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As is well known the complex Langevin (CL) method sometimes fails to converge or converges to the
wrong limit. We identified one reason for this long ago: insufficient decay of the probability density either
near infinity or near poles of the drift, leading to boundary terms that spoil the formal argument for
correctness. To gain a deeper understanding of this phenomenon, we analyze the emergence of such
boundary terms thoroughly in a simple model, where analytic results can be compared with numerics. We
also show how some simple modification stabilizes the CL process in such a way that it can produce results
agreeing with direct integration. Besides explicitly demonstrating the connection between boundary terms
and correct convergence our analysis also suggests a correctness criterion which could be applied in
realistic lattice simulations.
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I. INTRODUCTION

It has been known for a long time that the complex
Langevin (CL) method for simulating systems with complex
action may fail by either not converging or by converging to
the wrong limit. These failures were traced either to insuffi-
cient decay of the probability distribution in the complexified
configuration space [1–3] (at infinity or at poles of the drift
force), or to failure of ergodicity [4,5]. Recently Salcedo [6]
has formulated interesting criteria for failure that at first sight
seem to be unrelated to the ones identified by us. The most
interesting ones derive support properties of the equilibrium
measurewhich are shown in these cases to be in conflict with
the correct expectation values.
In this paper we will focus on one such example and

show explicitly that the problems are due to slow decay,
leading to the appearance of boundary terms in an inte-
gration by parts, spoiling the formal proof of correctness.
We stress that we are here concerned with the behavior at
large noncompact dimensions. The effects of nonholomor-
phicity have been shown, e.g., in random matrix models

[7,8] to lead to wrong convergence and were specifically
addressed in [4] both in simple models and in QCD.
Here we consider a complex density

ρðxÞ ¼ expð−SðxÞÞ; ð1Þ
periodic with period 2π and extending to an entire analytic
function without zeroes.
The complex Langevin equation (CLE) in the form used

here is

dx ¼ Kxdtþ dw; dy ¼ Kydt; ð2Þ
where dw is the Wiener process normalized as

hdw2i ¼ 2dt ð3Þ
and the drift is given by

Kx ¼ −ReS0ðxþ iyÞ; Ky ¼ −ImS0ðxþ iyÞ: ð4Þ

The long time asymptotic average of a generic observable
O is denoted by hOi∞; we say that the CL process yields
correct results if this agrees with the “correct” expectation
value of the same observable defined as

hOic ¼
Z

dxOðxÞρðxÞ; ð5Þ

i.e.,

hOi∞ ¼ hOic: ð6Þ
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In [1,2] correctness was derived from the consideration of
CL expectation values at finite Langevin time; it was shown
that correctness is assured if a certain quantity FOðt; τÞ is
independent of an interpolation parameter τ ∈ ½0; t�, i.e.,

∂
∂τFOðt; τÞ ¼ 0: ð7Þ

Here FOðt; τÞ interpolates between the correct time
evolution FOðt; tÞ ¼ hOðtÞi0 (defined in Sec. III and ana-
lyzed in Appendix B) and the time evolution of the expect-
ation ofO under the Langevin processFOðt; 0Þ ¼ hOit. The
key points are that (7) implies

hOit ¼ hOðtÞi0 ∀ t > 0 ð8Þ

and hence,

lim
t→∞

FOðt; tÞ ¼ hOic: ð9Þ

The left-hand side of (7), by using integration by parts, is
found to be equal to a boundary term; explicitly

∂
∂τFOðt; τÞ ¼ lim

Y→∞
BOðY; t; τÞ; ð10Þ

where

BOðY; t; τÞ ≡ ð11Þ
Z

½Kyðx; YÞPðx; Y; t − τÞOðxþ iY; τÞ

− Kyðx;−YÞPðx;−Y; t − τÞOðx − iY; τÞ�dx; ð12Þ

Pðx; y; tÞ is the time evolved probability density under the
Langevin evolution and OðtÞ≡Oðz; tÞ is the Lc evolved
observable (see Sec. III and Appendix B).
This form of the boundary term makes clear that correct-

ness requires sufficient decay of the product KyPO for all
Langevin times t.

II. THE MODEL

The model studied here is defined by the complex
density

ρ ¼ 1

ZðβÞ exp ½−iβ cosðxÞ� ð13Þ

and has been studied already in 2007 by Stamatescu [9] and
in 2008 by Berges and Sexty [10]. The correct expectation
values of exponentials (“modes”) are

Z
dx expðikxÞρðxÞ ¼ Ikð−iβÞ

I0ð−iβÞ

¼ ð−iÞk JkðβÞ
J0ðβÞ

≠ 0: ð14Þ

It was found in [9,10] that the CL process does not
reproduce the correct EV’s which, however, can be
regained by a certain reweighting procedure (with different
observables requiring sometimes different reweightings).
The remarkable fact found by Salcedo [6] is that the

static probability distribution Pðx; yÞ≡ Pðx; y;∞Þ for this
model can be written down explicitly by solving the time
independent Fokker-Planck equation (FPE); it is

Pðx; yÞ ¼ 1

4πcosh2ðyÞ : ð15Þ

It is the only non-Gaussian example known to us for which
a solution of the static FPE has been found in analytic form.
Three features of this solution are remarkable:
(1) P is independent of x,
(2) P is independent of β,
(3) P decays as expð−2jyjÞ for large jyj; this decay is not

sufficient to make the integrals of the modes

expðikðxþ iyÞÞ; jkj ≥ 2 ð16Þ

absolutely convergent, in other words, already here
we are faced with slow decay.

