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We present a new formulation of pseudoscalar meson loop corrections to nucleon parton distributions
within a nonlocal covariant chiral effective field theory, including contributions from SU(3) octet and
decuplet baryons. The nonlocal Lagrangian, constrained by requirements of local gauge invariance and
Lorentz-invariant ultraviolet regularization, generates additional interactions associated with gauge links.
We use these to compute the full set of proton→ mesonþ baryon splitting functions, which in general
contain on-shell and off-shell contributions, in addition to δ-function terms at zero momentum, along with
nonlocal contributions associated with the finite size of the proton. We illustrate the shapes of the various
local and nonlocal functions numerically using a simple example of a dipole regulator.
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I. INTRODUCTION

The important role played by chiral symmetry in
hadron physics has been documented for many decades.
Traditionally the purview of low-energy hadron and nuclear
physics, more recently the relevance of chiral symmetry in
QCD has become more prominent also in high-energy
reactions, in which the quark and gluon (or parton) sub-
structure of hadrons is manifest. One of the most striking
expressions of the chiral symmetry and its approximate
breaking is in the nonperturbative structure of the sea quark
distributions of the nucleon [1,2]. In particular, the breaking
of chiral SU(3) symmetry was anticipated [3] to generate
unequal strange and (light) nonstrange sea quark distribu-
tions, and, even more dramatically, an excess of d antiquarks
over u. The latter was confirmed in proton-proton and
proton-deuteron Drell-Yan experiments at CERN [4] and
Fermilab [5], following earlier indirect indications from
inclusive [6] and semi-inclusive [7] deep-inelastic scattering
(DIS) data on proton and deuteron targets.
The observation of a large d − u asymmetry has also

served to motivate more challenging searches for other
nonperturbative asymmetries, such as those between strange
and antistrange quarks in the proton, s − s [8–10], or

between the helicity dependent light antiquark distributions,
Δd − Δu [11]. The phenomenological success in describing
the d − u asymmetry, in particular, in terms of nonpertur-
bative models of the nucleon in which its peripheral structure
is modeled by a pseudoscalar meson cloud suggested that
signatures of chiral symmetry breaking may also be found
in other types of parton distribution functions (PDFs)
[8,12–18].
While considerable experience has been accumulated

with nonperturbative models, a challenge has been to
compute the chiral symmetry breaking effects on the
PDFs in a model-independent way from QCD. An impor-
tant step in establishing a direct connection with QCD was
made with the observation [19] that the leading nonanalytic
(LNA) behavior of moments of the nonsinglet PDFs,
expanded in powers of the pion mass, mπ , could be
obtained from chiral effective field theory, which encodes
the same chiral symmetry properties as present in QCD
[20–22]. In addition to demonstrating how lattice QCD
data on PDF moments and other observables simulated at
unphysically large pion masses could be extrapolated to the
physical point [23], the result [19] demonstrated unambig-
uously that a nonzero component of d − u arises as a direct
consequence of the infrared structure of QCD.
Subsequent work [24–29] computed the full set of lowest

order corrections to PDFs arising from pseudoscalar meson
loops, both for the PDF moments and the Bjorken-x
dependence. The LNA behavior of the various contribu-
tions can be established model-independently by consid-
ering the infrared limit; however, the computation of the
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full amplitude requires specific choices for regularizing the
divergences in the loop integrals. In the literature, regu-
larization prescriptions such as transverse momentum cut-
offs, Pauli-Villars, dimensional regularization or infrared
regularization have been used, as well as form factors or
finite-range regulators. The latter take into account the
finite size of hadrons [30,31], while the others are generally
more suitable for theories that treat hadrons as pointlike.
In practice, the extended structure of the nucleon and

other baryons does become important in many traditional
hadronic physics applications. In nonrelativistic calcula-
tions, if the regulators are in three-dimensional momentum
space, such as for finite-range regularization, charge con-
servation, which is related to the time component of the
current, is respected in the presence of form factors. In
relativistic calculations, on the other hand, simply replacing
the nonrelativistic regulator by a covariant one can lead to
violation of local gauge symmetry and charge conservation.
The problem of preserving gauge invariance in theories

with hadronic form factors can be formally alleviated by
introducing nonlocal interactions into the gauge invariant
local Lagrangian, which allows one to consistently generate
a covariant regulator. A method for constructing nonlocal
Lagrangians with gauge fields was described by Terning
[32], based on the path-ordered exponential introduced by
Wilson [33] and earlier by Bloch [34]. Variants of the
method were subsequently used in phenomenological appli-
cations to strange vector form factors and other nucleon
matrix elements by a number of authors [35–37]. The pion
and σ meson properties have been studied by gauging
nonlocal meson–quark interactions in relativistic quark
models [38,39]. The nonlocal Lagrangian at the hadron
level was also recently constructed and applied to electro-
magnetic form factors of the nucleon [40–42].
The presence of gauge links in the nonlocal Lagrangian

connecting different spacetime coordinates generates addi-
tional diagrams which are needed to ensure the local gauge
invariance of the theory. This guarantees that the proton
and neutron charges, for example, are unaffected by meson
loops, or that contributions to the strangeness in the
nucleon from diagrams with intermediate state kaons
and hyperons sum to zero. These basic features of the
theory are not guaranteed for a local Lagrangian with a
covariant regulator, but arise automatically in the nonlocal
theory in which the Ward identities and charge conserva-
tion are necessarily satisfied. In fact, a nonlocal formulation
may be preferable on physical grounds, as this more
naturally represents the extended structure of hadrons.
In this paper we describe how the nonlocal formulation

of the chiral SU(3) effective theory can be used to derive the
contributions from pseudoscalar meson loops to PDFs in
the nucleon. We include both the SU(3) octet and decuplet
baryons, using a covariant regulator generated through the
nonlocal Lagrangian that respects Lorentz and gauge
symmetry. In the present paper we focus on the formalism

and the derivation of the proton → baryonþ meson split-
ting functions from the nonlocal chiral Lagrangian; a
follow-up paper [43] will report on the results for the
nucleon PDFs, computed through convolutions of the
splitting functions and PDFs in the virtual mesons and
baryons in the loops.
We begin by reviewing in Sec. II the familiar local

effective Lagrangian in the standard chiral SU(3) effective
field theory. The generalization of the effective Lagrangian
to the nonlocal case is described in Sec. III, a procedure
which allows the preservation of gauge invariance in the
presence of covariant vertex functions for the nucleon–
baryon–meson interaction. The main results for the
proton → mesonþ baryon splitting functions are derived
in Sec. IV for the full set of lowest order diagrams,
including rainbow, bubble, tadpole and Kroll-Ruderman
contributions, as well as additional terms that arise from the
gauge links generated from the nonlocal interactions. Here
we present the model independent results for the nonana-
lytic behavior of the moments of the splitting functions,
and illustrate the relative shapes and magnitudes of the
various functions using a simple example of a covariant
dipole vertex form factor. Finally, in Sec. V we summarize
our results and outline future applications of the new
formalism.

II. LOCAL CHIRAL EFFECTIVE LAGRANGIAN

In this section we review the standard local chiral
effective theory for mesons and baryons. The lowest-
order Lagrangian, consistent with chiral SUð3ÞL ×
SUð3ÞR symmetry, describing the interaction of pseudo-
scalar mesons (ϕ) with octet (B) and decuplet (Tμ) baryons,
is given by [44,45]

L ¼ Tr½BðiD −MBÞB� −
D
2
Tr½Bγμγ5fuμ; Bg�

−
F
2
Tr½Bγμγ5½uμ; B�� þ Tijk

μ ðiγμναDα −MTγ
μνÞTijk

ν

−
C
2
½ϵijkTilm

μ ΘμνðuνÞljBmk þ H:c:�

−
H
2
Tijk
μ γαγ5ðuαÞklTijl

μ þ f2

4
Tr½DμUðDμUÞ†�; ð1Þ

whereMB andMT are the octet and decuplet masses,D and
F are the meson–octet baryon coupling constants, C andH
are the meson–octet–decuplet and meson–decuplet–
decuplet baryon couplings, respectively, f ¼ 93 MeV is
the pseudoscalar decay constant, and “H.c.” denotes the
Hermitian conjugate. The tensor ϵijk is the antisymmetric
tensor in flavor space, and we define the tensors γμν ¼
1
2
½γμ; γν� and γμνα ¼ 1

2
fγμν; γαg in terms of the Dirac γ-

matrices. The octet–decuplet transition tensor operator Θμν

is defined as
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Θμν ¼ gμν −
�
Z þ 1

2

�
γμγν; ð2Þ

where Z is the decuplet off-shell parameter. The SU(3)
baryon octet fields Bij include the nucleon N (¼ p, n), Λ,
Σ�;0 and Ξ−;0 fields, and are given by the matrix

B ¼

0
BB@

1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ Σþ p

Σ− − 1ffiffi
2

p Σ0 þ 1ffiffi
6

p Λ n

Ξ− Ξ0 − 2ffiffi
6

p Λ

1
CCA: ð3Þ

The baryon decuplet fields Tijk
μ , which include the Δ, Σ�,

Ξ� and Ω− fields, are represented by symmetric tensors
with components

T111¼Δþþ; T112¼ 1ffiffiffi
3

p Δþ; T122¼ 1ffiffiffi
3

p Δ0; T222¼Δ−;

T113¼ 1ffiffiffi
3

p Σ�þ; T123¼ 1ffiffiffi
6

p Σ�0; T223¼ 1ffiffiffi
3

p Σ�−;

T133¼ 1ffiffiffi
3

p Ξ�0; T233¼ 1ffiffiffi
3

p Ξ�−;

