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We investigate the reliability of the Taylor expansion method in QCD with isospin chemical
potentials using lattice simulations. By comparing the expansion of the number density to direct results,
the range of validity of the leading- and next-to-leading order expansions is determined. We also
elaborate on the convergence properties of the Taylor series by comparing the leading estimate for the
radius of convergence to the position of the nearest singularity, i.e., the onset of pion condensation.
Our results may provide a handle for assessing the uncertainties of Taylor expansions in baryon
chemical potentials.
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I. INTRODUCTION

The thermodynamic properties of QCD at finite temper-
ature and density are in the focus of current research in
theoretical and experimental physics and are of fundamental
relevance for the structure of compact stars and the evolution
of the early universe. On the theoretical side, simulations
of lattice QCD are the preferred non-perturbative tool to
investigate the properties of QCD at strong coupling.Monte-
Carlo simulations of lattice QCD, however, are hindered for
nonzero baryon density nB due to the well-known complex
action problem (for recent reviews see [1,2]). Despite a
number of proposals for methods to potentially overcome
this problem and to enable direct simulations in this regime
(for reviews see Ref. [3–5], for instance) there is currently no
method which can provide reliable results in the interesting
region with T ≲ Tpc at physical quark masses. Here Tpc is
the crossover, or pseudocritical, temperature associated with
effective chiral symmetry restoration.
Nonzero-density QCD is studied most conveniently in

the grand canonical ensemble, where the baryon density
is traded for the associated chemical potential μB. One
approach to circumvent the complex action problem is
based on a Taylor expansion of observables in powers of μB
at zero chemical potential. Following the pioneering works
[6–8], today the Taylor expansion method is one of the
most established approaches [9,10] to investigate regions
of the finite-density phase diagram relevant for heavy-ion

phenomenology. However, since the expansion can only be
carried out to a finite order n (currently typically n ≤ 8), the
region of reliability of the series is a priori unknown,
leaving systematic uncertainties due to higher orders difficult
to estimate.
Another piece of information encoded in the Taylor

expansion coefficients is the potential existence of a singu-
larity in the complex μB-plane—for example a phase
transition at real critical chemical potential μB;c. Due to
the nonanalyticity at μB;c, the phase transition cannot be
described by a series expansion in one of the adjacent phases.
In turn, this shows up as a finite radius of convergence for
the series expansion of observables [11]. This method has
been applied extensively in QCD to probe the presence of a
possible second order critical endpoint in the μB − T plane,
see, e.g., Refs. [12–15].
A similar expansion can also be applied in the case of

QCD at finite isospin chemical potential μI [12,16], which
is also realized in the aforementioned physical systems.
One advantage of QCD with a pure isospin chemical
potential (i.e., μI ≠ 0 but μB ¼ 0) is that the complex
action problem is absent and the theory can be simulated
with standard Monte-Carlo methods [17]. Consequently,
QCD at pure isospin chemical potential can serve as a
realistic test system to investigate the range of applicability
of the Taylor expansion method.
After the initial lattice studies of QCD at μI > 0 and

μB ¼ 0 at finite lattice spacings and unphysical pion
masses [17–23], we have recently determined its con-
tinuum phase diagram [24]. It has a rich structure: besides
the chirally broken and restored regions at low chemical
potential, it exhibits a Bose-Einstein condensed (BEC)
phase of charged pions beyond a critical chemical poten-
tial μI;cðTÞ. According to our findings, the boundary of
the BEC phase is at μI;c ≈mπ=2 for temperatures up to
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about 150 MeV. This is followed by a pronounced turn
and a saturation at around T ≈ 160 MeV for chemical
potentials μI ≤ 120 MeV. The appearance of the BEC
phase is accompanied by the spontaneous breaking of
the residual Uτ3ð1Þ symmetry, remaining from the chiral
SUVð2Þ symmetry group at finite μI . Consequently, the
phase transition to the BEC phase is expected to be of
second order in the O(2) universality class [25], which is
consistent with the finite volume-dependence and the
critical scaling of the lattice results [24].
In this letter, we extend the simulations of [24] to test the

performance of Taylor expansion in μI . In particular, we
investigate the applicability of the Taylor expansion method
for a broad range of temperatures and study its capability to
determine the BEC phase boundary via estimates of the
radius of convergence.

