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We perform an improved study of the β function of SUð3Þ lattice gauge theory with Nf ¼ 10 massless
optimal domain-wall fermions in the fundamental representation, which serves as a check to what extent
the scenario we presented previously [Proc. Sci., LATTICE2016 (2017) 228] is valid. In the finite-volume
gradient flow scheme with c ¼ ffiffiffiffi

8t
p

=L ¼ 0.3, the renormalized couplings g2ðL; aÞ of four primary lattices
(L=a ¼ f8; 10; 12; 16g) are tuned (in 6=g20) to the same g2c with statistical error less than 0.5%, in contrast to
the previous work where g2ðL; aÞ were obtained by the cubic-spline interpolation. Then, the renormalized
couplings g2ðsL; aÞ of the scaled lattices (sL=a ¼ f16; 20; 24; 32g with s ¼ 2) are computed at the same
6=g20 of the corresponding primary lattices. Using the renormalized couplings of four lattice pairs
ðsL; LÞ=a ¼ fð16; 8Þ; ð20; 10Þ; ð24; 12Þ; ð32; 16Þg, the step-scaling β function ½g2ðsL; aÞ − g2ðL; aÞ�=
lnðs2Þ is computed and extrapolated to the continuum limit βðs; g2cÞ, as summarized in Table III. Based
on the four data points of βðs; g2cÞ at g2c ¼ f6.86ð2Þ; 6.92ð3Þ; 7.03ð2Þ; 7.16ð2Þg, we infer that the theory is
infrared near-conformal, or conformal with the fixed point g2� ¼ 7.55ð36Þ. This corrects the scenario in the
previous work with g2� ∼ 7.0, and also suggests that the interpolation method cannot give a reliable
determination of the β function, especially in a regime close to the infrared fixed point.

DOI: 10.1103/PhysRevD.99.014507

I. INTRODUCTION

In Refs. [1,2], we investigated the β function of the
SUð3Þ gauge theory with Nf ¼ 10 massless optimal
domain-wall fermions in the fundamental representation.
The motivation was to see whether this theory possesses a
nontrivial infrared fixed point, which is not only a funda-
mental problem in quantum field theory, but also relevant to
beyond the Standard Model scenarios with a composite
Higgs boson. (For recent reviews, see, e.g., Refs. [3–5].)
The results in Refs. [1,2] suggest that the theory might
possess an infrared fixed point (IRFP) around g2c ∼ 7.
However, the major systematic uncertainty in Refs. [1,2]
was that interpolation was used to obtain the renormalized
couplings g2ðL; aÞ and g2ðsL; aÞ. This could lead to a large
systematic error in the strong-coupling regime where the
renormalized coupling varies rapidly with respect to the
bare coupling g0 (or 6=g20), which in turn may give incorrect
results for the step-scaling β function

βðs; a=L; g2Þ ¼ g2ðsL; aÞ − g2ðL; aÞ
lnðs2Þ ; ð1Þ

as well as its extrapolated value in the continuum limit
(a=L → 0). The purpose of the present study is to eliminate
this systematic uncertainty by tuning 6=g20 such that the
renormalized couplings g2ðL; aÞ of all primary lattices
(L=a ¼ 8, 10, 12, 16) have the same value with a statistical
error less than 0.5%. The tuning process implies that many
simulations on the primary lattices have to be performed,
which are rather challenging in terms of computing
resources, time, and effort. After the value of 6=g20 is
determined for a chosen g2c ¼ g2ðL; aÞ, the simulation on
the scaled (s ¼ 2) lattice is performed at the same 6=g20 to
obtain the renormalized coupling g2ðsL; aÞ. Since the
results in Refs. [1,2] suggest that the theory may possess
an infrared fixed point around g2c ∼ 7, four targeted values
of g2c ¼ f6.86ð2Þ; 6.92ð3Þ; 7.03ð2Þ; 7.16ð2Þg around g2c ¼
7.0 are chosen. Also, a point at g2c ¼ 3.51ð2Þ is picked to
check whether the interpolation used in Refs. [1,2] works
well in the regime where the renormalized coupling varies
slowly with respect to the bare coupling. Moreover, in view
of a recent study of the SUð3Þ gauge theory with Nf ¼ 10

massless domain-wall fermions [6] (which reported 2–3
standard deviations compared with the results of Ref. [2]
for 4.5 < g2c < 6.0), a point at g2c ¼ 5.25ð2Þ is chosen to
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check whether the discrepancy is due to the systematic error
of the interpolation used in Ref. [2]. All together, the
targeted values of g2c in this study are g2c ¼ f3.51ð2Þ;
5.25ð2Þ; 6.86ð2Þ; 6.92ð3Þ; 7.03ð2Þ; 7.16ð2Þg.
The outline of this paper is as follows. In Sec. II, we

describe our hybrid Monte Carlo (HMC) simulation of
SUð3Þ gauge theory with Nf ¼ 10 massless optimal
domain-wall fermions, and summarize the residual masses
of all gauge ensembles in Table I. In Sec. III, we present our
results for the renormalized couplings in the finite-volume
gradient flow scheme with c ¼ ffiffiffiffi

8t
p

=L ¼ 0.3, for all gauge
ensembles, as summarized in Table II. In Sec. IV, we
perform the extrapolation of the step-scaling β function
βðs; a=L; g2cÞ to the continuum limit (a=L → 0) with the
linear fit ½Aþ Bða=LÞ2� and quadratic fit [Aþ Bða=LÞ2þ
Cða=LÞ4]. The results are summarized in Table III. In
Sec. V, we perform the extrapolation of βðs; g2cÞ with the
linear fit using four data points at g2c ¼ f6.86ð2Þ; 6.92ð3Þ;
7.03ð2Þ; 7.16ð2Þg, and determine the IRFP g2� and the slope
of βðs; g2Þ at the IRFP. In Sec. VI, we determine the
universal scaling exponent γ�g of the conventional β
function βðg2ðμÞÞ in the continuum, with the input of
the slope of βðs; g2Þ at the IRFP. In Sec. VII, we summarize
the results of this paper, and discuss the discrepancies

between the results in this paper and those obtained with
Nf ¼ 10 massless staggered fermions in a recent study [7].

II. GENERATION OF THE GAUGE ENSEMBLES

Since we are dealing with massless fermions, it is vital to
use lattice fermions with exact chiral symmetry at finite
lattice spacing (i.e., domain-wall [8]/overlap [9] fermions)
with exactly the same flavor symmetry as their counter-
part in the continuum. Theoretically, the effective four-
dimensional lattice Dirac operator of the domain-wall
fermion with infinite extent in the fifth dimension
(Ns ¼ ∞) is exactly equal to the overlap Dirac operator,

TABLE I. The residual masses of all gauge ensembles in this
work.

