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Finite volumemultiple-particle interaction is studied in a two-dimensional complex ϕ4 lattice model. The
existence of analytical solutions to theϕ4 model in two-dimensional space and timemakes it a perfect model
for the numerical study of finite volume effects of multiparticle interaction. The spectra from multiple
particles are extracted from the Monte Carlo simulation on various lattices in several moving frames. The
S-matrix of multiparticle scattering in ϕ4 theory is completely determined by two fundamental parameters:
single-particle mass and the coupling strength of two-to-two particle interaction. These two parameters are
fixed by studying single-particle and two-particle spectra.Due to the absence of the diffraction effect in theϕ4

model, three-particle quantization conditions are given in a simple analytical form. The three-particle spectra
from simulation show remarkable agreement with the prediction of exact solutions.
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I. INTRODUCTION

One of the outstanding but challenging goals in nuclear/
hadron physics is to understand the dynamics of particle
interaction. Multiple-particle interaction is not only impor-
tant to nuclear/hadron physics, but also plays a crucial role
in astrophysics, atomic, and condensed matter physics.
However, the complication increases dramatically with
increasing numbers of dynamical degrees of freedom
and poses a significant obstacle in studying and under-
standing multiparticle interaction. Fortunately, the simplest
case of multiparticle interaction turns out to be manageable,
three-particle interaction. The dynamics of three-particle
interaction were well developed and studied in the past
[1–20]. Recent progress in high statistic experiments, such
as GlueX and CLAS programs, has triggered renewed
interest in three-body dynamics. One example is the
extraction of the u- and d-quark mass difference from
the η → 3π decay process [21–28]. On the other hand,
lattice QCD provides an unprecedented opportunity for the
study of multiple-particle interaction from the heart of
hadrons with quarks and gluons as the fundamental
building blocks. Recent advances in lattice computation
have made the study of hadron interaction especially
possible [29–40]. Because lattice QCD is formulated in
Euclidean space, access to scattering information is not

always direct. That adds some additional complication in
multiparticle studies in lattice QCD as well as the intense
numerical computation and other difficulties. A formalism
was proposed nearly 30 years ago by Lüscher [41] to tackle
the two-particle elastic scattering problem in a finite volume;
it is known as the Lüscher formula. Since then, the frame-
work was quickly extended to moving frames [42–46] and
to coupled-channel scattering [47–53]. In the three-particle
sector, many groups havemade remarkable progress [54–70]
related to the theoretical algorithm of extracting scattering
amplitudes from lattice data in recent years.
A three-particle lattice simulation was recently per-

formed based on a complex ϕ4 toy model [71]; the data
analysis was carried out by adopting the effective theory
framework. However, the simulation and analysis are
limited solely to ground state energy levels where all three
particles are nearly at rest, and the three-particle signals are
quite noisy. In the present work, we aim to perform a
simulation on multiple-particle interaction also using the ϕ4

model and study the finite volume effect on multiple-
particle spectra in a better-controlled environment and a
more systematic way. For this purpose, multiple numbers of
multiparticle operators are used in our simulation, and
variational analysis [72–74] is implemented to extract
excited state energy levels. The exact scattering solutions
of ϕ4 theory in (1þ 1) dimensions are known in both free
space [75–77] and a finite volume [64]. Taking advantage
of existing analytic multiple-particle scattering solutions,
we therefore perform the simulation in (1þ 1)-dimensional
space and time for various lattice sizes and moving frames.
The exact scattering solutions are used in the data analysis
of multiparticle simulation. In principle, the multiple-
particle scattering S-matrices are completely determined
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by only two free parameters: the single-particle mass and
the coupling strength of two-to-two particle interaction.
The single-particle mass is obtained from single-particle
correlation functions, and the coupling strength of pairwise
interaction is extracted by studying two-particle scattering
spectra in a lattice. The comparison between three-particle
scattering spectra and predicted three-particle energies by
using the analytic expression of three-particle quantization
conditions is presented at the end of the paper.
The paper is organized as follows. The exact solutions

of ϕ4 theory for two-body and three-body interaction
are summarized in Sec. II. The algorithm of the hybrid
Monte Carlo simulation of the lattice model and strategy of
data analysis are briefly discussed in Sec. III. The con-
struction of multiparticle operators, multiparticle spectra in
lattice simulation, and data analysis are described in
Sec. IV. The summary and outlook are given in Sec. V.