T333¼Ω−: ð4Þ

In the meson sector, the operator U in Eq. (1) is defined in
terms of the matrix of pseudoscalar fields ϕ,

U ¼ u2; with u ¼ exp

�
i

ϕffiffiffi
2

p
f

�
; ð5Þ

where ϕ includes the π, K and η mesons,

ϕ ¼

0
BB@

1ffiffi
2

p π0 þ 1ffiffi
6

p η πþ Kþ

π− − 1ffiffi
2

p π0 þ 1ffiffi
6

p η K0

K− K0 − 2ffiffi
6

p η

1
CCA: ð6Þ

The pseudoscalar mesons couple to the baryon fields
through the vector and axial vector combinations

Γμ ¼
1

2
ðu†∂μuþ u∂μu†Þ −

i
2
ðu†λauþ uλau†Þυaμ; ð7Þ

uμ ¼ iðu†∂μu − u∂μu†Þ þ ðu†λau − uλau†Þυaμ; ð8Þ

where υaμ corresponds to an external vector field, and λa

(a ¼ 1;…; 8) are the Gell-Mann matrices. The covariant
derivatives of the octet and decuplet baryon fields in the
chiral Lagrangian (1) are defined as [46,47]

DμB ¼ ∂μBþ ½Γμ; B� − ihλ0iυ0μB; ð9Þ

DμT
ijk
ν ¼ ∂μT

ijk
ν þ ðΓμ; TνÞijk − ihλ0iυ0μTijk

ν ; ð10Þ

where υ0μ denotes an external singlet vector field, λ0 is
the unit matrix, and h� � �i denotes a trace in flavor space.
For the covariant derivative of the decuplet field, we use the
notation

ðΓμ; TνÞijk ¼ ðΓμÞilTljk
ν þ ðΓμÞjlTilk

ν þ ðΓμÞkl Tijl
ν : ð11Þ

For the pseudoscalar meson fields, the covariant derivarive
is written

DμU ¼ ∂μU þ ðiUλa − iλaUÞυaμ: ð12Þ

Expanding the Lagrangian (1) to leading order in the
baryon and meson fields, the relevant interaction part for a
meson and baryon coupling to a proton can be written
explicitly as

Lint ¼
ðDþ FÞ

2f
ðpγμγ5p∂μπ

0 þ
ffiffiffi
2

p
pγμγ5n∂μπ

þÞ − ðDþ 3FÞffiffiffiffiffi
12

p
f

pγμγ5Λ∂μKþ

þ ðD − FÞ
2f

ð
ffiffiffi
2

p
pγμγ5Σþ∂μK0 þ pγμγ5Σ0∂μKþÞ −D − 3Fffiffiffiffiffi

12
p

f
pγμγ5p∂μη

þ Cffiffiffiffiffi
12

p
f
ð−2pΘνμΔþ

μ ∂νπ
0 −

ffiffiffi
2

p
pΘνμΔ0

μ∂νπ
þ þ

ffiffiffi
6

p
pΘνμΔþþ

μ ∂νπ
− − pΘνμΣ�0

μ ∂νKþ þ
ffiffiffi
2

p
pΘνμΣ�þ

μ ∂νK0 þ H:c:Þ

þ i
4f2

pγμp½ðπþ∂μπ
− − π−∂μπ

þÞ þ 2ðKþ∂μK− − K−∂μKþÞ þ ðK0∂μK0 − K0∂μK0Þ�: ð13Þ

The terms involving the couplingH are not present because of the restriction to proton initial states. The current calculations
below also do not involve the terms with the coupling H for the proton initial states.
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From the Lagrangian (1) one can also obtain the form of the electromagnetic current that couples to the external field υaμ,

Jμa ¼ 1

2
Tr½Bγμ½uλau† þ u†λau; B� þD

2
Tr½Bγμγ5fuλau† − u†λau; Bg� þ F

2
Tr½Bγμγ5½uλau† − u†λau; B��

þ 1

2
Tνγ

ναμðuλau† þ u†λau; TαÞ þ
C
2
ðTνΘνμðuλau† − u†λauÞBþ H:c:Þ

þ f2

4
Tr½∂μUðU†iλa − iλaU†Þ þ ðUiλa − iλaUÞ∂μU†�: ð14Þ

For the SU(3) flavor singlet current coupling to the external field υ0μ, one has

Jμ0 ¼ hλ0iTr½BγμB� þ hλ0iTνγ
ναμTα; ð15Þ

where again λ0 is the unit matrix and h� � �i denotes a trace in flavor space.
The currents for a given quark flavor are then expressed as combinations of the SU(3) singlet and octet currents,

Jμu ¼ 1

3
Jμ0 þ

1

2
Jμ3 þ

1

2
ffiffiffi
3

p Jμ8; ð16aÞ

Jμd ¼
1

3
Jμ0 −

1

2
Jμ3 þ

1

2
ffiffiffi
3

p Jμ8; ð16bÞ

Jμs ¼ 1

3
Jμ0 −

1ffiffiffi
3

p Jμ8; ð16cÞ

where Jμ3 and Jμ8 are the a ¼ 3 and 8 components of the octet current, respectively. Using Eqs. (14), (15) and (16), the
currents Jμu, J

μ
d and Jμs can be written explicitly as

Jμu ¼ 2pγμpþ nγμnþ ΛγμΛþ 2ΣþγμΣþ þ Σ0γμΣ0 −
1

2f2
ðpγμpπþπ− þ 2pγμpKþK−Þ þ 3Δþþ

α γαβμΔþþ
β þ 2Δþ

α γ
αβμΔþ

β

þ Δ0
αγ

αβμΔ0
β þ 2Σ�þ

α γαβμΣ�þ
β þ Σ�0

α γαβμΣ�0
β þ iðπ−∂μπþ − πþ∂μπ−Þ þ iðK−∂μKþ − Kþ∂μK−Þ

−
iðDþ FÞffiffiffi

2
p

f
pγμγ5nπþ þ iðDþ 3FÞffiffiffiffiffi

12
p

f
pγμγ5ΛKþ −

iðD − FÞ
2f

pγμγ5Σ0Kþ

þ Cffiffiffiffiffi
12

p
f
ði

ffiffiffi
6

p
pΘμνΔþþ

ν π− þ i
ffiffiffi
2

p
pΘμνΔ0

νπ
þ þ ipΘμνΣ�0

ν Kþ þ H:c:Þ; ð17aÞ

Jμd ¼ pγμpþ 2nγμnþ 2Σ−γμΣ− þ Σ0γμΣ0 þ ΛγμΛþ 1

2f2
ðpγμpπþπ− − pγμpK0K0Þ þ Δþ

α γ
αβμΔþ

β þ 2Δ0
αγ

αβμΔ0
β

þ 3Δ−
α γ

αβμΔ−
β þ Σ�0

α γαβμΣ�0
β þ 2Σ�0−

α γαβμΣ�−
β − iðπ−∂μπþ − πþ∂μπ−Þ þ iðK0∂μK0 − K0∂μK0Þ

þ iðDþ FÞffiffiffi
2

p
f

pγμγ5nπþ −
iðD − FÞffiffiffi

2
p

f
pγμγ5ΣþK0 −

Cffiffiffi
6

p
f
ði

ffiffiffi
3

p
pΘμνΔþþ

ν π− þ ipΘμνΔ0
νπ

þ þ ipΘμνΣ�þ
ν K0 þ H:c:Þ;

ð17bÞ

Jμs ¼ ΣþγμΣþ þ Σ0γμΣ0 þ ΛγμΛþ 1

2f2
ð2pγμpKþK− þ pγμpK0K0Þ þ Σ�þ

α γαβμΣ�þ
β þ Σ�0

α γαβμΣ�0
β

− iðK−∂μKþ − Kþ∂μK−Þ − iðK0∂μK0 − K0∂μK0Þ þ iðD − FÞffiffiffi
2

p
f

pγμγ5ΣþK0 þ iðD − FÞ
2f

pγμγ5Σ0Kþ

−
iðDþ 3FÞffiffiffiffiffi

12
p

f
pγμγ5ΛKþ þ Cffiffiffiffiffi

12
p

f
ð−ipΘμνΣ�0

ν Kþ þ i
ffiffiffi
2

p
pΘμνΣ�þ

ν K0 þ H:c:Þ; ð17cÞ
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where the terms involving the doubly-strange baryons Ξ0;− and Ξ�0;− and the triply-strange Ω− are not present because they
cannot couple to the proton initial states.

