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We consider the four point connected correlator representing a static quark-antiquark pair separated by a
spatial distance R, propagating for a Euclidean time T. This function is computed by lattice Monte Carlo
in SU(2) pure gauge theory at lattice couplings β ¼ 2.2 and β ¼ 2.5 in both Coulomb and Landau gauges.
The Coulomb gauge correlator is well behaved, and is dominated at large T by a state whose energy grows
linearly as σR, with σ the known asymptotic string tension. The connected correlator in Landau gauge
behaves differently. At intermediate R there is clear evidence of a linear potential, but the corresponding
string tension extrapolates to zero at large T. At large R the connected correlator becomes negative;
moreover there are strong finite size effects. These numerical results suggest that unphysical states
dominate the large Euclidean time behavior of this Landau gauge correlator.
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I. INTRODUCTION

It is well known that the Landau gauge gluon propagator,
as computed in lattice Monte Carlo simulations, violates
reflection positivity [1,2] and this fact is viewed by some as
indicative of gluon confinement. Then it is of interest to ask
whether anything similar happens in Landau gauge quark-
antiquark connected four point functions. One expects that
there are poles in the connected four point functions
corresponding to single meson states, and these poles should
have a positive residue. This is, in fact, the starting point
of the Bethe-Salpeter approach. But equal-times quark-
antiquark operators, at distinct spatial points, do not create
Becchi-Rouet-Stora-Tyutin (BRST) invariant states, and in
any case both BRST invariance and reflection positivity are
problematic in Landau gauge at the non-perturbative level, as
wewill discuss further below. So there is at least a possibility
that Landau gauge quark antiquark four point functions
exhibit unphysical behavior at large spacetime separations.
To investigate this possibility, we simplify matters as

much as possible. We consider only the four point functions
corresponding to static quarks and antiquarks with spatial
separation R, evolving for a Euclidean time T, evaluated in
pure SU(2) gauge theory. Since the quarks are static, this
boils down to evaluating the connected correlator of Wilson
lines
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where LTðxÞ is a timelike Wilson line on the lattice of
length T, i.e.,

LTðxÞ ¼ U4ðx; 1ÞU4ðx; 2Þ…U4ðx; TÞ; ð2Þ

and we have used the fact that, as a consequence of the
remnant symmetry under spacetime independent gauge
transformations gðx; tÞ ¼ g which exists in Landau gauge

hLab
T ðxÞi ¼ 1

2
hTrLTiδab: ð3Þ

We note that in Coulomb gauge there is a remnant
symmetry under time-dependent gauge transformations
gðx; tÞ ¼ gðtÞ, and as a result

hLab
T ðxÞi ¼ 0: ð4Þ

In the large Euclidean time limit, GðR; TÞ in Coulomb
gauge should be dominated by the lowest energy eigenstate
of the Coulomb gauge Hamiltonian HCoul containing a
static quark-antiquark pair, while GðR; TÞ in Landau gauge
should likewise be dominated by the lowest energy
eigenstate of the BRST Hamiltonian HBRST. But are these
the same states? That is the question which we will try to
address here numerically.
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II. RESULTS

Gauge-fixing is accomplished by the standard over-
relaxation method, which applies, in each gauge-fixing
sweep, an (over-relaxed) gauge transformation at each site,
aiming to maximize the quantity

R ¼
X
x

Xd
i¼1

Tr½UiðxÞ�; ð5Þ

where d ¼ 3 and d ¼ 4 for Coulomb gauge and Landau
gauge respectively. After each gauge-fixing sweep we
calculate the fractional reduction in R compared to the
previous sweep. The gauge-fixing loop ends when the
fractional reduction in R falls below 10−10.

A. Coulomb gauge

We begin with results for GðR; TÞ in Coulomb gauge.
This type of calculation is not really new; the first results of
this kind were obtained in Ref. [3], and later in [4,5]. We
have included them here in order to make a comparison
with the Landau gauge results to follow.
At large R, T the GðR; TÞ correlator is expected to be

well approximated by a sum of terms falling exponentially
with both R and T. As an ansatz to extract an “effective”
string tension σðTÞ at fixed T, we consider fitting the large
R data to a single exponential

GðR; TÞ ≈ cðTÞe−σðTÞRT: ð6Þ

Assuming this gives a good fit to GðR; TÞ, we can then
extrapolate σðTÞ to T → ∞, where it is expected to
converge to the usual asymptotic string tension.
However, on the lattice we must allow for periodic

boundary conditions. If the quark-antiquark separation is
parallel to the x, y or z axes, and the lattice isNs spacings in
any of the space directions, then it is better to fit GðR; TÞ to

