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We present the nucleon form factors and root-mean-square (RMS) radii measured on a ð10.8 fmÞ4 lattice
at the physical point. We compute the form factors at small momentum transfer region in q2 ≤ 0.102 GeV2

with the standard plateau method choosing four source-sink separation times tsep from 0.84 to 1.35 fm to
examine the possible excited state contamination. We obtain the electric and magnetic form factors and
their RMS radii for not only the isovector channel but also the proton and neutron ones without the
disconnected diagram. We also obtain the axial-vector coupling and the axial radius from the axial-vector
form factor. We find that these three form factors do not show large tsep dependence in our lattice setup, and
those RMS radii are consistent with the experimental values. On the other hand, the induced pseudoscalar
and pseudoscalar form factors show the clear effects of the excited state contamination, which affect the
generalized Goldberger-Treiman relation.
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I. INTRODUCTION

For the deep understanding of the nucleon and nucleus
structures, a precise determination of structure functions is an
essential ingredient. Recently, an unknown effect for the
proton charge radius has been revealed as a significant
discrepancy between different approaches [1] in the ep
scattering [1] process and themuonic hydrogen spectroscopy
[2], in which 5.6-σ deviation appears as the so-called “proton
radius puzzle.”Themeasurement of the atomic spectroscopy
[1] has also agreed with the value from the ep scattering,
while a recent measurement of the regular hydrogen spec-
troscopy [3] agrees with the value from themuonic hydrogen
spectroscopy. Under such a confusing circumstance, the
theoretical estimation is demanded as an independent test.

Similarly, the axial-vector form factor and the axial radius
are important inputs for theweak process associated with the
neutrino-nucleus scattering. The q2 dependence of the axial-
vector form factor can be used to estimate the neutrino
properties such as the neutrino mass and mixing angle [4].
Furthermore, the axial-vector coupling gA obtained from the
cross section of themuon-nucleus scattering measured in the
muon capture experiment serves as an independent test to
check consistencywith the high-precision data of gA from the
neutron beta decay. Having achieved the three times higher
precision from the current measurement in the muon capture
experiment [5], itwould also provide gA comparablewith that
from the neutron beta decay,which is expected to be less than
1% level, using an input of accurate axial radius [4]. The
current experimental value of the axial radius [6] is 3%
accuracy from the dipole fit of the neutrino-deuteron scatter-
ing and the pion electroproduction experiment, whereas,
according to the argument in Refs. [4,7], this error may be
underestimated by the model-dependent analysis. It means
that the theoretical value of the axial radius is desired to use as
an input for the analysis in both muon capture and neutrino
scattering experiments.
Lattice QCD (LQCD) is able to nonperturbatively deter-

mine the QCD values of the nucleon form factors and RMS
radii from the first principles. The recent developments of
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computational techniques and incredible growth of computa-
tional resourcesmake it possible to perform a realistic LQCD
computation at the physical point with the light (degenerate
up and down) and strange quark flavors, even for the
baryonic system in which the systematics involved are more
complicated than the mesonic system, e.g., the finite volume
effect, etc.. Although the results for the nucleon form factors
at the physical point have been made available by several
LQCD groups [8–15], the precision has not been enough to
be comparable with the experimental values. This is due to
the exponential growth of the statistical noise as the light
quark mass gets close to the physical point, besides the
possible systematic uncertainties of the finite volume (FV)
effects, the excited state contamination and the lattice cutoff
effects we should take into account. Some LQCD groups
[8,9,13,14] have tried to subtract the excited state contami-
nation by introducing the “2-state ansatz” [8] and the
simultaneous fit of the data off the physical point with the
use of the ansatz, e.g., chiral perturbation theory [13] or
polynomial functions, to remove theFVeffects and the lattice
cutoff effects. This approach, instead, is an introduction of
the other systematic uncertainties originating from themodel
dependence. For the purpose of high precision to a few %
level and below, much effort to remove the systematic
uncertainties in LQCD simulations is needed. We think
the most reliable way is the direct simulation at the physical
point on sufficiently large volume, which is the critical
importance for LQCD computation of the nucleon form
factors and RMS radii to directly compare experimental
values and theoretically verify the prediction in effective
models [16–19].
This work is an extension of our earlier study [15]. In the

previous work, one of the authors analyzed the isovector
electric (GE) and magnetic (GM) form factors and obtained
the isovector electric RMS charge radius

ffiffiffiffiffiffiffiffiffi
hr2Ei

p
in a model-

independent way with the z-expansion method. Their results
were consistent with two experimental values of ep scatter-
ing [1] and μH atom spectroscopy [2] within 1-σ statistical
error, although statistical error was much larger than exper-
imental ones. It was then difficult to argue which exper-
imental values can be favored in LQCD. For the magnetic
moment μv, LQCD results were also in agreement with
experimental value although its statistical precision was
almost 15%.On the other hand, somewhat puzzling situation
in the axial-vector (FA) and induced pseudoscalar (FP) form
factors in the nucleon axial-vector matrix element occurred.
FA was barely consistent with the experimental results in the
low q2 region of 0 ≤ q2 ≤ 0.2 GeV2 and the axial charge
gA ¼ FAðq2 ¼ 0Þ was slightly underestimated in compari-
son with the experimental value. Furthermore, FP had an
apparent discrepancy from the experimental expectation at
very low q2, which was a consequence of the violation of the
generalized Goldberger-Treiman relation.
The purpose of this paper is further reduction of the

statistical and systematic errors for the nucleon form factors

and understanding of the issues associated with FA and FP
raised in the previous work. We have made several essential
improvements from the previous work; (i) The lattice size is
enlarged from ð8.1 fmÞ4 to ð10.8 fmÞ4 employing the stout-
smearedOðaÞ-improvedWilson-clover quark action and the
Iwasaki gauge action at β ¼ 1.82 [20], which are exactly
same as in the previous work. We expect that the spatial
extent 10.8 fmhas a strong advantage for both suppression of
the finite volume effects and reduction of theminimum value
of the momentum transfer to q2 ¼ 0.013 GeV2 which is a
half of the previous work [15]. (ii) The quark masses are
carefully tuned to the physical point [20]. The slight
deviation from the physical point with mπ ¼ 146 MeV in
the previouswork [20] is removedby adjusting the pionmass
to 135 MeV. (iii) Using the variation of the source-sink
separation as tsep=a ¼ tsink=a − tsrc=a ¼ 10, 12, 14, 16,
where the largest one is about 1.35 fm, we can examine
the possible excited state contributions, which has not been
studied in the previous work [20], where a single choice of
tsep=a ¼ 15 was used. (iv) Significant reduction of the
computational cost is possible to utilize the all-mode-
averaging (AMA) method [21–23] optimized by the defla-
tion technique [24].
This paper is organized as follows: Section II presents the

definition of nucleon form factors to fix the notations in this
paper. The general features of the nucleon form factors have
been already explained in Sec. II of Ref. [15]. In Sec. III, we
first present a brief descriptionofgauge configurations,which
are a partial set of “PACS10” configurations generated by the
PACSCollaboration [20].We also explain the error reduction
technique employed in this study. The results for the nucleon
form factors are presented in Sec. IV. We investigate tsep
dependence for the nucleon form factors and the correspond-
ing RMS radii. We also discuss the violation of the gener-
alized GT relation associated with the form factors FA, FP,
and GP. Section VI is devoted to summary and outlook.
In this paper, thematrix elements are given in the Euclidean

metric convention. γ5 is defined by γ5≡γ1γ2γ3γ4¼
−γM5 , which has the opposite sign relative to that in the
Minkowski convention (γ⃗M ¼ iγ⃗ and γM0 ¼ γ4) adopted in the
particle data group [25]. The sign of all the form factors is
chosen to be positive. The Euclidean four-momentum squared
q2 corresponds to the spacelike momentum squared as q2M ¼
−q2 < 0 in Minkowski space.

II. LQCD COMPUTATION OF NUCLEON
FORM FACTORS

A. Definition of nucleon form factors

We present our convention of the nucleon form factors.
We measure the electric and magnetic Sachs form factors,
GEðq2Þ and GMðq2Þ, which are relevant for the experi-
mental data of elastic electron-nucleon scattering. They are
linear combinations of the Dirac and Pauli form factors,
FN
1 ; F

N
2 (N ¼ p, n), as
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GN
E ðq2Þ ¼ FN