6=g20 L=a ðmresaÞL 2L=a ðmresaÞ2L
6.4650 16 5.8ð3Þ × 10−5 32 5.4ð2Þ × 10−5

6.4730 16 5.3ð1Þ × 10−5 32 4.9ð7Þ × 10−5

6.4750 16 5.7ð4Þ × 10−5 32 5.6ð5Þ × 10−5

6.4800 16 5.2ð8Þ × 10−5 32 5.2ð2Þ × 10−5

6.6000 16 4.6ð1Þ × 10−5 32 4.5ð3Þ × 10−5

7.0000 16 4.5ð6Þ × 10−5 32 4.4ð1Þ × 10−5

6.4610 12 5.9ð3Þ × 10−5 24 6.3ð5Þ × 10−5

6.4645 12 5.8ð2Þ × 10−5 24 6.2ð4Þ × 10−5

6.4680 12 6.2ð6Þ × 10−5 24 5.5ð2Þ × 10−5

6.4690 12 5.5ð3Þ × 10−5 24 5.9ð6Þ × 10−5

6.5700 12 4.9ð3Þ × 10−5 24 4.5ð2Þ × 10−5

6.9500 12 4.5ð7Þ × 10−5 24 4.5ð1Þ × 10−5

6.4590 10 5.8ð1Þ × 10−5 20 7.4ð9Þ × 10−5

6.4600 10 6.6ð5Þ × 10−5 20 6.0ð3Þ × 10−5

6.4640 10 6.5ð6Þ × 10−5 20 5.6ð2Þ × 10−5

6.4660 10 6.4ð3Þ × 10−5 20 5.7ð2Þ × 10−5

6.5500 10 4.8ð6Þ × 10−5 20 4.6ð1Þ × 10−5

6.9000 10 4.6ð6Þ × 10−5 20 4.5ð0Þ × 10−5

6.4490 8 6.2ð3Þ × 10−5 16 8.5ð7Þ × 10−5

6.4510 8 6.1ð4Þ × 10−5 16 7.7ð1Þ × 10−5

6.4520 8 5.9ð3Þ × 10−5 16 6.9ð4Þ × 10−5

6.4530 8 6.0ð2Þ × 10−5 16 6.1ð4Þ × 10−5

6.5200 8 5.1ð2Þ × 10−5 16 4.7ð4Þ × 10−5

6.8000 8 4.7ð6Þ × 10−5 16 4.5ð7Þ × 10−5

TABLE II. Summary of the renormalized couplings for all
gauge ensembles in this work.

6=g20 L=a g2ðL; aÞ 2L=a g2ð2L; aÞ
6.4650 16 7.16(2) 32 7.68(3)
6.4610 12 7.16(3) 24 7.81(3)
6.4590 10 7.16(2) 20 7.97(4)
6.4490 8 7.15(3) 16 8.02(4)

6.4730 16 7.03(2) 32 7.53(3)
6.4645 12 7.02(3) 24 7.60(3)
6.4600 10 7.03(3) 20 7.67(3)
6.4510 8 7.03(3) 16 7.80(2)

6.4750 16 6.92(3) 32 7.50(3)
6.4680 12 6.93(3) 24 7.56(3)
6.4640 10 6.93(3) 20 7.63(3)
6.4520 8 6.93(3) 16 7.78(3)

6.4800 16 6.86(2) 32 7.48(3)
6.4690 12 6.86(3) 24 7.52(4)
6.4660 10 6.86(3) 20 7.61(4)
6.4530 8 6.86(3) 16 7.76(2)

6.6000 16 5.25(2) 32 5.76(3)
6.5700 12 5.25(3) 24 5.82(3)
6.5500 10 5.26(2) 20 5.88(3)
6.5200 8 5.25(3) 16 5.95(3)

7.0000 16 3.51(2) 32 3.91(3)
6.9500 12 3.50(3) 24 3.97(3)
6.9000 10 3.51(3) 20 4.01(3)
6.8000 8 3.51(2) 16 4.14(2)

TABLE III. Extrapolation of βðs; a=L; g2cÞ to the continuum
limit.

Linear fit Quadratic fit

g2c βðs; g2cÞ χ2/d.o.f. βðs; g2cÞ χ2=d:o:f:

7.16(2) 0.239(47) 0.285 0.171(80) 0.773
7.03(2) 0.299(35) 0.140 0.294(87) 0.184
6.92(3) 0.344(36) 0.333 0.381(87) 0.077
6.86(2) 0.371(32) 0.418 0.409(83) 0.318
5.25(2) 0.318(45) 0.104 0.307(75) 0.040
3.51(2) 0.234(30) 0.361 0.249(77) 0.460
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DðmqÞ ¼ mq þ
ð1 − rmqÞ

2r
½1þ γ5HðH2Þ−1=2�;

where mq is the bare fermion mass,

r ¼ 1

2m0ð1 − dm0Þ
; m0 ∈ ð0; 2Þ;

H ¼ cγ5Dwð1þ dDwÞ−1;

Dw is the standard Wilson-Dirac operator minus m0, and c
and d are parameters depending on the variant of the
domain-wall fermions. In this study, we set c ¼ 1 and
d ¼ 0, and thus H ¼ γ5Dw ¼ Hw. In practice, the sign
function SðHÞ≡HðH2Þ−1=2 cannot be computed exactly,
since H is a very large matrix and it is prohibitively
expensive to diagonalize H. The best way to proceed is to
use the Zolotarev optimal rational approximation of the
sign function SðHÞ. However, HMC [10] simulations on
the four-dimensional lattice with the overlap Dirac operator
in the Zolotarev approximation encounter enormous diffi-
culties (see, e.g., Refs. [11,12]). On the other hand, for
domain-wall fermions (DWFs) with finite Ns in the fifth
dimension, HMC simulations can be performed without
serious difficulties. However, DWFs could severely break
the exact chiral symmetry, depending on the approximate
sign function SðHÞ in the four-dimensional effective Dirac
operator.
The chiral symmetry can be maximally preserved on a

lattice with finiteNs by optimal domain-wall fermions [13],
with the effective four-dimensional lattice Dirac operator
exactly equal to the Zolotarev optimal rational approxima-
tion of the overlap Dirac operator. In this paper, we use
optimal DWFs with the R5 symmetry [14], whose effective
four-dimensional lattice Dirac operator is exactly equal to
the “shifted” Zolotarev optimal rational approximation of
the overlap operator, with the approximate sign function
SðHÞ satisfying the bound 0 ≤ 1 − SðλÞ ≤ 2dZ for
λ2 ∈ ½λ2min; λ

