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We continue our studies of possible generalization of the color glass condensate effective theory of high
energy QCD to include the high pt (or equivalently large x) QCD dynamics as proposed in [Phys. Rev. D
96, 074020 (2017)]. Here, we consider scattering of a quark from both the small and large x gluon degrees
of freedom in a proton or nucleus target and derive the full scattering amplitude by including the
interactions between the small and large x gluons of the target. We thus generalize the standard eikonal
approximation for parton scattering, which can now be deflected by a large angle (and therefore have large
pt) and also lose a significant fraction of its longitudinal momentum (unlike the eikonal approximation).
The corresponding production cross section can thus serve as the starting point toward the derivation of a
general evolution equation that would contain the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution
equation at large Q2 and the Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner evolution
equation at small x. This amplitude can also be used to construct the quark Feynman propagator, which
is the first ingredient needed to generalize the color glass condensate effective theory of high energy QCD
to include the high pt dynamics. We outline how it can be used to compute observables in the large x (high
pt) kinematic region where the standard color glass condensate formalism breaks down.
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I. INTRODUCTION

Twist expansion and the collinear factorization approach
[1] to particle production in QCD is a powerful and
extremely useful formalism for particle production in high
energy hadronic/nuclear collisions at high pt. However, it is
not expected to be valid at high energy and/or for large
nuclei where twist expansion breaks down due to high
gluon density effects (gluon saturation). The color glass
condensate (CGC) formalism (see Ref. [2] for reviews) is
an effective field theory approach to QCD at high energies
which relies on the fact that at high energy (or at small x) a
hadron or nucleus wave function contains many gluons,
referred to as gluon saturation [3,4], and hence is a dense
many-body system which is most efficiently described via
semiclassical methods [5]. The most significant aspect of
CGC is perhaps the emergence of a dynamical scale, called
the saturation scale Qs, which grows with energy (or 1=x)
and hence can be semihard. The CGC formalism thus can
be used to compute quantities such as gluon multiplicities,
etc., which are not amenable to the standard perturbative

methods. Even though applications of the CGC formalism
to hadronic/nuclear processes in a limited range of kin-
ematics at the Relativistic Heavy Ion Collider and the LHC
have been quite successful [6], the CGC formalism has its
shortcomings; namely it is not valid when one probes large
x modes of the target proton or nucleus. In case of particle
production in hadronic collisions, this happens when high
pt particles are produced since x and pt are kinematically
related, x ∼ ptffiffi

s
p . This is specially important for particle

production in mid rapidity as well as the LHC where, due to
the large center-of-mass energy of the collision, a large
range of transverse momenta becomes accessible.
Furthermore, the large x region will be the dominant part
of kinematics covered in the proposed Electron Ion
Collider, at least in the earliest stages [7]. Therefore, it
is desirable to devise a formalism that not only incorporates
the physics of saturation but also has the correct high pt
and/or large x physics encoded (see also Ref. [8] for
generalized splitting functions and the evolution of gluon
Transverse Momentum Dependents from small to large x).
Generalizing the CGC formalism to include high pt

physics would have significant ramifications not only for
saturation physics and the quest to determine its domain of
applicability, but it would also enable one to describe a
wide range of phenomena using the same formalism. For
example, saturation physics is commonly employed to
provide the initial conditions for the hydrodynamic evo-
lution of the medium, the quark gluon plasma, created in
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high energy heavy ion collisions but is not applicable to jet
(radiative) energy loss and the interactions between high pt
partons and the produced medium. Elastic energy loss and
loss (shift) of rapidity are also not present in the current
formulation of saturation physics but must be included in a
more general description which could be specially signifi-
cant for cold matter energy loss and pt broadening.
Toward this goal, we proposed a more general approach

in Ref. [9]. We considered a high energy quark scattering
from a target proton or nucleus, whereas the quark not only
scatters from the small x gluons of the target, represented
by a soft color field, but also scatters from the large x
gluons in the target. We resummed the multiple scatterings
of the quark from the soft classical fields to all orders in the
number of soft scatterings but kept only the first scattering
from the large x modes. However, we did not consider the
large x modes themselves scattering from the small x
gluons. Here, we continue this approach and proceed to
include interactions between the large x gluons and the soft
background field representing small x gluons of the target.
We start with a brief overview of the approximations

used in high energy (eikonal) scattering and how it is used
in saturation physics when viewed in the target rest frame.
We then give a brief summary of the approximations and
the methods used in our approach in Ref. [9]. We again
consider scattering of a quark from a proton or nucleus
target including both small and large x gluon modes. We
then proceed to calculate and resum multiple interactions
between the small x color fields and the large x gluons in
the target. We then briefly outline how the calculated
scattering amplitude may be used to extract the quark
propagator in this more general setting and how the quark
propagator may be used to compute physical observables in
the full range of x (and/or pt).