A. Complex Langevin results

But first let us demonstrate that (15) is indeed the
distribution produced by running a CL simulation for a
long time. The drift force is

Kx ¼ Re
ρ0

ρ
¼ −β cosðxÞ sinhðyÞ

Ky ¼ Im
ρ0

ρ
¼ β sinðxÞ coshðyÞ; ð17Þ

for the Langevin process Eq. (2).
In Fig. 1 we show the histogram of the converged

marginal distribution Pyðy; tÞ ¼
R
dxPðx; y; tÞ in log scale

for β ¼ 1, overlaid with the distribution (15). The histo-
gram is obtained from one long trajectory (Langevin time
t ≈ 125 000). The agreement over about 6 orders of
magnitude is convincing. The distribution can also be seen
to be independent of x, cf. also Fig. 8.
We also show in Fig. 2 the histograms of Pyðy; tÞ for

various shorter times and β ¼ 0.1, illustrating the conver-
gence as t → ∞.
As noted by Salcedo [6], it is obvious that the distribu-

tion P (15) cannot reproduce the correct expectation values
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Eq. (14) of the observables Ok ¼ expðikxÞ, because it is
independent of x, entailing

Z
dxPðx; yÞe�ikx ¼ 0; ð18Þ

and its slow decay makes the expectation values of Ok ill
defined for jkj ≥ 2. In Table I we collect a few CL results,
together with the exact expectation values determined by ρ
for β ¼ 1. The simulation used 100 independent trajectories

with randomly chosen starting points on the real axis,
running for a Langevin time of t ≈ 2500, where measure-
ments were taken after every time step, typically 5 × 10−6.
The CL values for jkj > 2 are completely submerged by
noise, as expected. For k ¼ �2we find a value close to 1. It
should be remarked that the CL process for k ¼ 2 evaluates
a conditionally convergent integral, so also the measuring
schedule plays a role; for instance measuring after every
time increment of 0.01 yields very noisy results, consistent
with both 0 and 1. Evaluating the second mode with a fixed
cutoff in y, we find 0.
The Schwinger-Dyson equations (SDE)

ikheikzi þ β

2
heiðkþ1Þzi − β

2
heiðk−1Þzi ¼ 0; ð19Þ

arising from the identity

Z
π

−π
ρðxÞO0ðxÞdx ¼ −

Z
π

−π
ρ0ðxÞOðxÞdx ð20Þ

would be satisfied for k ¼ 0, �1 if the modes �1 are 0 and
the modes �2 are 1, even though these values are not the
correct ones.
So the CL results, where they are defined, are incorrect,

but mostly—for jkj ≥ 3, they are completely undefined due
to uncontrollable fluctuations.
The last row in the table gives the correct results from the

Lc evolved observables, as will be explained in the next
section. Notice that the correct results of course also satisfy
the SDE, but these equations, having the structure of
a two-step recursion, have a two-parameter family of
solutions [2,11,12].

B. A puzzle

The remaining question is: how can CL fail for the first
mode, i.e., observables O�1 ≡ expð�iðxþ iyÞÞ? O�1P as
well as KP decay exponentially in y.
Actually the densities ofO�1 and K, if considered not as

functions of y, but as functions of their actual value decay
only powerlike [see Eq. (40)]. Nagata et al. [13] gave an
argument that correctness requires exponential decay of the
distribution of K and checked their criterion successfully
for various cases; so by this criterion correctness is not to be
expected here, corroborating the criterion. We will, how-
ever, formulate a different criterion in Sec. III, which
directly relates to the (non)occurrence of boundary terms.
The CL simulation produces forO�1 well converged, yet

incorrect results, close to 0 [consistent with (15) but
inconsistent with (14)].
The resolution lies in the nonvanishing boundary terms

arising in the time dependent expectation values and
persisting for arbitrarily large times; this is the mechanism
described in [1,2]. In the following section we will analyze
those boundary terms in detail.

FIG. 2. The marginal distributions Pyðy; tÞ obtained by numeri-
cally solving the FPE for β ¼ 0.1. The ordering of times
corresponds to decreasing maxima; note that for t ¼ 200 no
difference is visible between the FPE and the analytical solution.

FIG. 1. Comparison of the analytic expression for the marginal
distribution Pyðy; tÞ (15) (red) with the histogram of a CL
simulation with β ¼ 1.