III. NONLOCAL CHIRAL LAGRANGIAN

In this section we describe the generation of the nonlocal Lagrangian from the local meson–baryon Lagrangian in Sec. II.
Evaluating the traces in Eq. (1) and introducing the minimal substitution for the electromagnetic field Aμ, the local
Lagrangian density can be rewritten more explicitly in the form

LðlocalÞðxÞ ¼ BðxÞðiγμDμ;x −MBÞBðxÞ þ
CBϕ

f
½pðxÞγμγ5BðxÞDμ;xϕðxÞ þ H:c:� þ TμðxÞðiγμναDα;x −MTγ

μνÞTνðxÞ

þ CTϕ

f
½pðxÞΘμνTνðxÞDμ;xϕðxÞ þ H:c:� þ iCϕϕ†

2f2
pðxÞγμpðxÞ½ϕðxÞðDμ;xϕÞ†ðxÞ −Dμ;xϕðxÞϕ†ðxÞ�

þDμ;xϕðxÞðDμ;xϕÞ†ðxÞ þ � � � ; ð18Þ

where for the interaction part we show only those terms that contribute to a meson–baryon coupling to a proton, and we
keep the dependence on the space-time coordinate x explicitly. The covariant derivatives here are written so as to indicate
the coordinate with respect to which the derivative is taken,

Dμ;xBðxÞ ¼ ½∂μ − ieqBAμðxÞ�BðxÞ; ð19aÞ

Dμ;xTνðxÞ ¼ ½∂μ − ieqTAμðxÞ�TνðxÞ; ð19bÞ

Dμ;xϕðxÞ ¼ ½∂μ − ieqϕAμðxÞ�ϕðxÞ; ð19cÞ

where eqB, e
q
T and eqϕ are the quark flavor charges of the octet baryon B, decuplet baryon T and meson ϕ, respectively. For

example, for the proton one has the charges eup ¼ 2edp ¼ 2, esp ¼ 0, while for the Σþ hyperon euΣþ ¼ 2esΣþ ¼ 2, edΣþ ¼ 0, and
so forth. For the mesons, the flavor charges for the πþ are euπþ ¼ −edπþ ¼ 1 but eq

π0
¼ 0 for all q, and for the Kþ these are

euKþ ¼ −esKþ ¼ 1, edKþ ¼ 0, and similarly for the charge conjugate states. These flavor charges may be read off from the
currents given in Eqs. (17a)–(17c). The coefficients CBϕ and CTϕ in Eq. (18) depend on the coupling constants D, F and C,
and are given explicitly in Table I for the processes discussed in this work.
Using the methods described in Refs. [32,37–42], the nonlocal version of the local Lagrangian (18) can be written as

LðnonlocÞðxÞ ¼ BðxÞðiγμDμ;x −MBÞBðxÞ þ TμðxÞðiγμναDα;x −MTγ
μνÞTνðxÞ

þ pðxÞ
�
CBϕ

f
γμγ5BðxÞ þ CTϕ

f
ΘμνTνðxÞ

� Z
d4aGq

ϕðx; xþ aÞFðaÞDμ;xþaϕðxþ aÞ þ H:c:

þ iCϕϕ†

2f2
pðxÞγμpðxÞ

Z
d4a

Z
d4bGq

ϕðxþ b; xþ aÞFðaÞFðbÞ

× ½ϕðxþ aÞðDμ;xþbϕÞ†ðxþ bÞ −Dμ;xþaϕðxþ aÞϕ†ðxþ bÞ� þDμ;xϕðxÞðDμ;xϕÞ†ðxÞ þ � � � ; ð20Þ

TABLE I. Coupling constants CBϕ, CTϕ and Cϕϕ† for the pBϕ, pTϕ and ppϕϕ† interactions, respectively, for the
various allowed flavor channels.

ðBϕÞ ðpπ0Þ ðnπþÞ ðΣþK0Þ ðΣ0KþÞ ðΛKþÞ
CBϕ

1
2
ðDþ FÞ 1ffiffi

2
p ðDþ FÞ 1ffiffi

2
p ðD − FÞ 1

2
ðD − FÞ − 1ffiffiffiffi

12
p ðDþ 3FÞ

(Tϕ) ðΔ0πþÞ ðΔþπ0Þ ðΔþþπ−Þ ðΣ�þK0Þ ðΣ�0KþÞ
CTϕ − 1ffiffi

6
p C − 1ffiffi

3
p C 1ffiffi

2
p C 1ffiffi

6
p C − 1ffiffiffiffi

12
p C

ðϕϕ†Þ ðπþπ−Þ ðK0K̄0Þ ðKþK−Þ
Cϕϕ†

1
2

1
2

1
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where the gauge link Gq
ϕ is introduced to preserve local

gauge invariance,

Gq
ϕðx; yÞ ¼ exp

�
−ieqϕ

Z
y

x
dzμAμðzÞ

�
; ð21Þ

and the function FðaÞ is the meson–baryon vertex form
factor in coordinate space. One can verify that the nonlocal
Lagrangian in Eq. (20), as well as local Lagrangian in
Eq. (18), are invariant under the gauge transformations

BðxÞ → B0ðxÞ ¼ BðxÞ exp ½ieqBθðxÞ�; ð22aÞ

TμðxÞ → T 0
μðxÞ ¼ TμðxÞ exp ½ieqTθðxÞ�; ð22bÞ

ϕðxÞ → ϕ0ðxÞ ¼ ϕðxÞ exp ½ieqϕθðxÞ�; ð22cÞ

for the matter fields, and

AμðxÞ → A0μðxÞ ¼ AμðxÞ þ ∂μθðxÞ ð22dÞ

for the electromagnetic field, where θðxÞ is an arbitrary
function of the space-time coordinate xμ.
The nonlocal Lagrangian density in Eq. (20) can be

further decomposed by expanding the gauge link (21) in
powers of the charge eqϕ,

Gq
ϕðxþ b; xþ aÞ

¼ exp

�
−ieqϕða − bÞμ

Z
1

0

dtAμðxþ atþ bð1 − tÞÞ
�

¼ 1þ δGq
ϕ þ � � � ; ð23Þ

where the OðeqϕÞ term is

δGq
ϕ ¼ −ieqϕða − bÞμ

Z
1

0

dtAμðxþ atþ bð1 − tÞÞ ð24Þ

and we have used a change of variables zμ → xμ þ aμtþ
bμð1 − tÞ. This allows the Lagrangian LðnonlocÞ to be written
as a sum of free and interacting parts, where to lowest order

the latter consists of purely hadronic (LðnonlocÞ
had ), electro-

magnetic (LðnonlocÞ
em ), and gauge link (LðnonlocÞ

link ) components.
The higher order terms in Eq. (23) contribute to higher
order electromagnetic corrections, which are in practice
negligible. The higher order terms can also be related to
other processes, such as those involving two or more
photons emitted in the final state.
The hadronic and electromagnetic interaction parts of the

nonlocal Lagrangian arise from theOðeqϕÞ term in Eq. (23),
and are given by

LðnonlocÞ
had ðxÞ ¼ pðxÞ

�
CBϕ

f
γμγ5BðxÞ þ CTϕ

f
ΘμνTνðxÞ

� Z
d4aFðaÞ∂μϕðxþ aÞ þ H:c:

þ iCϕϕ†

2f2
pðxÞγμpðxÞ

Z
d4a

Z
d4bFðaÞFðbÞ½ϕðxþ aÞ∂μϕ

†ðxþ bÞ − ∂μϕðxþ aÞϕ†ðxþ bÞ�; ð25Þ

and

LðnonlocÞ
em ðxÞ ¼ eqBBðxÞγμBðxÞAμðxÞ þ eqTTμðxÞγμναTνðxÞAαðxÞ þ ieqϕ½∂μϕðxÞϕ†ðxÞ − ϕðxÞ∂μϕ†ðxÞ�AμðxÞ

− ieqϕpðxÞ
�
CBϕ

f
γμγ5BðxÞ þ CTϕ

f
ΘμνTνðxÞ

� Z
d4aFðaÞϕðxþ aÞAμðxþ aÞ þ H:c:

−
eqϕCϕϕ†

2f2
pðxÞγμpðxÞ

Z
d4aFðaÞ

Z
d4bFðbÞϕðxþ aÞϕ†ðxþ bÞ½Aμðxþ aÞ þAμðxþ bÞ�; ð26Þ

respectively. For the δGq
ϕ term in Eq. (24), which explicitly depends on the gauge link, the nonlocal interaction with the

external gauge field yields the additional contribution to the Lagrangian density,

LðnonlocÞ
link ðxÞ ¼ −ieqϕpðxÞ

�
CBϕ

f
γργ5BðxÞ þCTϕ

f
ΘρνTνðxÞ

�Z
1

0

dt
Z

d4aFðaÞaμ∂ρϕðxþ aÞAμðxþ atÞ þH:c:

þ eqϕCϕϕ†

2f2
pðxÞγρpðxÞ

Z
1

0

dt
Z

d4a
Z

d4bFðaÞFðbÞða− bÞμ½ϕðxþ aÞ∂ρϕ
†ðxþ bÞ− ∂ρϕðxþ aÞϕ†ðxþ bÞ�

×Aμðxþ atþ bð1− tÞÞ: ð27Þ

SALAMU, JI, MELNITCHOUK, THOMAS, and WANG PHYS. REV. D 99, 014041 (2019)

014041-6



For the nonlocal theory the quark current has two contributions: the usual electromagnetic current, Jμq;em, obtained with
minimal substitution from Eq. (26),

Jμq;emðxÞ≡ δ
R
d4yLðnonlocÞ

em ðyÞ
δAμðxÞ

¼ eqBBðxÞγμBðxÞ þ eqTTαðxÞγανμTνðxÞ þ ieqϕ½∂μϕðxÞϕ†ðxÞ − ϕðxÞ∂μϕ†ðxÞ�

− ieqϕ

Z
d4aFðaÞpðx − aÞ

�
CBϕ

f
γμγ5Bðx − aÞ þ CTϕ

f
ΘμνTνðx − aÞ

�
ϕðxÞ þ H:c:

−
eqϕCϕϕ†

2f2

Z
d4aFðaÞ

Z
d4bFðbÞ½pðx − aÞγμpðx − aÞϕðxÞϕ†ðxþ b − aÞ

þ pðx − bÞγμpðx − bÞϕðxþ a − bÞϕ†ðxÞ�; ð28Þ

and an additional term obtained from the gauge link,

δJμqðxÞ≡ δ
R
d4yLðnonlocÞ

link ðyÞ
δAμðxÞ

¼ −ieqϕ

Z
1

0

dt
Z

d4aFðaÞaμpðx − atÞ
�
CBϕ

f
γργ5Bðx − atÞ þ CTϕ

f
ΘρνTνðx − atÞ

�
∂ρϕðxþ að1 − tÞÞ þ H:c:

þ eqϕCϕϕ†

2f2

Z
1

0

dt
Z

d4aFðaÞ
Z

d4bFðbÞða − bÞμpðx − at − bð1 − tÞÞγρpðx − at − bð1 − tÞÞ

× ½ϕðxþ ða − bÞð1 − tÞÞ∂ρϕ
†ðx − ða − bÞtÞ − ∂ρϕðxþ ða − bÞð1 − tÞÞϕ†ðx − ða − bÞtÞ�; ð29Þ

respectively. Compared with Eqs. (13) and (17), the non-
local interaction Lagrangian and currents in Eqs. (25)–(29)
include the extra regulator function FðaÞ. The local limit
can be obtained by taking FðaÞ to be a δ-function,
FðaÞ → δð4ÞðaÞ, which is equivalent to taking the form
factor in momentum space to be unity. Since the Fourier
transform of the δ-function in position space is a plane
wave in momentum space, the value of the plane wave at
the origin is unity.
Note that compared with traditional power counting

schemes in chiral perturbation theory that use dimensional
regularization [48], the introduction of the regulator function
FðaÞ in the nonlocal interactions (25)–(27) leads to the
generation of higher order terms inmϕ with coefficients that
in general will depend on the regulator mass, such as the
large momentum cutoff parameter Λ (see Sec. IV B below).
This is analogous to a resummation of the standard chiral
perturbation theory, which goes beyond the usual power
counting regime, at the expense of introducing model
dependence into the calculation. An advantage of this
resummed approach is that one can obtain better conver-
gence in mϕ in regions where the usual power counting
schemes would not be applicable (see Refs. [49,50]).

IV. SPLITTING FUNCTIONS

With the nonlocal interaction and current derived in
Sec. III, in this section we will discuss the splitting

functions describing the interaction of the external field
with the proton dressed by the pseudoscalar fields. We
will derive the general expressions for the proton →
pseudoscalar mesonþ baryon splitting functions for the
full set of SU(3) octet and decuplet states. After giving
the general results for an arbitrary regulating function FðaÞ,
we derive explicit expressions for a specific choice of
regulator in which the momentum dependence is given by a
dipole shape.

A. Model independent results

The interaction of an external probe with a proton dressed
by pseudoscalar mesons at leading order is given in Fig. 1 for
octet intermediate states and in Fig. 1 for decuplet inter-
mediate states. The diagrams in Figs. 1(a)–(c), (e), (f), (h)–(j)
correspond to those in the local effective theory, while those
in Figs. 1(d), (g) and (k) arise from the new interactions in
the nonlocal theory given by Eqs. (25)–(27). The resulting
amplitudes will be expressed in terms of specific meson–
baryon splitting functions convoluted with corresponding
PDFs in the bare or undressed mesons and baryons. These
will be used to compute the contributions from meson loops
to PDFs in the nucleon, the most direct predictions for
which will be for nonsinglet PDF combinations in which
perturbative QCD effects largely cancel. Examples include
the light-antiquark flavor asymmetry d − u and the strange
asymmetry s − s. In the valence approximation for the
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undressed hadrons, the former will only receive contributions from the direct meson coupling diagrams in Figs. 1(a), (f)
and (h), while all the diagrams in Fig. 1 will be relevant for the s − s asymmetry.

1. SU(3) octet intermediate states

Beginning with the meson rainbow diagram in Fig. 1(a), the vertex function for the nonlocal theory can be written as [51]

Γμ
ϕBð2πÞ4δð4Þðp − pÞ ¼ hpji2

Z
d4xd4yd4zLðnonlocÞ

hadðBÞ ðxÞJμq;emðyÞLðnonlocÞ
hadðBÞ ðzÞjpi

¼ i2C2
Bϕ

f2
hpj

Z
d4xd4yd4z

Z
d4aFðaÞ

Z
d4bFðbÞpðxÞγνγ5BðxÞ∂νϕðxþ aÞ

× ð−i½ϕðyÞ∂μϕ†ðyÞ − ϕ†ðyÞ∂μϕðyÞ�ÞBðzÞγργ5pðzÞ∂ρϕ
†ðzþ bÞjpi; ð30Þ

whereLðnonlocÞ
hadðBÞ is the part of the hadronic nonlocal Lagrangian (25) that depends on the octet baryon fields B. (Note also that

we defined the vertex such that the quark flavor charge eqϕ is included explicitly in the bare meson and baryon PDFs
discussed in the next section.) Integrating over the space-time coordinates xμ, yμ and zμ, one has

Γμ
ϕB ¼ C2

Bϕ

f2
uðpÞ

Z
d4k
ð2πÞ4

Z
d4aFðaÞ

Z
d4bFðbÞð=kγ5Þ i½ðp − =kÞ þMB�

DB
ðγ5=kÞ i

Dϕ
2kμ

i
Dϕ

uðpÞ exp½−ik · ða − bÞ�; ð31Þ

where the Dirac spinor u is normalized such that uu ¼ 1,
and Dϕ and DB denote the propagator factors for the
intermediate baryon and meson, respectively,

Dϕ ¼ k2 −m2
ϕ þ iε; ð32aÞ

DB ¼ðp − kÞ2 −M2
B þ iε; ð32bÞ

where mϕ and MB are for the meson and octet baryon
masses. Defining the regulator in momentum space as

eFðkÞ≡ Z
d4a exp½−ia · k�FðaÞ; ð33Þ

the vertex operator becomes

(a)

(d)

(h) (i) (j)

(k)

(e) (f) (g)

(b) (c)

FIG. 1. Diagrams representing the interaction of an external current (denoted by the crossed circles) with the proton involving SU(3)
octet [(a)–(g)] and decuplet [(h)–(j)] states: (a) and (h) are for meson coupling rainbow diagrams; (b) and (i) are for octet and decuplet
baryon coupling rainbow diagrams; (c) and (k) are for Kroll-Ruderman; (d) and (j) are for Kroll-Ruderman type diagrams generated by
the gauge link (denoted by the filled circle); (e) is for meson tadpole; (f) is for meson bubble; and (g) is for meson tadpole diagram
generated by the gauge link.
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Γμ
ϕB ¼ C2

Bϕ

f2
uðpÞ

Z
d4k
ð2πÞ4 ð=kγ

5ÞeFðkÞ i½ðp − =kÞ þMB�
DB

i
Dϕ

2kμ
i
Dϕ

ðγ5=kÞeFð−kÞuðpÞ
≡

Z
d4k
ð2πÞ4 Γ̃

μ
ϕB: ð34Þ

Taking the μ ¼ þ component of the integrand Γ̃μ
ϕB, we define the splitting function fðrbwÞϕB ðyÞ in terms of the light-cone

projection of Γ̃μ
ϕB,

fðrbwÞϕB ðyÞ ¼ M
pþ

Z
d4k
ð2πÞ4 Γ̃

þ
ϕBδ

�
y −

kþ

pþ

�
; ð35Þ

where kþ ¼ k0 þ kz andM is the nucleon mass. From Eq. (34) the splitting function for the meson rainbow diagram is then
given by

fðrbwÞϕB ðyÞ ¼ C2
Bϕ

f2

Z
d4k
ð2πÞ4 uðpÞð=kγ

5Þ i½ðp − =kÞ þMB�
DB

i
Dϕ

ð2kþÞ i
Dϕ

ðγ5=kÞeF2ðkÞuðpÞ M
pþ δ

�
y −

kþ

pþ

�
: ð36Þ

Similarly, the splitting functions for the baryon rainbow diagram of Fig. 1(b) and the Kroll-Ruderman (KR) diagram of
Fig. 1(c) can be expressed as

fðrbwÞBϕ ðyÞ ¼ C2
Bϕ

f2

Z
d4k
ð2πÞ4 uðpÞð=kγ

5Þ i½ðp − =kÞ þMB�
DB

γþ
i½ðp − =kÞ þMB�

DB
ðγ5=kÞ i

Dϕ

eF2ðkÞuðpÞ M
pþ δ

�
y −

kþ

pþ

�
ð37Þ

and

fðKRÞB ðyÞ ¼ C2
Bϕ

f2

Z
d4k
ð2πÞ4 uðpÞ

�
ðiγþγ5Þ i½ðp − =kÞ þMB�

DB
ðγ5=kÞþð=kγ5Þ i½ðp − =kÞ þMB�

DB
ðiγ5γþÞ

�

×
i
Dϕ

eF2ðkÞuðpÞ M
pþ δ

�
y −

kþ

pþ

�
; ð38Þ

respectively.
As discussed in Sec. III, the current generated by the gauge link in Eq. (29) produces the additional diagrams in

Fig. 1(d), 1(g) and 1(k). The amplitude for the Kroll-Ruderman additional diagram in Fig. 1(d) can be written as

δΓμ
Bð2πÞ4δð4Þðp − pÞ ¼ hpji

Z
d4yd4zðLðnonlocÞ

hadðBÞ ðyÞδJμqðzÞ þ δJμqðyÞLðnonlocÞ
hadðBÞ ðzÞÞ

¼ iC2
Bϕ

f2

Z
1

0

dthpj
Z

d4yd4z
Z

d4aFðaÞ
Z

d4bFðbÞ

× ½−ibμpðyÞγνγ5BðyÞ∂νϕðyþ aÞBðz − btÞγργ5pðz − btÞ∂ρϕ
†ðzþ bð1 − tÞÞ

þ iaμpðy − atÞγνγ5Bðy − atÞ∂νϕðyþ tð1 − aÞÞBðzÞγργ5pðzÞ∂ρϕ
†ðzþ bÞ�jpi; ð39Þ

which after Wick contraction and integration over xμ, yμ and zμ, becomes

δΓμ
B ¼ iC2

Bϕ

f2
uðpÞ

Z
d4aFðaÞ

Z
d4bFðbÞ

Z
d4k
ð2πÞ4

×

�
−ibμð=kγ5Þ i½ðp − =kÞ þMB�

DB
ð=kγ5Þ i

Dϕ
þ iaμð=kγ5Þ i

Dϕ

i½ðp − =kÞ þMB�
DB

ð=kγ5Þ
�
uðpÞ exp½−ik · ða − bÞ�: ð40Þ

Performing the integrations over the space-time coordinates aμ and bμ, the vertex can be further simplified to
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δΓμ
B ¼ iC2