GðR; TÞ ∼ cðTÞðe−σðTÞRT þ e−σðTÞðNs−RÞTÞ: ð7Þ

By fitting the logarithm of the data for GðR; TÞ vs R, at
large R and fixed T, to the logarithm of the right-hand side
of (7), we can extract the string tension σðTÞ.
We have carried out these fits at β ¼ 2.5 on a 243 × 40

lattice. The time asymmetry is actually irrelevant in our
Coulomb gauge data, as can be seen by comparing GðR; TÞ
at T ¼ 8 computed on a 243 × Nt lattice with Nt ¼ 24 and
Nt ¼ 40. The comparison is shown in Fig. 1, and it is clear
that the difference due to increasing Nt from 24 to 40 is
essentially negligible, as one would expect. We have
nevertheless carried out simulations at Nt ¼ 40 in order
to compare the Coulomb gauge data with the Landau gauge
data on the same lattice volume.
The fit of our data to Eq. (7) is illustrated for GðR; TÞ,

again at T ¼ 8, in Fig. 2, where the fitting region was the

range R > 4. The figure is representative of similar fits
from T ¼ 1 to T ¼ 9. We plot the values of σðTÞ extracted
from these fits in Fig. 3. The data is found to closely follow
the curve

σðTÞ ¼ σ∞ þ 0.12
T0.81 where σ∞ ¼ 0.035ð1Þ: ð8Þ

The asymptotic value σ∞ agrees within error bars with the
SU(2) string tension at β ¼ 2.5 reported in [6].
So far there are no surprises. These results are consistent

with expectations.

B. Landau gauge

In Fig. 4(a) we display GðR; TÞ vs R in Landau gauge at
T ¼ 3 and an intermediate coupling strength of β ¼ 2.2.
The lattice volume is 204. A closeup of the data at
separations R ≥ 3 is shown in Fig. 4(b). From this figure
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FIG. 1. Comparison of a logarithmic plot of GðR; 8Þ vs R, for
lattice volumes 243 × Nt and Nt ¼ 24 and Nt ¼ 40 lattice
spacings. There is little difference in the two sets of data, as
expected.
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FIG. 2. Best fit of -log[Eq. (7)], with Ns ¼ 24, to the data for
− log½GðR; 8Þ�.
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it is clear that the correlator violates positivity from R ¼ 4
onwards. We find a similar positivity violation in all plots
of GðR; TÞ vs R at all T. For comparison we show in Fig. 5

the same plots at the same β ¼ 2.2 and lattice volume in
Coulomb gauge.
At first sight this positivity violation seems to disappear

at β ¼ 2.5. In Fig. 6 we display GðR; TÞ at T ¼ 6, shown
here on a logarithmic scale. It is clear that for 3 ≤ R ≤ 9 the
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FIG. 3. String tension σðTÞ vs T, together with a best fit.
The data extrapolates to the known asymptotic string tension of
σ ¼ 0.035 in lattice units.
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FIG. 4. Landau gauge connected correlator GðR; TÞ vs R at
β ¼ 2.2 and T ¼ 3 on a 204 lattice. (a)GðT; 4Þ in the full range of
R. (b) closeup in the range R > 2. Note the violation of positivity
in this range.
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FIG. 5. Same as Fig. 4, but in Coulomb gauge.
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FIG. 6. Data for − logGðR; 6Þ vs R in Landau gauge at β ¼ 2.4
on a 244 lattice, together with a linear fit through the larger R
values.
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data on a log plot is fit pretty well by a straight line, and this
holds true for all T up to T ¼ 12. Therefore, at β ¼ 2.5 on a
244 lattice, we can follow the previous procedure in
Coulomb gauge, and extract a T dependent string tension
σðTÞ from a fit of the data to

GðR; TÞ ≈ e−σðTÞRT R ≥ 3: ð9Þ

Figure 7 is a plot of σðTÞ vs T on a log-log plot. Unlike
Coulomb gauge, the data is fit fairly well by

σðTÞ ≈ 0.587
T

; ð10Þ

which means that σðTÞ extrapolates to zero as T → ∞. The
implication is that the Green’s function is dominated, at
large Euclidean times, by a state with zero string tension,
i.e., an unphysical state.
We notice, however, that in Fig. 6 and in all other plots of