TABLE I. CLE (real part, imaginary part negligible) and correct
results for model (13) with β ¼ 1. Last line: “correct evolution”
for t ¼ 20 (see Appendix B).

hOi heixi he−ixi he2ixi he−2ixi
CL 0.004(3) 0.002(3) 1.027(22) 1.001(20)
Correct −0.575 081i −0.575 081i −0.150 162 −0.150 162
etLcO −0.575 081i −0.575 081i −0.150 162 −0.150 162
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III. BOUNDARY TERMS FOR FINITE
LANGEVIN TIME

The formal argument for correctness [1,2] is revisited in
Appendix A. It requires the choice of an initial distribution
Pðx; y; 0Þ; in the following we will choose for simplicity

Pðx; y; 0Þ ¼ 1

2π
δðyÞ: ð21Þ

The identity (7) follows by integrating by parts, assuming
that there are no boundary terms, and using the Cauchy-
Riemann equations.
In order to check for the appearance of boundary terms

as in (12), we need the Lc evolution of the observables (see
below and Appendix B) and the time evolution of the
probability density P by solving the FPE with the initial
condition (21).

A. Indirect evidence for boundary terms

In [2] we found numerically for a somewhat different
model that the Lc evolved observablesOðxþ iy; tÞ grow in
the y direction as an iterated exponential. The same can be
seen here, but we will not go into this. This growth makes
the appearance of boundary terms already plausible.
In the following we show explicitly that Eq. (7) is

numerically satisfied for short times (up to t ≈ 20), choos-
ing β ¼ 0.1.
The Lc evolution of an observable O is defined by the

differential equation

∂tOkðz; tÞ ¼ LcOkðz; tÞ ðt ≥ 0Þ;
Okðz; 0Þ ¼ expðikzÞ; ð22Þ

with

Lc ¼ ½∂z − S0ðzÞ�∂z: ð23Þ

We compare [see (36) for the definition of FO]

Z
dxdyPðx;y;0ÞOðxþ iy; tÞ≡FOðt; tÞ≡ hOðtÞi0 ð24Þ

with

Z
dx dyPðx; y; tÞOðxþ iy; 0Þ≡ hOð0Þit

≡ hOit ≡ FOðt; 0Þ: ð25Þ

Here Pðx; y; tÞ is the solution of the real Fokker-Planck
equation (FPE)

∂
∂t Pðx; y; tÞ ¼ LTPðx; y; tÞ; ð26Þ

with

LT ¼ ∂x½∂x − Kx� − ∂yKy; ð27Þ

and initial condition (21), which describes the time evo-
lution of the probability density under the CL process.
For our model the FPE is (26) with the drift force (17).

Equation (26) is solved numerically as well; some details
are found in Appendix C.
Figure 3 compares (24) and (25) for the Fourier modes

OkðzÞ ¼ expðikzÞ: ð28Þ

for k ¼ 1, 2, 3, Langevin times t between 0 and 50 and
β ¼ 0.1.
It is seen that the left-hand side (24) reaches its

asymptotic value already for quite short Langevin times
(around t ≈ 7). This is in accordance with the value of the
smallest nonzero eigenvalue λ1 ≈ −1 of Lc [cf. Eq. (B6)].
For this value of β also the right-hand side does the same;
for t ⪅ 20 there is no difference visible between the left and
the right-hand sides (dashed and solid curves). This
indicates that any boundary terms are negligible there.
So there is a “plateau” corresponding to the correct value

in the solid curve, and the boundary term starts picking up
around t ¼ 20.
In Fig. 4 we show (in black) the evolution of the first

mode up to time t ¼ 200. It is seen that after the plateau it
converges to zero, the value corresponding to the stationary
solution (15) of the FPE. We will return to this figure
in Sec. V.

B. Direct study of the boundary terms

We next study explicitly the evolution of the boundary
term Eq. (12) for the modes k ¼ 1, 2, 3 and τ ¼ 0 with

FIG. 3. Comparison of expectation values using the FPE
evolution of P (solid lines) Eq. (25) with the Lc evolution of
the observables [dashed lines—Eq. (24)] for β ¼ 0.1. Note that
for times up to about 20 the dashed and solid lines are practically
indistinguishable.
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Langevin time t. As explained in Appendix A the definition
of this term implies a certain order of limits: Integrate by
parts restricted to jyj ≤ Y, send t → ∞ and then Y → ∞
(notice that this does not require a separate simulation but a
certain processing of the data). We obtain for the kth mode
in our model:

BkðY; t; 0Þ ¼
∂
∂τFkðt; τÞjτ¼0

¼ β

Z
π

−π
dx sinðxÞ coshðYÞeikx

× ½Pðx; Y; tÞe−Y − Pðx;−Y; tÞeY �: ð29Þ

We first note that we can take the limit t → ∞ of this
expression, using the fact that Pðx; y; tÞ indeed converges
to Eq. (15), which was verified before. We obtain

BkðY;∞; 0Þ

¼ −2β
Z

π

−π
dx

sinðxÞ coshðYÞeikx sinhðYÞ
4πcosh2ðYÞ : ð30Þ

For k ¼ �1 this can be evaluated to

B∓1ðY;∞; 0Þ ¼ ∓ iβ
2
tanhðYÞ; ð31Þ

(converging to ∓iβ=2 for Y → ∞), whereas for jkj > 1 we
obtain 0.
In Fig. 5 we compare B1 determined numerically for

Langevin times up to t ¼ 200 with the asymptotic value at
t ¼ ∞ for β ¼ 0.1. Y was chosen to be 5 which is close to
the asymptotic value Y ¼ ∞ (tanhð5.Þ ¼ 0.999 91). We see
here directly that the boundary term stays very small up to
t ⪅ 20, then picks up and approaches the analytically
determined value −iβ=2. For the value β ¼ 0.1 it also
follows closely the difference between the first mode
shown in Fig. 4 and the correct value, but this cannot
remain true for larger β.