II. EIKONAL APPROXIMATION, MULTIPLE
SCATTERING AT SMALL x AND BEYOND

Here, we remind the reader of the approximations
involved in high energy (eikonal) scattering. As this is
standard and already covered in detail in Ref. [9], we will
be brief here. We define the light cone coordinates as

xþ ≡ tþ zffiffiffi
2

p ; x− ≡ t − zffiffiffi
2

p ð1Þ

and similarly for momenta and fields. The small x gluons of
the target are modeled as a soft color (background) field
SμaðxÞ. One can either work in the frame in which both the
projectile and the target are moving fast or work in the
frame in which the projectile quark is fast and the target is
at rest. In either frame, the projectile quark moving to the
right (along the xþ direction to be specific) will have a
large pþ component of momentum and will couple to the
conjugate component of the target color field S−.
Furthermore, the target color field is independent of x−

so that S−a ¼ S−a ðxþ; xtÞ. We also define a lightlike vector,

nμ ¼ ðnþ ¼ 0; n− ¼ 1; nt ¼ 0Þ; ð2Þ

with n2 ¼ 0, which can be used to extract the Lorentz index
of the soft color field and express it as S−a ≡ n−Saðxþ; xtÞ
so that Sa ¼ Sμsγμ ¼ =nSa, which will help keep the expres-
sions compact.
Thenth order of the scattering of a quark,withmomentum

p, from the color field of the target is depicted in Fig. 1
(target is shown as an ellipse) where xi label the coordinate
positions of the field S− in the target (one should think of this
as the projectile quark multiply scattering while going right
through the target so that there are no propagators between
the quark line and the target field). Diagrams of this type
resum into a path-ordered infinite Wilson line, provided one
neglects the transverse momenta of the intermediate quark
lines and the phases one picks up after integrating over the
p−
i of each intermediate quark propagator pμ

i . The integra-
tion over the minus component of the intermediate propa-
gators forces a path ordering such that the scattering is
sequential along the longitudinal direction, i.e., xþi > xþi−1
and so on (see Refs. [9–11] for details).
The scattering amplitude can then be written as

iMeikonalðp;qÞ

¼ 2πδðpþ−qþÞūðqÞ=n
Z

d2xte−iðqt−ptÞ·xt ½VðxtÞ−1�uðpÞ;

ð3Þ

where the infinite Wilson line VðxtÞ is defined as

VðxtÞ≡ P̂ exp

�
ig
Z þ∞

−∞
dxþS−a ðxþ; xtÞta

�
ð4Þ

and depicted in Fig. 2. This infinite Wilson line resums
multiple scatterings of a high energy quark (moving along
the positive z axis) on a soft background color field to all
orders in the soft field ½igSata�n. Due to the eikonal
approximation (see also Ref. [12] in which the first energy
suppressed terms are investigated), the transverse position
of the quark does not change during the scattering; i.e., the
projectile quark does not get a significant deflection (small
angle scattering). Color matrices ta are in the fundamental
representation, and soft color field S− represents small x
gluon modes of the target.

FIG. 1. Multiple soft scatterings from the color field of the
target.
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In Ref. [9], we went beyond eikonal approximation by
including scattering from a large x gluon field denoted
AμðxÞ, which, unlike the soft field S−, carries large
longitudinal momentum and can therefore cause a large
deflection of the projectile quark. Due to the possibility
of this large angle deflection (so that the final state quark
has a large transverse momentum), it was necessary to
introduce a rotated frame, denoted bar-ed frame, in which
the scattered quark is moving along a new longitudinal
direction z̄. The bar-ed coordinates x̄; ȳ; z̄ are related to the
original x, y, z coordinates (the projectile quark is moving
along the z direction) via the rotation matrix O in 3
dimensions,