II. EXACT SOLUTION OF ϕ4 MODEL IN 2D

In this section, we summarize some results of the two-
dimensional ϕ4 model. The classical action of the complex
ϕ4 model in two-dimensional Euclidean space is

S ¼
Z

d2x

�
1

2
∂ϕ�∂ϕþ 1

2
μ2jϕj2 þ g

4!
jϕj4

�
; ð1Þ

where x ¼ ðx0; x1Þ are temporal and spatial coordinates
in two-dimensional Euclidean space, respectively. It is
known [75] that the complex ϕ4 model in Eq. (1) is
equivalent to a nonrelativistic one-dimensional N-body
interaction problem of particles interacting with pairwise
δ-function potentials,

H ¼ −
1

2m

XN
i¼1

∂2

∂x21;i þ V0

X
i<j

δðx1;i − x1;jÞ; ð2Þ

where x1;i refers to the spatial position of the ith particle,
andm stands for the mass of identical bosons. The coupling
strength of the δ-function potential, V0, differs from the
renormalized g in Eq. (1) by a constant factor. The exact
solutions of the multiparticle interaction with δ-function
potentials were studied and obtained in both free space
[75–77] and a finite volume [64]. In fact, the particles
interacting with the δ-function potential in 2D are only one
of a few exactly solvable multiparticle scattering problems.
The multiparticle wave function is described completely by
the linear superpositions of plane waves with all possible
permutations on particle momenta. No new momenta
are generated by collisions; all the diffraction effects are
canceled out as a consequence of Bethe’s hypothesis
[78,79]. The multiparticle S-matrix therefore is factorized
into the product of a number of two-particle scattering
amplitudes, as if the process of multiparticle scattering

would be a succession of separated elastic two-particle
collisions [64].
In a finite volume for two-particle scattering, only one

quantization condition is required [64,80],

cot δðkÞ þ cot
PL
2
þ kL

2
¼ 0; ð3Þ

where P ¼ p1 þ p2 and k ¼ p1−p2

2
denote the center of

mass and relative momenta of two particles, respectively.
The phase shift δðkÞ for the δ-function potential is given by
δðkÞ ¼ cot−1ð− 2k

mV0
Þ. The L stands for the size of the square

box in 2D, and the center of mass momentum is discretized
because of the periodic boundary condition of the lat-
tice: P ¼ 2π

L d; d ∈ Z.
For three-body scattering in a finite volume, three

quantization conditions are obtained [64]. Only two of
them are independent,

cot ð−δð−q31Þ − δðq12ÞÞ þ cot
PL − p1L

2
¼ 0;

cot ðδð−q23Þ þ δðq12ÞÞ þ cot
PL − p2L

2
¼ 0; ð4Þ

where all the relative momenta are given in terms of two
independent particle momenta: p1 and p2, q31 ¼ P−2p1−p2

2
,

q12 ¼ p1−p2

2
, and q23 ¼ p1þ2p2−P

2
. The momentum of par-

ticle 3 is constrained by momentum conservation, p3 ¼
P − p1 − p2. Again, the center of mass momentum of
the three-particle is quantized in the periodic box: P ¼
2π
L d; d ∈ Z.