2
max�, where dZ is the maximum deviation j1 −ffiffiffi

x
p

RZðxÞjmax of the Zolotarev optimal rational polynomial
RZðxÞ of 1=

ffiffiffi
x

p
for x ∈ ½1; λ2max=λ2min�, with degrees

ðn − 1; nÞ for Ns ¼ 2n.
The action of one-flavor optimal DWFs can be written as

SðΨ̄;Ψ; UÞ ¼ Ψ̄x;s½ðωsDw þ 1Þxx0δss0
þ ðωsDw − 1Þxx0Lss0 �Ψx0;s0 ; ð2Þ

where the indices x and x0 denote the sites on the four-
dimensional spacetime lattice, s and s0 are the indices in the
fifth dimension, and the lattice spacing a and the Dirac and
color indices have been suppressed. Here Dw is the
standard Wilson-Dirac operator minus the parameter
m0 ∈ ð0; 2Þ. The operator L is independent of the gauge
field, and it can be written as

L ¼ PþLþ þ P−L−; P� ¼ ð1� γ5Þ=2;

and

ðLþÞss0 ¼ ðL−Þs0s ¼
�−mq=ð2m0ÞδNs;s0 ; s ¼ 1;

δs−1;s0 ; 1 < s ≤ Ns;

ð3Þ

where mq is the bare fermion mass, m0 ∈ ð0; 2Þ, and Ns is
the number of sites in the fifth dimension. For massless
DWFs, mq is set to zero. Besides Eq. (2), the action for the
Pauli-Villars fields with mq ¼ 2m0 has to be included for
the cancellation of the bulk modes, which is exactly the
same as Eq. (2) except for mq ¼ 2m0 in L� [Eq. (3)]. Thus
the action for SUð3Þ lattice gauge theory with Nf ¼ 10

massless optimal DWFs can be written as

SgðUÞ þ
X10
f¼1

fSmq¼0ðΨ̄;Ψ; UÞf þ SPVmq¼2m0
ðΦ̄;Φ; UÞfg;

where SgðUÞ is the gauge action. In this paper, we use the
Wilson plaquette gauge action

SgðUÞ ¼ 6

g20

X
plaq

�
1 −

1

3
ReTrðUpÞ

�
;

where g0 is the bare coupling. For the fermion action, we
setm0 ¼ 1.8 andNs ¼ 16. The optimal weightsωs [14] are
computed with λmax=λmin ¼ 6.2=0.05.
Simulating Nf ¼ 10 DWFs amounts to simulating five

pairs of Nf ¼ 2 DWFs. Starting from the action (2) and
following the procedures of even-odd preconditioning and
the Schur decomposition given in Ref. [15], the partition
function for the SUð3Þ gauge theory with Nf ¼ 10 mass-
less optimal DWFs can be written as

Z ¼
Z

½dU�
Y5
i¼1

½dϕ†�i½dϕ�i

× exp

�
−Sg½U� −

X5
i¼1

ϕ†
i ðC†

PVÞiðCC†Þ−1i ðCPVÞiϕi

�
;

ð4Þ

where ϕi and ϕ†
i are pseudofermion fields, and

C ¼ 1 −M5DOE
w M5DEO

w ;

M5 ¼ fð4 −m0Þ þ ω−1=2
s ½ð1 − LÞð1þ LÞ−1�s;s0ω−1=2

s0 g−1:

However, HMC simulations with Eq. (4) turn out to be
rather time consuming for large lattices at strong couplings,
e.g., 324 at 6=g20 ¼ 6.45. To resolve this difficulty, we use a
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novel Nf ¼ 2 pseudofermion action based on the exact
pseudofermion action for one-flavor DWFs [16], which
turns out to be more efficient than (4). This novel Nf ¼ 2

pseudofermion action for optimal DWFs can be written as
S ¼ Φ†KðmÞ†KðmÞΦ, where

KðmÞ ¼ 1þ
�
1 −m
1þm

�
γ5vTω−1=2 1

HTðmÞω
−1=2v;

m ¼ mq

2m0

; v ¼
�
vþ 0

0 v−

�
Dirac

:

Here ω ¼ diagðω1;ω2 � � � ;ωNs
Þ, vþ ¼ diagð−1; 1;…;

ð−1ÞNsÞ, v− ¼ −vþ, HTðmÞ ¼ R5γ5DTðmÞ, and

DTðmÞ ¼ Dw þ ω−1=2ð1 − LÞð1þ LÞ−1ω−1=2:

The general form of the novel two-flavor pseudofermion
action for domain-wall fermions with H ¼ cγ5Dwð1þ
dDwÞ−1 will be presented in a forthcoming paper [17].
Then, the partition function for the SUð3Þ gauge theory

with Nf ¼ 10 massless optimal DWFs can be written as

Z0 ¼
Z

½dU�
Y5
i¼1

½dϕ†�i½dϕ�i

× exp
�
−Sg½U� −

X5
i¼1

ϕ†
i Kð0Þ†Kð0Þϕi

�
: ð5Þ

We perform HMC simulations of all gauge ensembles with
Eq. (5) on the five-dimensional lattice L4 × 16, for
L=a ¼ f8; 10; 12; 16; 20; 24; 32g. The boundary condi-
tions of the gauge field are periodic in all directions, while
the boundary conditions of the pseudofermion fields are
antiperiodic in all directions. In the molecular dynamics,
we use the Omelyan integrator [18] and the Sexton-
Weingarten multiple-time scale method [19]. Moreover,
we introduce an auxiliary heavy fermion field with mass
mHa ¼ 0.1 (mq ≪ mH ≪ mPV) similar to the case of the
Wilson fermion [20]—the so-called mass preconditioning.
The simulations are performed on GPU clusters with
Nvidia GPUs (P100, GTX-1080Ti, GTX-1080, GTX-
1070, GTX-1060, GTX-TITAN-X, GTX-TITAN-Z, and
GTX-TITAN). Thermalization of each ensemble is per-
formed on one computing node with 1–2 GPUs. Then, the
thermalized configurations are distributed to 16–32 nodes
for independent HMC simulations in multiple streams. For
each gauge ensemble, we generate 4000–20 000 trajecto-
ries after thermalization, and sample one configuration
every five trajectories, which yields 800–4000 configura-
tions for measurements.
The chiral symmetry breaking due to finite Ns ¼ 16 can

be measured in terms of the residual mass of the massless
fermion [21],

mres ¼
htrðD−1

c Þ0;0iU
htr½γ5Dcγ5Dc�−10;0iU

;

where D−1
c denotes the massless fermion propagator, “tr”

denotes the trace running over the color and Dirac indices,
and the brackets h� � �iU denote averaging over all configu-
rations of the gauge ensemble. The residual masses of all
gauge ensembles in this work are summarized in Table I.
We observe that the variation of the residual mass is quite

mild, ranging from ∼4.4 × 10−5 to ∼8.5 × 10−5, i.e., less
than a factor of 2. Moreover, the residual mass of any lattice
size L4 is much smaller than the energy scale μ ≃ ðcLÞ−1 of
the finite-volume gradient flow scheme with c ¼ 0.3,

ðmresaÞL ≪ μa ≃
1

cðL=aÞ :

Even for the smallest μ of the largest lattice 324 in this
work, the residual mass of any gauge ensemble satisfies

mresa ≪
1

0.3 × 32
≃ 0.104:

Thus the effect of the residual masses on the renormalized
couplings should be negligible for our analysis.