0
B@

x̄

ȳ

z̄

1
CA ¼ O

0
B@

x

y

z

1
CA: ð5Þ

The elements of this three-dimensional rotation matrix O
are expressed in terms of the 3-momentum of the
scattered quark. We also defined a new lightlike vector
n̄μ ¼ ðn̄þ ¼ 0; n̄− ¼ 1; n̄t ¼ 0Þ, which projects out the plus
component in the new frame, so that n̄ · p̄ ¼ p̄þ. We then
managed to resum all the multiple scatterings of the
projectile quark from the soft field and one scattering from
the large x (sometimes referred to as the hard field, where
“hard” refers to a large longitudinal momentum). This is
shown in Fig. 3 (the target is not explicitly drawn), and
diagrams of this type resum into [9]

iM1 ¼
Z

d4xd2ztd2z̄t

Z
d2kt
ð2πÞ2

d2k̄t
ð2πÞ2 e

iðk̄−kÞx

×e−iðq̄t−k̄tÞ·z̄te−iðkt−ptÞ·zt ūðq̄Þ

×

�
V̄APðxþ; z̄tÞ=̄n

=̄k
2k̄þ

½ig=AðxÞ� =k
2kþ

=nVAPðzt;xþÞ
�
uðpÞ

ð6Þ

with kþ ¼ pþ; k− ¼ k2t
2kþ, k̄

þ ¼ q̄þ; k̄− ¼ k̄2t
2k̄þ, and the semi-

infinite, anti-path-ordered Wilson lines in the fundamental
representation are now defined as1

V̄APðxþ; z̄tÞ≡ P̂ exp

�
ig
Z þ∞

xþ
dz̄þS̄−a ðz̄t; z̄þÞta

�
ð7Þ

and

VAPðzt; xþÞ≡ P̂ exp

�
ig
Z

xþ

−∞
dzþS−a ðzt; zþÞta

�
; ð8Þ

where anti-path-ordering (AP) in the amplitude means
fields with the largest argument appear to the left.

A. Multiple scatterings of the large x gluon

We now proceed to consider interactions of the hard
(large x) gluon with the soft background field. First, let us
consider the case in which only the hard gluon interacts
with the soft field but not the initial or final state quark, as
shown in Fig. 4. The amplitude can be written as

iM ¼
Z

d4k
ð2πÞ4 d

4xd4x1eiðq̄−p−kÞx1eikxūðq̄ÞðigγμtaÞuðpÞ

× Gab
μνðp − q̄ÞVνλρ

bcdðp − q̄; k; q̄ − p − kÞ
× Ac

λðxÞ½igSdρðx1Þ�;

where the free gluon propagator is

Gμν
abðlÞ ¼

iδab
l2 þ iϵ

�
−gμν þ nμlν þ lμnν

n · l

�
ð9Þ

and the triple gluon vertex is

Vbcd
νλρ ðl1; l2; l3Þ
¼ gfbcd½ðl2− l3Þνgλρþðl3− l1Þλgρνþðl1− l2Þρgνλ�: ð10Þ

The large x gluon field is denoted Aðxþ; x−; xtÞ, while the
soft field is S−d ðxþ1 ; x1tÞ ¼ n−Sdðxþ1 ; x1tÞ. It is straightfor-
ward to simplify the Lorentz structure of the amplitude by
repeated use of the gauge condition n · A ¼ 0 as well as the

FIG. 2. AWilson line representing eikonal scattering of a high
energy quark.

FIG. 3. Multiple soft scatterings before and after a hard one at x.

1See Ref. [9] regarding the use of path- vs anti-path-ordered
Wilson lines in propagators vs amplitudes.
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null condition n2 ¼ 0 and the fact that the soft field has
only a − component and therefore is proportional to nμ.
We get

iM ¼ facd

Z
d4k
ð2πÞ4 d

4xd4x1eiðq̄−p−kÞx1

× eikxūðq̄ÞðigγμtaÞuðpÞAc
λðxÞ½igSdðx1Þ�

×
1

ðp − q̄Þ2 þ iϵ

�
−gμλn · ðp − q̄ − kÞ

þ nμ
�
pλ − q̄λ

�
1 −

n · k
n · ðp − q̄Þ

���
: ð11Þ

As before, the soft field S is independent of the x−1
coordinate, which allows us to do the integration over
the x−1 coordinate, which gives δðq̄þ − pþ − kþÞ, which in
turn is used to do the kþ integration setting kþ ¼ q̄þ − pþ