1 ðq2Þ −
q2

4M2
N
FN
2 ðq2Þ; ð1Þ

GN
Mðq2Þ ¼ FN

1 ðq2Þ þ FN
2 ðq2Þ; ð2Þ

extracted from the nucleon vector matrix elements,

hNðP0Þjjemα jNðPÞi

¼ ūNðP0Þ
�
γαFN

1 ðq2Þ þ iσαβ
qβ

2MN
FN
2 ðq2Þ

�
uNðPÞ ð3Þ

with σαβ ¼ 1
2
½γα; γβ�. The momentum transfer between the

nucleon initial state (P) to the final state (P0) is defined as
q ¼ P − P0. The electromagnetic current jemα is expressed
in terms of the flavor-diagonal vector current,

jemα ¼
X
q

Qqq̄γαq ¼ 2

3
ūγαu −

1

3
d̄γαdþ � � � ; ð4Þ

where Qq denotes the charge (in units of proton charge e)
for quark flavor q, and the ellipsis denote terms for strange
and heavier quarks. Here we rewrite Eq. (4) into the
following form for the later discussion,

jemα ¼ 1

6
jsα þ

1

2
jvα þ � � � ; ð5Þ

with the isoscalar and isovector currents: jsα ¼ ūγαuþ d̄γαd
and jvα ¼ ūγαu − d̄γαd. Recall that in the case of mu ¼ md
(SU(2) isospin symmetry), the nucleon three-point correla-
tion function for the isovector current does not receive any
contribution from the disconnected diagram of all quark
flavors since they are canceled each other. Therefore, the
isovector part of nucleon electromagnetic form factors can be
determined only by the connected-type contribution, whose
numerical evaluation is much easier in lattice simulations.
On the other hand, the isoscalar component receives the

full contribution including the disconnected diagrams even
under the exact isospin symmetry. Nevertheless, all dis-
connected-type contributions from the light and heavier
quark flavors are known to be relatively small in compari-
son to the connected-type contributions especially in the
proton (see e.g., Ref. [26]), whereas it will not in the
neutron. Here we simply evaluate individual proton (neu-
tron) form factors in the vector channel, which is extracted
from the matrix element with the isoscalar and isovector
parts of the electromagnetic current, only by the connected-
type contributions, since a computation of disconnected
diagram is much costly and beyond our scope of this study.
Later we will show the numerical evidence of the appear-
ance of missing effect of disconnected-type contribution to
the electromagnetic form factor in both proton and neutron.
The isovector nucleon form factors can be related to the

isovector combination of the proton’s and neutron’s form
factors assuming the SU(2) isospin symmetry

Gv
l ðq2Þ ¼ Gp

l ðq2Þ −Gn
l ðq2Þ; l ¼ fE;Mg; ð6Þ

where the normalization of the above form factors at q2 ¼ 0
are given by the proton/neutron electric charge and the
magnetic moment: Gp

Eð0Þ ¼ 1 and Gp
Mð0Þ ¼ μp ¼

þ2.79285 for the proton and Gn
Eð0Þ ¼ 0 and Gn

Mð0Þ ¼
μn ¼ −1.91304 for the neutron. Therefore, one finds

Gv
Eð0Þ ¼ 1; Gv

Mð0Þ − 1 ¼ 3.70589: ð7Þ

The nucleon axial-vector matrix element is represented
with the axial-vector form factor FAðq2Þ and the induced
pseudoscalar form factor FPðq2Þ as

hpðP0ÞjAþ
α ðxÞjnðPÞi ¼ ūpðP0Þðγαγ5FAðq2Þ

þ iqαγ5FPðq2ÞÞunðPÞeiq·x ð8Þ

with the axial-vector current, Aþ
α ¼ ūγ5γαd. The axial-

vector coupling gA ¼ FAðq2 ¼ 0Þ, which governs the life
time of the neutron beta decay, is experimentally deter-
mined as gA ¼ 1.2724ð23Þ [27], and the q2 dependence of
FAðq2Þ is well described by the dipole form FAðq2Þ ¼
FAð0Þ=ð1þ q2=M2

AÞ2 below q2 ≈ 1 ðGeVÞ2 [6,28]. On the
other hand, the properties of the induced pseudoscalar form
factor FPðq2Þ is less clear in the experiments [29,30].
On the theoretical side, FAðq2Þ and FPðq2Þ are related

through the generalized Goldberger-Treiman (GT) relation
[31,32]:

2MNFAðq2Þ − q2FPðq2Þ ¼ 2m̂GPðq2Þ ð9Þ
with a degenerate up and down quark mass m̂ ¼ mu ¼ md,
derived from the axial Ward-Takahashi (AWT) identity:
∂αAþ

α ðxÞ ¼ 2m̂PþðxÞ. Here, the additional form factor
GPðq2Þ is defined in the nucleon pseudoscalar matrix
element

hpðP0ÞjPþðxÞjnðPÞi¼ ūpðP0Þðγ5GPðq2ÞÞunðPÞeiq·x ð10Þ

with the local pseudoscalar density Pþ ¼ ūγ5d. In order to
test the GT relation in LQCD, the simultaneous investigation
of three form factorsFAðq2Þ,FPðq2Þ andGPðq2Þ is essential.
The RMS radius Rl ¼

ffiffiffiffiffiffiffiffi
hr2l i

q
is defined from the

expansion of the normalized form factor Glðq2Þ in the
powers of q2:

Glðq2Þ ¼ Glð0Þ
�
1 −

1

6
hr2l iq2 þ

1

120
hr4l iq4 þ � � �

�
;

l ¼ fE;M; Ag; ð11Þ
which measures a typical size in the coordinate space. Here,
we define GA ≡ FA, and the RMS radius is computed from
the derivative of nucleon form factor with respect to q2 at
q2 ¼ 0,
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hr2l i ¼ −
6

Glð0Þ
dGlðq2Þ
dq2

����
q2¼0

: ð12Þ

When the form factors can be described by the dipole form,

Glðq2Þ ¼
Glð0Þ

ð1þ q2

Λ2
l
Þ2
; ð13Þ

with the dipole mass parameter Λ, the RMS radius R is
obtained as Rl ¼

ffiffiffiffiffi
12

p
=Λl. In the z-expansion method

[33,34], whose convergence has been carefully studied
in Ref. [15], the form factors can be described by a
convergent Taylor series in a new variable z which is
conformally mapped from q2,

GlðzÞ ¼
Xkmax

k¼0

ckzðq2Þk; ð14Þ

zðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þ q2

p
−

ffiffiffiffiffiffi
tcut

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þ q2

p
þ ffiffiffiffiffiffi

tcut
p ; ð15Þ

where the expansion is truncated at the kmax-th order with
tcut ¼ 4m2

π for GE and GM, or with tcut ¼ 9m2
π for FA,

and the RMS radius is then determined by
ffiffiffiffiffiffiffiffi
hr2l i

q
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−6ðc1=c0Þ=ð4tcutÞ
p

for l ¼ fE;M; Ag.
For a precise determination of the RMS radii

ffiffiffiffiffiffiffiffi
hr2l i

q
in

LQCD, the data of low q2 variation is important. The
systematic uncertainty due to fitting LQCD data at low q2

with extrapolation ansatz into q2 ¼ 0 can be reduced by
using small q2 data we can obtain. It means that large
spatial extent is advantageous to this study since the
accessible minimum value of q2 is essentially determined
by the spatial extent of the lattice. Our spatial lattice volume
of ð10.8 fmÞ3 allows q2min ¼ 0.013 GeV2, and it is then 1.8
times smaller q2 data we can use than ð8.1 fmÞ3 box
employed in the previous work [15]. Furthermore, LQCD
analysis concentrating on the small q2 region allows us to
avoid the additional systematic uncertainty of lattice cutoff
effect stemming from OððaqÞ2Þ.

B. Nucleon two- and three-point
functions for form factors

We first define the nucleon (proton) interpolating
operator as

NXðt; pÞ ¼
X

x;x1;x2;x3

e−ip·xεabc½uTaðx1; tÞCγ5dbðx2; tÞ�ucðx3; tÞ

× ϕXðx1 − xÞϕXðx2 − xÞϕXðx3 − xÞ; ð16Þ
where the superscript T denotes a transposition and C is the
charge conjugation matrix defined asC ¼ γ4γ2. The indices
a, b, c and u, d label the color and the flavor, respectively.
The function ϕX (X ¼ L, S) represents two types of the
smearing functions employed in this study: local type (L)
given by ϕLðxi − xÞ ¼ δðxi − xÞ and exponentially
smeared one (S) by ϕSðxi − xÞ ¼ A exp ð−Bjxi − xjÞ.
The nucleon two-point functions are constructed with the

source and sink operators located at tsrc and tsink, respec-
tively,

CXSðtsink − tsrc; pÞ ¼
1

4
TrfPþhNXðtsink; pÞN̄Sðtsrc;−pÞig;

ð17Þ
where the smeared operator is employed at the source, and
at the sink we use both the smeared (X ¼ S) and local
(X ¼ L) operators. The lattice momentum is defined as p ¼
2π=ðNsaÞ × n with a vector of integers n ∈ Z3 and Ns the
number of the spatial lattice sites. A projection operator
Pþ ¼ 1þγ4

2
is applied to extract the contributions from the

positive-parity state for jpj ¼ 0 [35,36].
In our study, the nucleon form factor is extracted from

the nucleon three-point function,

CPk
O;αðt; p0; pÞ ¼

1

4
TrfPkhNSðtsink; p0ÞJOα ðt; qÞN̄Sðtsrc;−pÞig;

ð18Þ
using the local currents JOα ðxÞ ¼ q̄ðxÞΓO

α qðxÞ of ΓP
α ¼

ZPγ5, ΓV
α ¼ ZVγμ, ΓA

α ¼ ZAγμγ5 with the renormalization
factor ZO. In the above equation, q ¼ p − p0 represents the
three-dimensional momentum transfer, and Pk denotes the
projection operator to extract the form factors for unpo-
larized case, Pk ¼ Pt ≡ Pþγ4 and polarized case (in z
direction) Pk ¼ P5z ≡ Pþγ5γ3. In a conventional way to
remove the unwanted nucleon wave function, we use the
following ratio,