Bϕ

f2
uðpÞ

Z
d4k
ð2πÞ4

�
−
∂eFð−kÞ
∂kμ eFðkÞð=kγ5Þ i½ðp − =kÞ þMB�

DB
ð=kγ5Þ

−
∂eFðkÞ
∂kμ eFð−kÞð=kγ5Þ i½ðp − =kÞ þMB�

DB
ð=kγ5Þ

�
i
Dϕ

uðpÞ: ð41Þ

In analogy with the definition of the splitting function in Eq. (34), the splitting function for the nonlocal Kroll-Ruderman
diagram in Fig. 1(d) induced by the gauge link can be written as

δfðKRÞB ðyÞ ¼ 2C2
Bϕ

f2

Z
d4k
ð2πÞ4 uðpÞði=kγ

5Þ i½ðp − =kÞ þMB�
DB

i
Dϕ

ð−=kγ5ÞuðpÞ ∂eF2ðkÞ
∂k−

M
pþ δ

�
y −

kþ

pþ

�
: ð42Þ

The main additional feature here compared with the splitting functions in the local theory is the dependence on the
derivative of the hadronic form factor F̃ on k−.
For the remaining meson tadpole and bubble diagrams in Figs. 1(e) and 1(f), the splitting functions are given by

fðtadÞϕ ðyÞ ¼ Cϕϕ†

f2

Z
d4k
ð2πÞ4 uðpÞγ

þ i
Dϕ

uðpÞeF2ðkÞ M
pþ δ

�
y −

kþ

pþ

�
; ð43Þ

and

fðbubÞϕ ðyÞ ¼ −
iCϕϕ†

f2

Z
d4k
ð2πÞ4 uðpÞ2=kk

þ
�

i
Dϕ

�
2

uðpÞeF2ðkÞ M
pþ δ

�
y −

kþ

pþ

�
; ð44Þ

where the coupling constant Cϕϕ† is listed in Table I.
Finally, the vertex associated with the nonlocal tadpole diagram in Fig. 1(g), generated by the gauge link, is defined by

δΓμ
ϕð2πÞ4δð4Þðp0 − pÞ ¼ hp0j

Z
d4xδJμqðxÞjpi; ð45Þ

and can be reduced to

δΓμ
ϕ ¼ Cϕϕ†

f2

Z
d4k
ð2πÞ4 uðpÞ=k

i
Dϕ

uðpÞ
�eFð−kÞ ∂eFðkÞ∂kμ þ eFðkÞ ∂eFð−kÞ∂kμ

�
: ð46Þ

The splitting function for the nonlocal tadpole diagram is then given by

δfðtadÞϕ ðyÞ ¼ Cϕϕ†

f2

Z
d4k
ð2πÞ4 uðpÞ=k

i
Dϕ

uðpÞ 2∂eF2ðkÞ
∂k−

M
pþ δ

�
y −

kþ

pþ

�
: ð47Þ

2. Decuplet intermediate states

For the splitting functions associated with the decuplet intermediate states in Fig. 1, the diagrams in Figs. 1(h), 1(i)
and 1(j) arising from the local Lagrangian are supplemented by the additional nonlocal Kroll-Ruderman diagram in
Fig. 1(k) induced by the gauge link in the nonlocal theory. Similarly to the meson rainbow contribution in Eq. (30), the
vertex function for the meson rainbow diagram in Fig. 1(h) with an intermediate decuplet baryon T can be written

Γμ
ϕTð2πÞ4δð4Þðp − pÞ ¼ hpji2

Z
d4xd4yd4zLðnonlocÞ

hadðTÞ ðxÞJμq;emðyÞLðnonlocÞ
hadðTÞ ðzÞjpi

¼ i2C2
Tϕ

f2
hpj

Z
d4xd4yd4z

Z
d4aFðaÞ

Z
d4bFðbÞpðxÞΘαβTβðxÞ∂αϕðxþ aÞ

× f−i½ϕðyÞ∂μϕ†ðyÞ − ϕ†ðyÞ∂μϕðyÞ�gTρðzÞΘρσpðzÞ∂σϕ
†ðzþ bÞjpi; ð48Þ
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where LðnonlocÞ
hadðTÞ is the part of the hadronic nonlocal Lagrangian (25) that depends on the decuplet baryon fields T, and the

operator Θαβ is given in Eq. (2). Integrating over the space-time coordinates, one finds

Γμ
ϕT ¼ i2C2

Tϕ

f2
uðpÞ

Z
d4k
ð2πÞ4

Z
d4bFðbÞ

Z
d4aFðaÞkαΘαβ

−i½ðp − =kÞ þMT �Pβρðp − kÞ
DT

×
i
Dϕ

2kμ
i
Dϕ

ΘρσkσuðpÞ exp½−ik · ða − bÞ�; ð49Þ

where the decuplet baryon propagator DT is the same as DB in Eq. (32b), but with MB replaced by decuplet baryon mass
MT . The spin-3=2 projection operator Pαβ, like the octet–decuplet vertex function Θαβ, depends on the off-shell parameter
Z, defined in Eq. (2). However, as physical quantities do not depend on Z, it makes sense to simplify the form of the
spin-3=2 propagator, and hence in our calculation we choose Z ¼ 1=2, following Refs. [52,53], in which case the projector
Pαβ is written

PαβðpÞ ¼ gαβ −
1

3
γαγβ −

γαpβ − γβpα

3MT
−
2pαpβ

3M2
T

: ð50Þ

Note that for this choice one then has the operator Θαβ ¼ gαβ − γαγβ. Performing the integrations over the space-time
coordinates aμ and bμ then gives

Γμ
ϕT ¼ i2C2

Tϕ

f2
uðpÞ

Z
d4k
ð2πÞ4 kαΘ

αβeFðkÞ−i½ðp − =kÞ þMT �Pβρðp − kÞ
DT

i
Dϕ

2kμ
i
Dϕ

ΘρσkσeFð−kÞuðpÞ: ð51Þ

The splitting function for the meson rainbow diagram with decuplet intermediate state is therefore given by

fðrbwÞϕT ðyÞ ¼ C2
Tϕ

f2

Z
d4k
ð2πÞ4 uðpÞkαΘ

αβ
−i½ðp − =kÞ þMT �Pβρðp − kÞ

DT

×
i
Dϕ

2kþ
i
Dϕ

ð−ΘρσkσÞuðpÞeF2ðkÞ M
pþ δ

�
y −

kþ

pþ

�
: ð52Þ

Following similar procedures as for the octet baryon case, the splitting functions for the decuplet baryon rainbow diagram
in Fig. 1(i) and the decuplet Kroll-Ruderman diagram in Fig. 1(j) can be written as

fðrbwÞTϕ ðyÞ ¼ C2
Tϕ

f2

Z
d4k
ð2πÞ4 uðpÞkμΘ

μν −i½ðp − =kÞ þMT �Pναðp − kÞ
DT

γαβþ

×
−i½ðp − =kÞ þMT �Pβρðp − kÞ

DT

i
Dϕ

ð−ΘρσkσÞuðpÞeF2ðkÞ M
pþ δ

�
y −

kþ

pþ

�
ð53Þ

and

fðKRÞT ðyÞ ¼ C2
Tϕ

f2

Z
d4k
ð2πÞ4 uðpÞ

�
i
Dϕ

ðiΘþνÞ−i½ðp − =kÞ þMT �Pναðp − kÞ
DT

ð−ΘασkσÞ

þkμΘμν −i½ðp − =kÞ þMT �Pναðp − kÞ
DT

ð−iΘαþÞ i
Dϕ

�
uðpÞeF2ðkÞ M

pþ δ

�
y −

kþ

pþ

�
; ð54Þ

respectively. Finally, the splitting function for the nonlocal Kroll-Ruderman decuplet diagram in Fig. 1(k) induced by the
gauge link is

δfðKRÞT ðyÞ ¼ 2C2
Tϕ

f2

Z
d4k
ð2πÞ4 uðpÞðikσΘ

σνÞ−i½ðp − =kÞ þMT �Pναðp − kÞ
DT

i
Dϕ

ð−ΘασkσÞuðpÞ
∂eF2ðkÞ
∂k−

M
pþ δ

�
y −

kþ

pþ

�
: ð55Þ
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The set of functions ffðrbwÞϕB ; fðrbwÞBϕ ; fðKRÞB ; δfðKRÞB ; fðbubÞϕ ;

fðtadÞϕ ; δfðtadÞϕ g for the octet baryons, and ffðrbwÞϕT ; fðrbwÞTϕ ;

fðKRÞT ; δfðKRÞT g for the decuplet baryons, then represent the
complete set of functions that describe the dressing at one
loop of the interaction of an external current with the proton
in the nonlocal meson–baryon field theory.