We also checked the cases k ¼ 2, 3 and found that Bk
also starts out very small up to about t ¼ 20, then increases
and for large t seems to go to the asymptotic value 0
determined above. But one has to keep in mind that for
jkj ≥ 2 we are for Y → ∞ evaluating a conditionally
convergent integral; the CL process or equivalently the
FPE evaluates that integral in a different way and may
therefore produce different results. For k ¼ 1, however,
there is no such subtlety and the boundary term B1ð∞; t; 0Þ
agrees with the slope of Fkðt; τÞ at τ ¼ 0.
In Fig. 6 we also show the boundary term B1 for different

values of the cutoff Y, showing the fast approach to the
asymptotic value. Note that in the lower panel we show the
boundary term as measured using the CLE alone, without
making use of the Fokker-Planck evolution, which would
be prohibitively costly in a lattice model.
So we established implicitly and explicitly that boundary

terms appear appreciably only after some Langevin time.
Nonvanishing boundary terms at any t > 0 invalidates the
argument for correctness.
It can also seen by inspection of Eq. (29) that the

presence of the observable O1 is essential; the distribution
of the drift force alone goes to zero. Quite generally it is the
product of observable, drift and probability P that decides
about the presence or absence of boundary terms.

FIG. 4. FPE evolution ofO1 at β ¼ 0.1 (black). For comparison
we show the evolution with regularization KR;y ¼ −sy, s ¼ 0.1
(red), see Sec. IV.

FIG. 5. Numerical evolution via FPE of the imaginary part
of the boundary term Eq. (29) for β ¼ 0.1 (top) and β ¼ 0.5
(bottom), k ¼ 1 and Y ¼ 5.
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C. Boundary terms and skirts

Thinking now of Y not as a cutoff, but as a variable, and
denoting it by y again, we see that the first term of the
boundary term B1ðy;∞; 0Þ, considered as a function of y
Eq. (29) is just the probability density of the observable

vðyÞ≡ Im
Z

dxKyðx; yÞO1ðx − iyÞ ∼ e2y ð32Þ

for large y. The nonvanishing of the boundary term is the
fact that

lim
y→∞

vðyÞPyðyÞ ≠ 0: ð33Þ

On the other hand the distributions of v itself has a density
pðvÞ, related to P by

pðvÞ ¼ PyðyðvÞÞ
dy
dv

: ð34Þ

This can easily be worked out, but the point is that for
large y

pðvÞ ∼ v−2; ð35Þ

which shows that there is no finite expectation value of v
since vpðvÞ is not integrable.
In other words: a “skirt” in the distribution of KyO

falling off like the power −2 or more slowly corresponds to
a nonvanishing (possibly diverging) boundary term. Note,
however, such a simple reasoning is only possible because
here P is independent of x.

D. The interpolating function

So far we have only compared Fkðt; 0Þ and Fkðt; tÞ. But
it is instructive also to look at the interpolating function
Fkðt; τÞ

FOðt; τÞ≡
Z

Pðx; y; t − τÞOðxþ iy; τÞdxdy; ð36Þ

which should be independent of τ for the correctness
argument to hold. This is shown in Fig. 7 for k ¼ 1 for
β ¼ 0.1 and β ¼ 0.5.
Again it is seen that for β ¼ 0.1, t ⪅ 20 the curves are

flat, indicating the absence of any appreciable boundary
terms. For t > 20 a τ dependence develops, being maximal
near τ ¼ 0. This is understandable from what we have seen:
the FPE evolution of P proceeds up to time t − τ, which
allows for the boundary terms to arise. On the other hand,
for τ ⪆ 7 Okðz; τÞ has practically reached its asymptotic
limit (cf. Appendix B), in which only the constant mode
survives; this constant can be pulled outside the integral
defining F, so that for t; τ > 7

Okðz; τÞ ≈
1

2π

Z
π

−π
dx0ρðx0ÞOkðx0Þ ¼ hOkic ð37Þ

and

Fkðt; τÞ ≈
1

2π

Z
dxdyPðx; y; tÞhOkic ¼ hOkic: ð38Þ

i.e., the correct value (where we used the fact that the
density P is always normalized).
At small t, τ flat curves for F1ðt; τÞ indicate that CL gives

the correct values, however these are dependent on the
initial condition if the process did not yet thermalize. This
is seen in Fig. 7, bottom plot, for β ¼ 0.5.
Notice that the slope of Fkðt; τÞ appears maximal near

τ ¼ 0 for large t. Therefore the estimation of noxious
boundary terms as defined in (29) is relevant for judging the
asymptotic correctness of the CL procedure—cf. Figs. 5
and 7.
Plots similar to Fig. 7 appeared in [2] for a differ-

ent model.