II. LATTICE SETUP

We employ the tree-level Symanzik improved gluon
action and 2þ 1 flavors of rooted staggered quarks with
two-levels of stout smearing at physical quark masses,
following the line of constant physics from [26]. The
continuum limit is approached using lattice ensembles with
Nt ¼ 6, 8, 10 and 12, corresponding to lattice spacings of
a ¼ 0.20, 0.15, 0.12 and 0.10 fm around the zero-density
crossover temperature TpcðμI ¼ 0Þ. To enable the obser-
vation of the spontaneous breaking of the Uτ3ð1Þ symmetry
in finite volumes and to regulate the theory in the infrared,
we introduce a pionic source λ in the fermion matrix for the
light quark masses. This source term leads to an unphysical
explicit breaking of the Uτ3ð1Þ symmetry and physical
results are obtained in the limit λ → 0. For a more detailed
discussion see [24].
Our main observable is the isospin density

hnIi ¼
T
V
∂ logZ
∂μI ; ð1Þ

which is free of ultraviolet divergences and, thus, does
not require renormalization. The most difficult task for a
reliable computation of hnIi is the extrapolation in λ.
Similarly to our experience with other observables [24],
the λ-dependence of hnIi is very pronounced, so that a
naive extrapolation cannot be performed in a controlled
manner. In Ref. [24] we introduced an improvement
program for the λ-extrapolations, using the singular values
of the massive Dirac operator. Similar improvements can
be applied to hnIi as well, and we discuss the details in
Appendix A. The dependence on λ is reduced substan-
tially, allowing for fits of the data to a constant or a linear
function in λ2 (note that hnIi is an even function of λ due to
Uτ3ð1Þ symmetry).
The Taylor expansion for the isospin density with respect

to μI=T is given by

hnIi
T3

¼
X
n

c2n
ð2n − 1Þ!

�
μI
T

�
2n−1

¼ c2

�
μI
T

�
þ c4

6

�
μI
T

�
3

þ � � � ; ð2Þ

where cn are the associated Taylor coefficients. In the
following we will consider the leading order hnIiLO
(including c2) and the next-to-leading order hnIiNLO
(including c2 and c4) series. For our action and temporal
extents Nt, the Taylor expansion coefficients have been
computed in Ref. [16], albeit at different temperatures and,
in some cases, on slightly different volumes. To arrive at the
temperatures used in our study, we have performed a cubic
spline interpolation of the associated results. In addition,
we found the volume dependence of the Taylor coefficients
to be sufficiently small, so that the effects due to the slight
differences in volume are negligible. The details of the
interpolations and the study of volume effects are provided
in Appendix B.

III. TESTING THE TAYLOR EXPANSION
AGAINST DIRECT RESULTS

To perform a detailed comparison between the direct
results for hnIi and the Taylor expansion in a wide range of
μI , we have extended our existing results [24] with new data
up to μI ≲ 325 MeV. This value is still sufficiently far away
from the saturation region for Nt ≥ 8, ensuring that lattice
artifacts remain under control (for all the results shown
below, the chemical potential in lattice units satisfies
μIa < 0.3). The comparison between the direct data for
hnIi and the results from the Taylor expansion is shown in
Fig. 1 forNt ¼ 6. For the lower temperature, T ¼ 124 MeV,
the data reaches the BEC phase boundary at μI;c ≈mπ=2.
Up to this point the data shows remarkable agreement with
both the LO and the NLO Taylor expansion. Slight
differences between the data and the LO expansion become
apparent close to μI;c. The lattice data starts to deviate from
the Taylor expansion curve for μI > μI;c. This is certainly
expected, since the Taylor expansion cannot capture the
change of dynamics at the transition. In contrast, the results
for T ¼ 176 MeV are above the BEC phase boundary. In
this regime the agreement with Taylor expansion persists up
to larger values of μI and starting at around μI=mπ ≈ 0.6 one
can clearly see that the data favors NLO Taylor expansion
over the LO expansion. Furthermore, Taylor expansion at
NLO fails to describe hnIi within the current uncertainties at
around μI=mπ ≈ 1.6, where higher orders become important
for this temperature.
Comparing the behavior of the data points between the