B. Covariant dipole form factor

To evaluate the splitting functions derived in the previous
section requires a specific choice for the meson–baryon
vertex form factor F̃ðkÞ. Consistency with Lorentz invari-
ance restricts the form factor to in general be a function of
the meson virtuality k2 and the baryon virtuality ðp − kÞ2.
For illustration, we choose the regulator to have a simple
dipole shape in k2 with a cutoff parameter Λ [35,36],
independent of the details of the baryon state,

eFðkÞ ¼ Λ4

D2
Λ
; ð56Þ

where DΛ ¼ k2 − Λ2 þ iε and we define Λ2 ≡ Λ2 −m2
ϕ.

Other forms, such as Guassian, monopole or sharp cutoff,
have also been used in the literature [49,50], and, with
appropriate choices of regulator mass for the different
regulators, give rise to qualitatively similar results. An
advantage of the dipole form (56) is that it allows a more
direct comparison with previous literature [35,36,54] that
has used the same functional form.

1. Octet splitting functions

With the dipole regulator in Eq. (56), after reduction
of the γ matrices in Eq. (36) the splitting function for the
meson rainbow diagram in Fig. 1(a) can be written as

fðrbwÞϕB ðyÞ ¼ iC2
BϕΛ

8

f2

Z
d4k
ð2πÞ4

�
yM2ðΔ2 −m2

ϕÞ
D2

ϕDBD4
Λ

−
yM2

DϕDBD4
Λ

þ yðMΔ − 2p · kÞ
D2

ϕD
4
Λ

�
δ

�
y −

kþ

pþ

�
; ð57Þ

where the average mass M and mass difference Δ are
defined as

M ¼ M þMB; Δ ¼ MB −M: ð58Þ

It will be convenient to perform the d4k integration in terms
of light-cone momentum components k� ¼ k0 � kz and
transverse momentum k⊥. The first two terms in Eq. (57)
have poles both on the upper and lower half-plane, so
the integration over k− can be obtained using the residue of
DB or Dϕ. For the third term, proportional to 1=D2

ϕ, when
kþ ≠ 0 both Dϕ and DΛ have poles on same half-plane, so

the integral vanishes. On the other hand, when kþ ¼ 0 the
integral becomes divergent. We can simplify this term using

Z
d4k

2yp ·k
D2

ϕD
4
Λ
¼ ∂4

6∂Ω4

Z
1

0

dz
Z

d4k
2p ·kyð1−zÞz3
ðk2−Ωþ iεÞ2

¼ ∂4

6∂Ω4

Z
1

0

dz
Z

d4k
ð1−zÞz3

ðk2−Ωþ iεÞ; ð59Þ

where we define

Ω≡ ð1 − zÞm2
ϕ þ zΛ2: ð60Þ

The integration over k− in Eq. (59) can be written as [24,55]

Z
∞

−∞
dk−

1

k2 −Ωþ iε
¼ 2πi log

�
k2⊥ þ Ω

μ2

�
δðkþÞ; ð61Þ

where μ is a momentum independent constant. After the k−

integration, the splitting function for the meson rainbow
diagram can be expressed as a sum of an on-shell term,

fðonÞB , and δ-function terms, fðδÞϕ and δfðδÞϕ , generated by the
contact interaction,

fðrbwÞϕB ðyÞ ¼ C2
BϕM

2

ð4πfÞ2 ½f
ðonÞ
B ðyÞ þ fðδÞϕ ðyÞ − δfðδÞϕ ðyÞ�: ð62Þ

The on-shell function is given by

fðonÞB ðyÞ ¼ Λ8

Z
dk2⊥

y½k2⊥ þ ðyM þ ΔÞ2�
y2D2

ϕBD
4
ΛB

; ð63Þ

where y ¼ 1 − y, and we employed the shorthand
notations [29]

DϕB ¼ −
k2⊥ þ yM2

B − yyM2 þ ym2
ϕ

y
; ð64aÞ

DΛB ¼ −
k2⊥ þ yM2

B − yyM2 þ yΛ2

y
: ð64bÞ

The δ-function contributions are nonzero only at y ¼ 0,
and arise from the local and nonlocal interactions. The local
δ-function term is given by

fðδÞϕ ðyÞ ¼ −
Λ8

M2

Z
dk2⊥

Z
1

0

dz
z3

ðk2⊥ þ ΩÞ4 δðyÞ

¼ 1

M2

Z
dk2⊥

�
log

Ωϕ

ΩΛ

þ Λ2ð11Ω2
Λ − 7ΩΛΩϕ þ 2Ω2

ϕÞ
6Ω3

Λ

�
δðyÞ; ð65Þ

with
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Ωϕ ¼ k2⊥ þm2
ϕ; ΩΛ ¼ k2⊥ þ Λ2: ð66Þ

The logΩϕ term in Eq. (65) gives rise to the leading
nonanalytic contribution, which is independent of the
regularization method, as we have verified using various
methods, including Pauli-Villars, dimensional regulariza-
tion or a hadronic form factor. In the limit when Λ → ∞,
the second term in Eq. (65) ∼Λ2=ΩΛ becomes a constant.
Within dimensional regularization, the integral of a con-
stant is defined to be zero, in which case the result coincides
with that in Ref. [28],

fðδÞϕ ðyÞ →
Λ→∞

1

M2

Z
dk2⊥ log

Ωϕ

ΩΛ
δðyÞ: ð67Þ

The nonlocal δ-function contribution, δfðδÞB , in Eq. (62) is
given by

δfðδÞϕ ðyÞ ¼ −
Λ8

M2

Z
dk2⊥

Z
1

0

dz
z4

ðk2⊥ þΩÞ4 δðyÞ

¼ 1

M2

Z
dk2⊥

�
−4

Ωϕ

Λ2
log

Ωϕ

ΩΛ

−
3Ω3

Λ þ 13Ω2
ΛΩϕ − 5ΩΛΩ2

ϕ þΩ3
ϕ

3Ω3
Λ

�
δðyÞ: ð68Þ

In the Λ → ∞ limit the first term in the integrand of δfðδÞϕ

vanishes, while the second term becomes a constant,
independent of k⊥. In dimensional regularization the latter

can again be taken to be zero. The local function fðδÞϕ , on the
other hand, retains a dependence on k⊥ through the logΩϕ

term, so that the splitting function for the rainbow diagram
in Eq. (62) will reduce in this limit to the local splitting
function. In the same limit, for the case ϕ ¼ π and B ¼ N,
the integrand of Eq. (63) reduces to the familiar on-shell
form found in the literature [1,56,57],

fðonÞπþnðyÞ →
Z

dk2⊥
yðk2⊥ þ y2M2Þ

½k2⊥ þ y2M2 þ ym2
π�2

ð69Þ

for the specific dissociation p → πþn.
For the baryon coupling rainbow diagram, Fig. 1(b), the

splitting function in Eq. (37) can be reduced to

fðrbwÞBϕ ðyÞ ¼ iC2
BϕΛ

8

f2

Z
d4k
ð2πÞ4

�
yM2ðΔ2 −m2

ϕÞ
D2

BDϕD4
Λ

−
yM2

D2
BD

4
Λ

þ ð2 − yÞMΔ
DBDϕD4

Λ
þ 1

DϕD4
Λ

�
δ

�
y −

kþ

pþ

�
: ð70Þ

Performing the k− integral, this can then be expressed as a
sum of on-shell, local and nonlocal off-shell, and δ-function
terms,

fðrbwÞBϕ ðyÞ ¼ C2
BϕM

2

ð4πfÞ2
h
fðonÞB ðyÞ þ fðoffÞB ðyÞ

þ 4δfðoffÞB ðyÞ − fðδÞϕ ðyÞ
i
: ð71Þ

Note that the on-shell splitting functions for the baryon and
meson couplings are equivalent, while the δ-function

contribution fðδÞϕ is as in Eq. (65). The off-shell contribu-
tions in Eq. (71) include local and nonlocal terms. The local
off-shell contribution,

fðoffÞB ðyÞ ¼ 2Λ8

M

Z
dk2⊥

ðyM þ ΔÞ
yDϕBD4

ΛB
; ð72Þ

is similar to that derived in Refs. [25,28], while the nonlocal
off-shell term is given by

δfðoffÞB ðyÞ ¼ Λ8

Z
dk2⊥

y½k2⊥ þ ðyM þ ΔÞ2�
y2DϕBD5

ΛB
: ð73Þ

In the Λ → ∞ limit, the nonlocal term behaves as
Λ8=D5

ΛB ∼ 1=Λ2, so vanishes, as expected.
For the Kroll-Ruderman diagram in Fig. 1(c), the

splitting function in Eq. (38) for the dipole regulator
becomes

fðKRÞB ðyÞ ¼ −
2iC2

BϕΛ
8

f2

Z
d4k
ð2πÞ4

�ðyM þ ΔÞM
DϕDBD4

Λ
þ 1

DϕD4
Λ

�

× δ

�
y −

kþ

pþ

�
; ð74Þ

which after the k− integration can be written in terms of the
off-shell and δ-function terms,

fðKRÞB ðyÞ ¼ C2
BϕM

2

ð4πfÞ2
h
−fðoffÞB ðyÞ þ 2fðδÞϕ ðyÞ

i
; ð75Þ

as given in Eqs. (65) and (72). (Note that the notation
used here differs slightly from that of Ref. [29], where
for strange octet baryons coupled to kaons the Kroll-

Ruderman function was labelled by fðKRÞYK ; here we drop
the meson label, as for a proton target the choice of
baryon intermediate state uniquely specifies the meson,
and we also label the δ-function contribution by the
baryon involved rather than the meson.) For the nonlocal
gauge link contribution in Fig. 1(d), reduction of the
Dirac matrices with the dipole form factor allows

the corresponding splitting function δfðKRÞB to be
rearranged as
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δfðKRÞB ðyÞ ¼ iC2
BϕΛ

