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By using numerical stochastic perturbation theory, we carry out a quenched two-loop computation of the
improvement coefficient cA associated to the isovector axial current. Within the Schrödinger functional
formalism, we compute the bare partially conserved axial-vector current quark mass m and fix cA by
requiring discretization corrections on m to be of order Oða2Þ in the lattice spacing a.
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I. INTRODUCTION

After performing a set of numerical simulations of a
generic field theory, corresponding results become mean-
ingful only if extrapolated to the physical point (Φ). This
means that, given simulation parameters like—among
others—the lattice spacing a, volume V and, (possibly)

quark massesmq, the limits a→0, V→þ∞ andmq→mðΦÞ
q

have to be accurately and reliably computed. While these
limits were thought to be hardly accessible for lattice QCD
some time ago [1], a few decades of algorithmic develop-
ments have paved the way for controlling all of the above-
mentioned sources of systematic uncertainty. Nowadays,
not only are Nf ¼ 1þ 1þ 1þ 1 QCD simulations with
small lattice spacings, large boxes and quark masses close
to the physical point being performed, but also challenging
QED effects have started to be taken into account [2].
At present, the standard setup for QCD simulations

features the hybrid Monte Carlo (HMC) algorithm [3],
usually supplemented with other techniques, like precon-
ditioning [4], the Hasenbusch trick [5], multiple time-scale
integration [6] and smearing [7–10]. In the framework of
the HMC algorithm, such techniques are useful in that they
allow for a larger value of the time step in integrating the
equations of motion (thus decreasing the autocorrelation
among subsequent configurations), they reduce the con-
dition number κðDÞ of the Dirac operator D (speeding up
the inversion of D needed both within the HMC algorithm
and at measurement time) and they average out ultraviolet
fluctuations, improving the signal-to-noise ratio (SNR).

In this scenario, a technique often employed to reduce
discretization effects is the so-called improvement, usually
in a form following the Symanzik program [11]. To
understand how the latter works, it is useful to recall that
the mean value Ō of a generic continuum observable O
computed on the lattice reads

Ōða; V;mq;…Þ ¼
Z

DUDψDψ̄OLate−SLat ; ð1Þ

where OLat is the lattice counterpart of O, SLat is the lattice
QCD action (given by the sum of a gauge part SG and a
fermionic part SF) and where the dependence of Ō with
respect to simulation parameters has been made explicit.
According to Symanzik, close to the continuum limit,

OLat can be Taylor expanded in the lattice spacing as

OLat ¼ Oþ aO1 þ a2O2 þ � � � ; ð2Þ

where O1, O2, … have to be interpreted as contributions
stemming from operator insertions in the continuum and
must have symmetry properties consistent with O.
A similar expression also holds for the gauge and fermionic
actions SG and SF entering SLat.
Plugging said Taylor expansions with respect to a into

Eq. (1) results in a similar expansion for Ō as well. In the
Symanzik improvement program, the leading correction to
Ō—usually linear in a as in Eq. (2)—can be canceled by
adding irrelevant terms to SG, SF and to OLat.

1 In this way,
the dependence of Ō with respect to a is flattened and,
consequently, larger values of the lattice spacing can be
used to recover the continuum limit, thereby further
reducing kðDÞ and increasing the SNR at the same time.
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1In the rest of the paper, an action/observable whose leading
correction in a is of order aj will be defined as Oðaj−1Þ-
improved.
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In general, each irrelevant term is multiplied by its
own coefficient that has to be appropriately tuned: its
value can be determined either nonperturbatively or within
perturbation theory (PT). Obviously, among these so-called
improvement coefficients, the most important ones are
those improving on SG and SF since they are involved
in the improvement procedure of any observable. When it
comes to perturbative computations, the expansions of
these coefficients in the bare coupling g0 are usually known
up to very low orders only, usually at one loop.
In this paper, we investigate whether numerical stochas-

tic perturbation theory (NSPT) [12,13] can be applied to
compute the improvement coefficients in PT to orders
higher than g20. We want to clearly state that the present
study essentially aims at being a proof of concept, i.e., at
assessing the feasibility (or not) of a similar NSPT
computation in principle. Given this exploratory character,
we tackle the simplest case possible, namely the two-loop
computation of the improvement coefficient cA associated
to the isovector axial current in the quenched approxima-
tion. In spite of its seeming minor importance, a perturba-
tive computation of cA to a given order j allows for a
determination to the same order of the much more
important coefficient cSW , i.e., the improvement coefficient
multiplying the irrelevant term improving on the fermionic
action SF [14] which will be introduced later.

II. LATTICE SETUP

In this and the next section we outline our approach
which is based on the Schrödinger functional (SF) formal-
ism [15,16] and closely follows the strategy described in
Ref. [17] and used in Ref. [18] to compute cSW and cA to
one loop.
We simulate a four-dimensional lattice made up of NT ×

N3
S sites, each one labeled with integer coordinates n ¼

ðn0; n1; n2; n3Þ varying in the intervals ½0; NT − 1� and
½0; NS − 1� along the time and spatial directions respec-
tively. The lattice volume V will therefore be equal to
V ¼ LT × L3

S, with LT ¼ aðNT − 1Þ and LS ¼ aNS.
A generic gauge variableUμðnÞ—with μ ∈ f0; 1; 2; 3g—

belongs to the SUð3Þ group and is associated to the link
connecting site n to site nþ μ̂, with μ̂ being a unit vector
along direction μ. Lattice group variables are related to their
continuum counterparts AμðnÞ in the Lie algebra of SUð3Þ
through the equation UμðnÞ ¼ exp½iAμðnÞ�. We stick to the
usual convention according to which U−1

μ ðnÞ ¼ U†
μðnÞ.