GðR; TÞ vs R at constant T, there is no evidence of the
“flattening out” of the data at the largest two or three values
of R, which would have been expected due to periodic
boundary conditions. In fact, and in contrast to Coulomb
gauge, the data points at R ¼ 10, 11 seem to even lie above
the straight line fit, albeit there are large error bars. To
investigate this further, we have increased the length of the
lattice in the time direction to Nt ¼ 30 and Nt ¼ 40, while
keeping the extension in the space directions fixed at 24
lattice spacings.When we do that, we find that the positivity
violation found at β ¼ 2.2 reappears in GðR; TÞ at all T for
R > 8, as shown, e.g., in Fig. 8 at T ¼ 8. Evidently, apart
from positivity violation, the Landau gauge correlator is
subject to severe finite size effects.
In an intermediate range of 3 ≤ R ≤ 7, we still observe

on the 243 × 40 lattice a linear rise in − log½GðR; TÞ� vs R,
as seen in Fig. 9, and this allows us to extract the effective
string tension σðTÞ of the corresponding potential in this
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FIG. 7. String tension in Landau gauge, in lattice units, at
β ¼ 2.5, obtained from fits to GðR; TÞ data obtained on a 244

lattice volume.
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FIG. 8. Landau gauge connected correlator GðR; TÞ vs R at
β ¼ 2.5 and T ¼ 8 on a 243 × Nt lattice, with Nt ¼ 24, 30, 40.
(a) GðT; 8Þ in the full range of R. (b) closeup in the range R > 6,
where we observe positivity violation at Nt ¼ 30, 40.
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FIG. 9. Data for − logGðR; 6Þ vs R in Landau gauge at β ¼ 2.4
on a 243 × 40 lattice, together with a linear fit in the range
3 ≤ R ≤ 7. Note that GðR; TÞ < 0 for R > 8, so those points
cannot be displayed in this figure.
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range. That string tension is plotted vs T on a log-log scale
in Fig. 10, and is fairly well fit by

σðTÞ ¼ 0.642=T: ð11Þ
As on the 244 lattice volume, this string tension formally
extrapolates to zero at T → ∞, which of course is the
wrong answer for the energy of a physical state containing a
static quark-antiquark pair. However, we must note that for
T > 12 the nonpositivity affects data points down to R ¼ 6,
and we do not feel justified in extracting a string tension
from only three data points.

C. Related work

Ours is not the first study of the product of Wilson lines
hTr½LTðxÞL†

TðyÞ�i in Landau gauge. Iritani and Suganuma
[7] have computed this quantity in SU(3) latttice gauge
theory, and they have noted that because this quantity tends
at large R ¼ jx − yj to a constant (i.e., the disconnected
part), confining behavior cannot appear in this observable.
The connected correlator was not computed in this refer-
ence, and therefore positivity violation, which is only seen
in the connected Green’s function, was not observed.
In a different study, Bicudo et al. [8] computed the

quantity hTr½PðxÞP†ðyÞ�i in Landau gauge, where PðxÞ is a
Polyakov line. Of course the gauge invariant correlator is
hTr½PðxÞ�Tr½P†ðyÞ�i, and for the motivation for the gauge-
dependent observable we must refer to the cited references.
Bicudo et al. do not see any positivity violation in this
operator, and in this case the reason is that the disconnected
part, which is gauge invariant, vanishes in the confined
phase. Since positivity violation comes about only after
subtracting the disconnected part, the absence of positivity
violation in this case is not surprising, and because the
disconnected part vanishes, a string tension is a possibility.

Bicudo et al. do in fact find a string tension, as do we in the
connected correlator GðR; TÞ at fixed T. These authors
work mainly in the confined phase, and mainly at fixed
T ¼ Nt ¼ 12, and find a string tension at various lattice
couplings which is 30% smaller than the corresponding
asymptotic string tension. This result is compatible with our
findings; one expects zero string tension for GðR; TÞ only
in the T → ∞ limit. Moreover, any string tension less than
the asymptotic string tension (which is the minimum
possible for a static quark-antiquark pair), is a clear
indication, in our view, of the presence of unphysical
states. It is difficult, however, to make any quantitative
comparison with our work, partly because of the different
gauge groups [SU(3) vs SU(2)], but also because our
Wilson lines do not wind all the way through the periodic
lattice, but stop at T ¼ Nt=2.