two temperatures reveals another characteristic of the
Taylor expansion. For low temperatures, the NLO expan-
sion tends to underestimate the results for hnIi, while it
overestimates them for higher temperatures. Due to con-
tinuity there will be a region, where the agreement between
the NLO expansion and the full result is almost perfect.
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Outside the BEC phase, where the expansion converges to
the correct result, this region is related to the suppression
of higher order terms, most dominantly of c6ðTÞ. The latter
is indeed expected to cross zero as T increases, based on the
generic structure of Taylor coefficients near a chiral critical
region [27]. Inside the pion condensation phase this agree-
ment is merely accidental and does not reveal any infor-
mation about the interior of the BEC region.
To quantify the regions in parameter space where Taylor

expansion at a given order (LO or NLO) starts to become
unreliable, we look at curves in parameter space with
constant difference

ΔLO=NLO ¼ jhnIi − hnIiLO=NLOj ð3Þ
between the full results and the Taylor expansion. In the
following we focus on the high temperature region,
T ≳ 150 MeV, to be able to draw conclusions about the
applicability range of the Taylor method in the absence of
the BEC phase transition.
The contour lines are determined using a two-dimen-

sional spline fit to Δ, where the nodepoints have been
generated via a Monte-Carlo analysis (for a description of
our fit strategy, see Ref. [28]). In the spline fit we include
the constraint that Δ ¼ 0 for μI ¼ 0. Note that we expect a

rapid change of the data for Δ at the BEC phase boundary
in the thermodynamic limit. For our finite volumes, for
T ≳ 150 MeV the behavior is more regular and can be
captured by a spline interpolation.1

Our Nt ¼ 8 results for the contour lines are shown in
Fig. 2 for various values of Δ. The figure also includes the
BEC phase boundary, which we extended to higher values
of μI compared to Ref. [24], see Appendix C. Most of the
contour lines have positive slopes, indicating the general
tendency that the expansion performs better and better as
the temperature increases. This is partly due to the fact that
the actual dimensionless expansion parameter is μI=T,
cf. Eq. (2)—however, the contour lines differ from the
simple μ=T ¼ const lines considerably (see below). The
exception is the contour line withΔLO=m3

π ¼ 0.12, which is
roughly insensitive to the temperature. In addition, the
results clearly reflect that the NLO expansion has a broader
reliability range than the LO one, with contour lines shifted
to considerably higher values of μI .
Eventually we aim at investigating the range of appli-

cability of the Taylor expansion in the continuum. To this
end we perform a continuum extrapolation of the contour
lines of Δ, using a parametrization in terms of polynomials
in ðT − T0Þ with lattice spacing dependent coefficients,
setting T0 ¼ 140 MeV. In the continuum extrapolation we
focus on ΔNLO, for which the contours are well described
by a second order polynomial for T ≥ 161 MeV. In all
of the cases the Nt ¼ 6 results were found to be outside
of the scaling region and have thus been excluded from
the fit. One of these extrapolations is visualized in Fig. 3
for ΔNLO=m3

π ¼ 0.61. Finally, the contour lines of ΔNLO

in the continuum limit are plotted in Fig. 4, this time versus
μI=T. Once more, the gray area indicates the BEC phase
in the continuum with the updated phase boundary from
Appendix C. As discussed above, the naive expectation

FIG. 1. Results for hnIi on Nt ¼ 6 lattices from direct simu-
lations (blue points) in comparison to LO (orange dashed line)
and NLO (red solid line) Taylor expansions for T ¼ 124 MeV
(top panel) and for T ¼ 176 MeV (bottom panel).

FIG. 2. Contours of constant ΔLO (dashed bands) and ΔNLO

(solid bands) for Nt ¼ 8. The shaded gray area indicates the BEC
phase.

1This is similar to the behavior of the chiral condensate
reported in Ref. [24].
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for the contours outside of the BEC phase are lines with
μ=T ¼ const, i.e., vertical lines in this plot. While this is
approximately the case for large ΔNLO, the contours with
small values of ΔNLO show clear deviations from this
expectation with the tendency to shift to larger values of
μI=T with increasing temperature.