Quark and antiquark degrees of freedom (d.o.f.)
are Grassmann variables—denoted as ψðnÞ and ψ̄ðnÞ
respectively—associated to the lattice sites.2 For simplicity,
we assume the presence of Nf mass-degenerate flavors
though, in what follows, the fermionic action SF and its

irrelevant term will always be written by taking into
account only one flavor to ease the notation: it is under-
stood that there are actually Nf copies of such operators.
Anyway, it is worth stressing that, while the quenched
approximation implies—obviously—that fermionic d.o.f.
play no role in updating the lattice configuration and that,
consequently, the results of this paper have to be considered
valid for Nf ¼ 0, the setup described in the next sections is
such that Nf never enters into play at measurement time as
well, as long as the mass degeneracy holds.
While boundary conditions are periodic along the three

spatial directions, they are of Dirichlet type in the time
direction. In other words, by labeling a generic spatial
direction with k from now on, for the gauge fields the
following equalities hold:

UkðnÞjn0¼0 ¼ Wkðn⃗Þ; UkðnÞjn0¼NT−1 ¼ W0
kðn⃗Þ; ð3Þ

with n⃗ ¼ ðn1; n2; n3Þ and whereWkðn⃗Þ can be expressed in
terms of a smooth, fixed field Ckðn⃗Þ as

Wkðn⃗Þ ¼ P exp

�
a
Z

1

0

dtCkðn⃗þ ak̂ − tak̂Þ
�
; ð4Þ

where P is the path-ordering symbol. W0
kðn⃗Þ is para-

metrized by another field C0
kðn⃗Þ in an analogous way.

With this setup, the lattice gauge action SG is given by
the modified Wilson action

SG ¼ 1

g20

X
p

ωðpÞtrf1 − UðpÞg; ð5Þ

where UðpÞ is the product of the link variables around a
lattice plaquette, the sum runs on all oriented plaquettes and
the weights ωðpÞ are equal to 1 for each plaquette, except
for the spatial ones at n0 ¼ 0 and n0 ¼ NT − 1 where
ωðpÞ ¼ 1

2
. Due to the SF boundary conditions, the gauge

action SG in Eq. (5) with said values of the weights ωðpÞ is
OðaÞ-improved only at tree level in PT. Aversion of SG that
isOðaÞ-improved at any perturbative order can be obtained
by adding some boundary counterterms featuring their own
improvement coefficients that have to be appropriately
tuned. This whole procedure would eventually amount to a
redefinition of the weights ωðpÞ close to the boundaries.
In the present work, such SG-related counterterms will be
ignored because the observable that will be introduced and
studied later on—i.e., the bare partially conserved axial-
vector current (PCAC) quark mass—is entirely fixed by a
Ward identity and this peculiar property allows to neglect
said counterterms.
As for the fermionic d.o.f., after introducing the projec-

tors P� ¼ 1
2
ð1� γ0Þ, where γ0 is a Euclidean Dirac matrix,

and some fixed Grassmann fields ρ;…; ρ̄0, their Dirichlet
boundary conditions are given by

2Spin, color and flavor indices are always left implicit for all
fields, except where strictly needed.
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PþψðnÞjn0¼0 ¼ ρðn⃗Þ; P−ψðnÞjn0¼NT−1 ¼ ρ0ðn⃗Þ; ð6Þ

for the quark fields and by

ψ̄ðnÞP−jn0¼0 ¼ ρ̄ðn⃗Þ; ψ̄ðnÞPþjn0¼NT−1 ¼ ρ̄0ðn⃗Þ; ð7Þ

for the antiquark fields. For consistency, the quantities
P−ρ;…; ρ̄0P− must vanish.
The unimproved fermionic action SF is given by

SF ¼ a4
X
n

ψ̄ðnÞðDþm0ÞψðnÞ; ð8Þ

with m0 being the bare quark mass and the Wilson-Dirac
operator D reading

D ¼ 1

2
½γμð∇�

μ þ∇μÞ − a∇�
μ∇μ�; ð9Þ

where repeated indices are summed and γμ’s are Euclidean
Dirac matrices. The covariant derivatives in Eq. (9) are
defined as

∇μψðnÞ ¼
1

a
½λμUμðnÞψðnþ μ̂Þ − ψðnÞ�;

∇�
μψðnÞ ¼

1

a
½ψðnÞ − λ−1μ U−1

μ ðn − μ̂Þψðn − μ̂Þ�; ð10Þ

with λ0 ¼ 1 and λk ¼ expðiaθk=LSÞ being phase factors
(with −π < θk ≤ π). For simplicity, all three angles θk will
be set to the same unique value θ ≠ 0.
Strictly speaking, Eq. (8) holds in an infinite volume.

However, it remains valid also in the present setup—i.e., a
box of finite size with Dirichlet boundary conditions—
provided some technical conventions are assumed: the
interested reader can find more details in Sec. 4.2 of
Ref. [17]. We tacitly take such conventions for granted
and carry on with Eq. (8) in combination with said lattice
topology.
The leading discretization correction to SF is linear in a

and, as mentioned in the Introduction, an OðaÞ-improved
fermionic action Simp

F can be obtained by adding to Eq. (8)
an irrelevant term δSV , i.e.,

Simp
F ¼ SF þ δSV: ð11Þ

δSV is usually referred to as the clover term and its
expression is given by [14]