III. THE LATTICE ϕ4 MODEL ACTION

The lattice ϕ4 action is obtained from Eq. (1) by
replacing the continuous derivative with a discrete differ-
ence: ∂ϕðxÞ → ϕðxþ n̂Þ − ϕðxÞ, where n̂ denotes the
unit vector in direction xi on a periodic square lattice. In
addition, by introducing two new parameters, μ2 ¼ 1−2λ

κ − 8

and g ¼ 6λ
κ2
, and also rescaling the ϕ field by ϕ →

ffiffiffiffiffi
2κ

p
ϕ, we

thus obtain

SðϕÞ ¼ −κ
X
x;n̂

ϕ�ðxÞϕðxþ n̂Þ þ c:c:

þ ð1 − 2λÞ
X
x

jϕðxÞj2 þ λ
X
x

jϕðxÞj4; ð5Þ

where x ¼ ðx0; x1Þ now refers to the discrete coordinates of
a Euclidean T × L lattice site.

A. Hybrid Monte Carlo algorithm

The hybrid Monte Carlo algorithm [81,82] is adopted
in our numerical simulation; the complex ϕ4 model is
treated as a coupled two-component scalar field model,
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ϕ ¼ ðϕ0;ϕ1Þ. In hybrid Monte Carlo simulation [81,82], an
auxiliary Hamiltonian is introduced,

H ¼ 1

2

X
x

π�ðxÞπðxÞ þ SðϕÞ; ð6Þ

where π ¼ ðπ0; π1Þ are fictitious conjugate momenta of the
ϕ ¼ ðϕ0;ϕ1Þ field. The auxiliary Hamiltonian in Eq. (6)
defines the classical evolution of both the π and ϕ fields
over a fictitious time τ within an interval ½0; τ�:

ϕiðτÞ ¼ ϕið0Þ þ
Z

τ

0

dτ0πiðτ0Þ;

πiðτÞ ¼ πið0Þ −
Z

τ

0

dτ0
∂Sðϕðτ0ÞÞ
∂ϕiðτ0Þ

; i ¼ 0; 1: ð7Þ

The trajectory of ðϕ; πÞ over the time interval ½0; τ� is
determined by the solutions of the motion equations
in Eq. (7).
The two pairs of components, ðϕ0; π0Þ and ðϕ1; π1Þ, are

updated alternately for each sweep over an entire lattice.
Updating each pair ðϕi; πiÞ is followed with the standard
hybrid Monte Carlo algorithm:

(i) The trajectory begins with choosing a random
distribution of fields ðϕðτÞ; πðτÞÞ at initial time
τ ¼ 0. The initial conjugate momenta, πið0Þ, are
generated according to the Gaussian probability

distribution: PðπiÞ ∝ e−
π2
i
2 .

(ii) Solve the motion equations in Eq. (7) to evolve
ðϕiðτÞ; πiðτÞÞ over the trajectory up to a time τ. The
motion equations [Eq. (7)] are solved numerically by
the leapfrog method [82].

(iii) Accept the proposed new fields, ðϕðτÞ; πðτÞÞ, with
probability Pacc ¼ Min½1; e−△H�, where △H ¼
HðτÞ −Hð0Þ.

The simulations are performed with the choice of the
parameters κ ¼ 0.1286 and λ ¼ 0.01. The temporal extent of
the lattice is fixed at T ¼ 80, and the spatial extent of the
lattice, L, is from 10 up to 45. For each set of lattice size and
moving frame, onemillionmeasurements are generated. The
length of the trajectory is fixed at τ ¼ 8; the ðϕ; πÞ fields
evolve from τ ¼ 0 up to τ ¼ 8 over 100 discrete steps.

B. Strategy of data analysis

As already mentioned in Sec. II, the two-dimensional ϕ4

model is exactly solvable; the solutions of the model are
given in terms of only two free parameters: the particlemass,
m, and the coupling strength of the δ-function potential, V0.
The mass of identical particles, m, can be extracted from
one-particle spectra of the lattice simulation. The second
parameter, V0, can be fixed by two-particle spectra from the
simulation. Taking advantage of the existence of exact
solutions of the two-dimensional ϕ4 model provides an
excellent playground and controlled environment for a

systematic study of finite volume effects of multiparticle
scattering in lattice simulation. In the present work, we are
not aiming at obtaining any new fundamental information
from three-body spectra, such as the three-body force effect,
etc. Instead, after fixingm andV0 fromone- and two-particle
spectra, we tend to study how well the three-body spectra
from simulation match the prediction of exact solutions. In
real QCD simulation, the significant difference between
simulation results of three-body spectra and prediction
based on pairwise interaction may signal the effect of
three-body forces or something more fundamental. The
present work serves only as a test bed for more realistic
future lattice studies of multiparticle interactions.
To accomplish the goal of this work mentioned above,

the following steps are taken in the data analysis of the
simulation results:
(1) Measure one-particle spectra for various sizes of

lattice and moving frames, and extract continuum
limit particle mass, m, by using the relation [83]
mðLÞ ¼ mþ cffiffiffi

L
p e−mL.