IV. ESTIMATING THE RADIUS
OF CONVERGENCE

As mentioned in the Introduction, the radius of con-
vergence of the Taylor expansion has been used extensively
in the literature to extract information on the possible phase
transitions of the theory for μB > 0. The current setup with
μI > 0 is ideal to test the performance of this method in
QCD, since the phase diagram features a second order
phase transition [24,25] comparably close to the μI ¼ 0
axis. We have already seen the breakdown of the expansion
close to the phase boundary (cf. Fig. 1). We will now test

whether the leading estimator for the radius of convergence
also indicates the presence of this phase boundary.
A possible definition for the radius of convergence r for

the Taylor series of hnIi from Eq. (2) is given by

r ¼ lim
n→∞

rnðnIÞ;
rnðnIÞ
T

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cn
cnþ2

ðnþ 1Þn
r

; ð4Þ

but note that for a general singularity in the complex
μI-plane this limit is not guaranteed to exist (see Ref. [29]
for a counterexample). Here cn are the coefficients of the
expansion of the pressure defined in Sec. II. Note that while
the same radius of convergence r is encoded in the Taylor
series of other observables, the estimators at finite n can be
quite different. In particular, comparing the series for the
pressure p, the density hnIi and the susceptibility hχIi ¼∂hnIi=∂μI gives

rnðχIÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
n − 1

nþ 1

r
rnðnIÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn − 1Þ

ðnþ 2Þðnþ 1Þ

s
rnðpÞ: ð5Þ

These indeed agree for n → ∞, but differ at finite n.
With two coefficients at hand, only a single estimator

can be constructed for r and we cannot investigate the
n → ∞ limit systematically. The estimators for r obtained
from the different observables are shown in Fig. 5 for
Nt ¼ 8. For comparison we also included the boundary of
the BEC phase and the contour lines of ΔNLO in the figure.
For temperatures where the BEC onset is the singularity
closest to μI ¼ 0, the n → ∞ limit of the estimators rn is
expected to fall on top of the phase boundary. In addition,
in the same limit, the Δ → 0 limit of the n-th order contour
lines is also expected to coincide with the phase boundary.
The results for r2ðχIÞ are observed to lie surprisingly

close to the phase boundary for low temperatures, while
r2ðnIÞ and r2ðpÞ significantly overestimate the radius of
convergence. While such a perfect agreement for r2ðχIÞ is
likely accidental, similar tendencies were also found in a

FIG. 3. Continuum extrapolation for the contour line
ΔNLO=m3

π ¼ 0.61. The yellow curve corresponds to the continu-
um extrapolation and the points show (every third of) the results
from the individual lattices that were included in the fit. We have
slightly shifted the data horizontally to enhance visibility.

FIG. 4. Continuum results for the contour lines of ΔNLO. The
gray shaded area indicates the BEC phase. Note that the curves
stop at T ¼ 161 MeV, since only data above this temperature
enter the continuum fit.

FIG. 5. The leading-order estimators for the radius of con-
vergence using the series for different observables on our Nt ¼ 8
ensembles. The results are compared to the boundary of the BEC
phase (gray area) and to the contours of ΔNLO (colored bands).
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quark-meson model [30], and in toy models of QCD with
imaginary chemical potentials [14], suggesting that the
series of the susceptibility gives estimators with the fastest
convergence rate. The estimators also reveal a considerable
change of slope around 150–160 MeV, close to the upper
boundary of the BEC phase and in agreement with the
qualitative trend that the two curves will agree in the limit
n → ∞. Finally, a qualitative agreement is also observed
between the behavior of r2 and the contour lines of ΔNLO.
Up to now we have ignored a subtle issue regarding the

estimators of the radius of convergence in finite volumes.
In a finite volume V, phase transitions are smoothed out,
but the partition function has Lee-Yang zeroes at complex
μI that approach the real axis as V → ∞ [31], according to
criticality [32]. How this is connected to the V-dependence
of the estimators rn is highly nontrivial. We find that the
leading order Taylor coefficients depend only mildly on the
volume, see Appendix C.