δSV ¼ a5cSW
XNT−2

n0¼1

XNS−1

n1;n2;n3¼0

ψ̄ðnÞ i
4
σμνFμνðnÞψðnÞ; ð12Þ

where σμν ¼ i
2
½γμ; γν� and

FμνðnÞ ¼
1

8a2
½QμνðnÞ −QνμðnÞ�; ð13Þ

with

QμνðnÞ¼UμðnÞUνðnþ μ̂ÞU†
μðnþ ν̂ÞU†

νðnÞ
þUνðnÞU†

μðn− μ̂þ ν̂ÞU†
νðn− μ̂ÞUμðn− μ̂Þ

þU†
μðn− μ̂ÞU†

νðn− μ̂− ν̂ÞUμðn− μ̂− ν̂ÞUνðn− ν̂Þ
þU†

νðn− ν̂ÞUμðn− ν̂ÞUνðnþ μ̂− ν̂ÞU†
μðnÞ: ð14Þ

The perturbative expansion of the cSW coefficient
appearing in Eq. (12) is known up to one loop and it
can be written as

cSW ¼ cð0ÞSW þ cð1ÞSWg
2
0 þOðg40Þ; ð15Þ

where cð0ÞSW ¼ 1 [14] while cð1ÞSW has been computed in
several papers [18–21] yielding results slightly different but
in agreement within error bars.
Analogously to the case of the gauge action SG, it is

worth stressing that, in the present lattice setup featuring SF
boundary conditions, an OðaÞ-improved version of SF
would require not only the addition of δSV as defined in
Eq. (12), but also the introduction of boundary counter-
terms with corresponding improvement coefficients to be
accurately tuned. Anyway, exactly as it is for the gauge
action, such SF-related boundary counterterms will be
entirely neglected in this work thanks to the fact that the
bare PCAC quark mass studied later on is completely fixed
by a Ward identity.
Before concluding this section, it is important to observe

that the bare quark mass m0 in Eq. (8) will be set to 0 from
now on and that quarks will be kept massless by subtracting
the appropriate mass counterterms order by order in PT (see
Ref. [22] for their calculation in infinitevolume to two loops).

III. METHODOLOGY

The improvement coefficient cA targeted by this study is
associated to the isovector axial current Ab

μðnÞ

Ab
μðnÞ ¼ ψ̄ðnÞγμγ5

1

2
τbψðnÞ; ð16Þ

with τb being a Pauli matrix acting on flavor indices and
γ5 ¼ γ0γ1γ2γ3 as usual. An OðaÞ-improved expression is
obtained by adding an irrelevant term δAb

μðnÞ reading

δAb
μðnÞ ¼ acA

1

2
ðδ�μ þ δμÞPbðnÞ; ð17Þ

where δ�μ and δμ stand for the standard left and right
derivative on the lattice while PbðnÞ is the isovector axial
density
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PbðnÞ ¼ ψ̄ðnÞγ5
1

2
τbψðnÞ: ð18Þ

As in Eq. (15), the improvement coefficient cA in Eq. (17)
can be expanded as

cA ¼ cð0ÞA þ cð1ÞA g20 þ cð2ÞA g40 þ � � � ; ð19Þ

where cð0ÞA is equal to 0 [23] and cð1ÞA has been determined in

Ref. [18], while estimating cð2ÞA is the goal of this work.
Following Ref. [17], we begin by relating Ab

μðnÞ and
PbðnÞ to the unrenormalized PCAC quark mass m by
means of the PCAC relation

�
1

2
ðδ�μ þ δμÞAb

μðnÞO
�

¼ 2mhPbðnÞOi; ð20Þ

whereO is the product of fields located at nonzero distance
from site n and from each other. Then, we set O to be

O ¼ a6
X
n0;n00

ζ̄ðn0Þγ5
1

2
τbζðn00Þ; ð21Þ

with the constraint n00 ¼ n000 ¼ 0 and with

ζðnÞjn0¼0 ¼
δ

δρ̄ðn⃗Þ ; ζ̄ðnÞjn0¼0 ¼ −
δ

δρðn⃗Þ ; ð22Þ

where ρðn⃗Þ and ρ̄ðn⃗Þ are the fields introduced in
Eqs. (6)–(7).
After defining the correlators fAðnÞ and fPðnÞ as

fAðnÞ ¼ −a6
X
n0;n00;b

1

3

�
Ab
0ðnÞζ̄ðn0Þγ5

1

2
τbζðn00Þ

�
;

fPðnÞ ¼ −a6
X
n0;n00;b

1

3

�
PbðnÞζ̄ðn0Þγ5

1

2
τbζðn00Þ

�
; ð23Þ

again with the constraint n00 ¼ n000 ¼ 0, the unimproved
bare PCAC quark mass m in Eq. (20) is given by

m ¼ 1

2

�
1

2
ðδ�0 þ δ0ÞfAðnÞ

�
=fPðnÞ: ð24Þ

Noting that PbðnÞ is already OðaÞ-improved [17] and
recalling Eq. (17), the OðaÞ-improved bare PCAC quark
mass mimp is given by

mimp¼
1

2

�
1

2
ðδ�0þδ0ÞfAðnÞþacAδ�0δ0fPðnÞ

�
=fPðnÞ; ð25Þ

provided that the irrelevant term in Eq. (12) is also added to
SF and that both cA and cSW are correctly set.

The last observation gives us a prescription to determine
the improvement coefficients. Before explaining why, it is
worth recalling that, in order to study the continuum limit
of a given observable to monitor OðaÞ effects, such an
observable must necessarily be a meaningful dimensionless
quantity. In this respect, the most straightforward observ-
able that can be built in the present case is given by the
product of the lattice extent LS times the renormalized
improved PCAC quark mass mR, where

mR ¼ ZA

ZP
mimp; ð26Þ

with ZA and ZP being the renormalization constants of
the isovector axial current and density respectively.
However, it is possible to show explicitly up to two-loop
order that the multiplicative renormalization of the PCAC
quark mass as well as the renormalization of the gauge
coupling can eventually be omitted for our purposes, as
they only introduceOða2Þ corrections. This holds provided
of course that the bare quark mass m0 in Eq. (8) is adjusted
to its critical value and that cA is properly set up to one-loop
order. In other words, if such a setup holds, cA can be
determined up to the second loop by studying the behavior
of the product of the unrenormalized improved PCAC
quark mass mimp times LS.
Bearing these observations in mind, in PT the product

mimpLS can be expanded as

mimpLS ¼
X
i¼0

mðiÞ
impLSg2i0 ; ð27Þ

where the coefficients mðiÞ
imp will depend on the coefficients

cA and cSW and on the kinematic parameters a,NS,NT , θ as
well as on the time coordinate n0 of site n in Eq. (25); there
is no dependence with respect to the spatial coordinates
of n because of the translational invariance along the
corresponding directions. mimp should also depend on
the boundary fields Ck, C0