upon integrating kþ. We also note that the only k depend-
ence left is in the phase factors since n · k kills all the
other possible k dependent terms. Then, one can carry out
the kt and k− integrations which lead to delta functions
δ2ðx1t − xtÞδðxþ1 − xþÞ, which are then used to perform the
remaining integrations over xþ1 ; x1t setting x1t ¼ xt
and xþ1 ¼ xþ. In other words, the soft field S and the
large x (hard) field A are at the same space coordinate
except that the soft field S does not depend on x−, unlike
the hard field A. After performing the above integrations,
we are left with

iM ¼ 2facd

Z
d4xeiðq̄−pÞxūðq̄Þ

×
½=nðp − q̄Þ · AcðxÞ − =AcðxÞn · ðp − q̄Þ�

ðp − q̄Þ2 ðigtaÞuðpÞ

× ½igSdðxþ; xtÞ� ð12Þ

with the most important point being that the soft and hard
field are at the same point. We now go ahead and consider

one more soft scattering of the hard gluon as shown in
Fig. 5. As before we use the gauge and null vector
conditions to simplify the Lorentz structure. We then
perform the integration over k which sets the fields AðxÞ
and Sðx1Þ at the same point (x1 ¼ x) after which there is an
integration over k1 left. Let us now consider the k−1
integration,

I ≡
Z

dk−1
ð2πÞ

eik
−
1
ðxþ−xþ

2
Þ

2ðq̄þ − pþÞ
h
k−1 − k2

1t−iϵ
2ðq̄þ−pþÞ

i : ð13Þ

This integration can be done using the standard contour
integration techniques realizing that the k−1 pole is always
below the real axis since pþ > q̄þ. This integral is then

I ∼
iθðxþ − xþ2 Þ
2n · ðq̄ − pÞ e

i
k2
1t

2n·ðq̄−pÞðxþ−xþ2 Þ: ð14Þ

The most essential point here is the reappearance of the
theta function θðxþ − xþ2 Þ, which forces a path ordering of
the soft scatterings. This is not surprising since the soft
multiple scatterings are eikonal. The rest of the analysis
goes through as before, and we get

iM¼ 2fabcfcde

Z
d4xdxþ2 θðxþ−xþ2 Þeiðq̄

þ−pþÞx−−iðq̄t−ptÞ·xt

× ūðq̄Þ ½=nðp− q̄Þ ·AeðxÞ−=AcðxÞn · ðp− q̄Þ�
ðp− q̄Þ2 ðigtaÞuðpÞ

× ½igSdðxþ;xtÞ�½igSbðxþ2 ;xtÞ�: ð15Þ

We now consider a third soft scattering of the large x gluon,
which should make the anticipated exponentiation of the
soft multiple scattering more clear. This is shown in Fig. 6
with the amplitude given by

FIG. 4. One soft scattering of the large x gluon.

FIG. 5. Two soft scatterings of the large x gluon.
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iM ¼
Z

d4xd4x1d4x2d4x3
d4k
ð2πÞ4

d4k1
ð2πÞ4

d4k2
ð2πÞ4

× eikxeiðk1−kÞx1eiðk2−k1Þx2eiðq̄−p−k2Þx3

× ūðq̄ÞγμðigtaÞΓμ
auðpÞ ð16Þ

with

Γμ
a ≡Gμνðq̄ − pÞVabc

νρλ ðp − q̄; q̄ − p − k2; k2Þ
×Gλδðk2ÞVcde

δγαð−k2; k2 − k1; k1Þ
×Gαβðk1ÞVegf

βσϵð−k1; k1 − k; kÞAϵ
fðxÞ

× nσSgðx1ÞnδSdðx2ÞnρSbðx3Þ: ð17Þ

We now proceed as before and perform the various
integrations involved using the fact that the soft field
SðzÞ does not depend on the z− coordinate, which leads
to conservation of the plus component of momentum at the
soft vertex. As before, the only dependence on k−; kt is in
the exponentials, integration over which eventually sets
xþ1 ¼ xþ and x1t ¼ xt. The integrations over the minus
components of internal momenta k−1 ; k