III. RENORMALIZED COUPLING OF THE
FINITE-VOLUME GRADIENT FLOW SCHEME

To obtain the renormalized coupling of gauge theory on a
finite lattice with volume L4, we use the finite-volume
gradient flow scheme [22], which is based on the idea of
continuous smearing [23] or equivalently the gradient flow
[24] to evaluate the expectation value t2hEi, where E is the
energy density of the gauge field and t is the flow time. This
amounts to solving the discretized form of the following
equation:

dBμ

dt
¼ DνGνμ;

with the initial condition Bμjt¼0 ¼ Aμ, where Gνμ ¼
∂νBμ − ∂μBν þ ½Bν; Bμ� and DνGνμ ¼ ∂νGνμ þ ½Bν; Gνμ�.
As shown in Ref. [24], the gradient flow is a process of
averaging a gauge field over a spherical region of root-
mean-square radius Rrms ¼

ffiffiffiffi
8t

p
. Moreover, since t2hEi is

proportional to the renormalized coupling, one can use c ¼ffiffiffiffi
8t

p
=L as a constant to define a renormalization scheme on

a finite lattice, and obtain

g2ðL;aÞ¼ 16π2

3½1þδðc;a=LÞ�ht
2EðtÞi; EðtÞ¼1

2
FμνFμνðtÞ;

ð6Þ
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where a is the lattice spacing depending on the bare
coupling g0, E is the energy density, and the numerical
factor on the rhs of Eq. (6) is fixed such that g2cðL; aÞ ¼ g2

MS
to the leading order. Here the coefficient δðc; a=LÞ includes
the tree-level finite-volume and finite-lattice-spacing cor-
rections [25]. In this paper, we use the Wilson flow, the
Wilson action, and the clover observable—the so-called
WWC scheme—which is known to have very small
tree-level cutoff effects [25]. Moreover, we fix c ¼ffiffiffiffi
8t

p
=L ¼ 0.30.

For each targeted value of g2c, the renormalized couplings
g2ðL; aÞ of four primary lattices (L=a ¼ f8; 10; 12; 16g)
are tuned (in 6=g20) to the same g2c with statistical error
less than 0.5%. Here the statistical error is estimated using
the jackknife method with a bin size of 10-15, of which
the statistical error saturates. In Fig. 1, we plot the tuned
renormalized coupling g2ðL; aÞ versus ða=LÞ2, for L=a ¼
f8; 10; 12; 16g, and for six targeted values of g2c. Each
horizontal line is a constant fit. The fitted values are g2c ¼
f3.51ð2Þ; 5.25ð2Þ; 6.86ð2Þ; 6.92ð3Þ7.03ð2Þ; 7.16ð2Þg, with
χ2=d:o:f:¼f0.19;0.29;0.14;0.33;0.19;0.18g, respectively.
After the value of 6=g20 is determined for a chosen

g2c ¼ g2ðL; aÞ, the simulation on the scaled (s ¼ 2) lattice is
performed at the same 6=g20 to obtain the renormalized
coupling g2ðsL; aÞ. All renormalized couplings of g2ðL; aÞ
and g2ðsL; aÞ are summarized in Table II. Each row
gives the values of g2ðL; aÞ and g2ðsL; aÞ at the same
6=g20. Every four rows are grouped for the same targeted
value of g2c.

IV. THE STEP-SCALING β FUNCTION βðs;a=L;g2cÞ
AND ITS CONTINUUM LIMIT

For each targeted value of g2c ¼ g2ðL; aÞ, we compute
the step-scaling β function according to Eq. (1) for all
lattice pairs ðsL; LÞ=a with fixed s ¼ 2. Taking the

continuum limit (a=L → 0), βðs; a=L; g2Þ becomes
βðs; g2Þ,

lim
a=L→0

βðs; a=L; g2Þ≡ βðs; g2Þ ¼ g2ðsLÞ − g2ðLÞ
lnðs2Þ : ð7Þ

Moreover, if βðs; g2cÞ is determined for several values of s,
then it can be extrapolated to s ¼ 1,

lim
s→1

βðs; g2Þ ¼ βðg2Þ ¼ dg2ðLÞ
d lnL2

¼ −
dg2ðμÞ
d ln μ2

¼ −βðg2ðμÞÞ;

ð8Þ

where βðg2ðμÞÞ is equal to the continuum β function in the
momentum space. To fix our notation, we recall the β
function to two-loop order in the SUð3Þ gauge theory with
Nf massless fermions in the fundamental representation,

βðg2ðμÞÞ ¼ dg2

d ln μ2
¼ −

b1
ð4πÞ2 g

4 −
b2

ð4πÞ4 g
6 þOðg8Þ;

where b1 ¼ 11 − 2Nf=3 and b2 ¼ 102 − 38Nf=3.
If βðg2Þ has an IRFP, then βðs; g2Þ also has a corre-

sponding IRFP, and vice versa. In this paper, we determine
βð2; g2Þ of the SUð3Þ lattice gauge theory with Nf ¼ 10

massless optimal domain-wall fermions in the fundamental
representation, using four lattice pairs ð2L;LÞ=a ¼
fð16; 8Þ; ð20; 10Þ; ð24; 12Þ; ð32; 16Þg for extrapolation to
the continuum limit.
In Fig. 2, βðs; a=L; g2cÞ is plotted versus ða=LÞ2, for six