k; ρ; ρ̄; ρ
0; ρ̄03: however, fermionic

boundary fields will be set to zero after derivatives in
Eq. (21) are computed while the fields Ckðn⃗Þ and C0

kðn⃗Þ
will be fixed to 0 for every n⃗ [so thatWkðn⃗Þ ¼ W0

kðn⃗Þ ¼ 1].
The last choice will be motivated later on.
Since infinite-volume mass counterterms are subtracted

up to two loops and since the product mimpLS does not

carry any dimension, both mðiÞ
impLS—with i ¼ 1, 2—can be

expanded in a out of dimensional analysis as

3It is worth stressing that the dependence of the bare PCAC
quark mass on both the kinematical parameters and, in particular,
the boundary fields referred to below Eq. (27) is a pure lattice
artifact. In the continuum, such mass is solely determined by a
Ward identity.
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mðiÞ
impLS¼dðiÞ1;NS

a
LS

þdðiÞ1;NT

a
LT

þdðiÞ1;θ
aθ
LS

þdðiÞ1;n0
a
an0

þ���

¼dðiÞ1;NS

1

NS
þdðiÞ1;NT

1

NT −1
þdðiÞ1;θ

θ

NS
þdðiÞ1;n0

1

n0
þ��� ;

ð28Þ

where dots denote terms of higher order in a and all

coefficients dðiÞ1;… depend on cA and cSW ; such dependence
will be left implicit to ease the notation. By setting
NT ¼ 2NS þ 1, n0 ¼ NS=2 (as in Ref. [18]) and by keep-
ing θ fixed, the resulting mathematical setup is such that the
terms on the rhs of the previous formula can be collected
into one as

mðiÞ
impLS ¼ dðiÞ1

1

NS
þO

�
1

N2
S

�
: ð29Þ

By comparing Eqs. (28) and (29), it should be evident that
an expansion in powers of a is equivalent to an expansion in
powers of 1=NS. Bearing this observation in mind and
recalling that we aim atOðaÞ improvement, the coefficients

cðiÞSW and cðiÞA in Eqs. (15) and (19) can be determined up to
two loops as follows: with the setup outlined above, the
product LS times the bare PCAC quark mass is first
measured for several values of NS; then it is fitted vs
1=NS and cSW and cA are finally determined by requiring

the coefficient dðiÞ1 in Eq. (29) to be compatible with zero.
In this approach, there is actually one last issue to be

solved: in fact, to a given loop i in PT, the coefficient dðiÞ1
depends on all cðjÞA and cðjÞSW with j ≤ i, so that their effects
have to be disentangled. This can be done by choosing the
boundary fields Ck and C0

k appropriately. In particular, if
such fields are both set to 0 everywhere along the time
boundaries as in the present setup, it can be proven [17]
that, at the lowest order in PT, the dynamical gauge d.o.f.U
are 1 throughout the whole lattice and, consequently,
Eqs. (13) and (14) imply4 that the lowest order of Fμν in
Eq. (12) will be proportional to g0. In turn, this means that,
by truncating any expansion in g0 at a given loop i, only

cðiÞA —as well as all coefficients at loops lower than i in
Eqs. (15) and (19)—will remain. This yields a well-defined

procedure to evaluate cð2ÞA : in fact, in the present situation

where cðiÞSW and cðiÞA have already been determined for i ≤ 1,
by setting these tree-level and one-loop coefficients to their
known values as well as the fields Ck and C0

k to 0 and by
truncating any perturbative expansion at the second loop in

g0, d
ð2Þ
1 will only depend on cð2ÞA and the latter coefficient

can thus be fixed by fitting mð2Þ
impLS with respect to 1=NS.

Though it is not the goal of this study, let us recall how

cð2ÞSW could be evaluated. The very same setup needed to

compute cð2ÞA is maintained but the fields Ck and C0
k now

have to be set as explained in Sec. 6.2 of Ref. [17]: fixing

cð2ÞA to the value found as outlined in the previous para-

graphs, dð2Þ1 will now depend solely on cð2ÞSW , so that the
correct value of the latter coefficient can be determined,

again by fitting mð2Þ
impLS vs 1=NS. This overall procedure

can obviously be iterated to the third loop (and higher),
provided that the corresponding mass counterterm is
subtracted.
Before concluding this section, it is worth recalling that,

within the Schrödinger functional formalism, boundary-
irrelevant terms in a in principle also have to be introduced
in order to achieve OðaÞ improvement, each one with its
own coefficient. However, as stated in Ref. [18], these
terms can be eventually dropped and remaining improve-
ment coefficients can be determined by solely requiring the
unrenormalized PCAC quark mass to be independent of the
kinematic parameters, which corresponds to the strategy
outlined above.

IV. NSPT PRACTICE

In this section we describe how configurations are
generated by means of numerical stochastic perturbation
theory. NSPT stems from stochastic quantization (SQ) [24],
a quantization prescription that, in turn, inspired the so-
called Langevin algorithm (described in what follows)
allowing for the computation of expectation values in
quantum field theories. It has been used in several domains
of research, one of the latest being the search for solutions
to the sign problem; see Refs. [25,26] and references
therein.
To introduce the basics of SQ in a simple way, we start

with a lattice scalar field theory with action S½ϕ�. In SQ its
d.o.f. ϕðnÞ are updated by numerically integrating a
Langevin equation reading

∂ϕðn; tÞ
∂t ¼ −

∂S½ϕ�
∂ϕðn; tÞ þ ηðn; tÞ; ð30Þ

where t is the so-called stochastic time and ηðn; tÞ is a
Gaussian noise satisfying

hηðn; tÞiη ¼ 0;

hηðn; tÞηðn0; t0Þiη ¼ 2δðn − n0Þδðt − t0Þ: ð31Þ

The subscript “η” stands for an average over the noise.
Given a generic observable OðϕÞ, it can be shown [27] that
the time average