−
2 can be done

via contour integration techniques and lead to path
ordering of the soft scatterings as before enforced by
θðxþ − xþ2 Þθðxþ2 − xþ3 Þ. Performing the various Lorentz
contractions and using the gauge condition as well as
n2 ¼ 0, the amplitude can be simplified to

iM¼ 2ðiÞ2
ðq̄−pÞ2f

abcfcdefegf

×
Z

d4xdxþ2 dx
þ
3 θðxþ−xþ2 Þθðxþ2 −xþ3 Þ

× ūðq̄ÞðigtaÞ½n · ðp− q̄Þ=AfðxÞ− ðp− q̄Þ ·AfðxÞ=n�uðpÞ
× ½igSgðxþ;xtÞ�½igSdðxþ2 ;xtÞ�½igSbðxþ3 ;xtÞ�
×eiðq̄þ−pþÞx−−iðq̄t−ptÞ·xt : ð18Þ

By considering the derivative of the path-ordered Wilson
line U, we see that the calculated terms in (12), (15), (18)
correspond to the first three nontrivial terms in the
expansion of the Wilson line as

∂xþ½U†
APðxt; xþÞ�ab ¼ ðifbcaÞ½igScðxþ; xtÞ�

þ ðifbceÞðifedaÞ
Z

dxþ1 θðxþ − xþ1 Þ½½igScðxþ; xtÞ�½igSdðxþ1 ; xtÞ�

þ ðifbchÞðifgdfÞðiffeaÞ
Z

dxþ1 dx
þ
2 θðxþ − xþ1 Þθðxþ1 − xþ2 Þ

× ½½igScðxþ; xtÞ�½igSdðxþ1 ; xtÞ�½½igScðxþ2 ; xtÞ� þ � � � � � � ; ð19Þ

and this can be generalized to all orders and allows one to
resum all the soft scatterings of the hard gluon and write it as

iM2¼
2i

ðp− q̄Þ2
Z

d4xeiðq̄þ−pþÞx−−iðq̄t−ptÞ·xt

× ūðq̄Þ½ðigtaÞ½∂xþU
†
APðxt;xþÞ�ab

× ½n · ðp− q̄Þ=AbðxÞ− ðp− q̄Þ ·AbðxÞ=n��uðpÞ; ð20Þ

where the derivative acts on the þ coordinate of the adjoint
Wilson line (anti-path-ordered in the amplitude) and arises
from the fact that one can write the soft field at the last

scattering point as a derivative on the Wilson line. This
amplitude is symbolically shown in Fig. 7, in which the thick
solid line attached to the hard gluon line depicts a semi-
infinite (and anti-path-ordered) Wilson line in the adjoint
representation [analog of Eq. (8)].2 It should be noted that we
have dropped terms of the form eiðq̄−−p−Þxþn , where xþn is the
location of the last soft scattering of the large gluon field
before the quark vertex. This is best understood in the infinite
momentum frame in which the soft color field is a shock
wave at xþi ¼ 0 so that the exponential factor is just unity.

FIG. 6. Three soft scatterings of the large x gluon.

2Recall that adjoint representation is real so that ½U†�ab ¼ Uba.
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Finally, we note that this amplitude vanishes in the soft
(eikonal) limit, i.e., when q̄þ → pþ and Aμ → S−.

B. Multiple scatterings of the large x gluon
and the final state quark

We now consider the case in which both the large x gluon
and the final state quark multiply scatter from the soft
background field. The first diagram not included so far is
when both the large x gluon and the final state quark scatter
once as shown in Fig. 8. This scattering amplitude is
given by

iM ¼
Z

d4k
ð2πÞ4

d4p̄1

ð2πÞ4 d
4xd4x1d4x̄1

× eiðq̄−p̄1Þx̄1e−ikxe−iðp−p̄1−kÞx1 ūðq̄Þ=̄n½igS̄ðx̄1Þ�

×
i=̄p1

p̄2
1 þ iϵ

ðigγμtaÞuðpÞGμνðp − p̄1Þ

× Vνλρ
abcðp − p̄1;−k; p̄1 þ k − pÞAb

λðxÞ½ignρScðx1Þ�:

Many of the steps involved in simplifying this expression
are identical to the previous ones; for example, we use the
fact that the soft field S−ðxiÞ is independent of the x−i
coordinate to perform the integration over the minus
components of their coordinates, leading to delta functions
relating the þ components of the momenta. The Lorentz
structure can also be simplified as before by repeated use of
the gauge condition as well as the fact that n2 ¼ n̄2 ¼ 0 and
that the soft fields (in their respective frames) have only
minus components, which allows extraction of their
Lorentz index by the use of the lightlike vectors n and n̄
so that S− ¼ n−S and S̄− ¼ n̄−S̄. As in the case of only the
hard gluon scattering we just considered, one gets xþ1 ¼ xþ

and x1t ¼ xt. The next step is to consider integration over
p̄−
1 momentum of the intermediate quark line which is

I ∼
Z

dp̄−
1

ð2πÞ
e−ip̄

−
1
ðx̄þ

1
−xþÞh

p̄−
1 − p̄2

1t−iϵ
2q̄þ

ih
p̄−
1 − p− − ðp̄1t−ptÞ2−iϵ

2ðq̄þ−pþÞ
i ; ð21Þ

keeping in mind that both pþ; q̄þ > 0 and that pþ− q̄þ>0
we see that the integral above has two poles which
are on the opposite side of the real axis. This is completely
different from the eikonal scattering in which the inter-
mediate quark propagators have poles which are all
on the same side of the real axis, which leads to path
ordering along the þ direction. This integral can be
evaluated using the standard contour integration techniques
and gives

I∼
h
θðx̄þ1 − xþÞe−i

p̄2
1t

2q̄þðx̄
þ
1
−xþÞ

þ θðxþ− x̄þ1 Þe
−i
h
p−þðp̄1t−ptÞ2

2ðq̄þ−pþÞ

i
ðx̄þ

1
−xþÞi

: ð22Þ

To proceed further and to stay consistent with the approx-
imations made for strict eikonal scattering in which one
neglects terms of the order pt

pþ, we will ignore the phase
factors above. We then see that the two different path
orderings corresponding to the two theta functions add to
unity and path ordering disappears. This can be understood
as the following: integration over any of the poles forces the
other propagator to go off shell and to become spacelike, in
which case there is no absolute ordering between the
interaction vertices at xþ1 ¼ xþ and x̄þ1 . However, if we
consider further soft scatterings of the hard gluon and the
final state quark, they will be path ordered with respect to
xþ and x̄þ1 respectively. This is straightforward but tedious,
and we will just quote the final result as the calculations
proceeds as earlier and there are no further subtle points.
Resumming all the soft scatterings of the hard gluon and
the final state quark then gives

FIG. 7. Multiple soft scatterings of the large x gluon.

FIG. 8. Both the large x gluon and the final state quark
scattering once.
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iM3 ¼ −2i
Z

d4xd2x̄tdx̄þ
d2p̄1t

ð2πÞ2 e
iðq̄þ−pþÞx−e−iðp̄1t−ptÞ·xte−iðq̄t−p̄1tÞ·x̄t

× ūðq̄Þ
�
½∂ x̄þ V̄APðx̄þ; x̄tÞ�=̄n=̄p1ðigtaÞ½∂xþU

†
APðxt; xþÞ�ab

½n · ðp− q̄Þ=AbðxÞ − ðp− p̄1Þ · AbðxÞ=n�
½2n · q̄2n · ðp− q̄Þp− − 2n · ðp− q̄Þp̄2

1t − 2n · q̄ðp̄1t − ptÞ2�
�

× uðpÞ ð23Þ

and is depicted in Fig. 9 below, in which the thick solid
lines denote semi-infinite (and anti-path-ordered) Wilson
lines in fundamental (attached to the final state quark line)
and adjoint (attached to the hard gluon line) representa-
tions. Also, we have p̄þ

1 ¼ q̄þ. We again note that this
amplitude also vanishes in the soft limit.

C. Multiple scatterings of the initial state quark
and the large x gluon

We now consider the next class of diagrams in which
both the large x gluon and the initial state quark scatter from
the soft background field. The lowest-order diagram, not
included so far, is shown in Fig. 10. This amplitude can be
written as

iM¼
Z

d4k
ð2πÞ4

d4p1

ð2πÞ4d
4xd4x1d4x2eiðp1−pÞx1e−ikxeiðkþq̄−p1Þx2

×
h
ūðq̄ÞðigγμtaÞ ip1

p2
1þ iϵ

=n½igSðx1Þ�uðpÞ
i
Gμνðp1− q̄Þ

×Vνλρ
acdðp1− q̄;−k;kþ q̄−p1ÞAc

λðxÞ½ignρSdðx2Þ�:

Again, most of the steps are identical to before; one
integrates over the − component of the soft fields coor-
dinates, eventually setting someþ components of momenta
equal to each other. Lorentz structure is simplified using the
gauge condition and the null vector n2 ¼ 0 as well as
extracting the Lorentz index of the soft field S− ¼ nμS.
Integration over k again sets xþ2 ¼ xþ. The crucial step now
is the integration over p−

1 , which we focus on,

I ∼
Z

dp−
1

ð2πÞ
e−ip

−
1
ðxþ

1
−xþÞh

p−
1 − p2

1t−iϵ
2pþ

ih
p−
1 − q̄− − ðp1t−q̄tÞ2−iϵ

2ðpþ−q̄þÞ
i : ð24Þ

The two poles are now both below the real axis so that the
integration gives a nonzero value only if xþ > xþ1 , we get

I ∼ θðxþ − xþ1 Þ
h
ei

p2
1t

2pþðx
þ
1
−xþÞ − e

i

h
q̄−þðp1t−q̄tÞ2

2ðpþ−q̄þÞ

i
ðxþ

1
−xþÞi

. ð25Þ

We note that, unlike in the case of scattering from the large
x gluon and the final state quark, the relative sign between
the two phase factors is negative (recall that the poles were
on the opposite side in that case). Hence, ignoring the
phases again consistent with strict eikonal approximation,
one gets a cancellation between the two terms so that I ¼ 0;
therefore, this amplitude identically vanishes. It is straight-
forward to include any number of further soft scatterings
from the initial or final state quark or the large x gluon.
However, it can be shown these further scatterings do not
affect this null result. Therefore, we conclude that one
cannot have simultaneous soft scatterings from the initial
state quark and the large x gluon. There are no other
diagrams to consider; therefore, this completes our deri-
vation of the amplitude for scattering of a quark from the
small and large x gluon fields of the target.
The result for the full scattering amplitude at all x (or

any pt) can thus be written as

FIG. 10. Soft scatterings of the initial state quark and the large x
gluon.

FIG. 9. Soft scatterings of the final state quark and the large x
gluon.
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iM ¼ iMeikonal þ iM1 þ iM2 þ iM3; ð26Þ

where iMeikonal, iM1, iM2, and iM3 are given by
Eqs. (3), (6), (20), and (23), respectively. This is our
main result. We further recall [9] that one needs to use
the covariant coupling in the large x terms so that
the above amplitude smoothly reduces to the eikonal
amplitude iMeikonal in the soft scattering limit, i.e., when
=Aðxþ; x−; xtÞ → =nSðxþ; xtÞ. To extract the quark propaga-
tor, one defines the effective vertex τF as

iMðp; q̄Þ ¼ ūðq̄ÞτFðp; q̄ÞuðpÞ; ð27Þ
in terms of which the propagator can be written as

SFðp; q̄Þ ¼ ð2πÞ4δ4ðp − q̄ÞS0FðpÞ þ S0FðpÞτFðp; q̄ÞS0Fðq̄Þ:
ð28Þ

A final remark is in order here: we have treated the target
as consisting of gluons only and have totally ignored the
contribution of quarks at large x. We expect sea quarks to
appear when one performs a one-loop correction to our
result and can therefore be included in principle. On the
other hand, inclusion of valence quarks at large x is an open
problem at this point and will require a detailed inves-
tigation which is beyond the scope of this work.

III. DISCUSSION AND SUMMARY

We have derived the amplitude for scattering of a high
energy quark on the gluon field of a proton or nucleus target
including both small and large x gluon modes of the target.
This generalizes the standard expressions for eikonal
scattering and is, to the best of our knowledge, the first
gluon saturation-based calculation which includes large x
gluons (in the target proton or nucleus) as dynamical
degrees of freedom. As such, it allows one to investigate
many important high pt and/or large x phenomena which
are not accessible to the standard gluon saturation and color
glass condensate formalism. This is specially essential for a
proper and quantitative understanding of the outcome of the
experiments at the proposed Electron Ion Collider and the
Large Hadron Collider.
The derived scattering amplitude is a “tree-level” expres-