targeted values of g2c. For each targeted g2c, the extrapolation
to the continuum limit (a=L → 0) is performed with the
linear fit [Aþ Bða=LÞ2] and the quadratic fit [Aþ
Bða=LÞ2 þ Cða=LÞ4], respectively. Both fits give consis-
tent results in the continuum limit, but the quadratic fits
yield larger error bars. Note that for g2c ¼ 7.16ð2Þ, the step-
scaling β function for ðsL; LÞ=a ¼ ð16; 8Þ has large cutoff
effects from ða=LÞ4. Thus the linear fit only uses three data
points from ðsL; LÞ=a ¼ fð20; 10Þ; ð24; 12Þ; ð32; 16Þg.
The results for βðs; g2cÞ are summarized in Table III for
both linear and quadratic fits. In the following, we compare
the results in the second column of Table III with those of
Ref. [2] and Ref. [6].
First, we check the value of βðs; g2cÞ ¼ 0.234ð30Þ at

g2c ¼ 3.51ð2Þ, which is in good agreement with the value
0.23(1) obtained in Ref. [2]. This suggests that cubic-spline
interpolation can work well in the regime where the
renormalized coupling varies slowly with respect to the
bare coupling 6=g20. In other words, the β function βðs; g2cÞ
reported in Ref. [2] should be valid for 0 ≤ g2c ≤ 3.51.
Next, we check the value of βðs; g2cÞ ¼ 0.318ð45Þ at

g2c ¼ 5.25ð2Þ, which is quite smaller than the value 0.43(2)
reported in Ref. [2]. This implies that cubic-spline inter-
polation fails in the regime where the renormalized

(a/L)2

0.004 0.007 0.010 0.016

4

5

6

7

gc
2

FIG. 1. Tuning g2ðL; aÞ on four primary lattices L=a ¼ f8; 10;
12; 16g, for six targeted values of g2c. Each horizontal line is a
constant fit. The fitted values are g2c ¼ f3.51ð2Þ; 5.25ð2Þ;
6.86ð2Þ; 6.92ð3Þ; 7.03ð2Þ; 7.16ð2Þg.
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coupling varies rapidly with respect to the bare coupling
6=g20. Now the value of βðs; g2cÞ at g2c ¼ 5.25ð2Þ is com-
patible with the result of a recent study of the SUð3Þ gauge
theory with Nf ¼ 10 massless domain-wall fermions [6].
This suggests that the discrepancy between the results of
Ref. [2] and Ref. [6] for 4.5 < g2c < 6.0 is likely due to the
systematic error of interpolation.
The three data points at g2c¼f6.86ð2Þ;6.92ð3Þ;7.03ð2Þg,

βðs; g2cÞ ¼ f0.371ð32Þ; 0.344ð36Þ; 0.299ð35Þg, are quite
larger than the corresponding ones f0.06ð4Þ; 0.02ð5Þ;
0.00ð8Þg in Ref. [2]. This confirms that using interpolation
would give unreliable results for g2ðL; aÞ and g2ðsL; aÞ,
especially in the regime where they vary rapidly with
respect to the bare coupling 6=g20, and consequently yield
an incorrect βðs; a=L; g2cÞ as well as the extrapolated
βðs; g2cÞ in the continuum limit. Nevertheless, the resulting
βðs; g2cÞ seems to be able to capture some salient features of
the β function, e.g., the increasing/decreasing trend of
βðs; g2cÞ with respect to g2c, even though it cannot give

the precise shape of the entire β function in the
ðg2c; βÞ plane.
Finally, we note that as g2c is increased from 5.25(2) to

6.86(2), βðs; g2cÞ increases from 0.318(45) to 0.371(32).
This implies that the slope of βðs; g2cÞ is positive for g2c ∈
½5.25; g2max�, where βðs; g2cÞ reaches the local maximum at
g2max. Then for g2c > g2max, the slope of βðs; g2cÞ becomes
negative, and βðs; g2cÞ decreases to 0.371(32) at g2c ¼
6.86ð2Þ. To determine the exact location of g2max as well
as the precise shape of βðs; g2cÞ in the vicinity g2max is very
challenging, since it requires many targeted values of g2c,
and also we cannot rely on the renormalized couplings
from interpolation, especially in this regime where the
slope of βðs; g2cÞ changes sign (from positive to negative).

V. EXTRAPOLATION OF βðs;g2Þ
In Fig. 3, we plot βðs; g2cÞ versus g2c for g2c ¼ f6.86ð2Þ;

6.92ð3Þ; 7.03ð2Þ; 7.16ð2Þg. In Fig. 3(a) the data points are
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FIG. 2. The step-scaling β functions of four lattice pairs ðsL; LÞ=a ¼ fð16; 8Þ; ð20; 10Þ; ð24; 12Þ, ð32; 16g are plotted versus ða=LÞ2,
for g2c ¼ f7.16ð2Þ; 7.03ð2Þ; 6.92ð3Þ; 6.86ð2Þ; 5.25ð2Þ; 3.51ð2Þg. The extrapolation to the continuum limit is performed with the linear fit
and the quadratic fit, respectively.
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obtained by continuum extrapolation with the linear fit, as
listed in the second column of Table III, while in Fig. 3(b)
the data points are obtained by continuum extrapolation
with the quadratic fit, as listed in the fourth column of
Table III. In both cases, the data points are well fitted by the
linear approximation of βðs; g2Þ,

βðs; g2Þ ¼ dβðs; g2Þ
dg2

����
g2�

ðg2 − g2�Þ≡ βð1Þs ðg2 − g2�Þ: ð9Þ

In Fig. 3(a) the linear fit gives

g2� ¼ 7.72� 0.31; ð10Þ

βð1Þs ¼ 0.43� 0.17; ð11Þ

with χ2=d:o:f: ¼ 0.06, while in Fig. 3(b) the linear fit gives

g2� ¼ 7.38� 0.18; ð12Þ

βð1Þs ¼ 0.81� 0.36; ð13Þ

with χ2=d:o:f: ¼ 0.16. Note that our convention for βðs; g2Þ
in Eq. (7) is the negative of the conventional β function in

the continuum (8) and thus gives a negative slope βð1Þs at the
IRFP, as shown in Fig. 3. We omit the negative sign in
Eqs. (11) and (13) to conform with the conventional β
function in the continuum.
These two sets of results (10)–(13) are consistent with

each other within error bars, which seems to imply the
existence of an IRFP at g2� ∈ ½7.20; 8.03�. However, we
have not measured βðs; g2cÞ for g2c > 7.16. Thus it is
uncertain whether βðs; g2cÞ would behave like Eq. (9) all
the way from g2c ¼ 7.16 to g2�, or if it would start to bounce
back at some point g2min > 7.16 and become an increasing
function of g2c for g2c > g2min. The former scenario implies

that the theory is infrared conformal with the fixed point at
g2� ∈ ½7.20; 8.03�, while the latter suggests that the theory is
near-conformal, depending on how closely βðs; g2cÞ
approaches zero.