ŌðϕÞ ¼ lim
T→þ∞

1

T

Z
T

0

dtOðϕÞ; ð32Þ
4This result can be obtained with some algebra after the

introduction of the formal perturbative expansion in g0 described
in the next section.
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is equal to the path-integral mean value, i.e.,

ŌðϕÞ ¼ 1

Z

Z
DϕOðϕÞe−S½ϕ�; ð33Þ

with Z being the partition function. After discretizing the
stochastic time t as t ¼ mϵ (with integer m), Eq. (30) can
be numerically integrated through the prescription5

ϕðn;mþ 1Þ ¼ ϕðn;mÞ − fðn;mÞ; ð34Þ

where the force term fðn;mÞ in the Euler scheme is given by

fðn;mÞ ¼ ϵ
∂S½ϕ�

∂ϕðn;mÞ −
ffiffiffi
ϵ

p
ηðn;mÞ; ð35Þ

with ηðn;mÞ ¼ ffiffiffi
ϵ

p
ηðn; t ¼ mϵÞ. Since the equivalence in

Eq. (33) holds only for continuous t, computer simulations
with different values of ϵ have to be carried out to
extrapolate to ϵ → 0. It is worth stressing that an accept/
reject step after each update6 would make the algorithm
exact and, consequently, no extrapolation in ϵ would be
needed any more since no step-size error would remain.
Unfortunately, implementing an accept/reject step in the
NSPT setup—introduced later on in this section—is not
straightforward because of the perturbative character intrin-
sic to NSPT itself. Therefore, in the NSPT framework, step-
size errors can be eliminated only by extrapolating to
ϵ → 0, i.e., by performing simulations with different values
of ϵ. However, taking into account the overall scarcity of
algorithms allowing for numerical computations within PT,
we deem said drawback of NSPT as altogether mild and,
consequently, consider NSPT a valuable tool to tackle
lattice studies in a perturbative framework.
The SQ setup for the scalar theory has to be modified in

order to be applied to SUð3Þ link variables. In this respect,
Eq. (30) is modified as

∂Uμðn;tÞ
∂t ¼−i

X8
a¼1

Ta½∇a
n;μSG½U�−ηaμðn;tÞ�Uμðn;tÞ; ð36Þ

where the matrices Ta are the generators of the SUð3Þ
algebra [with normalization trðTaTbÞ ¼ 1

2
δab] and ∇a

n;μ is

the Lie derivative—with respect to the algebra fields
associated to the variable UμðnÞ—defined as [28]

f½ei
P

a
ωaTa

U� ¼ f½U� þ
X
a

ωa∇af½U� þOðω2Þ; ð37Þ

with f½U� being a scalar function of the group variable U
and ωa’s small parameters. The noise ηaμðn; tÞ appearing in
Eq. (36) satisfies the conditions

hηaμðn; tÞiη ¼ 0;

hηaμðn; tÞηbνðn0; t0Þiη ¼ 2δðn − n0Þδðt − t0Þδμνδab;

i.e., the straightforward extension of Eq. (31) incorporating
the d.o.f. associated to space-time directions and group
components.
The group counterpart of Eq. (34) reads

Uμðn;mþ 1Þ ¼ e−i
P

a
Tafaμðn;mÞUμðn;mÞ; ð38Þ

with

faμðn;mÞ ¼ ϵ∇a
n;μSG½U� − ffiffiffi

ϵ
p

ηaμðn;mÞ: ð39Þ

In this framework, PT up to NL loops can be introduced
by a formal expansion of each gauge field as

AμðnÞ¼Að1Þ
μ ðnÞβ−1

2þAð2Þ
μ ðnÞβ−1þ���þAð2NLÞ

μ ðnÞβ−NL;

UμðnÞ¼1þUð1Þ
μ ðnÞβ−1

2þUð2Þ
μ ðnÞβ−1þ���þUð2NLÞ

μ ðnÞβ−NL;

ð40Þ

with β ¼ 6=g20. A few remarks are in order concerning
Eq. (40). First, the leading order of UμðnÞ is 1 in the light
of the previous choice of the fields Ck and C0

k (see the
comments at the end of the previous section). Second, while

the fields AðiÞ
μ ðnÞ are elements of the Lie Algebra of SUð3Þ,

the fields UðiÞ
μ ðnÞ—taken one by one—do not belong to the

SUð3Þ group but UμðnÞ on the lhs of the second of Eq. (40)
does, excluding termsof orderOðβ−NL−1=2Þ andhigher in PT.
Finally, a Taylor expansion of the exponential of AμðnÞ
allows to obtain the group variable UμðnÞ, while a similar
expansion of the logarithm of UμðnÞ results in AμðnÞ.
Plugging the second of Eq. (40) into a discretized version

of Eq. (36) results in a hierarchical system of differential
equations where the evolution of a given order UðiÞ

μ ðnÞ only
depends on lower orders, thus allowing for a consistent
truncation at the needed loop NL. In this setup, the noise
ηaμðnÞ enters at order g0 after a further rescaling of ϵ with β,
as explained in Ref. [29].
This is the core of the NSPT algorithm which has been

applied to lattice QCD in order to study—among others—
the free energy density at finite temperature [30–32],

5In what follows, the dependence of any d.o.f. with respect to
the discretized stochastic time will be left implicit, unless needed;
in this case, only the integer index “m” will be retained and the
time step ϵ will be dropped.