Rk
O;αðt; p0; pÞ ¼

CPk
O;αðt; p0; pÞ

CSSðtsink − tsrc; p0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CLSðtsink − t; pÞCSSðt − tsrc; p0ÞCLSðtsink − tsrc; p0Þ
CLSðtsink − t; p0ÞCSSðt − tsrc; pÞCLSðtsink − tsrc; pÞ

s
; ð19Þ

as a function of initial and final nucleon momenta, p and p0, and the temporal position of local current t in the fixed temporal
position of source and sink nucleon interpolation operator tsrc and tsink. In this study, we use various nucleon source-sink
separations as tsep=a ¼ tsink=a − tsrc=a ¼ 10, 12, 14, 16 to examine a possible excited state contamination. Here, by
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restricting the kinematics of the nucleon final state at rest,
where q2 ¼ 2MNðENðqÞ −MNÞ with p0 ¼ 0, the above
ratio can be represented as RO;αðt; qÞ.
In the electromagnetic vector channel,O ¼ jem, the ratio

of Eq. (19) is supposed to give the following asymptotic
form [32]:

Rt;N
jem;4ðt; qÞ →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EN þMN

2EN

s
GN

E ðq2Þ; ð20Þ

R5z;N
jem;iðt; qÞ →

−iεij3qjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ENðEN þMNÞ

p GN
Mðq2Þ: ð21Þ

in the limit of tsink ≫ t ≫ tsrc with N ¼ p, n.
Similarly in the axial-vector current and pseudoscalar

cases, O ¼ Aþ; Pþ, we obtain

R5z
Aþ;iðt;qÞ→

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EN þMN

2EN

s �
FAðq2Þδi3−

qiq3
ENþMN

FPðq2Þ
�
;

ð22Þ

R5z
Pþðt; qÞ → iq3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ENðEN þMNÞ
p GPðq2Þ: ð23Þ

The three-point correlation functions of Eq. (18) are
calculated by the sequential source method with tsink and
tsrc fixed [37,38], which requires to solve the sequential
quark propagators individually in the four choices of tsep
and the projection operators P ¼ Pt;P5z.

III. SIMULATION DETAILS

A. PACS10 configurations

In this work, we have used a partial set of PACS10
configurations [20]. We briefly present relevant points to
make the paper self-contained (see in Ref. [20] for the
detailed description).
The gauge configurations in 2þ 1 flavor QCD with the

stout-smeared OðaÞ-improved Wilson-clover quark action
and the Iwasaki gauge action [39] on an N3

s × Nt ¼ 1283 ×
128 lattice at β ¼ 1.82, which corresponds to a ð10.8 fmÞ4
physical space-time with a lattice cutoff of a−1 ¼
2.333ð18Þ GeV (a ¼ 0.08457ð67Þ fm) [40] have been
generated by PACS Collaboration. The Schrödinger func-
tional (SF) scheme is employed to determine the non-
perturbative improvement coefficient cSW ¼ 1.11 [41].
Since the improvement factor for the axial-vector current
cA is consistent with zero within the statistical error [41],
we do not take account of the OðaÞ improvement of the
quark bilinear currents. The hopping parameters of
ðκud; κsÞ ¼ ð0.126117; 0.124902Þ are carefully chosen to
be at the physical point. We use 20 gauge configurations

separated by 10 trajectories. The statistical error is esti-
mated by the single elimination jackknife method.

B. Utilization of all-mode-averaging technique

Here, we employ the AMA technique to efficiently
implement the LQCD computation of two- and three-point
functions. For the implementation of AMA, we compute
the combination of correlator with high-precision OðorgÞ

and low-precision OðapproxÞ as

OðamaÞ ¼ 1

Norg

XNorg

f∈G
ðOðorgÞf−OðapproxÞfÞþ 1

NG

XNG

g∈G
OðapproxÞg;

ð24Þ

where the superscript f, g denotes the transformation under
the lattice symmetry G, for instance translational symmetry.
Norg andNG are thenumber of such a transformedobservable
for OðorgÞ and OðapproxÞ, respectively. To achieve the high
performance of AMA, we need to set Norg ≪ NG satisfying
the strong correlation r between Oorg and OðapproxÞ, as
2ð1 − rÞ < 1=NG [22,23]. Following Refs. [23,42], we
employ the optimized AMA which adopts the deflated
Schwartz Alternative Procedure (SAP) [43] and
Generalized Conjugate Residual (GCR) [24] in the compu-
tation of both high-precision OðorgÞ and low-precision
OðapproxÞ. As demonstrated by the performance test in
Ref. [42], the utilization of deflated SAP-GCR can signifi-
cantly save the computational cost compared to the low-
mode deflation originally suggested in Refs. [21,22].

C. LQCD parameters

First we tune the parameters for the source and sink
smearing function as A ¼ 1.2 and B ¼ 0.16 in Eq. (16).
The smearing parameters are slightly different from pre-
vious work [15] to gain a better overlap with the ground
state in three-point function. As mentioned in Sec. II A, to
avoid the considerable lattice cutoff effect, we choose the
eight lowest variations of q2 listed in Table I, up to
q2 ¼ 0.11 GeV2, in our analysis.
The renormalization factors ZO ðO ¼ V; AÞ are obtained

by the SF scheme at the vanishing quark mass as
ZV ¼ 0.95153ð76Þð1487Þ, ZA ¼ 0.9650ð68Þð95Þ [44],
where the first error is statistical one and the second is a
systematic error coming from the difference of two vol-
umes. In our analysis, this systematic error is regarded as
negligible since we here choose the larger volume.
We compute the three-point function of Eq. (18) with

four variations of tsep=a ¼ 10, 12, 14, 16 to examine the
excited state contamination. Since the LQCD calculation
with large tsep suffers from the large statistical noise, we
increase the NG as shown in Table II to keep the signal-to-
noise ratio as tsep becomes large. As for the AMA tuning
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parameter, the approximation is obtained by 5 GCR
iteration using 84 SAP domain size with 50 deflation
fields. OðorgÞ is given in the stopping criteria of residual
norm less than 10−8.

D. Nucleon effective mass

In Fig. 1, we show the nucleon effective mass plot
with the smeared-smeared and smeared-local operators.

The single exponential function is used in the correlated fit
with the range of t=a ¼ 15–20 for the smeared-local and
13–20 for the smeared-smeared cases, and those are
consistent with each other. The he nucleon mass from
the smeared-local case is obtained as

aMN ¼ 0.4041ð47Þ; MN ¼ 0.9416ð110Þ GeV; ð25Þ

where the error is statistical. This is consistent with the
experimental value Mexp

N ¼ 0.93891874 GeV obtained by
averaging the proton and neutron masses. For the extraction
of the form factors in Eqs. (20)–(23), we use the central
values of the nucleon mass and the energy with finite
momenta determined from the smeared-local case. In fact,
even if we input the statistically fluctuating mass and
energy onto those equations, the variation of extracted form
factors is negligibly small compared to statistical fluc-
tuation of three-point function. We have summarized the
measured nucleon mass and energy in Table I together with
values of q2.

IV. RESULTS FOR NUCLEON
ELECTROMAGNETIC FORM FACTORS

AND AXIAL FORM FACTOR

A. Electric form factor and electric charge radius

Figure 2 shows t dependence of the ratio Rt;N
jem;4ðt; qÞ of

Eq. (20) for the isovector electric form factor Gv
Eðq2Þ at

tsep=a ¼ 10, 12, 14, 16 in the smallest four nonzero
momenta corresponding to Q1, Q2, Q3, and Q4 (see
Table I). We observe clear plateau for all the cases of
tsep and jnj2 thanks to our elaborate tuning of the smearing
parameter. The Gv

Eðq2Þ is extracted by the constant fit with
the fit range listed in Table II.
In Fig. 3, we plot the tsep dependence of Gv

Eðq2Þ for the
smallest five values of jnj2. One can see the data at
tsep=a ¼ 12, 14, 16 is statistically consistent within the
error, which means there is negligibly small tsep depend-
ence, while the data at tsep=a ¼ 10 differs from others at
smaller nonzero q2. This observation allows us to use two
possible combined values with tsep=a ¼ f12; 14; 16g and
tsep=a ¼ f14; 16g to obtain Gv

Eðq2Þ without considerable
excited state contamination.

TABLE I. Choices for the nonzero spatial momenta: q ¼ π=ð64aÞ × n, and corresponding nucleon energy EN measured by global
fitting of two-point function with the same range as in Q0 (also see in a text). The degeneracy of jnj2 due to the permutation symmetry
between �x, �y, �z directions is listed in the bottom raw.