E. Evolution of some marginal distributions

For β ¼ 0.1 we saw clearly the evolution first apparently
converging to the correct value and then departing from it

FIG. 6. Top panel: numerical evolution via FPE of the imagi-
nary part of the boundary term Eq. (29) for k ¼ 1, β ¼ 0.1 and
different values of Y vs t. Bottom panel: the same boundary term
evaluated via Langevin simulation at asymptotic t vs Y.
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(the plateau in Fig. 3). Similar behavior in Langevin time
was observed in a real time SUð2Þ lattice simulation [11].
This is also reflected in some marginal distributions.
In Fig. 8 we show the evolution of Pxðx; tÞ ¼R
dyPðx; y; tÞ for β ¼ 0.1. It starts out flat, corresponding

to our choice of initial condition; at t ¼ 10 and t ¼ 20 it
shows maximal structure, while for larger t it approaches a
flat distribution again, in agreement with (15).
The distribution of the first mode also show a similar

behavior. Of interest is the imaginary part. Its density is

σðu; tÞ≡
Z

dxdyPðx; y; tÞδðsinðxÞe−y − uÞ: ð39Þ

We present in Fig. 9 histograms for σðu; tÞ, obtained from
the numerical solution of the FPE; for the limiting
distribution Pðx; y;∞Þ ¼ 1=ð4π cosh2ðyÞ we can evaluate
(39) analytically:

σðu;∞Þ ¼ juj
π

Z
1

−1
dt

t2

ðt2 þ u2Þ2
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2

p

¼ 1

2ð1þ u2Þ3=2 : ð40Þ

Figure 9 shows first the development of an asymmetric
structure with two maxima, whereas for larger t one sees
clearly the approach to the symmetric analytic result (40).
In this context it may be of interest to compare with the

criterion of [13]. In Fig. 10 we show the distribution of the
drift itself for various Langevin times in double logarithmic
scale. The decay always seems powerlike, albeit with a very
high power for short times. This would indicate, according

FIG. 7. The interpolating function F1ðt; τÞ defined in (36) for
the first mode; β ¼ 0.1 (top) and β ¼ 0.5 (bottom) for various
values of t; the small circles denote the beginning and end of the
respective curves.

FIG. 8. The marginal distribution Pxðx; tÞ obtained from
solving the Fokker-Planck equation for β ¼ 0.1.

FIG. 9. Evolution of the distribution of the first mode σðuÞ. Top
panel: times from t ¼ 1 to 200 in linear scale; bottom panel: times
from t ¼ 50 to 200 in log scale. Again note that for t ¼ 200 no
difference is visible between the numerical results and the
analytic expression.
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to [13], that even for the small times where the CL results
seem to be correct (but not necessarily converged) there
might be a tiny boundary term making the results incorrect
by an invisible amount.

IV. ILLUSTRATION OF THE EFFECT
OF THE BOUNDARY TERMS IN A

REGULARIZED MODEL

In the preceding section we described how the boundary
terms accumulate in the Langevin (and Fokker-Planck)
evolution, spoiling the proof of convergence such that the
process would lead to wrong results.
Here we want to explicitly see the effect of those terms

by considering a “regularization” of the model using a
damping term in the action, SR ¼ s

2
x2, which leads to a

modification of the drift by KRðzÞ ¼ −sz (a similar
regularization has been used in [14]; we thank J. Drut
and A. C. Loheac for making us aware of this). The
philosophy of this regularization is very similar to that of
dynamical stabilization [15]. In both cases, and different
from modifications using symmetries, such as in the gauge
cooling paradigm, the dynamics is really changed, but in a
way intended to be controllable.
For s ¼ 0 we regain the original model Eq. (13) (includ-

ing its problems) while for s > 0 we should observe an
interplay between the original tendency to build boundary
terms and their damping in the modified model, allowing
us to estimate the effect of these terms. This particular
modification leads to loss of periodicity in x which
becomes noncompact at s > 0. The CLE process was
allowed to drift unbounded in the full z plane and the
exact integral was correspondingly done in the infinite
interval. The following plots show O1 ¼ Imheizi. We see
from Fig. 11 that the regularization stabilizes the expect-
ation values in the CLE evolution. When the nonregular-
ized data show a plateau at the correct value for
intermediary t the regularization extends this plateau into
the asymptotic region (β ¼ 0.1 case). When a plateau is

missing the regularization still stabilizes the expectation
value (EV) but at a value shifted from the correct one
(β ¼ 0.5 case), since now a larger s is needed to counteract
the boundary terms.
Note that an alternative regularization of the process

itself is to modify only the imaginary drift by a damping
term KR;y ¼ −sy. This leads to similar results (see Fig. 4,
here from the FPE evolution), and has the advantage that
periodicity in x is preserved. We preferred the action
variant, however, also since it allows us to obtain exact
correct results for the regularized model by simple numeri-
cal integration.
In Fig. 12 we show the s dependence in CLE for the

regularized model for the same values of β. The plots
suggest an extrapolation toward the exact expectation value
(EV) for s → 0, however this might not be simply linear,
but depend on the particular regularization, β, etc.
Therefore we mean this discussion not yet as a direct cure
but mainly as illustration of the effects of the boundary
terms on the EV’s. For k ¼ 1, e.g., these effects can be
estimated from the distance between the CLE regularized

FIG. 10. Histograms of the drift for different Langevin times t
and β ¼ 0.1.