sion which can already be used to investigate several
phenomena, for example, pt broadening and elastic energy
loss as well as the nuclear modification factor RpA [13].
Due to the presence of large x gluon fields in the target, the
scattered quark can undergo an arbitrarily large deflection
and pick up large transverse momenta. Furthermore, it can
lose longitudinal momentum and undergo a potentially
large rapidity loss which is not contained in saturation
formalism. One can also extract the quark propagator from
this scattering amplitude and use it to calculate the tree-
level production cross sections for particle production in
high energy collisions for any transverse momentum pt (at

small or large x). One would also need to calculate the
gluon propagator [14] in this formalism, which is a
straightforward extension of the present work. This would
allow one to investigate cold matter radiative energy loss
including both the fully coherent (present in saturation
formalism) as well as the partially coherent/incoherent
energy loss which is not present in the saturation formal-
ism. Examples of where our results in the present form can
be used are single inclusive or dijet production in deep
inelastic scattering as well as in high energy proton-proton
and proton-nucleus collisions.
The present work generalizes the saturation formalism

for tree-level processes and enlarges the transverse momen-
tum range (recall x and pt are kinematically related) where
gluon saturation-based models are applied and improve
their quantitative accuracy [15]. In addition, one would also
be able to investigate forward-backward (in rapidity)
correlations in our framework. Nevertheless, there is an
important point worth emphasizing here. In the CGC
formalism and for a large nucleus target, one can perform
the color averaging procedure over the static target fields
(or in a more commonly used terminology, over color
charges ρ) using the McLerran-Venugopalan model [5].
This amounts to being able to calculate the initial conditions
for rapidity evolution of physical observables, unlike the
perturbative QCD case in which initial conditions for parton
distribution functions are purely nonperturbative and thus
parametrized. In our case, it is highly unlikely that onewould
be able to perform the averaging over the target gluon fields
(or color charges) analytically and therefore would need to
parametrize the initial conditions just like perturbativeQCD.
Also, there is the issue of matching the large x expressions
with that of small x ones. Here, one can either follow the
spirit of CGC formalism and impose a sharp boundary in x;
for example, x0 ¼ 0.01 is commonly used in CGC formal-
ism as the longitudinal momentum fraction below which
CGC is applied. In this case, the new (noneikonal) terms in
our expressions would be used for x > x0 and the eikonal
term for x < x0. This is not an ideal approach but may be
attempted as a first try in phenomenological applications.
A less (kinematically) rigid approach could involve match-
ing the small and large x expressions at some value of the
strength of the gluon field. For example, in CGC formalism,
one considers gluon fields which are parametrically strong
Oð1gÞ, whereas perturbative gluon fields areOðgÞ so that one
can choose a value of the coupling constant g below which
one takes the eikonal results and above which one takes the
large x expressions. This separation in either x or g would
avoid double counting of target degrees of freedom.
However, as pointed out above, one does not realistically
expect to be able to compute, analytically, the expectation
values of the operators involved in (the square of) our
expressions. One would therefore need to parametrize the
resulting expressions, which would then, similar to parton
distribution functions in perturbative QCD, serve as the
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initial conditions for the evolution (in x andQ2) dependence
of our results, thereby avoiding the issue of double counting.
Naturally, one expects that our tree-level expression will

be renormalized when one considers radiative (one-loop)
corrections. In analogy with renormalization of product of
Wilson lines [15–17] in small x QCD, which leads to the
Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner
(JIMWLK)/Balitsky-Kovchegov evolution equations
[18,19], we expect the renormalization of the scattering
cross section here to lead to a more general evolution
equation which incorporates both the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi [20] and JIMWLK evolution equa-
tions; due to the presence of the large x gluon field (not
present in saturation formalism), one expects the one-loop
corrections to result in the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi evolution equation in the large x limit. On
the other hand and due to the presence of the eikonal
term, one would expect to recover the JIMWLK/Balitsky-
Kovchegov evolution equations in the small x limit.
Therefore, it will be enormously beneficial to calculate the
one-loop corrections to our result. It may also be possible to
reformulate this as an effective action approach, analogous to
the McLerran-Venugopalan effective action [5]. If so, this

would make it possible to treat both the early stages in the
formation of a quark gluon plasma and the highpt jet energy
loss in high energy heavy ion collisions using the same
formalism, at least in the earliest times after the collision [21].
In summary, the present work takes the first step toward
deriving a formalism that generalizes the color glass con-
densate framework by including the physics of high pt and
large x.
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