6At present, within SQ there is actually no prescription to
implement such an accept/reject step using Runge-Kutta (RK)
integrators. However, an exact SQ-inspired algorithm can be
implemented as a variant of the generalized HMC algorithm, as
long as the approach is nonperturbative. In fact, as stressed in the
main text, as soon as PT is introduced, in the SQ framework no
strategy to implement an accept/reject step is known, irrespective of
whether RK integrators or variants of the HMC algorithm are used.
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renormalization constants [33–37] and renormalons
[12,29,38–42].
In order to prevent fluctuations associated to the random-

walk behavior of gauge modes [13], the updating step in
Eq. (38) has to be alternated with the so-called stochastic
gauge fixing [43]. In other words, before moving from
configuration Uμðn;mÞ to Uμðn;mþ 1Þ in stochastic time,
each field Uμðn;mÞ has to undergo a gauge transformation
like

Uμðn;mÞ → Gðn;mÞUμðn;mÞG†ðnþ μ̂; mÞ; ð41Þ
where the matrices G belong to the SUð3Þ group as well.
With periodic boundary conditions along all directions, a
common choice for GðnÞ is GðnÞ ¼ exp½ΩðnÞ� whereΩðnÞ
reads [44]

ΩðnÞ ¼ −iα
X
μ

∂�
μAμðnÞ ð0 < α < 1Þ; ð42Þ

which results in fluctuations around the Landau gauge.
With Dirichlet boundaries, this definition of the entries of
the matrix ΩðnÞ is modified [45] for sites with n0 ¼ 0 or
n0 ¼ NT − 1 as follows:

ΩðnÞab ¼
( 1

N3
S

P
n0
½A0ðn0Þ�ab if a ¼ b and n0 ¼ 0;

0 otherwise;

where the constraint n00 ¼ 0 holds in the sum over n0.
To carry out the computation of correlators fAðnÞ and

fPðnÞ entering in the bare PCAC quark mass, it is necessary
to contract the fermionic fields in Eq. (23) and, therefore, to
invert the Wilson-Dirac operator D in Eq. (9). This is done
following Ref. [13]: given a generic operator M and its
perturbative expansion M ¼ P

k¼0g
k
0M

ðkÞ, its inverse M−1

can be expanded perturbatively as

M−1 ¼ Mð0Þ−1 þ
X
k>0

gk0M
−1ðkÞ ; ð43Þ

where the tree-level term is the inverse of the zero-order term
of M while, recursively,

M−1ð1Þ ¼ −Mð0Þ−1Mð1ÞMð0Þ−1 ;

M−1ð2Þ ¼ −Mð0Þ−1Mð2ÞMð0Þ−1 −Mð0Þ−1Mð1ÞM−1ð1Þ ;

…

M−1ðnÞ ¼ −Mð0Þ−1 Xn−1
j¼0

Mðn−jÞM−1ðjÞ :

The expression for Dð0Þ−1 can be found in Sec. 3.1
of Ref. [18].
Finally, it is worth mentioning that, in the setup

discussed so far, there are no zero modes to take care
of: this is due to the Dirichlet boundary conditions for the
fermions and to the nonvanishing value of the angle θ

associated to the covariant derivatives in Eq. (10); the latter
condition actually modifies (typically increases) the spec-
tral gap of the massless Dirac operator with SF boundaries.

V. DATA ANALYSIS AND RESULTS

Simulations were performed with the following values of
the parameters: θ ¼ 1.2, ϵ ∈ f0.005; 0.007; 0.010; 0.015;
0.020g and NS∈f11;12;13;14;15;16;17;18;20;24;32g.
Note that, since the Euler scheme is employed in the
integration of the Langevin equation, only three values of ϵ
would actually be needed to extrapolate to ϵ → 0. However,
we used five time steps in order to increase the precision of
the extrapolation. In our analysis we did not make use of
the data obtained from the simulations featuring NS lower
than 11 since such data turned out to be rather noisy: this
phenomenon is actually puzzling and, unfortunately, we
have to admit that we could not find any convincing
explanation for it.
Table I details the number of measurements of observ-

ables fA and fP in Eq. (23)—and, hence, of the unrenor-
malized PCAC quark mass—for the different combinations
of simulation parameters ðNs; ϵÞ. For each setup two
subsequent measurements were separated by 100
Langevin updates of the lattice configuration in order to
reduce the autocorrelation.7 It is worth stressing that these
100 updating steps usually took approximately half of the
time needed to perform a single measurement of the bare
PCAC quark mass.
Figure 1 shows a plot of the unimproved bare PCAC

quark mass in lattice units—see Eq. (24) for its definition in
physical units—at the first (amð1Þ) and second loop (amð2Þ)
in powers of β−1=2 vs ϵ together with the extrapolated result.
Statistical errors on the data in blue in Fig. 1 have been
obtained through a jackknife procedure.
Before computing cð2ÞA , we check to which extent our

approach is reliable: it is understood that all bare PCAC
quark masses referred to in the rest of this section are
obtained from an extrapolation to ϵ → 0 like that shown
in Fig. 1.8

As a first test, we compare the analytical result for the
tree-level bare PCAC quark mass in lattice units [18] with

7In order to give the reader an idea of the simulation cost, we
quote the autocorrelation time ACT of the most expensive
observable that has been measured, i.e., the two-loop contribution
to the bare PCAC quark mass at NS ¼ 32 and ϵ ¼ 0.005: for said
observable in such a setup, the ACT reads approximately 200
Langevin updates.

8The only exception to this assumption is given by tree-level
quantities since they do not depend on the Langevin time ϵ. This
is due to the rhs of Eq. (39), whose leading order is g0; in fact, in
the present setup, the action derivative is zero at tree level while,
as already mentioned before, the Gaussian noise enters at order g0
in PT. Consequently, the tree level of any variable UμðnÞ does not
evolve with respect to the stochastic time and bears no statistical
error.
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our estimate. The two values agree apart from round-
off errors that are usually lower than 0.03%; the smallest
tree-level bare PCAC quark mass we measure is equal to
2.97 × 10−6 for NS ¼ 32, which is also the extent where
round-off errors turn out to be the largest.
As a second check, we now work out the one-loop

coefficient cð1ÞA and compare it to the value determined in
Ref. [18]. To better explain the fit strategy, we rewrite the
product of the lattice extent LS times the improved bare
PCAC quark mass mimp in Eq. (25) as