8

f2

Z
d4k
ð2πÞ4

�
−
4yM2ðΔ2 −m2

ϕÞ
DϕDBD5

Λ
þ 4yM2

DBD5
Λ
−
4yðMΔ − 2p · kÞ

DϕD5
Λ

�
δ

�
y −

kþ

pþ

�
: ð76Þ

After the k− integration, this reduces to a sum of the
nonlocal off-shell and δ-function contributions,

δfðKRÞB ðyÞ ¼ C2
BϕM

2

ð4πfÞ2 ½−4δf
ðoffÞ
B ðyÞ − δfðδÞϕ ðyÞ�; ð77Þ

as given in Eqs. (68) and (73), respectively. From
Eqs. (62), (71), (75) and (77) one can verify that the
splitting functions satisfy the relation

fðrbwÞϕB ðyÞ ¼ fðrbwÞBϕ ðyÞ þ fðKRÞB ðyÞ þ δfðKRÞB ðyÞ; ð78Þ

which generalizes the result in Ref. [28] to the nonlocal
theory. Note that the local and nonlocal off-shell con-

tributions fðoffÞB and δfðoffÞB cancel between the three
terms on the right-hand side of Eq. (78). As noted above,
in the Λ → ∞ limit each of the functions induced by the

nonlocal gauge link, δfðoffÞB and δfðδÞϕ , vanishes, repro-
ducing the local result from Ref. [25] that does not

include the gauge link function δfðKRÞB . Remarkably, the
nonlocal generalization (78) means that gauge invariance
is satisfied even in the presence of a finite form factor
cutoff Λ.
A similar analysis can be applied to the tadpole and

bubble diagrams in Fig. 1(e)–(g) in the presence of a
hadronic form factor. From Eq. (43), the splitting function
for the tadpole contribution with the dipole form factor can
be written as

fðtadÞϕ ðyÞ ¼ −
Cϕϕ†M2

ð4πfÞ2 fðδÞϕ ðyÞ; ð79Þ

where fðδÞϕ is given in Eq. (65). For the bubble diagram in
Eq. (44) the corresponding splitting function is given by

fðbubÞϕ ðyÞ ¼ −
Cϕϕ†M2

ð4πfÞ2 ½fðδÞϕ ðyÞ − δfðδÞϕ ðyÞ�; ð80Þ

where the nonlocal function δfðδÞϕ is given by Eq. (68).
Finally, the splitting function for the nonlocal tadpole
gauge link diagram in Fig. 1(g) from Eq. (47) with a
dipole regulator is

δfðtadÞϕ ðyÞ ¼ Cϕϕ†M2

ð4πfÞ2 δfðδÞϕ ðyÞ: ð81Þ

Combining Eqs. (79)–(81), one finds that the tadpole and
bubble diagrams satisfy the generalized relation

fðbubÞϕ ðyÞ ¼ fðtadÞϕ ðyÞ þ δfðtadÞϕ ðyÞ; ð82Þ

which confirms the gauge invariance of the nonlocal theory.

2. Decuplet splitting functions

Turning now to the splitting functions for the decuplet
baryon intermediate states in Fig. 1(h)–1(k), the contribu-
tion from the rainbow diagram with coupling to the
pseudoscalar meson in Eq. (52) for the covariant dipole
form factor (56) is given by

fðrbwÞϕT ðyÞ ¼ iC2
TϕΛ

8

6M2
Tf

2

Z
d4k
ð2πÞ4

�
yðM2

T −m2
ϕÞ2ðΔ2

T −m2
ϕÞ

D2
ϕDTD4

Λ
−
yðM2

T −m2
ϕÞðM2

T þ 2Δ2
T − 3m2

ϕÞ
DϕDTD4

Λ

þ yð2M2
T þ Δ2

T − k2 − 2m2
ϕÞ

DTD4
Λ

þ y
D2

ϕD
4
Λ
ð4ðp · kÞ2 − 2ðM2

T − k2Þp · kþ ðM2
T − k2Þ2

þMð2M3
T −M3 − 2M2MTÞ − 2Mk2ð2M þMTÞÞ

�
δ

�
y −

kþ

pþ

�
; ð83Þ

where the coupling constants CTϕ for the decuplet intermediate states are listed in Table I, and the massesMT and ΔT here
are defined in analogy with Eq. (58),

MT ¼ M þMT; ΔT ¼ MT −M: ð84Þ
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After performing the k− integration, the splitting function
can be decomposed in terms of on-shell decuplet, end
point, and local and nonlocal δ-function terms,

fðrbwÞϕT ðyÞ ¼ C2
TϕM

2
T

ð4πfÞ2
�
fðonÞT ðyÞ þ fðon endÞ

T ðyÞ − 1

18
fðδÞT ðyÞ

þM2ðM2
T −m2

ϕÞ
6M2

TM
2
T

ðfðδÞϕ ðyÞ − δfðδÞϕ ðyÞÞ
�
: ð85Þ

As for the octet case, the first term in Eq. (85) is the on-shell
splitting function for the meson rainbow with a decuplet
spectator,

fðonÞT ðyÞ ¼ Λ8

6M2
TM

2
T

Z
dk2⊥

yðM2
T −m2

ϕÞ
y

×
�ðM2

T −m2
ϕÞðΔ2

T −m2
ϕÞ

D2
ϕTD

4
ΛT

−
3ðΔ2

T −m2
ϕÞ þ 4MMT

DϕTD4
ΛT

�
; ð86Þ

where DϕT and DΛT are defined analogously to Eqs. (64)

DϕT ¼ −
k2⊥ þ yM2

T − yyM2 þ ym2
ϕ

y
; ð87aÞ

DΛT ¼ −
k2⊥ þ yM2

T − yyM2 þ yΛ2

y
: ð87bÞ

Since Λ8=D4
ΛT → 1 in the Λ → ∞ limit, the decuplet on-

shell function (86) reduces to the pointlike result found
in Ref. [27].

The function fðon endÞ
T in Eq. (85) is finite for finite values

of Λ,

fðon endÞ
T ðyÞ ¼ Λ8

6M2
TM

2
T

Z
dk2⊥

y
y2D4

ΛT

× ½k2⊥ þ y2M2 − 2yðM2
T −MΔTÞ

− 2ym2
ϕ þ 3M2

T − 4MMT �; ð88Þ

but in the Λ → ∞ limit corresponds to the endpoint
function in Ref. [27], with a singularity at y ¼ 1. To see
this, first note that DΛT in Eq. (87b) can be written in the
form yDΛT ¼ −ðXT þ yΩΛÞ, where XT ¼ yΩT − yyM2

and ΩT ¼ k2⊥ þM2
T . In the Λ → ∞ limit, one can then

write the factor

Λ8

y4D4
ΛT

⟶
Λ→∞

lim
Ω0→∞

Z
ΩT

Ω0

dt
−4yΛ8

ðyt − yyM2 þ yΩΛÞ5
				
Λ→∞

¼ Λ6

y3Ω3
Λ

lim
Ω0→∞

�
Λ2y3Ω3

Λ
y4D4

ΛT
−
Λ2y3Ω3

Λ
y4D4

0

�
Λ→∞

; ð89Þ

where yD0 ¼ −ðX0 þ yΩΛÞ, with X0 ¼ yΩ0 − yyM2 and
Ω0 is a Λ-independent constant. At finite Λ, the term
involving D0 vanishes; however, care must be taken when
evaluating this for Λ → ∞. Replacing yΩΛ in the first
and second terms in Eq. (89) by (−yDΛT − XT) and
(−yD0 − X0), respectively, one obtains

Λ8

y4D4
ΛT

⟶
Λ→∞

−
Λ6

y3Ω3
Λ

lim
Ω0→∞

��
Λ2

yDΛT
−

Λ2

yD0

�

þ 3

�
Λ2XT

y2D2
ΛT

−
Λ2X0

y2D2
0

�
þ 3

�
Λ2X2

T

y3D3
ΛT

−
Λ2X2

0

y3D3
0

�

þ
�
Λ2X3

T

y4D4
ΛT

−
Λ2X3

0

y4D4
0

��
Λ→∞

: ð90Þ

Since in the Λ → ∞ limit one has yDΛT →
−Λ2ðyþ XT=ΩΛÞ, the first term in parentheses in
Eq. (90) can be written

�
Λ2

yDΛT
−

Λ2

yD0

�
Λ→∞

¼−
�

1

yþXT=ΩΛ
−

1

yþX0=ΩΛ

�
Λ→∞

;

ð91Þ

where we have taken Ω0 ≪ Λ2. The right-hand side of
Eq. (91) has the properties that it vanishes if y ≠ 0, is
divergent if y ¼ 0, and becomes logðXT=X0Þ when inte-
grated over y, so that it can be represented by a δ function,

�
Λ2

yDΛT
−

Λ2

yD0

�
Λ→∞

¼ δðyÞ logXT

X0

: ð92Þ

Similarly, for the 1=ðyDΛTÞn terms in Eq. (89) with n ≥ 2,
one can write in the Λ → ∞ limit

Λ2Xn−1
T

ð−yÞnDn
ΛT

				
Λ→∞

¼ ðXT=Λ2Þn−1
ðyþ XT=ΩΛÞn

				
Λ→∞

¼ δðyÞ
n − 1

; n ≥ 2:

ð93Þ

Since the same result is obtained when XT is replaced by
X0, the 1=ðyDΛTÞn and 1=ðyD0Þn terms cancel for n ≥ 2,
and one obtains

Λ8

y4D4
ΛT

⟶
Λ→∞

−
1

y3
log

ΩT

Ω0

δðyÞ ¼ −
1

y3

�
log

ΩT

μ2
− 1

�
δðyÞ;

ð94Þ
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where μ is defined such that logðΩT=μ2Þ¼ logðΩT=Ω0Þþ1. With this result, one can finally write the endpoint splitting
function in the Λ → ∞ limit as

fðon endÞ
T ðyÞ ⟶

Λ→∞

1

6M2
TM

2
T

Z
dk2⊥

�
½ΩT − 2ðΔ2

T −m2
ϕÞ − 6MMT � log

ΩT

μ2
−ΩT þ 2ðΔ2

T −m2
ϕÞ þ 6MMT

�
δðyÞ: ð95Þ

This expression is identical to that for the endpoint term in Ref. [27], except for the k⊥-independent terms in (95). For
dimensional regularization, however, these are again defined to be zero, so that the result does indeed match that in [27].