Label Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

n (0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 1, 1) (2, 0, 0) (2, 1, 0) (2, 1, 1) (2, 2, 0)
jnj2 0 1 2 3 4 5 6 8
aEN 0.4041(47) 0.4073(47) 0.4105(48) 0.4137(49) 0.4159(49) 0.4192(49) 0.4222(50) 0.4278(51)
q2½GeV2� 0 0.013 0.026 0.039 0.052 0.064 0.077 0.102
Degeneracy 1 6 12 8 6 24 24 12

TABLE II. We present Norg, NG and total number of measure-
ments (NG × Nconf ) at each tsep. Fit range for the ratio of Eq. (19)
to extract GE, GM, FA, FP, and GP is also listed.

tsep=a Norg NG # meas fit range

10 1 128 2, 560 [3, 7]
12 1 256 5, 120 [4, 8]
14 2 320 6, 400 [5, 9]
16 4 512 10, 218 [6, 10]
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Smear-Local

FIG. 1. Nucleon effective mass plot for the smeared-smeared
(square symbol) and smeared-local (circle symbol) operators in
the nucleon two-point functions. Horizontal band with green
(cyan) color denotes the fitting range and its statistical error for
the smeared-local (smeared-smeared) function.
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Figure 4 shows the q2 dependence of Gv
Eðq2Þ together

with the Kelly’s fit [45]. The combined results with
tsep=a ¼ f12; 14; 16g and tsep=a ¼ f14; 16g are consistent
with each other in all q2. In the small q2 region, the LQCD
data closely follow the Kelly’s fit, while in the large q2

region it is slightly but systematically above that. The figure
also shows that our error is much smaller than the one of
our previous results at mπ ¼ 0.146 GeV on ð8.1 fmÞ4 in
Ref. [15] thanks to the AMA technique described in
Sec. III B and tuning the smearing parameters.
We also calculate Gp

Eðq2Þ and Gn
Eðq2Þ separately without

the disconnected diagram. They have similar properties to

Gv
Eðq2Þ: tiny tsep dependence and good plateau in

Rt;p
jem;4

ðt; qÞ and Rt;n
jem;4

ðt; qÞ. The combined results with
tsep=a ¼ f12; 14; 16g and f14; 16g for Gp

Eðq2Þ and Gn
Eðq2Þ

are summarized in the Appendix together with the ones of
Gv

Eðq2Þ. The results for Gp
Eðq2Þ and Gn

Eðq2Þ are compared
with the Kelly’s fit in Fig. 5. We observe that Gp

Eðq2Þ is
closer to Kelly’s fit rather than Gv

Eðq2Þ. On the other hand,
Gn

Eðq2Þ is much smaller than the Kelly’s fit. One possible
reason is an uncertainty due to the missing disconnected
diagram in the isoscalar channel, which could affect
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FIG. 2. Isovector electric form factor Gv
Eðq2Þ, which is extracted from the ratios of three- to two-point functions of Eq. (20), for

tsep=a ¼ 10, 12, 14, 16 with four lowest nonzero momentum transfers. Gray-shaded area denotes the fit range in each panel.
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FIG. 3. tsep dependence of the isovector electric form factor
Gv

Eðq2Þ with five lowest momentum transfers. Horizontal band
represents the fit result of Gv

Eðq2Þ at tsep=a ¼ 12, 14, 16 for
each q2.
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FIG. 4. q2 dependence of the isovector electric form factor
Gv

Eðq2Þ obtained by the combined analysis of the results at
tsep=a ¼ f12; 14; 16g (circle) and tsep=a ¼ f14; 16g (square).
Diamond symbols, which are obtained with tsep=a ¼ 15 on a
964 lattice at mπ ¼ 146 MeV in Ref. [15], are also plotted for
comparison.
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Gp
Eðq2Þ and Gn

Eðq2Þ. Actually, a recent work using the
mixed actions with the domain-wall sea quarks and
the overlap valence ones implies the contribution of the
disconnected diagram to Gp

Eðq2Þ and Gn
Eðq2Þ amounts to

∼0.005 with rather large statistical errors1 at q2 ≈
0.05 GeV2 in mπ ¼ 135 MeV [26], whose magnitude is
comparable to the difference between our Gn

Eðq2Þ and the
experimental value. To completely resolve the problem we
need to evaluate the isoscalar vector form factor in the
future.
With the use of the correlated fit procedure, we compare

four types of fitting functions to examine the uncertainty in
the extrapolation of the slope to q2 ¼ 0: linear function
GEðq2Þ ¼ d0 þ d1q2, dipole form of Eq. (13), quadratic
function GEðq2Þ ¼ d0 þ d1q2 þ d2q4 and the model-inde-
pendent z-expansion method with Eq. (15) with kmax ¼ 3.
In Figs. 4 and 5, we find that the dipole form well describes

the LQCD results for Gv
Eðq2Þ and Gp

Eðq2Þ up to the
maximum fitting range of q2cut ¼ 0.102 GeV2. We plot
the fit form dependence of

ffiffiffiffiffiffiffiffiffi
hr2Ei

p
in Fig. 6, where the upper

and lower bands denote the experimental results of the ep
scattering and the spectroscopy of the muonic hydrogen
(μH) atom, respectively. The numerical results are sum-
marized in Table III together with the experimental values.
We observe that all the fit procedures show good consis-
tency within the error bars both for the isovector and proton
channels with a reasonable χ2=dof, which is evaluated by
jackknife estimator in correlated fit. We also find that the
combined results with tsep=a ¼ f12; 14; 16g are consistent
with those with tsep=a ¼ f14; 16g within the error bars,
which indicates that the excited state contamination in
GEðq2Þ is under control. Note that, in the case of neutron,
one can find a clear deviation from the experimental value
due to the lack of the disconnected diagram as already
mentioned above.
As shown in this section, the LQCD calculation at the

low q2 region up to 0.11 GeV2 allows us to successfully
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FIG. 5. Same as Figure 4 for the proton (left) and neutron (right). Results are obtained without the disconnected diagram.
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for the combined data. Horizontal bands represent the experimental results from ep scattering (upper) and μH spectroscopy (lower). The
results for the proton channel is obtained without the disconnected diagram.

1This is just the value in the light quark flavor since the strange
quark contribution is negligible.
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reduce the uncertainties stemming from the choice of the
fitting procedures. Their central values, however, slightly
fluctuate depending on each fitting procedure and choice of
tsep range. We then take a result of

ffiffiffiffiffiffiffiffiffi
hr2Ei

p
with the dipole

form at tsep=a ¼ f12; 14; 16g as our best estimate of the
central value and its statistical error. The maximum differ-
ence between the central value in the dipole fit with
tsep=a ¼ f12; 14; 16g and those in other fitting procedures
with two choices of the combined tsep ranges is taken as the
systematic error (see Table III).

Although our result of the isovector channel stays around
the value of the μH experiment rather than that of the ep
scattering experiment, it may be too early to conclude its
preference at this stage because of relatively large error
bars. For the proton case, on the other hand, LQCD value
stays amid those experimental values. For the definite
conclusion we need more precise calculation including the
disconnected diagram. This is, however, an encouraging
situation indicating a possibility that LQCD can distinguish
the two experimental results in near future.

TABLE III. Results for the electric RMS charge radius
ffiffiffiffiffiffiffiffiffi
hr2Ei

p
in the isovector, proton and neutron channels. In the row of “This work,”

we present our best estimates, where the first error is statistical and the second one is systematic as explained in the text. Results for the
proton and neutron are obtained without the disconnected diagram. Our previous work was performed on a 964 lattice atmπ ¼ 146 MeV
in Ref. [15], where only the statistical errors are presented.

Isovector Proton Neutron

Fit type q2cut [GeV2] tsep=a
ffiffiffiffiffiffiffiffiffi
hr2Ei

p
[fm] χ2=dof

ffiffiffiffiffiffiffiffiffi
hr2Ei

p
[fm] χ2=dof hr2Ei [fm2] χ2=dof

Linear 0.013 f12; 14; 16g 0.847(23) � � � 0.848(19) � � � � � � � � �
f14; 16g 0.885(31) � � � 0.871(25) � � � � � � � � �

Dipole 0.102 f12; 14; 16g 0.875(15) 0.8(6) 0.858(13) 1.1(8) � � � � � �
f14; 16g 0.893(24) 0.5(5) 0.879(18) 0.8(7) � � � � � �

Quadrature 0.102 f12; 14; 16g 0.859(17) 0.6(6) 0.848(14) 1.2(1.0) −0.037ð18Þ 2.2(1.9)
f14; 16g 0.866(26) 0.7(7) 0.864(16) 1.4(1.1) −0.029ð23Þ 2.6(2.2)

z-exp (kmax ¼ 3) 0.102 f12; 14; 16g 0.862(25) 0.9(8) 0.870(22) 1.1(9) −0.047ð20Þ 1.8(1.7)
f14; 16g 0.886(33) 0.5(6) 0.893(22) 0.7(7) −0.035ð25Þ 2.4(2.1)

This work 0.875(15)(28) 0.858(13)(35) −0.047ð20Þð18Þ
PACS’18 [15]
Dipole 0.215 15 0.822(63) � � � � � � � � � � � � � � �
Quadratic 0.215 15 0.851(62) � � � � � � � � � � � � � � �
z-exp (kmax ¼ 3) 0.215 15 0.914(101) � � � � � � � � � � � � � � �
Experimental value
ep scattering 0.939(6) 0.875(6) −0.1161ð22Þ
μH atom 0.907(1) 0.8409(4) � � �
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FIG. 7. Same as Fig. 2 for the ratio of Eq. (21) to extract the isovector magnetic form factor Gv
Mðq2Þ.
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B. Magnetic form factor and magnetic RMS radius

The isovector magnetic form factor Gv
Mðq2Þ is extracted

from the ratio R5z;N
jem;i

ðt; qÞ of Eq. (21). The analysis of
Gv

Mðq2Þ is performed in parallel with Gv
Eðq2Þ. We first plot

the t dependence of the ratio with jnj2 ¼ 1, 2, 3, 4 for
tsep=a ¼ 10, 12, 14, 16 in Fig. 7, which show good plateau
for all the cases of jnj2 and tsep=a. We extract Gv