FIG. 11. Comparison of the O1 expectation values from FPE
(solid line) and CLE and from regularized CLE, vs t. Top:
β ¼ 0.1, s ¼ 0 and 0.1, respectively. Bottom: β ¼ 0.5, s ¼ 0 and
0.4, respectively.
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data and the exact values from the numerical integration of
the regularized model: As can be seen from the figure at
small s these effects are still present while gradually
vanishing with increasing s.
Finally it is again instructive to look at the histograms

of the drift itself, as advocated by [13], to see the effect
of the regularization. This is shown in Fig. 13. One can
see that the distribution seems to show powerlike decay
s ¼ 0 whereas for s ¼ 0.1 the decay appears to be
exponential. This supports the criterion of [13], because
for the value of β ¼ 0.1 used here, already s ¼ 0.1 suffices
to bring the CL results into agreement with the correct
results of the regularized as well as the unregularized
model, which are indistinguishable in this case, as shown
in Fig. 12.

V. CONCLUSIONS

We have in great detail analyzed a simple example in
which the CL fails, establishing very explicitly that the
failure is due to boundary terms spoiling the correctness
argument, as argued already long ago [1,2]. The absence of

such boundary terms requires that the product of observ-
able, drift force and probability distribution (OKP) goes to
zero in the noncompact (imaginary) directions. The relation
between boundary terms and skirts, i.e., decay of distri-
butions was addressed in Subsection III C, making clear
that possible skirts in the distribution of the product OKP
and not just KP are relevant.
Generally the τ–dependent boundary term (A16) cannot

be estimated in a realistic (lattice) calculation. Fortunately,
however, the considerations in this paper suggest that
relevant for the correctness of the asymptotic (large t)
EV’s is the boundary term at τ ¼ 0, Bkðt; 0Þ, as defined in
(29). This term appears to approximately maximize Bkðt; τÞ
and it stabilizes at large t; it is accessible in principle
to online monitoring using the CLE alone, and may provide
a correctness criterion for the EV’s obtained in the CL
simulation.
As remarked before, uncovering the boundary term

requires a certain processing of the data obtained in the
simulation, implying essentially sampling first at a fixed
value of a quantity specifying the boundary in the non-
compact directions (in a lattice gauge theory for instance
the unitarity norm or some other related quantity) before
taking the other limits. This however does not require a
separate simulation.
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FIG. 12. Dependence ofO1 on the regularization parameter s of
the CLE simulation at β ¼ 0.1 (top) and 0.5 (bottom). The solid
lines show the exact correct values from numerical integration.

FIG. 13. Histogram of the drift for β ¼ 0.1 and various
Langevin times, comparing s ¼ 0 and s ¼ 0.1.
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APPENDIX A: THE ARGUMENT FOR
CORRECTNESS REVISITED

We briefly revisit the formal proof of correctness for the
CL method for our simple periodic one-dimensional
models, spelling out the conditions needed for it to work
as well as the mechanisms that may lead either to no
convergence or “wrong convergence” of the CL process
(cf. [2,4,5]).
Pðx; y; tÞ is the time dependent probability distribution

corresponding to the CL process, determined by the real
Fokker-Planck equation (26).
We also consider the time evolution of the complex

density ρðx; tÞ by the complex Fokker-Planck equation

∂
∂t ρðx; tÞ ¼ LT

cρðx; tÞ; ðA1Þ

where now the complex Fokker-Planck operator LT
c is

LT
c ¼ ∂x½∂x þ S0ðxÞ�: ðA2Þ

The initial conditions for (26) and (A1) are required to be
consistent, i.e.,

Pðx; y; 0Þ ¼ ρðx; 0ÞδðyÞ ≥ 0Z
ρðx; 0Þdx ¼ 1: ðA3Þ

The crucial point is that one can now, under conditions to
be spelled out below, show that

Z
dxOðxÞρðx; tÞ ¼

Z
dxdyOðxþ iyÞPðx; y; tÞ: ðA4Þ

If in addition the operator LT
c has spectrum in the left

half plane with 0 a nondegenerate eigenvalue, if follows
that

lim
t→∞

Z
dxOðxÞρðx; tÞ ¼

Z
dxOðxÞρðxÞ ðA5Þ

and by (A4)

lim
t→∞

Z
dxdyOðxþ iyÞPðx; y; tÞ ðA6Þ

¼
Z

dxOðxÞρðxÞ: ðA7Þ

By our choice of initial conditions, (A4) holds for t ¼ 0.
For t > 0 we consider FOðt; τÞ defined in Eq. (36), which
interpolates between the two sides of (A4):

