinations are not strictly
independent. Since this improvement coefficient has an
OðaÞ-ambiguity, we can attribute this small difference to
the different schemes used.

APPENDIX B: AXIAL WARD IDENTITIES
IN THE FREE THEORY

In the following, we give the tree-level expressions in
lattice perturbation theory for the correlation functions
involved in the chiral Ward identities, Eqs. (31) and
(A1). We have used these expressions to test the lattice
QCD code implementing the Ward identities.
We provide a more general expression in that we allow

for a general spatial momentum; on the other hand, we
restrict ourselves to the equal-mass case, m1 ¼ m2 ¼
m3 ¼ m. At order g00 with a Wilson quark action, the
correlation functions do not depend on csw. We use the
standard notation

TABLE IV. Results for the improvement coefficient cA at
different values of the bare coupling.

β 3.40 3.46 3.55 3.70
cA −0.060ð4Þ −0.038ð4Þ −0.033ð5Þ −0.021ð3Þ

FIG. 7. Left: Extrapolation of cA for one value of the bare coupling g20. Right: Improvement coefficient cA as a function of the bare
coupling g20 with a (1,1)-Padé model. We also plot the results obtained by the ALPHA Collaboration in Ref. [11] using a different
method.
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p̂μ ¼
2

a
sin

apμ

2
; p

∘
μ ¼

1

a
sin apμ; ðB1Þ

as well as

AðpÞ ¼ 1þ amþ 1

2
a2p̂2; ðB2Þ

BðpÞ ¼ m2 þ ð1þ amÞp̂2 þ 1

2
a2
X
k<l

p̂2
kp̂

2
l ; ðB3Þ

CðpÞ ¼ mþ a
2

�
p̂2 −

BðpÞ
AðpÞ

�
;

Dp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðpÞð4AðpÞ þ a2BðpÞÞ

q
¼ 2

a
AðpÞ sinhðaωpÞ: ðB4Þ

Let �iωp be the pole in p0 of the fermion propagator. We
note the identities

4

a2
sinh2ðaωp=2Þ ¼

BðpÞ
AðpÞ ; ðB5Þ

1

a2
sinh2ðaωpÞ ¼ p

∘2 þ CðpÞ2: ðB6Þ

The free fermion propagator in the time-momentum rep-
resentation reads, with the convention signð0Þ ¼ 0,

Sðx; yÞ≡ hψðxÞψ̄ðyÞi

¼
Z
B

d3p
ð2πÞ3

e−ωpjx0−y0jþip·ðx−yÞ

Dp

×

�
sgnðx0 − y0Þ

1

a
sinhðaωpÞγ0 − iγ · p

∘

þ CðpÞ þ δx0;y0
1

a
sinhðaωpÞ

�
; ðB7Þ

where
R
B denotes integration over the Brillouin zone,

− π
a < pi < π

a.
In all three-point functions in this appendix, we assume

z0 < minðy0; x0Þ. The correlation functions relevant to the
Ward identity (A1) are

a3
X
y

e−ip·ðy−zÞhA13
0 ðyÞP31ðzÞi¼ 4signðy0− z0Þ

Z
B

d3q
ð2πÞ3

CðqÞsinhωpþqþCðpþqÞsinhðωqÞ
DqDpþq

e−jy0−z0jðωpþqþωqÞ; ðB8Þ

a6
X
x;z

eip·ðz−yÞhA12
0 ðxÞV23

0 ðyÞP31ðzÞi ¼ 8

Z
B

d3q
ð2πÞ3

e−2ωqθðx0−y0Þðx0−y0Þþðz0−y0ÞðωpþqþωqÞ

D2
qDpþq

fðp; qÞ; ðB9Þ

with

fðp; qÞ ¼
(
CðqÞq∘ · k

∘
− Cðpþ qÞq∘2jk¼pþq x0 < y0;

CðqÞðsinhðωqÞ sinhðωpþqÞ þ q
∘
· k
∘
þ CðqÞCðpþ qÞÞk¼pþq x0 > y0:

ðB10Þ

In Eq. (B9), we have assumed x0 ≠ y0. Finally, under the same assumptions we obtain