mimpLS ¼ ðmþ cAδmÞLS; ð44Þ

wherem is defined in Eq. (24) and a has been set to 1; let us
recall once more that any dependence in the lattice spacing
is purely formal. Plugging Eq. (19) into the previous
formula, at the one-loop level we have

mð1Þ
impLS ¼ ðmð1Þ þ cð1ÞA δmð0ÞÞLS: ð45Þ

δmð0Þ corresponds to the tree-level contribution to the term
(including the denominator) multiplied by cA on the rhs of
Eq. (25): being a quantity at tree level, it bears no error.
In order to determine cð1ÞA , we proceed as follows:

tentative values c̃ð1ÞA are assigned to cð1ÞA , mð1Þ
impLS is fitted

vs fð1=NSÞ ¼ d 1
NS

and any c̃ð1ÞA is eventually retained as
valid if the coefficient d is compatible with 0 within error

bars. In this way, we obtain a range ½c̃ð1ÞA;min; c̃
ð1Þ
A;max� of valid

values for cð1ÞA and we quote as the mean value c̄ð1ÞA and
statistical error σ

cð1ÞA
on this one-loop improvement coef-

ficient the expressions

c̄ð1ÞA ¼ c̃ð1ÞA;min þ c̃ð1ÞA;max

2
; σ

cð1ÞA
¼ c̃ð1ÞA;max − c̃ð1ÞA;min

2
: ð46Þ

As for the systematic error, its main source is given by
the truncation of the function fð1=NSÞ at the first order in
1=NS. Therefore, the best way to assess the systematics
would be to repeat the procedure above with a function of
higher order in 1=NS and to compare the outcome with that
obtained with a linear function. In fact, as pointed out in
Ref. [18], for relatively large values of θ as that used in this
study, corrections going like 1=N2

S can be comparable to the
leading contribution 1=NS. Unfortunately, our data are not
precise enough to support higher-order terms in fð1=NSÞ:
any attempt of fit in this sense results in an extremely poor

determination of cð1ÞA . In order to assess the systematic error

in a somehow coarser way, we carry out the fit ofmð1Þ
impLS vs

fð1=NSÞ ¼ d 1
NS

as before but within a range of NS limited
to the three smallest extents (i.e., NS ∈ ½11; 13�). Since the
latter is the regime where higher-order corrections in NS

should have more impact, the mean value of cð1ÞA obtained in

TABLE I. Number of measurements (in tens of thousands) of
fA and fP for the different combinations of simulation parameters
(NS,ϵ).

ϵ

NS 0.005 0.007 0.010 0.015 0.020

11 21.2 19.8 19.7 19.7 19.7
12 20.4 18.0 25.2 19.7 18.9
13 19.8 21.8 19.8 24.8 19.3
14 19.0 29.9 27.9 28.1 28.2
15 18.5 18.0 18.0 19.5 18.0
16 17.9 18.1 18.0 17.9 18.8
17 18.8 18.6 18.9 18.3 17.9
18 17.3 15.8 17.6 13.3 17.0
20 13.5 13.1 15.4 13.3 12.8
24 12.6 13.3 12.8 13.3 13.4
32 3.3 3.3 3.0 2.8 2.6

FIG. 1. An example of the extrapolation to ϵ → 0 of the unimproved bare PCAC quark mass in lattice units at the first (left) and second
loop (right) in powers of β−1=2 withNS ¼ 24. In both panels the black, leftmost point represents the extrapolated result, the points in blue
represent the results at finite ϵ obtained with the NSPT simulations while the red, continuous line corresponds to the fit function.

CHRISTIAN TORRERO PHYS. REV. D 99, 014517 (2019)

014517-8



this way should feature the largest deviation with respect to

the mean value of cð1ÞA computed with the fit employing all
available sizes. Such a deviation could then be considered
as a rough estimate of the systematic error.
Following this strategy and converting our expansion in

β−1=2 into a series in g0, the result we obtain for cð1ÞA reads

cð1ÞA ¼ −0.00701ð53Þð50Þ; ð47Þ

where the first and second errors are the statistical and
systematic uncertainties respectively. Within error bars, this

value is in reasonable agreement with cð1ÞA ¼ −0.00756ð1Þ
quoted in Ref. [18], though the precision of the latter
estimate is much higher than that obtained with NSPT.
If we now move to the evaluation of cð2ÞA , we can first

write the counterpart of Eq. (45), i.e.,

mð2Þ
impLS ¼ ðmð2Þ þ cð1ÞA δmð1Þ þ cð2ÞA δmð0ÞÞLS

¼ ðm̃ð2Þ þ cð2ÞA δmð0ÞÞLS; ð48Þ

where cð1ÞA has been set to its known value cð1ÞA ¼ −0.00756.
Starting from the last expression, the same procedure
adopted at the one-loop level can be applied to the fit of

mð2Þ
impLS with respect to 1=NS, but mð1Þ in Eq. (45) has to be

replaced with m̃ð2Þ ¼ mð2Þ þ cð1ÞA δmð1Þ. Similarly to that
remarked before for δmð0Þ, δmð1Þ corresponds to the one-
loop contribution to the term (including the denominator)
multiplied by cA on the rhs of Eq. (25).
After converting again the expansion in β−1=2 into a

series in g0, the result we get for cð2ÞA is

cð2ÞA ¼ −0.00256ð22Þð6Þ: ð49Þ

While at one loop the systematic error is essentially equal
to the statistical one, at the two-loop level systematic
effects seem to be apparently less important. This is most
likely a consequence of a worse signal-to-noise ratio
at the second loop, as shown in Fig. 2 where mð1ÞLS

and m̃ð2ÞLS are plotted—together with theirOðaÞ-improved
counterparts—in the left and right panel respectively. At
one loop, statistical errors are smaller and, consequently,
the trend of the data is altogether better defined, thus
allowing for the rough assessment of subleading correc-
tions in 1=NS outlined above. On the contrary, at the two-
loop level the trend of the data is harder to be determined
due to the larger error bars: this eventually leads to a more
difficult estimate of the impact of subleading contributions
in 1=NS and, in practice, to an apparently small systematic
error. In order to be somehow more conservative, we
assume the systematic error at the two-loop level to be
roughly comparable to the statistical uncertainty, as it is the
case for the first-loop result in Eq. (47). In this spirit, the

estimate for cð2ÞA would read

cð2ÞA ¼ −0.00256ð22Þð20Þ: ð50Þ

For completeness, in Table II we provide—for the
different values of NS—the ϵ → 0 results for mð1Þ, mð2Þ,
δmð0Þ and δmð1Þ (in lattice units), i.e., all the mass

contributions entering the computation of cð1ÞA and cð2ÞA
explained in this section.