FOðt; τÞ≡
Z

Pðx; y; t − τÞOðxþ iy; τÞdxdy; ðA8Þ

with Oðxþ iy; tÞ defined by solving the differential
equation (22) Lc, the complex Langevin operator, is the
transpose of LT

c :

Lc ¼ ½∂z − S0ðzÞ�∂z: ðA9Þ

We call the solution of Eq. (22) the “Lc evolved” observable.
The interpolating property follows from

FOðt; 0Þ ¼
Z

dxdyOðxþ iyÞPðx; y; tÞ ¼ hOit

FOðt; tÞ ¼
Z

dxOðx; tÞρðx; 0Þ ¼ hOðtÞic; ðA10Þ

see Sec. III A, Eqs. (24) and (25). The first equality is
obvious, the second one follows by integration by parts in
x; because of periodicity there are no boundary terms. (A4)
would follow if we could prove

∂
∂τFOðt; τÞ ¼ −

Z
ðLTPðx; y; t − τÞÞOðxþ iy; τÞdxdy

þ
Z

Pðx; y; t − τÞLcOðxþ iy; τÞdxdy ¼ 0:

ðA11Þ

This would again follow from integration by parts, pro-
vided there are no boundary terms. For the term ∂2

x of both
LT and Lc this is obvious because of periodicity, so we can
drop these terms, obtaining

∂
∂τFOðt;τÞ¼

Z
Oðxþ iy;τÞð∂xKxþ∂yKyÞPðx;y;t−τÞdxdy

−
Z

Pðx;y;t−τÞS0ðxþ iyÞ∂xOðxþ iy;τÞdxdy:

ðA12Þ

In [1] we argued thatOðxþ iy; τÞ is holomorphic for any τ,
i.e., it obeys the Cauchy Riemann equations

∂yOðxþ iy; τÞ ¼ i∂xOðxþ iy; τÞ: ðA13Þ

This allows us to write the second term of the right-hand
side of (A12) as

Z
Pðx; y; t − τÞðKx∂x þ Ky∂yÞOðxþ iy; τÞdxdy: ðA14Þ

Again the part involving ∂x can be canceled against the
corresponding term in the first term of (A14) using
integration by parts in x, so we only have to consider
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∂
∂τFOðt; τÞ ¼

Z
ð∂yKyPðx; y; t − τÞÞOðxþ iy; τÞdxdy

þ
Z

Pðx; y; t − τÞKy∂yOðxþ iy; τÞdxdy:

ðA15Þ

We have to interpret this as a the limit Y → ∞ of the
integral restricted to jyj ≤ Y. For finite Y (A15), since the
integrand is a total derivative, this is given by the boundary
term

BOðY; t; τÞ≡
Z

½Kyðx; YÞPðx; Y; t − τÞOðxþ iY; τÞ

− Kyðx;−YÞPðx;−Y; t − τÞOðx − iY; τÞ�dx:
ðA16Þ

Evaluating this term at τ ¼ 0 leads then for our model to
(29) where we can then take the large t limit to obtain for
our model, obtaining (30). This form of the boundary term
makes clear that correctness requires sufficient decay of the
products KyPO.
Notice that if we take the t → ∞ limit directly in (A11)

the first term vanishes by stationarity and the second one
leads to the “correctness conditions” (CC) defined in [2]
and is approximately zero by stationarity. Hence, it might
appear that the boundary term vanishes and we might
erroneously conclude correctness of the results. Therefore
the CC, while expressing convergence and being necessary
for correctness, are not sufficient.

APPENDIX B: THE CORRECT EVOLUTION

What was called the “correct time evolution” hOðtÞi0 of
the expectation value of O is simply the expectation value
in the starting probability density Pðx; y; 0Þ of the Lc
evolved observable O, see Eq. (24). To analyze this we
rewrite the Langevin operator Lc in the basis of Fourier
modes:

Lc expðikxÞ ¼ −k2 expðikxÞ − iβ
2
k expðiðkþ 1ÞxÞ

þ iβ
2
k expðiðk − 1ÞxÞ ðB1Þ

or equivalently, for a general observable

OðxÞ ¼
X
k

ak expðikxÞ ðB2Þ

ðLcaÞk ¼−k2ak−
iβ
2
ðk−1Þak−1þ

iβ
2
ðkþ1Þakþ1: ðB3Þ

So Lc is represented on the Fourier coefficients by the
sparse infinite matrix with elements