(2) Measure two-particle spectra for various sizes of
lattice and moving frames, and extract the coupling
strength, V0, from lattice data.

(3) Three-particle spectra are measured for various sizes
of lattice and moving frames as well; three-particle
spectra are thus compared with predicted three-
particle spectra. The predicted three-particle spectra,

EðdÞ
3b ðLÞ, are given in terms of two independent

particle momenta, p1 and p2, by

EðdÞ
3b ðLÞ ¼

X3
i¼1

cosh−1ðcoshmþ 1 − cospiÞ;

where p1 and p2 are the solutions of Eq. (4),
and p3 ¼ P − p1 − p2.

The particles spectra are extracted by fitting exponential
multiparticle correlation functions as a function of time x0:
Cðx0Þ ∝ e−Ex0 . See the example of one-, two-, and three-
particle correlation functions and effective mass, ln Cðx0Þ

Cðx0þ1Þ,
in Figs. 1 and 2, respectively. The construction of multi-
particle operators and correlation functions will be
explained later in Sec. IV.

IV. PARTICLES SPECTRA AND DATA ANALYSIS

In this section, we present significant results for multi-
particle scattering. Some details on multiparticle operator
construction and data analysis are also given.

A. One-particle spectra

The one-particle spectra are extracted from the expo-
nential decay of the correlation functions

C1b;nðx0Þ ¼ hϕ̃�
nðx0Þϕ̃nð0Þi ∝ e−E1b;nx0 ; ð8Þ
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where the one-particle propagator, ϕ̃nðx0Þ, is defined by

ϕ̃nðx0Þ ¼
1

L

X
x1

ϕðxÞeix12πLn; n ∈ Z: ð9Þ

Single-particle energy E1b;nðLÞ is obtained for multiple
lattice sizes, L ¼ 10 up to 45. By fitting single-particle
energies in multiple lattice sizes with relation

mðLÞ ¼ E1b;0ðLÞ ¼ mþ cffiffiffiffi
L

p e−mL; ð10Þ

where c and m are used as fitting parameters, we thus find
the mass of a single particle: m ¼ 0.2708� 0.0002; see
Fig. 3. The excited single-particle energy levels are used to
check the energy-momentum dispersion relations in a finite
lattice,

E1b;nðLÞ ¼ cosh−1
�
coshmþ 1 − cos

2π

L
n

�
: ð11Þ

The comparison between lattice results and the lattice
dispersion relation is presented in Fig. 4.

B. Two-particle spectra

In moving frames, the matrix elements of the two-
particle correlation function read

CðdÞ
2b;ði;jÞðx0Þ ¼ hOðdÞ�

2b;i ðx0ÞOðdÞ
2b;jð0Þi; ð12Þ

where d ∈ Z is related to the center of mass momentum
by P ¼ 2π

L d, and the two-particle operators are con-
structed by

OðdÞ
2b;nðx0Þ ¼ ϕ̃nðx0Þϕ̃d−nðx0Þ: ð13Þ

FIG. 2. Effective mass plots, ln Cðx0Þ
Cðx0þ1Þ, for one particle

(black), two particles (blue), and three particles (green) at
L ¼ 40 and P ¼ 0, and corresponding fitting curves (red band).

FIG. 3. The single-particle mass spectra mðLÞ as a function of
lattice size L. The single-particle mass follows the relation
mðLÞ ¼ mþ c=L1=2e−mL (red band).