Mðq2Þ with
the constant fit employing the same fitting range as in the
Gv

Eðq2Þ case. Figure 8 shows that the results for
tsep=a ¼ 10, 12, 14, 16 agree with each other within 1-σ
error bars, though the statistical fluctuation is much larger

than the Gv
Eðq2Þ case. We evaluate Gp

Mðq2Þ and Gn
Mðq2Þ

separately from each R5z;N
jem;iðt; qÞ for N ¼ p, n, where we

omit the disconnected diagram. As in Gv
Mðq2Þ, all the ratios

of R5z;N
jem;iðt; qÞ have reasonable plateaus, and those values

are consistent in the four tsep cases. At each q2 we take two
combined values obtained by the constant fit in the two
ranges of tsep=a ¼ f12; 14; 16g and tsep=a ¼ f14; 16g for
Gv

Mðq2Þ, Gp
Mðq2Þ, and Gn

Mðq2Þ. Those values are summa-
rized in Appendix.
Figure 9 shows that the results from the two combined

tsep ranges are consistent with each other. These results are
compared with that of our previous calculation [15]. Our
current result has much smaller error than the previous one,
and closer to the Kelly’s fit. In Figs. 9 and 10, we observe
that the q2 dependence ofGv

Mðq2Þ andGp
Mðq2Þ is consistent

with the Kelly’s fit within the 1.5 − σ error, though Gn
Mðq2Þ

for tsep ¼ f12; 14; 16g in the smaller q2 region shows slight
deviation from the Kelly’s fit. This could be due to the lack
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of the disconnected contribution as well as Gn
Eðq2Þ case.

Note that the negative disconnected contribution of
∼ − 0.03 at q2 ≈ 0.05 GeV2 in mπ ¼ 135 MeV implied
in Ref. [26] could make our result of Gn

Mðq2Þ closer to the
experimental value.
We obtain the magnetic RMS radius

ffiffiffiffiffiffiffiffiffiffi
hr2Mi

p
together

with the magnetic moment μ ¼ GMð0Þ with four types of
fitting functions as in the electric case. The numerical
values of μ and

ffiffiffiffiffiffiffiffiffiffi
hr2Mi

p
for the isovector, proton and

neutron channels are summarized in Table IV with the
linear, dipole, quadratic forms and the z-expansion method

with kmax ¼ 3. In Figs. 9 and 10, one can see that the dipole
form up to q2cut ¼ 0.102 GeV2 can well describe the LQCD
data for both choices of the combined tsep ranges, and they
show good consistency with each other. Figure 11 illus-
trates a comparison between four types of the fit procedures
for the magnetic moment μ, which shows good consistency
within 1-σ error as well as the case of the electric RMS
radius. The situation is similar to the magnetic RMS radiusffiffiffiffiffiffiffiffiffiffi
hr2Mi

p
in Fig. 12, though the z-expansion method at

tsep=a ¼ f14; 16g gives the deviation beyond 1-σ error
between two choices of the combined tsep ranges. We take
the result of the dipole form with tsep=a ¼ f12; 14; 16g as
our best estimate of the central value and the statistical error
for μ and

ffiffiffiffiffiffiffiffiffiffi
hr2Mi

p
, and take the maximum difference

between the central value in the dipole fit with tsep=a ¼
f12; 14; 16g and those in other fitting procedures with two
choices of the combined tsep range as the systematic error
(see Table IV). Compared to the previous work [15], the
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FIG. 11. Magnetic moment μ for the isovector (top), proton
(middle) and neutron (bottom) channels obtained by the fitting
with the linear, dipole, quadratic forms and the z-expansion
method for the combined data. Horizontal bands represent the
experimental results. Two types of symbols denote the results
with two choices of the combined tsep ranges. Results for the
proton and neutron channels are obtained without the discon-
nected diagram.
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statistical precision is significantly improved with less
discrepancies between four types of the fit procedures.
The results of the magnetic moment and RMS radius show
consistency with the experimental values within 1-σ error
bars of the isovector, proton, and neutron channels, though
the systematic uncertainty in a choice of the combined
tsep range is relatively large due to the excited state
contamination.

C. Axial-vector coupling, axial-vector form factor,
and axial radius

1. Axial-vector coupling

The axial-vector coupling gA ¼ FAð0Þ has been exten-
sively calculated with LQCD by various groups (see
Ref. [15] and references therein). We first show the t
dependence of gA extracted from Eq. (22) with Q0 for
tsep=a ¼ 10, 12, 14, 16 in Fig. 13. We observe reasonable

plateau for all the cases of tsep. Figure 14 shows that our
results of gA in all the tsep cases agree with the experimental
value, 1.2724(23) [27].
We determine the central value of gA from the combined

value with tsep=a ¼ f12; 14; 16g presented in the figure and
a difference from the tsep ¼ f14; 16g case is regarded as
the systematic error. The result is summarized in Table V.
Our best estimate of gA in this work is

gA ¼ 1.273ð24Þð5Þð9Þ; ð26Þ

where we also include a systematic error stemming from
the error of ZA

2 as the third one. This result entirely agrees
with the experiment.

TABLE IV. Results for the magnetic moments μ and magnetic RMS radius
ffiffiffiffiffiffiffiffiffiffi
hr2Mi

p
for the isovector, proton and neutron channels. In

the row of “This work,” we present our best estimates, where the first error is statistical and the second one is systematic as explained in
the text. Results for the proton and neutron are obtained without the disconnected diagram. Previous work was performed on a 964 lattice
at mπ ¼ 146 MeV in Ref. [15], where only the statistical errors are presented.

Isovector

Fit type q2cut [GeV2] tsep=a μv
ffiffiffiffiffiffiffiffiffiffi
hr2Mi

p
[fm] χ2=dof

Linear 0.039 f12; 14; 16g 4.483(178) 0.828(54) 0.6(1.7)
f14; 16g 4.658(208) 0.894(56) 0.4(1.3)

Dipole 0.102 f12; 14; 16g 4.417(138) 0.805(32) 0.9(7)
f14; 16g 4.694(236) 0.907(48) 3.1(3.6)

Quadrature 0.102 f12; 14; 16g 4.417(162) 0.800(57) 1.2(1.1)
f14; 16g 4.546(201) 0.938(59) 1.6(1.2)

z-exp (kmax ¼ 3) 0.102 f12; 14; 16g 4.458(177) 0.831(92) 1.1(1.0)
f14; 16g 4.734(231) 1.079(86) 0.9(9)

This work 4.417(138)(317) 0.805(32)(274)
PACS’18 [15]
Dipole 0.215 15 3.96(46) 0.656(133) � � �
Quadratic 0.215 15 4.24(52) 0.852(130) � � �
z-exp (kmax ¼ 3) 0.215 15 4.86(82) 1.495(437) � � �
Experimental value

4.70589 0.862(14)

Proton Neutron

Fit type q2cut [GeV2] tsep=a μp
ffiffiffiffiffiffiffiffiffiffi
hr2Mi

p
[fm] χ2=dof μn

ffiffiffiffiffiffiffiffiffiffi
hr2Mi

p
[fm] χ2=dof

Linear 0.039 f12; 14; 16g 2.765(116) 0.790(63) 0.1(7) −1.700ð71Þ 0.810(73) 2.2(2.9)
f14; 16g 2.875(152) 0.884(60) 0.1(5) −1.797ð85Þ 0.898(74) 0.6(1.7)

Dipole 0.102 f12; 14; 16g 2.748(93) 0.808(35) 0.3(4) −1.709ð62Þ 0.823(33) 0.9(7)
f14; 16g 2.785(150) 0.816(47) 1.5(1.7) −1.819ð95Þ 0.947(60) 1.1(2.3)

Quadrature 0.102 f12; 14; 16g 2.744(108) 0.799(63) 0.3(5) −1.687ð67Þ 0.770(63) 1.0(9)
f14; 16g 2.816(149) 0.931(58) 2.8(1.7) −1.739ð80Þ 0.911(82) 1.3(1.2)

z-exp (kmax ¼ 3) 0.102 f12; 14; 16g 2.753(119) 0.809(105) 0.3(5) −1.682ð72Þ 0.724(133) 1.0(9)
f14; 16g 2.887(163) 0.990(110) 0.6(1.5) −1.839ð102Þ 1.099(124) 0.7(8)

This work 2.748(93)(139) 0.808(35)(182) −1.709ð62Þð130Þ 0.823(33)(276)
Experimental value

2.79285 0.776(38) −1.91304 0.864(9)

2The error of ZA coming from the difference of two volumes is
not included, because we choose the larger volume in Ref. [44] to
set the physical scale.
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Here, it may be useful to present the up- and down-quark
spin component in the nucleon spin, which can be obtained
by decomposing the axial-vector coupling into the up- and
down-quark contributions: guA ¼ 0.967ð30Þð16Þð7Þ and
gdA ¼ −0.306ð19Þð21Þð2Þ, in which the first error is stat-
istical one and, the second and third ones are systematic
errors due to the excited state contamination and uncer-
tainty of ZA, respectively. Again note that these results are
obtained without the disconnected diagram.