G0ðx0 − z0; y0 − z0; pÞ≡ a6
X
x;z

eip·ðz−yÞhP12ðxÞV23
0 ðyÞP31ðzÞi

¼ −8θðx0 − y0Þ
Z
B

d3q
ð2πÞ3

e−2ωqθðx0−y0Þðx0−y0Þþðz0−y0ÞðωpþqþωqÞ

D2
qDpþq

gðp; qÞ; ðB11Þ

with

gðp; qÞ ¼ sinhðωqÞðsinhðωqÞ sinhðωkÞ þ q
∘
· k
∘
þ CðqÞCðkÞÞk¼pþq: ðB12Þ

The special case x0 ¼ y0 must be treated separately,

G0ðy0− z0;y0− z0;pÞ¼−8
Z
B

d3q
ð2πÞ3

e−ðy0−z0ÞðωpþqþωqÞ

D2
qDpþq

sinhðωqÞ
2

ð½sinhðωqÞþCðqÞ�½sinhðωkÞþCðkÞ�þq
∘
·k
∘
Þk¼pþq: ðB13Þ
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The correlation functions relevant to the Ward identity Eq. (31) are

a3
X
y

eip·ðz−yÞhVl;13
3 ðyÞΣ31

30ðzÞi ¼ −4signðy0 − z0Þ
Z
B

d3q
ð2πÞ3

e−ðωpþωpþqÞjz0−y0j

DqDpþq
ðCðqÞ sinhωpþq þ Cðpþ qÞ sinhωqÞ; ðB14Þ

and, for x0 ≠ y0 and k⊥ ¼ ðk1; k2Þ, l⊥ ¼ ðl1;l2Þ,

a6
X
x;z

eip·ðz−yÞhA12
0 ðxÞA23

3 ðyÞΣ31
30ðzÞi ¼ −16

Z
B

d3k
ð2πÞ3

e−2ωkðx0−y0Þθðx0−y0Þ−ðωkþωp−kÞðy0−z0Þ

D2
kDp−k

fAðp; kÞ; ðB15Þ

fAðp; kÞ ¼ 1

2
fsinhðωkÞðCðkÞ sinhðωlÞθðx0 − y0Þ − sinhðωkÞCðlÞθðy0 − x0ÞÞ

− CðkÞk
∘
3l
∘
3 þ CðkÞk

∘
⊥ · l

∘
⊥ þ CðkÞ2CðlÞgl¼p−k; ðB16Þ

fAð0; kÞ ¼
(
CðkÞðk

∘
3

2 þ CðkÞ2Þ x0 > y0

−CðkÞk
∘
⊥
2

x0 < y0

: ðB17Þ

Further, for x0 ≠ y0, we have

GAðx0 − z0; y0 − z0; pÞ ¼ a6
X
x;z

eip·ðz−yÞhP12ðxÞA23
3 ðyÞΣ31

30ðzÞi

¼ −16θðx0 − y0Þ
Z
B

d3k
ð2πÞ3

e−2ωkðx0−y0Þθðx0−y0Þþðωkþωp−kÞðz0−y0Þ

D2
kDp−k

gAðp; kÞ; ðB18Þ

gAðp; kÞ ¼ −
1

2
sinhðωkÞðsinhðωkÞ sinhðωlÞ − k

∘
3l
∘
3 þ k

∘
⊥ · l

∘
⊥ þ CðkÞCðlÞÞl¼p−k; ðB19Þ

gAð0; kÞ ¼ − sinhðωkÞðk
∘
3

2 þ CðkÞ2Þ: ðB20Þ

Finally, for x0 ¼ y0,

GAðy0 − z0; y0 − z0; pÞ ¼ −4
Z
B

d3k
ð2πÞ3

eðωkþωp−kÞðz0−y0Þ

D2
kDp−k

sinhωk

× ½k
∘
3l
∘
3 − k

∘
⊥ · l

∘
⊥ − ClCk − sinhωk sinhωl − Cl sinhωk − Ck sinhωl�l¼p−k: ðB21Þ
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