VI. UNIVERSAL SCALING EXPONENT OF βðg2Þ
In the former scenario, the coefficient βð1Þs can be used to

determine the universal scaling exponent γ�g of the β
function at the IRFP,

βðg2Þ ≃ γ�g
2
ðg2 − g2�Þ; ð14Þ

with the relationship (see also Ref. [26])

γ�g ¼
ln ð1þ βð1Þs lnðs2ÞÞ

lnðsÞ ; ð15Þ

which can be obtained by integrating Eq. (8), and using
Eqs. (14), (7), and (9):

lnðs2Þ ¼
Z

sL

L
d lnðL2Þ ¼

Z
g2ðsLÞ

g2ðLÞ

dg2

βðg2Þ

≃
Z

g2ðsLÞ

g2ðLÞ

2dg2

γ�gðg2 − g2�Þ
¼ 2

γ�g
ln

�
g2ðsLÞ − g2�
g2ðLÞ − g2�

�

≃
2

γ�g
ln ð1þ βð1Þs lnðs2ÞÞ;

where

g2ðsLÞ ¼ βðs; g2Þ lnðs2Þ þ g2ðLÞ
≃ βð1Þs ðg2ðLÞ − g2�Þ lnðs2Þ þ g2ðLÞ

has been used.
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FIG. 3. Extrapolation of βðs; g2cÞ with the linear fit using four data points close to the “fitted IRFP” g2�. (a) Four data points obtained by
continuum extrapolation with the linear fit are used (as listed in the second column of Table III). (b) Four data points obtained by
continuum extrapolation with the quadratic fit are used (as listed in the fourth column of Table III).
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Note that in the limit s → 1, Eq. (15) gives

γ�g ¼ 2βð1Þs¼1: ð16Þ

The significance of Eqs. (15) and (16) is that the slope of
βðs; g2Þ at the IRFP (with s ≠ 1) can be used to determine
that at s ¼ 1, i.e., the slope of the β function βðg2Þ at the
IRFP, which is equal to γ�g=2.
Substituting Eq. (11) into Eq. (15) gives

γ�g ¼ 0.68� 0.22; ð17Þ

while putting Eq. (13) into Eq. (15) gives

γ�g ¼ 1.08� 0.34: ð18Þ

These two results are consistent with each other within
error bars. They are also compatible with the results in the
weak-coupling perturbative theory—0.473 (the scheme-
independent value to the fifth-order) and 0.853 (to four-
loop order in the MS scheme)—as given in Ref. [27].
It is interesting to note that even though the interpolated

g2ðL; aÞ and g2ðsL; aÞ in Refs. [1,2] cannot give a reliable
determination of the β function βðs; g2cÞ, especially in the
regime where g2ðL; aÞ and g2ðsL; aÞ vary rapidly with res-
pect to 6=g20, they can still capture the slope of the β func-
tion (at the IRFP). Using the four data points βðs; g2cÞ ¼
f0.154ð44Þ; 0.097ð36Þ; 0.037ð49Þ;−0.007ð0.078Þg obtained
in Ref. [2] at g2c ¼ f6.70ð2Þ; 6.80ð2Þ; 6.90ð2Þ; 7.00ð2Þg,
respectively, the linear fit (see Fig. 4) gives g2� ¼ 6.99ð9Þ
and the slope of the β function βð1Þs ¼ 0.53ð25Þ, which in
turn gives γ�g ¼ 0.80ð30Þ, which is in good agreement with
Eqs. (17) and (18).

VII. DISCUSSION AND CONCLUSION

In this paper we performed an improved study of the β
function of SUð3Þ gauge theory with Nf ¼ 10 massless
optimal domain-wall fermions in the fundamental repre-
sentation. In the finite-volume gradient flow scheme with
c ¼ ffiffiffiffi

8t
p

=L ¼ 0.3, the renormalized couplings g2ðL; aÞ of
four primary lattices (L=a ¼ f8; 10; 12; 16g) were tuned
(in 6=g20) to the same g2c with a statistical error less than
0.5%. Then, the renormalized couplings g2ðsL; aÞ of the
scaled lattices (sL=a ¼ f16; 20; 24; 32g with s ¼ 2) were
computed at the same 6=g20 of the corresponding primary
lattices. Using four lattice pairs ðsL; LÞ=a ¼ fð16; 8Þ;
ð20; 10Þ; ð24; 12Þ; ð32; 16Þg, the step-scaling β function
βða; s=L; g2cÞ was computed and extrapolated to the con-
tinuum limit βðs; g2cÞ (as summarized in Table III) for six
targeted values of g2c. Based on the four data points of
βðs; g2cÞ at g2c ¼ f6.86ð2Þ; 6.92ð3Þ; 7.03ð2Þ; 7.16ð2Þg (see
Fig. 3), two different scenarios for this theory could
emerge.
In the first scenario, βðs; g2cÞ would behave like Eq. (9)

all the way from g2c ¼ 7.16 to g2�, and the theory is infrared
conformal. Combining the fitting results from Figs. 3(a)
and 3(b) gives g2� ¼ 7.55� 0.36, and the universal scaling
exponent of βðg2Þ, γ�g ¼ 0.88� 0.40.
In the second scenario, βðs; g2cÞ would behave like a

decreasing function of g2c for g2c > 7.16 until it reaches the
local minimum at g2min, when it bounces back and becomes
an increasing function of g2c for g2c > g2min. The question is
how closely the minimum βðs; g2minÞ approaches zero.
To investigate whether the theory is near-conformal or

conformal for g2c > 7.16 would require much more com-
puting resources than was available for this study. Note that
the HMC simulations become more expensive as g2c
becomes larger (or, equivalently, 6=g20 becomes smaller).
Recently, a study of the β function in the SUð3Þ lattice

gauge theory with Nf ¼ 10massless staggered fermions in
the fundamental representation was presented in Ref. [7],
with a preview in Ref. [28]. The continuum β function
βðs; g2cÞ in Ref. [7] is a monotonic increasing function of
g2c ∈ ½5.0; 7.7�, in complete disagreement with the four data
points of βðs; g2cÞ in Fig. 3. Such a dramatic discrepancy
looks rather striking.
In the following, we compare the results of Ref. [7] at

g2c ¼ 7.0 with those in this study at g2c ¼ 7.03ð2Þ. In
Ref. [7], the step-scaling β function βðs; a=L; g2cÞ was
obtained with five lattice pairs ðsL; LÞ=a ¼ fð24; 12Þ;
ð32; 16Þ; ð36; 18Þ; ð40; 20Þ; ð48; 24Þg, which is a mono-
tonic decreasing function of ða=LÞ2, for g2c ¼ 7.0. This
is completely different from the βðs; a=L; g2cÞ in this paper,
which is a monotonic increasing function of ða=LÞ2, as
shown in the top-right panel of Fig. 2 for g2c ¼ 7.03ð2Þ.
Consequently, the continuum β function in Ref. [7]
became very large, βðs; g2cÞ ¼ 0.75ð4Þ at g2c ¼ 7.0, which
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FIG. 4. Extrapolation of βðs; g2cÞ with the linear fit, using four
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is completely different from the βðs; g2cÞ ¼ 0.299ð35Þ at
g2c ¼ 7.03ð2Þ in this paper (see Table III). What would
cause such a dramatic discrepancy between these two
studies of the β function of SUð3Þ lattice gauge theory
with Nf ¼ 10 massless lattice fermions?
First, could it be due to the residual mass at finite Ns ¼