FIG. 4. Plot of single-particle spectra in various lattices from
L ¼ 10 up to L ¼ 45 vs lattice dispersion relation (red band),
E1bðpÞ ¼ cosh−1ðcoshmþ 1 − cospÞ, where p ¼ 2π

L n; n ∈ Z.

FIG. 1. Correlation functions for one particle (black), two
particles (blue), and three particles (green) at L ¼ 40 and
P ¼ 0, and corresponding fitting curves (red band).
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Four two-particle operators are used in our simulation:
n ¼ ð0; 1; 2; 3Þ, so the size of the matrix of the two-particle
correlation functions is 4 × 4, 3 × 3, and 2 × 2 for d ¼ 0, 1,
2, respectively.
The spectral decomposition of the correlation function

matrices is usually given by

CðdÞ
2b;ði;jÞðx0Þ ¼

X
n

vðd;nÞ�2b;i vðd;nÞ2b;j e
−EðdÞ

2b;nx0 ; ð14Þ

where vðd;nÞ2b;i ¼ hnjOðdÞ
2b;ið0Þj0i, and n labels the nth energy

eigenstate EðdÞ
2b;n. In order to extract excited energy states, a

generalized eigenvalue method [73] is proposed:

CðdÞ
2b ðx0Þξ2b;n ¼ λðdÞ2b;nðx0; x̄0ÞCðdÞ

2b ðx̄0Þξ2b;n; ð15Þ

where x̄0 is a small reference time. Mixing of multiparticle
states is protected by the conservation of charge quantum
number in the complex ϕ4 model. Also, diagonalized
correlation functions barely show the contamination of

higher energy states in λðdÞ2b;nðx0; x̄0Þ; see Figs. 1 and 2.
Therefore, x̄0 is set to zero and a simple form of

λðdÞ2b;nðx0; 0Þ ¼ e−E
ðdÞ
2b;nx0 is used in the data fitting for

x0 ∈ ½0; 10�. The two-particle spectra for various lattice
sizes and d are presented in Fig. 5.
The phase shift of two-body scattering is extracted from

two-particle energy levels, EðdÞ
2b;n, by using the relation

δðdÞlat ðkÞ ¼ −
kL
2

−
π

2
d; ð16Þ

where the relative momentum of two particles, k, is given
by the solutions of the two-particle energy-momentum
dispersion relation

EðdÞ
2b ðLÞ ¼

X
i¼1;2

cosh−1ðcoshmþ 1 − cospiÞ; ð17Þ

where p1 ¼ π
L dþ k and p2 ¼ π

L d − k; see the extracted
phase shift in Fig. 6. The exact expression of the phase
shift,

δðkÞ ¼ cot−1
�
−

2k
mV0

�
; ð18Þ

is used to fit the lattice results, δðdÞlat ðkÞ, and to fix the
coupling strength, V0. We thus find mV0 ¼ 0.170� 0.015.

C. Three-particle spectra

For three-particle operators with d ¼ 0, 1, 2, four
operators are used in the present work:

OðdÞ
3b;nðx0Þ ¼ ϕ̃nðx0Þϕ̃−nðx0Þϕ̃dðx0Þ; n ¼ 0; 1; 2; ð19Þ

and

Oðd¼0Þ
3b;3 ðx0Þ ¼ ϕ̃1ðx0Þϕ̃1ðx0Þϕ̃−2ðx0Þ;

Oðd¼1Þ
3b;3 ðx0Þ ¼ ϕ̃0ðx0Þϕ̃−1ðx0Þϕ̃2ðx0Þ;

Oðd¼2Þ
3b;3 ðx0Þ ¼ ϕ̃0ðx0Þϕ̃1ðx0Þϕ̃1ðx0Þ: ð20Þ

Similar to the two-particle correlation function matrix, the
matrix element of the three-particle correlation function is
given by

FIG. 5. Plot of two-particle spectra fromvarious lattice sizes from
L ¼ 10 up toL ¼ 45 and ford ¼ 0, 1, 2 vs free two-particle energy
levels (red curve):E2bðLÞ ¼

P
i¼1;2cosh

−1ðcoshmþ 1 − cospiÞ,
wherepi ¼ 2π

L ni; ni ∈ Z. Dotted curves represent the four-particle
threshold.