V. CONCLUSIONS

In this paper we have presented a detailed comparison
between Taylor expansion and full simulations of QCD at
nonzero isospin chemical potential μI. This is a theory with
a second-order phase transition between the normal phase
and a phase with Bose-Einstein condensation of charged
pions, enabling us to observe the breakdown of the Taylor
expansion at the critical chemical potential. Up to the
boundary of the BEC phase the full data for the isospin
density hnIi is well described by Taylor expansion—both
by the leading- (LO) and the next-to-leading order (NLO)
series.
To test the reliability of the expansion outside the BEC

phase, we extended our lattice ensembles generated in [24]
with simulations at higher chemical potentials. The update
for the BEC phase boundary up to μI ≈ 325 MeV is
presented in App. C. To quantify the performance of the
LO and NLO expansions in this region, we introduced the
deviation Δ between the full and the Taylor-expanded
results, see Eq. (3). The contour lines of ΔLO and ΔNLO are
shown in Fig. 2 for our Nt ¼ 8 ensembles. Taking the Δ ¼
0.2m3

π contour (which corresponds to deviations of 3–6% in
the isospin density) as an indicator, the LO expansion is
reliable up to μI=mπ ≈ 0.5 to 0.6, while the NLO series
performs reasonably well up to μI=mπ ≈ 1.0 to 1.5. The
continuum extrapolation of the contour lines is visualized
in Fig. 4. Contrary to the naive expectation that the contours
lie along lines of constant μ=T outside of the BEC phase,
we find considerable deviations from this behavior, with
a tendency towards larger values of μ=T with increasing
temperature.
We have also compared the estimator r2 for the radius

of convergence, obtained from the first two coefficients
(c2 and c4) of the Taylor expansion, to the critical chemical
potential μI;c known from the full simulations. We find that

both r2 and μI;c change similarly with temperature, signal-
ing the expected agreement when higher order estimates
for the radius of convergence are taken into account.
Concerning possible different definitions of r, we find that
the estimate obtained from the susceptibility χI is closest to
the phase boundary. Whether this remains true for higher-
order estimators remains to be seen. Our findings demon-
strate that already the leading estimators for the radius
of convergence are sensitive to the phase transition. We
emphasize, however, that a more detailed study including
higher order estimates for r is clearly desired and man-
datory to be able to draw definite conclusions. Our study
may be used to assess the uncertainties of Taylor expan-
sions in baryon chemical potentials and to guide the
interpretation of results obtained for the radius of con-
vergence of such series. This will also be of relevance for
comparison to low energy models of QCD.
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APPENDIX A: COMPUTATION AND IMPROVED
λ-EXTRAPOLATIONS OF nI

In terms of the massless Dirac operator DðμIÞ and the
mass of the (degenerate) light quarks mud, the isospin
density, Eq. (1), is given by (cf. Ref. [28])

hnIi ¼
T
2V

�
Re tr

ðDðμIÞ þmudÞ†∂μIDðμIÞ
jDðμIÞ þmudj2 þ λ2

�
; ðA1Þ

where ∂μI is the derivative with respect to μI. The trace in
Eq. (A1) can be evaluated using stochastic estimators,
giving nstochI , or in the spectral representation

nI ¼
T
2V

X
n

Reφ†
n½DðμIÞ þmud�†∂μIDðμIÞφn

ξ2n þ λ2
; ðA2Þ

where the singular values ξn and the associated eigenstates
φn are eigenpairs of the operator jDðμIÞ þmudj2 (see
Ref. [24] for more details).
The spectral representation (A2) is the basis for the

improvement program introduced in Ref. [24]. First we
introduce the truncated difference
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δN ≡ nNI ðλÞ − nNI ðλ ¼ 0Þ

¼ T
2V

XN
n¼1

Reφ†
n½DðμIÞ þmud�†∂μIDðμIÞφn

×

�
1

ξ2n þ λ2
−

1

ξ2n

�
; ðA3Þ

where nNI ðλÞ is the operator from Eq. (A2) with a singular
value sum truncated at n ¼ N. This truncated difference δN

does not contribute in the λ → 0 limit, allowing us to write

lim
λ→0

hnIi ¼ lim
λ→0

hnstochI − δNi: ðA4Þ

As indicated, the λ > 0 value of the operator is determined
using stochastic estimators, while the correction term δN

is calculated in the spectral representation (A3). In addition
to the improvement of the operator, we also employ the
leading order reweighting discussed in Sec. III. 4 of
Ref. [24]. This approximates the λ ¼ 0 distribution of
the lattice ensembles and brings the expectation value hnIi
closer to its λ ¼ 0 limit.
As discussed in Ref. [24], the optimal (or minimal) value

of N necessary to achieve sufficient improvement to obtain
a controlled λ-extrapolation will in general depend on the
operator. We find that the behavior of nI withN is similar to
the one of the chiral condensate, so that N ≈ 100 is usually
sufficient to obtain reasonably flat extrapolations. A par-
ticular example for the λ-extrapolations is provided in
Fig. 6. The plot indicates the tremendous increase in
reliability due to our improvement scheme, enabling a
well controlled λ-extrapolation and precision results.