FIG. 2. Plots of mð1ÞLS (left, in blue) and m̃ð2ÞLS (right, in blue)—as referred to on the rhs of Eqs. (45) and (48) respectively—vs
1=NS. The points in red denoted with stars correspond to their improved counterparts—referred to on the lhs of the same equations—

where cð1ÞA on the left and cð2ÞA on the right have been set to the mean values reported in Eqs. (47) and (49) respectively (with a conversion
from powers of g0 to powers of β−1=2 properly taken into account). Observables in both panels refer to a perturbative expansion in β−1=2

and can be computed starting from the values in Table II.
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VI. CONCLUSIONS

By studying the cutoff dependence of the unrenormalized
PCAC quark mass, we carried out an exploratory, perturba-
tive determination of the improvement coefficient cA to two
loops by using NSPT in the quenched approximation. The
cross-checks at zero and one loop in PTreproduce—with fair
precision—results previously obtained in other independent
studies, thus indicating that NSPT can in principle be used
in this kind of computations, even at orders where non-
numerical approaches are usually too cumbersome from an
algebraic point of view.Let us recall that the loopNL atwhich
the Taylor series in Eq. (40) are truncated is in fact just a
parameter and increasing it does not entail any extra work
from the point of view of computer coding.
However, though viable in theory, at a practical level

NSPT seems to be very demanding in terms of computer
resources when it comes to producing an accurate estimate
of the improvement coefficients, even in a relatively simple
setup as that examined in this study, featuring the quenched
approximation and the Wilson action at two loops. Indeed,
in spite of having employed some millions of CPU hours,
data are still rather noisy, as shown in Fig. 2: though not
optimal at the first loop already (and, in fact, our estimate
for cð1ÞA is much less precise than that contained in

Ref. [18]), the deterioration of the signal at higher order
in PT is manifest and is particularly reflected in a difficult
assessment of the systematic uncertainty. It might be that
observables other than that examined in this study—i.e.,
the unrenormalized PCAC quark mass—display an intrinsi-
cally better signal-to-noise ratio but, at present, we would
have no suggestion to make with respect to this issue.
Our understanding is that reducing error bars to a level at
which NSPT data can be accurately fitted (and improve-
ment coefficients precisely determined) would most likely
require considerable computer resources irrespective of
the quantity being monitored, especially if higher orders in
PT are envisaged and/or more interesting—but also more
demanding—setups are considered, as that of unquenched
simulations. More or less recently, some works have
actually been published [46–48] proposing some technical
changes to the standard NSPT approach followed in this
study. Such changes yield new setups—called Instantaneous
Stochastic Perturbation Theory, Hybrid Stochastic
Perturbation Theory and Kramers Stochastic Perturbation
Theory—that seem to be highly beneficial in remedying the
shortcomings of the standard version of NSPTwe employed:
in particular, this appears to be true for the formulation
described in Ref. [48]. It would be extremely interesting to

carry out a computation of cð2ÞA with the latter setup in order to
(hopefully) get a more precise estimate of this improvement
coefficient at a much lower computational cost.9

Nevertheless, we believe that the original result of this
project, i.e., the evaluation of the coefficient cð2ÞA for
Nf ¼ 0, can serve as a benchmark to some extent; indeed,
we are confident that at least its negative sign and its order
of magnitude (that is, 10−3) are reliable.
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TABLE II. ϵ → 0 results for the one- and two-loop contribu-
tions mð1Þ and mð2Þ to the unimproved PCAC quark mass and for
the improvement mass term at tree level (δmð0Þ) and first-loop
order (δmð1Þ) for the values of NS used in this study: here all of
these quantities are expressed in lattice units. The values in
brackets correspond to the statistical error affecting all observ-
ables except those at tree level as explained in footnote 8. The
perturbative expansion all these observables are associated to is in
powers of β−1=2.

NS amð1Þ amð2Þ aδmð0Þ aδmð1Þ

11 0.0031(2) 0.0048(04) 0.0711 −0.0460ð65Þ
12 0.0029(3) 0.0021(16) 0.0598 −0.0494ð64Þ
13 0.0025(5) 0.0018(28) 0.0510 −0.0408ð51Þ
14 0.0018(3) 0.0032(18) 0.0440 −0.0307ð67Þ
15 0.0013(2) 0.0062(21) 0.0383 −0.0192ð55Þ
16 0.0011(5) 0.0006(10) 0.0337 −0.0134ð25Þ
17 0.0017(6) 0.0043(32) 0.0298 −0.0148ð60Þ
18 0.0012(3) 0.0003(14) 0.0266 −0.0083ð17Þ
20 0.0002(5) 0.0039(17) 0.0216 −0.0013ð37Þ
24 −0.0005ð3Þ 0.0014(16) 0.0150 −0.0006ð31Þ
32 0.0017(7) −0.0003ð38Þ 0.0084 0.0060(46)

9We regret that we did not experiment with any of these new
formulations ourselves. Unfortunately, the first of said papers,
i.e., Ref. [46] was published when the present project was almost
coming to its end (in fact, personal reasons independent of our
will considerably delayed the publication of our results). Such
bad timing prevented us from taking advantage of any of the
techniques described in Refs. [46–48].
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