ðLcÞkl¼−k2δkl−
iβ
2
ðk−1Þδk−1;lþ

iβ
2
ðkþ1Þδkþ1;l: ðB4Þ

It is easy to compute numerically the action of expðtLcÞ on
observables of the form Ok ¼ expðikxÞ; cutting off the
modes at jkj ≥ K with K ¼ 50 and K ¼ 150, and for
t ¼ 50, gave identical results, with only the constant mode
surviving. Its value agrees to at least 5 digits with

lim
t→∞

expðtLcÞOk ¼
Z

dxρðxÞOkðxÞ ðB5Þ

i.e., the correct expectation value.
We also checked, using Mathematica, that the eigenval-

ues of the truncated matrix ðLcÞkl have negative real part
except for the unique zero eigenvalue corresponding to
ak ∝ δk0. All nonzero eigenvalues are real and doubly
degenerate. The one with the smallest modulus determines
the approach to the infinite time limit; it depends only
weakly on β, e.g.,

λ1 ¼ −0.998 333ðβ ¼ 0.1Þ;
λ1 ¼ −0.832 189ðβ ¼ 1Þ ðB6Þ

Remark: It is easy to show that by a similarity trans-
formation Lc can be transformed into the dissipative
operator

−H ¼ expðS=2ÞL expð−S=2Þ

¼ d2

dx2
− β2sin2ðxÞ − iβ

2
cosðxÞ: ðB7Þ

Dissipativity means −H −H� ≤ 0, which is obvious. For
such operators general theorems guarantee that the spec-
trum is contained in the left half of the complex plane (see
for instance [16]). It is also not hard to see that there is
exactly one vector with eigenvalue zero.

APPENDIX C: REMARKS ON THE
NUMERICAL SOLUTION OF THE FPE

The real Fokker-Planck equation in our case is

∂Pðx; y; tÞ
∂t ¼ ½∂xð∂x − KxÞ − ∂yKy�Pðx; y; tÞ

¼ ½∂2
x þ βð−2 sin x sinh yþ cos x sinh y∂x

− sin x cosh y∂yÞ�Pðx; y; tÞ: ðC1Þ

Discretizing (C1) in x and y using symmetric derivatives
yields
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Pðx;y; tþdtÞ¼ 1

dx2
ðPðxþ;y; tÞ−2Pðx;y; tÞþPðx−;y; tÞÞ

−2β sinxsinhyPðx;y; tÞ

þ β

2dx
cosxsinhyðPðxþ;y; tÞ−Pðx−;y; tÞÞ

−
β

2dy
sinxcoshyðPðx;yþ; tÞ−Pðx;y−; tÞÞ;

ðC2Þ
where we defined x� ¼ x� dx and similarly for y. In case
of a regularization term in the y-drift Ky → Ky − syy (see
Sec. IV), additional terms occur

Pðx;y; tþdtÞ→Pðx;y; tþdtÞþ syPðx;y; tÞ
þ sy

y
2dy

ðPðx;yþ; tÞ−Pðx;y−; tÞÞ: ðC3Þ

We solved the Fokker-Planck equation on an x − y-grid
with parameters dt ¼ 10−6, dx ¼ 0.005 ¼ dy, a cutoff in
y-direction of Y ¼ 5 was found to be sufficient [compare
(30), tanhð5Þ ≈ tanhð∞Þ], and a cutoff in x-direction of
X ¼ 3.14, which is due to the 2π periodicity of the
problem. Boundary conditions in x and y were both chosen
to be periodic. Initial condition were chosen according to
(21), however the δ-function was smeared out slightly to
avoid numerical issues; so we actually used

Pðx; y; 0Þ ¼ 1

2π
ffiffiffiffiffiffiffiffiffiffi
2πσ2y

q e
− y2

2σ2y ; ðC4Þ

where we chose σy ¼ 0.1. Note that using this discretiza-
tion it is hard to resolve the higher modes. This can be done

more easily when solving the Fokker-Planck equation in
Fourier space, where it is given by

Pðk;y;tþdtÞ¼−k2Pðk;y;tÞ

−
iβ
2
sinhðyÞðk−Pðkþ;y;tÞþkþPðk−;y;tÞÞ

þ iβ
4dy

coshðyÞðPðkþ;yþ;tÞ−Pðk−;yþ;tÞÞ

þ iβ
4dy

coshðyÞð−Pðkþ;y−;tÞþPðk−;y−;tÞÞ;

ðC5Þ

where k� ¼ k� 1 and similarly for y. Here we chose
dt ¼ 0.5 × 10−5, k ∈ f−19;…; 20g, dy ¼ ffiffiffiffiffi

dt
p

, Y ≈ 2.8
with antiperiodic boundary conditions in k for the imagi-
nary part of Pðk; y; tÞ and periodic boundary conditions for
the real part in k and for y. After t ∼ 30 or so the result
strongly depends on the choice of discretization. Hence,
we use the k − y discretization to resolve the plateaus in
the higher modes and the x − y-discretization for every-
thing else.
The solution to the Fokker-Planck equation shows that

for β ¼ 0.1 the evolution initially follows the correct
evolution. This is suggested by Figs. 7 and 5. By looking
at Pðx; y; tÞ in Figs. 2 and 8 and the histogram of the first
mode in Fig. 9, one can see that initially nontrivial
structures occur. Those die out and everything approaches
the asymptotic solution, which yields the wrong results.
This strengthens the argument that until t ∼ 20 or so CLE
yields the correct solution but then the occurrence of
boundary terms leads to wrong convergence.
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