2. Axial-vector form factor and axial radius

We next show the t dependence of FA extracted from
Eq. (22) with Q1, Q2, Q3, and Q4 for tsep=a ¼ 10, 12, 14,
16 in Fig. 15. We observe reasonable plateau for all the
cases of tsep and finite n. As in the case ofGMðqÞ, we do not
observe a significant tsep dependence in Fig. 16. We employ
two combined values obtained by applying the constant fit
to the data in the two ranges of tsep=a ¼ f12; 14; 16g and
tsep=a ¼ f14; 16g, which are used for the investigation of
q2 dependence of FAðq2Þ. The two combined values for
FAðq2Þ are summarized in Appendix.
We plot the q2 dependence of FAðq2Þ in Fig. 17, where

any strong curvature is not observed in terms of q2. We also
find that our two combined results show good agreement
with each other and both of them are consistent with the
experimental values [6] within 1-σ error bars. The isovector
axial-vector coupling FAð0Þ and the axial RMS radiusffiffiffiffiffiffiffiffiffi
hr2Ai

p
are obtained from several types of fitting procedure

with the linear, dipole, quadratic forms and the z-expansion
method with kmax ¼ 3. Note that we employ tcut ¼ 9m2

π in
Eq. (15) for the z-expansion method.
The dipole form fits for two combined data with different

choices of tsep range are presented in Fig. 17. The fit results
up to q2cut ¼ 0.102 GeV2 well describe our data. As shown
in Fig. 17, the fitted curve for tsep=a ¼ f14; 16g appears
slightly below their respective data points. This could be
due to a poor determination of the covariance matrix in the
correlated fit for the highly correlated data among different
q2 points. The results from four types of fit form are
compared graphically in Fig. 18 and numerically in
Table V. The fit results for both FAð0Þ and

ffiffiffiffiffiffiffiffiffi
hr2Ai

p
show

good consistency among all four types of fitting proce-
dures, and they are also in agreement with the experimental
values.
Following the analysis in GEðq2Þ and GMðq2Þ, we take

the result of the dipole form with tsep=a ¼ f12; 14; 16g as
our best estimate of the central value and the statistical error
for

ffiffiffiffiffiffiffiffiffi
hr2Ai

p
, and take the maximum difference between the

dipole fit with tsep=a ¼ f12; 14; 16g and other fitting with
two tsep ranges as the systematic error (see Table V).

D. Induced pseudoscalar form factor

In Fig. 19, we plot the t dependence of FPðq2Þ extracted
from Eq. (22) with Q1, Q2, Q3, and Q4 for tsep=a ¼ 10, 12,
14, 16. One can observe that its dependence has slight
convex shape for all the cases in contrast to the form factors
GEðq2Þ, GMðq2Þ, and FAðq2Þ discussed above. Inside the
fitting range of t, however, the data points are overlapping
within 1σ statistical error, so that employing a constant fit to
obtain FPðq2Þ is appropriate. Figure 20 shows the tsep
dependence of FPðq2Þ at the smallest three values of q2. We
find that FPðq2Þ clearly increases as tsep increases. This
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FIG. 13. Same as Fig. 2 for the axial-vector coupling gA ¼
FAð0Þ extracted from the ratio of Eq. (22) at the zero momentum
transfer. Red band denotes the experimental result [27].
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indicates that the significant contribution from the excited
states is involved in the FPðq2Þ case. In fact, the previous
work [15] on a 964 lattice at the 146 MeV pion with
tsep=a ¼ 15 gives FPðq2Þ close to tsep=a ¼ 14 in our case.
We plot the q2 dependence of the normalized induced

pseudoscalar form factor 2MNFPðq2Þ for tsep=a ¼ 14 and
16 compared to the previous work [15] in Fig. 21. The
colored curve denotes a prediction of the pion-pole

dominance (PPD) model with the measured values of
mπ , MN and the global fit result of FAðq2Þ in the dipole
form:

FPPD
P ðq2Þ ¼ 2MNFAðq2Þ=ðq2 þm2

πÞ; ð27Þ

which successfully describes two experimental results of
the muon capture [46] and the pion-electroproduction [29].

TABLE V. Results for the axial-vector coupling gA ¼ FAð0Þ and axial-vector RMS radius
ffiffiffiffiffiffiffiffiffi
hr2Ai

p
. In the row of “This work,” we

present our best estimates, where the first error is statistical and the second one is systematic as explained in the text. Results for the
proton and neutron are obtained without the disconnected diagram. Previous work was performed on a 964 lattice at mπ ¼ 146 MeV in
Ref. [15], where only the statistical errors are presented.

Fit type q2cut GeV2 tsep=a gA FAð0Þ
ffiffiffiffiffiffiffiffiffi
hr2Ai

p
[fm] χ2=dof

Linear 0.039 f12; 14; 16g 1.279(23) 0.609(43) 1.0(1.4)
0.052 f14; 16g 1.257(30) 0.659(49) 0.5(1.6)

Dipole 0.102 f12; 14; 16g 1.288(19) 0.647(22) 1.1(8)
0.077 f14; 16g 1.252(28) 0.676(37) 0.5(9)

Quadrature 0.102 f12; 14; 16g 1.287(19) 0.625(34) 1.2(9)
0.077 f14; 16g 1.252(29) 0.672(72) 0.9(1.9)

z-exp 0.102 f12; 14; 16g 1.287(20) 0.631(43) 1.2(9)
(kmax ¼ 3) 0.077 f14; 16g 1.251(28) 0.671(80) 0.9(1.9)
gA � � � f12; 14; 16g 1.273(24)

� � � f14; 16g 1.268(35)
This work 1.273(24)(5) 0.647(22)(38)
PACS’18 [15]
Dipole 0.215 15 � � � 0.40(12) � � �
Quadratic 0.215 15 � � � 0.22(49) � � �
z-exp (kmax ¼ 3) 0.215 15 � � � 0.46(11) � � �
gA 0.215 15 1.163(75)
Experimental value

1.2724(23) 0.67(1)
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FIG. 15. Same as Fig. 2 for the axial-vector form factor FAðq2Þ extracted from the ratio of Eq. (22).
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The tsep dependence of 2MNFPðq2Þ found in Fig. 20, where
the significant change of form factor as tsep increases
appears, gives an important hint to explain a discrepancy
from experimental values and PPD model prediction.
For more careful verification of the excited state con-

tamination in the induced pseudoscalar form factor, we
need more accurate data at tsep=a ¼ 16 and an additional
calculation with at least one more large tsep, which may
help to extrapolate FP in the infinite tsep limit. We note that
the baryon chiral perturbation theory suggests the afore-
mentioned discrepancy as the contamination of the π-N
excited states in the standard plateau method [47,48]. It is
also noted that this contamination is recently investigated
using a proper projection [49]. More detailed comparison is
also interesting for the future work.

V. PSEUDOSCALAR FORM FACTOR AND
GOLDBERGER-TREIMAN RELATION

In the previous section, we have found the relatively
large excited state contamination in FPðq2Þ compared to
FAðq2Þ, which may one of the reasons for the considerable
discrepancy between the LQCD result of 2MNFPðq2Þ and
the experimental values. We expect that the generalized GT
relation of Eq. (9), which is associated with the AWT
identity, may also suffer from the serious effects of the
excited state contamination.
The pseudoscalar form factor GPðq2Þ is defined by

Eq. (10) and extracted from the ratio R5z
P ðt; qÞ of

Eq. (23). Figure 22 shows the t dependence of the ratio
with jnj2 ¼ 1, 2, 3, 4 for tsep=a ¼ 10, 12, 14, 16. We
observe that the convex shape is much clearer than the FP
case and its top value increases for larger tsep. One can see
that the pseudoscalar form factor is also strongly affected
by the excited state contributions.
In Fig. 23, we plot our values of GPðq2Þ as a function of

q2, which are obtained by the constant fit of data for both
tsep=a ¼ 14 and 16 choosing the same fit range as the other
form factors. The stronger curvature appears around q2 ¼ 0
as tsep increases. This behavior is found to be similar to
FPðq2Þ. Although data points ofGPðq2Þ for tsep=a ¼ 14 are
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momentum transfers.
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comparable with the previous result [15], where tsep=a ¼
15 was chosen, the magnitude of GPðq2Þ for tsep=a ¼ 16

becomes about 10 percent larger than that of tsep=a ¼ 14 at
all the simulated q2 points. The tsep dependence of GPðq2Þ
is much more prominent than that of FPðq2Þ.
According to the PPD model or the generalized GT

relation associated with the AWT identity, FPðq2Þ and
GPðq2Þ are supposed to share the same pion-pole
structure, i.e., ∝ 1=ðq2 þm2

πÞ, at lower q2. In the previous
work [15], it was indeed observed that the ratio of
GPðq2Þ=FPðq2Þ exhibited a flat q2 dependence at lower
q2 and was in good agreement with the bare value of the

low-energy constant B0 ¼ m2
π=ð2m̂Þ with the simulated

pion mass mπ and the PCAC quark mass m̂ ¼ mPCAC
AWTI. In

order to test whether this feature holds against the
variation of tsep, we plot the ratios of GPðq2Þ=FPðq2Þ
for all the case of tsep ¼ 10, 12, 14, 16 in Fig. 24. Each
ratio of GPðq2Þ=FPðq2Þ does not depend on q2 and
those are in good agreement with the bare value of the
low-energy constant B0 as illustrated by the green
band. This strongly indicates that the individual effects
of the excited state contamination on the GPðq2Þ and
FPðq2Þ form factors are canceled in the ratio
of GPðq2Þ=FPðq2Þ.
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FIG. 19. Same as Fig. 2 for the induced pseudoscalar form factor FPðq2Þ extracted from the ratio of Eq. (22).
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scalar form factor 2MNFPðq2Þ with four lowest nonzero mo-
mentum transfers.
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In order to test the generalized GT relation of Eq. (9), it is
convenient to define the following (bare) quark mass as in
Ref. [15]:

mGT
AWTI ¼

2MNFAðq2Þ − q2FPðq2Þ
2GPðq2Þ

: ð28Þ

Since the generalized GT relation is an expression of
the AWT identity in terms of the nucleon matrix elements,
the above quark mass should coincide with the PCAC
quark mass mPCAC