APPENDIX B: INTERPOLATION OF TAYLOR
EXPANSION COEFFICIENTS AND FINITE

SIZE EFFECTS

The Taylor coefficients are combinations of derivatives
of the pressure,

cn ¼
∂nðp=T4Þ
∂ðμI=TÞn

����
μI¼0

;
p
T4

¼ 1

VT3
logZ; ðB1Þ

with respect to the isospin chemical potential at μI ¼ 0.
These can be rewritten using the quark chemical potentials
μu and μd—in particular, c2 and c4 are given by

c2 ¼ 2

�
∂2
u

�
p
T4

�
− ∂u∂d

�
p
T4

�	����
μI¼0

ðB2Þ

and

c4 ¼ 2

�
∂4
u

�
p
T4

�
− 4∂3

u∂d

�
p
T4

�
þ 3∂2

u∂2
d

�
p
T4

�	����
μI¼0

;ðB3Þ

where ∂f stands for the derivative with respect to μf=T.
The results for the coefficients c2 and c4 from Ref. [16]
for the 243 × 8 lattice are shown in the top panel of Fig. 7
together with a cubic spline interpolation.
To check finite size effects in the temperature range

of interest we also include the results from the 323 × 8

FIG. 7. Top panel: Spline interpolation of the first two Taylor
coefficients c2 and c4 (normalized by 3c2) on the 243 × 8 lattices,
compared to the results on the 323 × 8 ensemble [16]. Bottom
panel: Results for hnIi on Nt ¼ 6 lattices from direct simulations
with a spatial volume of 163 (green boxes) and 243 (blue circles)
in comparison to LO (orange dashed line) and NLO (red solid
line) Taylor expansions for T ¼ 113 MeV. The Taylor expansion
coefficients have been obtained on a 183 × 6 lattice [16].

FIG. 6. Improved λ-extrapolation for hnIi on our 243 × 6
ensemble in comparison to the unimproved one.
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ensemble from Ref. [16] in the top panel of Fig. 7. Apart
from some visible but not significant effects for the c4
coefficient at T ≲ 150 MeV finite size effects are absent.
To lend further support to the statement that finite size
effects are negligible, we show the results for hnIi obtained
on 163 × 6 and 243 × 6 lattices in comparison to the Taylor
expansion with coefficients from a 183 × 6 lattice in the
bottom panel of Fig. 7. For μI < μI;c, we see that the lattice
results agree within uncertainties and are in mutual agree-
ment with the NLO expansion. Also evident are the
expected strong finite size effects at and just above μI;c,
outside the applicability region of the expansion.
The main part of our study has been done on 243 × 6,

243 × 8, 283 × 10 and 363 × 12 lattices. In contrast the
Taylor coefficients have been computed on 183 × 6,
243 × 8, 323 × 8, 323 × 10 and 323 × 12 lattices in
Ref. [16]. Given the magnitude of finite size effects visible
in Fig. 7, we can thus conclude that those effects are
irrelevant within the present accuracy.

APPENDIX C: THE PION CONDENSATION
PHASE BOUNDARY FOR LARGE μI

For the present study we extended the range of
chemical potentials compared to Ref. [24], enabling a
determination of the BEC phase boundary for higher
values of μI . We have performed new temperature scans
in the range 120 MeV < μI < 325 MeV, allowing to
locate the critical temperature TcðμIÞ, where the pion
condensate vanishes. The results for three lattice spacings

are shown in Fig. 8. Compared to our previous results
[24] we observe a slight increase in the critical temper-
ature with all data points approximately lying along a
constant line. To capture this behavior and to approach
the continuum limit, we fit all points by the function d1 þ
d2=μ2I with a2-dependent coefficients d1 and d2. To
smoothly connect to our previous result, the data of
[24] for T < 161 MeV and 90 MeV ≤ μI ≤ 120 MeV for
each value of Nt and in the continuum are also included
in the fit. The resulting continuum extrapolation is also
shown in Fig. 8.
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