FIG. 6. Two-particle scattering phase shift δðdÞlat ðkÞ from various
lattices and several moving frames, d ¼ 0 (black), d ¼ 1 (blue),
and d ¼ 2 (green), vs the fitting result (red band) by using the
expression δðkÞ ¼ cot−1ð− 2k

mV0
Þ. The vertical line symbolizes the

four-particle threshold.
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CðdÞ
3b;ði;jÞðx0Þ ¼ hOðdÞ�

3b;i ðx0ÞOðdÞ
3b;jð0Þi: ð21Þ

In the two-particle sector, the generalized eigenvalue
method is also applied to extract three-body energy levels,

CðdÞ
3b ðx0Þξ3b;n ¼ λðdÞ3b;nðx0; 0ÞCðdÞ

3b ð0Þξ3b;n; ð22Þ

where λðdÞ3b;nðx0; 0Þ ¼ e−E
ðdÞ
3b;nx0 . An example of the three-

particle correlation function, λðdÞ3b;nðx0; 0Þ, and effective

mass, ln ½λðdÞ3b;nðx0; 0Þ=λðdÞ3b;nðx0 þ 1; 0Þ�, is given in Figs. 1
and 2.
Given the values of particle mass, m, and coupling

strength, V0, that we learned from discussion in previous
sections, three-particle spectra do not provide any new
insight into the fundamental parameters of ϕ4 theory due to
the absence of a three-body force. However, in general,
three-particle spectra are still considered a useful tool to
explore and understand the dynamics of three-particle
interaction. In reality, the spectra also provide opportunities
to investigate the possibility of more fundamental param-
eters of lattice QCD theory. Nevertheless, since the exact

solutions are known, we only tend to demonstrate the
consistence of predicted three-particle spectra compared to
simulation results. The predicted three-particle spectra are
determined by three-body energy-momentum dispersion
relations in terms of two independent particle momenta,
say, p1 and p2,

EðdÞ
3b ðLÞ ¼

X3
i¼1

cosh−1ðcoshmþ 1 − cospiÞ; ð23Þ

where p3 ¼ 2π
L d − p1 − p2. Two independent particle

momenta, p1 and p2, are the solutions of the three-body
quantization conditions given in Eq. (4). The main results
of the three-particle spectra are presented in Fig. 7. As we
can see, the agreement of predicted spectra against simu-
lation results is quite remarkable.

V. SUMMARY

In summary, the lattice simulation of multiparticle
interaction is studied by using a complex ϕ4 lattice model.
The simulation is performed in (1þ 1)-dimensional space
and time for various sizes of lattices and multiple moving
frames. The two-dimensional ϕ4 model is exactly solvable
and analytical expressions of multiparticle quantization
conditions are known in a finite volume [64]. This feature
makes it a perfect test bed for studying multiparticle
interaction in a lattice. The typical 3–4 numbers of multi-
particle operators are used in our simulation, and a
variational approach is implemented to extract excited state
energy levels. Two parameters of ϕ4 theory, single-particle
mass and coupling strength, are extracted from single-
particle and two-particle spectra, respectively. Then,
extracted ϕ4 theory parameters are applied to predict
three-particle spectra by using analytical three-body quan-
tization conditions compared with three-particle spectra
from simulations. Predicted three-particle spectra and
lattice results show quite remarkable agreement.
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FIG. 7. Three-particle spectra from various lattice size s
from L ¼ 10 up to L ¼ 45 and for d ¼ 0, 1, 2 vs predicted
three-particle energy levels (red band): E3bðLÞ ¼P

3
i¼1 cosh

−1ðcoshmþ 1 − cospiÞ, where p3 ¼ 2π
L d − p1 − p2,

and the values of p1 and p2 are given by the solutions of the three-
body quantization conditions in Eq. (4).
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