AWTI extracted from the pseudoscalar matrix

elements. In Fig. 25, we plot the quark mass mGT
AWTI

as a function of q2 for all the cases of tsep=a ¼ 10,
12, 14, 16. The results do not show any strong q2

dependence but they are systematically decreased
when tsep increases. Compared to the measured mPCAC

AWTI
[20] from the pion propagator on the same gauge
ensembles, mGT

AWTI approaches to mPCAC
AWTI as tsep=a is

increased: mGT
AWTI=m

PCAC
AWTI ¼ 3.0ð1Þ at tsep=a ¼ 12 to

2.3(1) at tsep=a ¼ 16, quoted from the value of Fig. 25
at the minimum q2 ¼ 0.013 GeV2, with only statistical
error. This tendency provides a hint to resolve an
issue of “distortion of pion-pole structure” discussed
in Ref. [15].
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FIG. 22. Same as Fig. 2 for the pseudoscalar form factor GPðq2Þ extracted from the ratio of Eq. (23).
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FIG. 26. (Top) Comparison of recent LQCD results for the isovector nucleon electric and the magnetic RMS radii, and magnetic
moment obtained by CLS-Mainz [52], PNDME [50], ETMC [10], Hasan et al. [12] and PACS [15]. (Bottom) Same as top panels for the
axial RMS radius and the axial-vector coupling obtained by CLS-Mainz [53], Green et al. [54], PNDME [9,14], ETMC [11], CalLat
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VI. SUMMARY AND DISCUSSION

We have calculated the nucleon electric and magnetic
form factors, GEðq2Þ and GMðq2Þ, for not only the
isovector channel but also the individual form factors of
proton and neutron without the disconnected diagram on a
ð10.8 fmÞ4 lattice at the physical point in 2þ 1 flavor
QCD. We have also measured the axial-vector form factor
FAðq2Þ together with the axial-vector coupling gA and the
axial radius and the induced pseudoscalar form factor
FPðq2Þ. Utilizing the optimized all-mode-averaging
(AMA) technique with the Wilson-clover fermion, we have
investigated the effects of the excited state contamination
by varying tsep from 0.85 fm to 1.35 fm with tsep=a ¼ 10,
12, 14, 16 in the plateau method, which has not been
studied in the previous work [15]. After elaborate tuning of
the sink and source functions, we can obtain clear signal
of the nucleon asymptotic state for GEðq2Þ, GMðq2Þ,
and FAðq2Þ without significantly large excited state
contamination. Taking account of the uncertainties with
the extrapolation onto q2 ¼ 0 and the excited state

contamination, our best estimates for the RMS radii and
magnetic moments are obtained as follows:

ffiffiffiffiffiffiffiffiffi
hr2Ei

q
¼ 0.875ð15Þð28Þ ½fm� ðisovectorÞffiffiffiffiffiffiffiffiffi

hr2Ei
q

¼ 0.858ð13Þð35Þ ½fm� ðprotonÞ
hr2Ei ¼ −0.047ð20Þð18Þ ½fm2� ðneutronÞ; ð29Þ

ffiffiffiffiffiffiffiffiffiffi
hr2Mi

q
¼ 0.805ð32Þð274Þ ½fm� ðisovectorÞffiffiffiffiffiffiffiffiffiffi

hr2Mi
q

¼ 0.808ð35Þð182Þ ½fm� ðprotonÞffiffiffiffiffiffiffiffiffiffi
hr2Mi

q
¼ 0.823ð33Þð276Þ ½fm� ðneutronÞ; ð30Þ

μv ¼ 4.417ð138Þð317Þ ðisovectorÞ
μp ¼ 2.748ð93Þð139Þ ðprotonÞ
μn ¼ −1.709ð62Þð130Þ ðneutronÞ; ð31Þ
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FIG. 27. Summary plot for the proton electric and magnetic RMS radii and magnetic moment (top) and the neutron electric and
magnetic RMS radii and magnetic moment (bottom). We also plot the results of the ETM Collaboration [10] for comparison. Vertical
bands denote experimental values. Our results are obtained without the disconnected diagram.
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where the first error is statistical, the second one is
systematic error of which the uncertainty of possible
excited state contamination and the fit dependence for
extrapolation to q2 ¼ 0 (see Secs. IVA and IV B for the
details) are included. They are comparable with the
experimental values of

ffiffiffiffiffiffiffiffiffi
hr2Ei

p
, which are given by 0.939

(6) fm (isovector) and 0.875(6) fm (proton) for the ep
scattering, and 0.907(1) fm (isovector) and 0.8409(4) fm
(proton) for the μH spectroscopy. The experimental values
of

ffiffiffiffiffiffiffiffiffiffi
hr2Mi

p
is given by 0.862(14) fm (isovector), 0.776

(38) fm (proton) and 0.864(9) fm (neutron), and those for
the magnetic moment are μv ¼ 4.70589, μp ¼ 2.79285 and
μn ¼ −1.91304 quoted from PDG’18 [27]. Although our
results for the electric RMS charge radius in the isovector
channel seem to favor the experimental result of the μH
spectroscopy within 1-σ error, it is still too early to draw
any definitive conclusion because of rather large error bars
of 4% level. For the proton and neutron channels we leave
the inclusion of the disconnected diagram to future work.
In Fig. 26, we compare our results with those obtained by

previous LQCD calculations for the isovector channel (see
Table VI for the simulation parameters). Those errors are
combined with statistical and systematic errors in the

quadrature, except that gA for PACS’18 has only statistical
error. The electric RMS charge radius given by the PNDME
[50] and ETM [10] Collaborations are below the exper-
imental values beyond 1-σ error. In spite of that, the other
LQCD calculation, e.g., the ETM Collaboration, has also
been at the physical pion, their values have differed from
our results and experimental values. This may be due to
some sorts of finite volume effect on their results [10]. The
spatial extent of 10.8 fm in our case allows q2 ¼
0.013 GeV2 as the minimum momentum transfer, which
is 6 times smaller than that of the ETM Collaboration [10],3

who have employed gauge configurations with Nf ¼ 2

twisted mass fermion on a ð4.5 fmÞ3 box at the physical
pion mass. It means that our simulation on large volume is a
strong advantage for the determination of a slope at q2 ¼ 0
to correctly obtain RMS radius. Actually the deficit of the

TABLE VI. Summary of simulation parameters in recent LQCD calculations for the nucleon form factors. Nf denotes the number of
dynamical quark flavors. In the column “Fermion,” “TM-Clover” stands for the twisted mass clover-improved Wilson-Dirac operator,
“ST-Clover” denotes the stout smeared Wilson-clover fermion, and “HEX-Clover” denotes the HEX smeared Wilson-clover fermion.
“MDWF” denotes Möbius domain-wall fermion. In the column, “Method,” “R,” “S,” “TSF,” “D,” and “FH” stand for the standard
plateau (ratio) method, the summation method, the two-state fit method, the derivative method and the method based on the Feynman-
Hellmann theorem.

Observables

Publication Nf Type Fermion mπ [MeV] a [fm] La [fm] tsep [fm] Method hr2Ei μv hr2Mi gA hr2Ai
CLS-Mainz [52,53] 2 Full Clover ≥ 261 0.050 4.0 ≤ 1.1 R, S, TSF ○ ○ ○ ○ ○

≥ 193 0.063 4.0 ≤ 1.1 R, S, TSF ○ ○ ○ ○ ○

≥ 268 0.079 4.0 ≤ 1.26 R, S, TSF ○ ○ ○ ○ ○

ETMC [10,11] 2 Full TM-Clover 130 0.094 4.5 ≤ 1.69a R, S, TSF ○ ○ ○ ○ ○

PNDME’13 [50] 2þ 1þ 1 Hybrid b Clover 220 0.12 3.8 ≤ 1.44 R, TSF ○ ○ ○ � � � � � �
Clover 310 0.12 2.9 ≤ 1.44 R, TSF ○ ○ ○ � � � � � �

PNDME’17 [9,14] 2þ 1þ 1 Hybrid b Clover ≥ 135 0.06 5.5 ≤ 1.25 R, TSF � � � � � � � � � ○ ○

Clover ≥ 130 0.09 5.6 ≤ 1.44 R, TSF � � � � � � � � � ○ ○

Clover ≥ 220 0.12 4.8 ≤ 1.66 R, TSF � � � � � � � � � ○ ○

Clover 310 0.15 2.4 1.35 R, TSF � � � � � � � � � ○ ○

CalLat [13] 2þ 1þ 1 Hybrid c MDWF ≥ 220 0.09 4.3 FH � � � � � � � � � ○ � � �
MDWF ≥ 130 0.12 5.8 FH � � � � � � � � � ○ � � �
MDWF ≥ 130 0.15 4.8 FH � � � � � � � � � ○ � � �

Hasen et al. [12] 2þ 1 Full ST-Clover 135 0.093 5.9 ≤ 1.49 R, S, D ○ ○ � � � � � � ○

Green et al. [54] 2þ 1 Full HEX-Clover 317 0.114 3.6 ≤ 1.60 R, S � � � � � � � � � ○ ○

PACS’18 [15] 2þ 1 Full ST-Clover 146 0.085 8.1 1.27 R ○ ○ ○ ○ ○

This work 2þ 1 Full ST-Clover 135 0.085 10.8 ≤ 1.36 R ○ ○ ○ ○ ○

aThe electric form factor determined with the projection operator Pt is evaluated up to tsep=a ¼ 18 (tsep ¼ 1.69 [fm]), while the
magnetic, axial-vector and pseudoscalar form factors determined with the projection operator P5z are evaluated only up to tsep=a ¼ 14
(tsep ¼ 1.32 [fm]).

bClover fermions on highly improved staggered quarks (HISQ) ensembles.
cMöbius domain-wall fermions on HISQ ensembles.