16 in this study? As shown in Table I, the residual masses
are all very tiny and quite uniform across all lattice sizes
and couplings. Even if the residual mass has some additive
correction to the renormalized coupling, say, g2ðL; aÞ →
g2ðL; aÞ þ δðmresaÞ, it would be canceled in the step-
scaling β function ½g2ðsL; aÞ − g2ðL; aÞ�= lnðs2Þ, since
ðmresaÞsL ∼ ðmresaÞL. Thus the residual mass has almost
no effect on either the step-scaling function βðs; a=L; g2cÞ or
its value in the continuum limit. So we rule out the
possibility that the residual mass could change the slope
of the step-scaling function βðs; a=L; g2cÞ at g2c ¼ 7.03ð2Þ
(see the top-right panel of Fig. 2) from positive to negative.
Next, does the residual mass have any effect on the shape/
location of the continuum β function in the ðg2c; βÞ plane?
Now, for g2c itself, g2c → g2c þ δðmresaÞ without cancella-
tion. Since ðmresaÞL is almost constant (with fluctuations
less than 20%), for all g2c on the primary lattices (L=a ¼ 8,
10, 12, 16) it gives δðmresaÞ ∼ δ for all g2c, and the curve of
βðs; g2cÞ in the ðg2c; βÞ plane is shifted to βðs; g2c þ δÞ with
almost no change in its shape. If the theory is infrared
conformal, the IRFP is shifted from g2� to g2� þ δ, while the

slope βð1Þs of βðs; g2cÞ at the IRFP and γ�g are not affected. In
view of the tiny residual masses in Table I, we suspect that δ
is already much smaller than the error of g2c resulting from
tuning g2ðL; aÞ ¼ g2c for all primary lattices. In general, for
any study with DWFs, if δðmresaÞ is a monotonically
increasing function of g2ðL; aÞ, then the shape of the curve
βðs; g2cÞ would be a little bit stretched along the positive
direction of the g2c axis, due to the nonuniformity of
δðmresaÞ. If the theory is infrared conformal, the measured
location of the IRFP would be a little larger than the exact
g2� (at zero residual mass), and also the measured slope of
the β function at the IRFP would be smaller than its exact

βð1Þs . Consequently, the measured universal scaling expo-
nent would be a little smaller than the exact γ�g (at zero
residual mass). Likewise, if the theory is infrared near-
conformal, the measured g2min would be a little larger than
the exact g2min (at zero residual mass). From the above
discussions, the effect of the residual mass in this study
should be very small. Thus it is impossible to change the
slope/curvature of βðs; g2cÞ in Fig. 3 from negative to
positive. So we rule out the possibility that the residual
mass could produce such a dramatic discrepancy in βðs; g2cÞ
at g2c ∼ 7.0, namely, 0.299(35) in Table III versus 0.75(4)
in Ref. [7].
Next, could this be due to the volumes being too small in

this study? Would it be possible to make a dramatic change

in the continuum extrapolation if we include a larger
volume, say, 484 in our analysis? From the data for
βðs; a=L; g2cÞ at g2c ¼ 7.03ð2Þ, as shown in the top-right
panel of Fig. 2, the rate of change of βðs; a=L; g2cÞ with
respect to ða=LÞ2 is rather small at any ða=LÞ2. Even if we
add a larger volume, say 484, with an additional data point
of βðs; a=L; g2cÞ at ða=LÞ2 ¼ ð1=24Þ2 ∼ 0.00174, it is very
unlikely that the slope of βðs; a=L; g2cÞ would undergo a
dramatic change from a small positive slope to a large
negative slope in the limit ða=LÞ → 0. Note that the ða=LÞ4
correction gets smaller for larger L as ða=LÞ → 0.
Consequently, the deviation of the step-scaling β function
βðs; a=L; g2cÞ from the linear function of ða=LÞ2 gets
smaller as L gets larger. In other words, in this study
adding an extra data point with a larger volume for the step-
scaling function βðs; a=L; g2cÞ at g2c ¼ 7.03ð2Þ is very
unlikely to make a dramatic change to its value in the
continuum limit (a=L → 0). Note that in this study only
one data point of βðs; a=L; g2cÞ at the largest g2c ¼ 7.16ð2Þ
and at the smallest volume ða=LÞ2 ¼ ð1=8Þ2 ∼ 0.016 has a
noticeable correction from the ða=LÞ4 term, as shown in the
top-left panel of Fig. 2. On the other hand, if we omit the
data point of the largest volume ða=LÞ2 ¼ ð1=16Þ2 ≃ 0.004
in the top-right panel of Fig. 2 for g2c ¼ 7.03ð2Þ, and
perform the continuum extrapolation with the linear fit, we
get βðs; g2cÞ ¼ 0.306ð54Þwith χ2=d:o:f: ¼ 0.13, which is in
good agreement with the result 0.299(35) obtained with
four lattice pairs, as given in Table III. Thus we rule out the
possibility that adding data points of βðs; a=L; g2cÞ with
larger volumes in this study could produce such a dramatic
difference in βðs; g2cÞ at g2c ∼ 7.0, namely, ∼0.3 in Table III
versus ∼0.75 in Ref. [7].
Finally, we compare the actions in this study with those

in Ref. [7]. The gauge action in Ref. [7] is the tree-level
improved Symanzik gauge action, which is different from
the Wilson plaquette action in this study. However, we do
not expect that different gauge actions would cause such
dramatic differences in any observables. Then we come to
the possibility that the dramatic discrepancies are due to
two different lattice fermion actions. If both lattice fermion
Dirac operators belong to the same universality class of the
continuum Dirac operator, then they should produce con-
sistent results in the continuum limit. Could the staggered
fermion operator violate fermion universality in the vicinity
of the IRFP? This conjecture has been addressed by the
authors of Ref. [6]; however, it was refuted by the authors
of Ref. [28]. A nonperturbative analytic proof seems to be
required to settle the issue of whether the (rooted) staggered
fermions belong to the same universality class of the
continuum Dirac operator, especially in the vicinity of
the IRFP. At the moment, the results of this study could not
rule out those in Ref. [7], and vice versa. Moreover, we do
not see any other (systematic/statistical) possibilities that
can reconcile the dramatic discrepancies between these two
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studies of the β function of the SUð3Þ lattice gauge theory
with Nf ¼ 10 massless lattice fermions.
To conclude, based on the four data points of βðs; g2cÞ as

shown in Fig. 3, we infer that the theory is infrared
conformal or near-conformal. This also implies that the
SUð3Þ gauge theory withNf ¼ 12massless fermions in the
fundamental representation is most likely infrared con-
formal with an IRFP g2� < 7.2. This prediction is consistent
with a recent study with Nf ¼ 12 domain-wall fermions,
which suggests that the theory is infrared conformal with an
IRFP g2� ∼ 6 [29].