III. LANDAU GAUGE AND ITS DISCONTENTS

Obviously it would be wrong to conclude, from the
nonpositivity of GðR; TÞ in Landau gauge, that quark-
antiquark bound states are absent in the spectrum. The
problem is more likely due to the fact that the relevant
quark-antiquark operator in Landau gauge is not a BRST
singlet, and moreover that BRST symmetry is itself
problematic at the nonperturbative level.
If the state created by the massive quark-antiquark

creation operator ψ̄þaðx; tÞψþaðy; tÞ is not annihilated by
the BRST charge operator in a covariant gauge, then it is
not a physical state. It may have an overlap with physical
states, but there may also be non-negligible overlaps with
negative norm and other unphysical states. In addition,
BRST symmetry on the lattice is subject to the 0=0 problem
pointed out by long ago by Neuberger [9]. Let

Z ¼
Z

DUDc̄Dce−ðSþSgfÞ; ð12Þ

where Sgf is the standard BRST gauge-fixing term in a
covariant gauge. Then, as shown in [9], it follows that
Z ¼ 0. This is also true if a BRST invariant operator is
inserted in the integrand, hence the expectation value of any
such observable is formally 0=0. The problem has to do
with a summation over Gribov copies in covariant gauges,
which contribute to the functional integral with both
positive and negative signs. On the lattice, the gauge-fixing
procedure restricts the evaluation to Gribov copies within
the first Gribov horizon; i.e., to gauge copies which
contribute to the expectation values with only positive
sign. But this restriction itself breaks BRST invariance, as
shown numerically by Cuccieri et al. [10].
In the absence of BRST invariance, even the usual

assumptions underlying reflection positivity are suspect.
Take, for example, the case of the Landau gauge gluon
propagator. What is actually computed on the lattice is the
expectation value
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FIG. 10. String tension in Landau gauge, in lattice units,
at β ¼ 2.5, obtained from fits to GðR; TÞ data obtained on a
243 × 40 lattice volume. In this case the string tension is extracted
from fits to a restricted range 3 ≤ R ≤ 7, due to the nonpositivity
of the correlator at large R.
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Dab
μνðx − yÞ ¼ h½GL∘A�aμðxÞ½GL∘A�bνðyÞi; ð13Þ

where GL is a gauge transformation which takes the gauge
field into some copy of Landau gauge within the first
Gribov horizon. But GL is obviously nonlocal in time,
which violates one of the assumptions underlying the usual
proof of reflection positivity, and this is perhaps the reason
for the observed lack of positivity in the Landau gauge
gluon propagator. If the gauge copies are not restricted to
the Gribov region, then one might argue that time non-
locality could be eliminated at the price of introducing
ghost fields, i.e.,

Dab
μνðx− yÞ ¼ 1

Z

Z
DAμDcDc̄Aa

μðxÞAb
νðyÞ exp½−ðSþ SgfÞ�:

ð14Þ

But this strategy, as already mentioned, runs right into
the Neuberger 0=0 problem. For Landau gauge, and for
covariant gauges in general, the choice is to either break
BRST explicitly, or face the 0=0 problem.
Neither option is attractive. In lattice simulations the

choice is to break BRST symmetry explicitly, which at least
produces a well-defined answer. But perhaps it is then not
surprising that the resulting four-point Euclidean Green’s
functions for massive quark antiquark states are found to
exhibit unphysical behavior.

IV. CONCLUSIONS

We have found that the Coulomb gauge four point
function GðR; TÞ corresponding to creation and destruction
of a static quark antiquark pair, separated by a spatial
distance R, behaves as expected: the correlator falls off
exponentially with RT as in Eq. (7), with an effective string
tension σðTÞ extrapolating, as T → ∞, to the known
asymptotic string tension. In contrast, the corresponding
connected two point function in Landau gauge exhibits two

pathologies. First, whileGðR; TÞ does fall off exponentially
with R for an intermediate range of R, the string tension
σðTÞ appears to extrapolate to zero at large T, indicative of
dominance by an unphysical state. Second, at large R, the
connected four point function is negative, likewise indicat-
ing dominance by negative norm states.
The first question is whether these types of unphysical

behavior persist in quark-antiquark four point functions for
quarks with finite mass, and this will be the next issue to
investigate. Assuming that unphysical behavior persists at
finite mass, which we believe is likely, the next question is:
do our results pose a problem for the existing Dyson-
Schwinger (DS) and functional renormalization group
(FRG) approaches to Landau gauge-fixed QCD, both of
which entail the nonperturbative computation of irreducible
n-point functions?
It is difficult to provide a definite answer at the moment.

Some studies, e.g., [11], which combine the Dyson-
Schwinger and Bethe-Salpeter equations, have had quite
some success in treating the low-lying hadron spectrum. It
may be that these approaches somehow avoid the issue of
unphysical states, perhaps by concentrating on n-point
functions in the neighborhood of physical poles. Is it then
possible, within the DS and FRG schemes, to also uncover
the presence of unphysical states in the four point corre-
lation functions? Or are such states necessarily absent in
these approaches? Perhaps the truncations which are
inevitable in the DS and FRG schemes lose information
about unphysical states? (If so, what else might be lost?)
We do not know the answers to any of these questions, but
we believe they may be worth further investigation.
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