3Recently, the updated results of electromagnetic form factor
in ETM Collaboration appear in Ref. [51]. Their results of electric
RMS radius still has a large discrepancy from experimental
values. As we have argued in this paper, this may be due to finite
volume effect on their relatively small spatial size, which is up to
6 fm (Nf ¼ 2), compared to our calculation on 10.8 fm.
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charge radius observed in the ETMC results is consistent
with the theoretical expectation discussed in Refs. [18,20].
For the magnetic RMS radius and the magnetic moment,
our results are consistent with the experimental values,
though we find relatively large error bars compared to other
LQCD results. Our results indicate that Gv

M is sensitive to
the source-sink separation tsep rather than Gv

E. In Eq. (30),
our large systematic error takes into account such an
uncertainty due to the excited state contamination. We
find similar stories for the proton and neutron charge radii
and the magnetic moment as shown in Fig. 27, even though
our result is obtained from only the connected diagram. As
discussed in Secs. IVA and IV B we expect that the
disconnected contribution may compensate the difference
between our results and the experimental values.
Our best estimates for the axial vector coupling and the

axial radius are obtained as

ffiffiffiffiffiffiffiffiffi
hr2Ai

q
¼ 0.647ð22Þð38Þ ½fm�; ð32Þ

gA ¼ 1.273ð24Þð5Þð9Þ; ð33Þ

guA ¼ 0.967ð30Þð16Þ; ð34Þ

gdA ¼ −0.306ð19Þð21Þ; ð35Þ

in which the first error is statistical and the second one is
systematic explained in Secs. IV C 1 and IV C 2. They are
comparable with experimental values, gA ¼ 1.2724ð23Þ
[27] and

ffiffiffiffiffiffiffiffiffi
hr2Ai

p
¼ 0.67ð1Þ [6,28]. Our result of the axial

RMS radius is consistent with the experimental value,
while the 7% precision is 4.5 times larger than the
experimental one. For the axial-vector coupling, our value
is also consistent with the experimental one, though the 2%
precision of the former is an order-of-magnitude larger than
that of the latter. We also present the results for guA and gdA
neglecting the disconnected contribution, which are in
agreement with other LQCD results [11,54] within 2-σ
error. In comparison with other LQCD results as shown in
Fig. 26, our results show consistency with experimental
values within comparable magnitude of error bars to other
groups. For the axial radius and the axial-vector coupling
our results are significantly improved from the ETMC’s
results [11]. Here again the spatial lattice size may play a
crucial role. Our results on a ð10.8 fmÞ3 spatial box, which
is about 14 times larger than a ∼ð4.5 fmÞ3 spatial box
employed by the other groups, e.g., the ETM
Collaboration, clearly show consistency of GAðq2Þ with
the Kelly’s fit (see Fig. 17), and we observe less excited
state contamination effects.
On the other hand, the induced pseudoscalar form factor

FP in the axial-vector channel shows clear tsep dependence

and considerable deficit from the experimental value in
very low q2 region. Investigation of the generalized GT
relation associated with FA, FP, andGP strongly suggests a
sizable amount of the excited state contributions to the
determination of FA and FP in the plateau method. More
dominant excited state contamination compared to the other
form factors could be a resolution of “distortion of pion-
pole structure” [15], and it would be solvable once the high-
precision data at larger tsep is available. Note that, thanks to
our spatial size more than 10 fm, we can first obtain the
low-q2 LQCD data of induced pseudoscalar form factor,
which is close to q2 in MuCap experiment [5], at the
physical point.
This is the first lattice QCD calculation that succeeds

in simultaneously reproducing the experimental values
for

ffiffiffiffiffiffiffiffiffi
hr2Ei

p
, μ,

ffiffiffiffiffiffiffiffiffiffi
hr2Mi

p
, gA, and

ffiffiffiffiffiffiffiffiffi
hr2Ai

p
, and makes an

important step for the LQCD calculations to successfully
improve its precision to be comparable with the exper-
imental results. In order to assure the reliability of the
results, a next step would be further reduction of both
statistical and systematic errors such as the cutoff effects
and the isospin breaking effects including quark discon-
nected diagrams.
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APPENDIX: TABLE OF NUCLEON
FORM FACTORS

The results for the three isovector form factors Gv
Eðq2Þ, Gv

Mðq2Þ, and FAðq2Þ obtained with tsep=a ¼ f12; 14; 16g and
f14; 16g are summarized in Table VII. The electric and magnetic form factors for the proton and neutron, Gp

Eðq2Þ, Gn
Eðq2Þ,

Gp
Mðq2Þ, and Gn

Mðq2Þ, are presented in Table VIII.

TABLE VII. q2 dependence of the isovector form factors obtained by the constant fit for tsep=a ¼ f12; 14; 16g and tsep=a ¼ f14; 16g.
In the previous work [15], the results are obtained with tsep=a ¼ 15 on a 964 lattice at mπ ¼ 146 MeV.

tsep=a ¼ f12; 14; 16g tsep=a ¼ f14; 16g
q2 ½GeV2� Gv

Eðq2Þ Gv
Mðq2Þ FAðq2Þ Gv

Eðq2Þ Gv
Mðq2Þ FAðq2Þ

0.000 0.997(1) � � � 1.273(24) 0.999(1) � � � 1.269(34)
0.013 0.957(2) 4.279(162) 1.244(22) 0.955(2) 4.511(213) 1.244(32)
0.026 0.920(3) 4.124(137) 1.221(22) 0.916(4) 4.279(182) 1.215(37)
0.039 0.885(5) 3.951(122) 1.197(20) 0.880(6) 4.074(172) 1.197(39)
0.052 0.848(6) 3.812(120) 1.158(21) 0.846(8) 3.863(173) 1.148(29)
0.064 0.818(6) 3.701(108) 1.147(22) 0.813(9) 3.786(152) 1.129(40)
0.077 0.789(7) 3.574(99) 1.126(21) 0.782(10) 3.641(151) 1.111(39)
0.102 0.735(8) 3.360(90) 1.082(23) 0.724(12) 3.427(140) 1.057(47)

PACS’18 [15] tsep=a ¼ 15

q2 ½GeV2� Gv
Eðq2Þ Gv

Mðq2Þ FAðq2Þ
0.000 1.000(4) � � � 1.163(75)
0.024 0.924(11) 4.071(456) 1.121(68)
0.048 0.861(19) 3.640(350) 1.137(69)
0.072 0.804(27) 3.333(305) 1.112(64)
0.095 0.774(30) 3.313(344) 1.118(72)

TABLE VIII. q2 dependence of the proton and neutron form factors obtained by the constant fit for tsep=a ¼ f12; 14; 16g and
tsep=a ¼ f14; 16g.

tsep=a ¼ f12; 14; 16g tsep=a ¼ f14; 16g
Proton Neutron Proton Neutron

q2 ½GeV2� Gp
Eðq2Þ Gn

Mðq2Þ Gn
Eðq2Þ Gn

Mðq2Þ Gp
Eðq2Þ Gp

Mðq2Þ Gn
Eðq2Þ Gn

Mðq2Þ
0.000 0.9988(8) � � � 0.0016(7) � � � 1.000(0) � � � 0.002(1) � � �
0.013 0.959(1) 2.660(104) 0.002(1) −1.620ð63Þ 0.957(2) 2.757(143) 0.003(1) −1.750ð85Þ
0.026 0.922(3) 2.569(87) 0.003(1) −1.573ð54Þ 0.919(3) 2.628(128) 0.004(2) −1.656ð68Þ
0.039 0.886(4) 2.473(75) 0.004(2) −1.507ð49Þ 0.883(4) 2.504(119) 0.005(4) −1.576ð62Þ
0.052 0.854(4) 2.378(75) 0.008(3) −1.447ð48Þ 0.852(6) 2.372(117) 0.013(11) −1.492ð65Þ
0.064 0.823(5) 2.315(63) 0.008(3) −1.404ð44Þ 0.820(6) 2.341(106) 0.012(9) −1.448ð56Þ
0.077 0.794(6) 2.241(58) 0.007(3) −1.351ð41Þ 0.790(7) 2.244(104) 0.012(8) −1.400ð55Þ
0.102 0.742(6) 2.106(52) 0.010(4) −1.260ð40Þ 0.735(9) 2.130(93) 0.014(8) −1.296ð58Þ
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