ACKNOWLEDGMENTS

This work is supported by the Ministry of Science and
Technology (Grants No. 107-2119-M-003-008, No. 105-
2112-M-002-016, No. 102-2112-M-002-019-MY3), and
the National Center for Theoretical Sciences (Physics
Division). All computations were performed on GPU
clusters at Academia Sinica Grid Computing Center
(ASGC), Information Technology Center of National
Taiwan Normal University, and Physics Department of
National Taiwan University. We gratefully acknowledge
the computer resources and the technical support provided
by these institutions.

[1] T. W. Chiu, arXiv:1603.08854.
[2] T. W. Chiu, Proc. Sci. LATTICE2016 (2017) 228.
[3] C. Pica, Proc. Sci. LATTICE2016 (2016) 015.
[4] B. Svetitsky, EPJ Web Conf. 175, 01017 (2018).
[5] O. Witzel, Proc. Sci. LATTICE2018 (2019) 006.
[6] A. Hasenfratz, C. Rebbi, and O. Witzel, arXiv:1710.11578.
[7] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. H. Wong,

Proc. Sci. LATTICE2018 (2019) 199.
[8] D. B. Kaplan, Phys. Lett. B 288, 342 (1992).
[9] H. Neuberger, Phys. Lett. B 417, 141 (1998).

[10] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth,
Phys. Lett. B 195, 216 (1987).

[11] Z. Fodor, S. D. Katz, and K. K. Szabo, J. High Energy Phys.
08 (2004) 003.

[12] T. DeGrand and S. Schaefer, J. High Energy Phys. 07 (2006)
020.

[13] T. W. Chiu, Phys. Rev. Lett. 90, 071601 (2003).
[14] T. W. Chiu, Phys. Lett. B 744, 95 (2015).
[15] T. W. Chiu (TWQCD Collaboration), J. Phys. Conf. Ser.

454, 012044 (2013).
[16] Y. C. Chen and T.W. Chiu (TWQCD Collaboration), Phys.

Lett. B 738, 55 (2014).
[17] Y. C. Chen and T.W. Chiu (TWQCD Collaboration),

New two-flavors pseudofermion action for Monte Carlo
simulation of domain-wall fermion (to be published).

[18] I. P. Omelyan, I. M. Mryglod, and R. Folk, Phys. Rev. Lett.
86, 898 (2001).

[19] J. C. Sexton and D. H. Weingarten, Nucl. Phys. B380, 665
(1992).

[20] M. Hasenbusch, Phys. Lett. B 519, 177 (2001).
[21] Y. C. Chen and T.W. Chiu (TWQCD Collaboration),

Phys. Rev. D 86, 094508 (2012).
[22] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. H. Wong,

J. High Energy Phys. 11 (2012) 007.
[23] R. Narayanan and H. Neuberger, J. High Energy Phys. 03

(2006) 064.
[24] M. Luscher, J. High Energy Phys. 08 (2010) 071; 03

(2014) 92.
[25] Z. Fodor, K. Holland, J. Kuti, S. Mondal, D. Nogradi, and

C. H. Wong, J. High Energy Phys. 09 (2014) 018.
[26] A. Hasenfratz and D. Schaich, J. High Energy Phys. 02

(2018) 132.
[27] T. A. Ryttov and R. Shrock, Phys. Rev. D 95, 105004

(2017).
[28] Z. Fodor, K. Holland, J. Kuti, D. Nogradi, and C. H. Wong,

Phys. Lett. B 779, 230 (2018).
[29] A. Hasenfratz, C. Rebbi, and O. Witzel, arXiv:1810.05176.

TING-WAI CHIU PHYS. REV. D 99, 014507 (2019)

014507-10

http://arXiv.org/abs/1603.08854
https://doi.org/10.1051/epjconf/201817501017
http://arXiv.org/abs/1710.11578
https://doi.org/10.1016/0370-2693(92)91112-M
https://doi.org/10.1016/S0370-2693(97)01368-3
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1088/1126-6708/2004/08/003
https://doi.org/10.1088/1126-6708/2004/08/003
https://doi.org/10.1088/1126-6708/2006/07/020
https://doi.org/10.1088/1126-6708/2006/07/020
https://doi.org/10.1103/PhysRevLett.90.071601
https://doi.org/10.1016/j.physletb.2015.03.036
https://doi.org/10.1088/1742-6596/454/1/012044
https://doi.org/10.1088/1742-6596/454/1/012044
https://doi.org/10.1016/j.physletb.2014.09.016
https://doi.org/10.1016/j.physletb.2014.09.016
https://doi.org/10.1103/PhysRevLett.86.898
https://doi.org/10.1103/PhysRevLett.86.898
https://doi.org/10.1016/0550-3213(92)90263-B
https://doi.org/10.1016/0550-3213(92)90263-B
https://doi.org/10.1016/S0370-2693(01)01102-9
https://doi.org/10.1103/PhysRevD.86.094508
https://doi.org/10.1007/JHEP11(2012)007
https://doi.org/10.1088/1126-6708/2006/03/064
https://doi.org/10.1088/1126-6708/2006/03/064
https://doi.org/10.1007/JHEP08(2010)071
https://doi.org/10.1007/JHEP03(2014)092
https://doi.org/10.1007/JHEP03(2014)092
https://doi.org/10.1007/JHEP09(2014)018
https://doi.org/10.1007/JHEP02(2018)132
https://doi.org/10.1007/JHEP02(2018)132
https://doi.org/10.1103/PhysRevD.95.105004
https://doi.org/10.1103/PhysRevD.95.105004
https://doi.org/10.1016/j.physletb.2018.02.008
http://arXiv.org/abs/1810.05176