Note also that at finite values of Λ the sum of the on-shell function fðonÞT in Eq. (86) and the on-shell endpoint function

fðon endÞ
T in Eq. (88) gives the usual result found in the literature by taking the pole contribution alone [1,2,27,54,57],

fðonÞT ðyÞ þ fðon endÞ
T ðyÞ ¼ Λ8

6M2
TM

2
T

Z
dk2⊥

y½k2⊥ þ ðΔT þ yMÞ2�½k2⊥ þ ðMT − yMÞ2�2
y4D2

ϕTD
4
ΛT

; ð96Þ

for 0 < y < 1. Separately, however, the on-shell and endpoint functions are not guaranteed to be positive definite for large
values of mϕ, since the individual functions do not correspond to physical processes [58]. The combined contribution in
Eq. (96) is, however, positive for any combination of masses and kinematics.

For the δ-function contributions at y ¼ 0, there are three distinct terms in the decuplet rainbow function fðrbwÞϕT . The new
decuplet δ-function term in Eq. (85) for the nonlocal case is given by

fðδÞT ðyÞ ¼ Λ8

M2
TM

2
T

Z
dk2⊥

Z
1

0

dz
z3

ðk2⊥ þ ΩÞ3 δðyÞ

¼ 1

M2
TM

2
T

Z
dk2⊥

1

2Ω2
Λ

�
6Ω2

ΛΩϕ log
Ωϕ

ΩΛ
þ ðΩϕ −ΩΛÞðΩ2

ϕ − 5ΩϕΩΛ − 2Ω2
ΛÞ
�
δðyÞ; ð97Þ

whereΩϕ andΩΛ are as in Eq. (66). In the Λ → ∞ limit, only the first term in the integrand of Eq. (97) survives, so that the

local limit of the function fðδÞT is

fðδÞT ðyÞ ⟶
Λ→∞

3

M2
TM

2
T

Z
dk2⊥

�
Ωϕ log

Ωϕ

μ2
−Ωϕ

�
δðyÞ; ð98Þ

where the constant μ here is defined by logðΩϕ=μ2Þ ¼ logðΩϕ=ΩΛÞ þ 17=6.

The remaining δ-function terms in Eq. (85), namely, the local fðδÞϕ and nonlocal δfðδÞϕ functions, are given in Eqs. (65) and

(68), respectively. The combined contribution of the δ-function terms to fðrbwÞϕT in the local limit is then

1

18

�
3M2ðM2

T −m2
ϕÞ

M2
TM

2
T

fðδÞϕ − fðδÞT

�
⟶
Λ→∞

1

6M2
TM

2
T

Z
dk2⊥

�
Ωϕ þ ðM2

T −m2
ϕ − ΩϕÞ log

Ωϕ

μ2

�
δðyÞ: ð99Þ

Note that this expression differs from the total local δðyÞ contribution in Ref. [27], which was computed using the projector
Pαβ in Eq. (50) but with Z ¼ −1=2 for the interaction Θμν in Eq. (2). As discussed in Ref. [27], for values of the off-shell
parameter Z ≠ −1=2, the additional interaction term ∼γμγν in Θμν contributes only to the δðyÞ contribution. The result here
supercedes that in Ref. [27].
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For the decuplet baryon coupling rainbow diagram in Fig. 1(i), reduction of the γ-matrices in Eq. (53) yields

fðrbwÞTϕ ðyÞ ¼ iC2
TϕΛ

8

6M2
Tf

2

Z
d4k
ð2πÞ4

�
yðM2

T −m2
ϕÞ2ðΔ2

T −m2
ϕÞ

DϕD2
TD

4
Λ

þ y½ðk2 þm2
ϕÞð2M2

T þ Δ2
T −m2

ϕÞ −M4
T − 2M2

TΔ2
T − k4�

D2
TD

4
Λ

−
ðM2

T −m2
ϕÞ½ðy − 2ÞM2

T − 2yMMT þ ðyþ 2ÞðM2 −m2
ϕÞ�

DTDϕD4
Λ

þ ðyþ 2Þð2M2 −m2
ϕ − k2Þ þ ðyMT þ 2MÞ2MT

DTD4
Λ

þM2
T þ 2yMTM − 2yp · kþ 3k2

DϕD4
Λ

�
δ

�
y −

kþ

pþ

�
: ð100Þ

Integrating over k−, the splitting function for the decuplet coupling rainbow diagram can be written analogously to the

function fðrbwÞϕT in Eq. (85),

fðrbwÞTϕ ðyÞ ¼ C2
TϕM

2
T

ð4πfÞ2
�
fðonÞT ðyÞ þ fðon endÞ

T ðyÞ − 2ðfðoffÞT ðyÞ þ fðoff endÞT ðyÞ − 2δfðoffÞT ðyÞÞ

þ 1

18
ðfðδÞT ðyÞ − 3δfðδÞT ðyÞÞ −M2ðM2

T þ 3m2
ϕÞ

6M2
TM

2
T

fðδÞϕ ðyÞ
�
: ð101Þ

The first term in Eq. (101) is the on-shell splitting function for the decuplet baryon rainbow, and is identical to that for the
meson coupling rainbow in Eq. (85). The second term is the same as the endpoint function contribution in Eq. (88).

The off-shell decuplet contributions to fðrbwÞTϕ appear as three individual terms—a local off-shell piece, fðonÞT , an off-shell

endpoint contribution, fðoff endÞT , and a purely nonlocal term, δfðoffÞT . The local off-shell function is given by

fðoffÞT ðyÞ ¼ Λ8

6M2
TM

2
T

Z
dk2⊥

ðM2
T −m2

ϕÞ½yðM2 −m2
ϕÞ − ð1þ yÞM2

T �
yDϕTD4

ΛT
; ð102Þ

which in the Λ → ∞ limit reduces to

fðoffÞT ðyÞ →
Λ→∞

1

6M2
TM

2
T

Z
dk2⊥

ðM2
T −m2

ϕÞ½yðM2 −m2
ϕÞ − ð1þ yÞM2

T �
yDϕT

: ð103Þ

In addition to the endpoint function for the on-shell contribution in Eq. (88), a separate endpoint contribution exists for

the off-shell case, fðoff endÞT , and is given by

fðoff endÞT ðyÞ ¼ −
Λ8

6M2
TM

2
T

Z
dk2⊥

½k2⊥ þ y2M2 þ yðM2
T −m2

ϕÞ −M2
T �

yD4
ΛT

: ð104Þ

Using the relation in Eq. (94), one can show that in the Λ → ∞ limit this term is proportional to a δ function at y ¼ 1,

fðoff endÞT ðyÞ →
Λ→∞

1

6M2
TM

2
T

Z
dk2⊥

�
½ΩT − 2M2

T � log
ΩT

μ2
−ΩT

�
δðyÞ: ð105Þ

As for the octet case in Eq. (73), the decuplet splitting function also includes a nonlocal decuplet off-shell term, given by

δfðoffÞT ðyÞ ¼ Λ8

6M2
TM

2
T

Z
dk2⊥

y½k2⊥ þ ðyM −MTÞ2�2½k2⊥ þ ðyM þ ΔTÞ2�
y4DϕTD5

ΛT
; ð106Þ

The presence of the 1=D5
ΛT in the integrand of (106) ensures that in the Λ → ∞ limit the nonlocal function

vanishes, δfðoffÞT → 0.
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For the δ-function contributions at y ¼ 0, the local terms fðδÞϕ and fðδÞT in Eq. (101) are given above in Eqs. (65) and (68),

respectively, while the new nonlocal δ-function term, δfðδÞT , is given by

δfðδÞT ðyÞ ¼ Λ8

M2
TM

2
T

Z
dk2⊥

1

Ω3
Λ
δðyÞ: ð107Þ

As with the other nonlocal contributions, this term also vanishes in the Λ → ∞ limit.
The final diagram in Fig. 1 is that for the Kroll-Ruderman contribution with a decuplet intermediate state, Fig. 1(j). The

splitting function corresponding to this diagram, after reducing the γ-matrices in Eq. (54), can be written

fðKRÞT ðyÞ ¼ −i
C2
TϕΛ

8

3M2
Tf

2

Z
d4k
ð2πÞ4

�ðM2
T −m2

ϕÞ½ð1þ yÞM2
T − yðM2 −m2

ϕÞ�
DϕDTD4

Λ

þ ð1 − yÞk2 − 2ð1þ yÞp · kþ yð2M2 þM2
TÞ þM2

T

DϕD4
Λ

−
2yM2

T þ yðk2 þm2
ϕ − 2MMTÞ

DTD4
Λ

�
δ

�
y −

kþ

pþ

�
: ð108Þ

After integrating over k−, the splitting function for the decuplet KR diagram can be expressed in terms of local and nonlocal
off-shell and δ-function terms,

fðKRÞT ðyÞ ¼ C2
TϕM

2
T

ð4πfÞ2
�
2ðfðoffÞT ðyÞ þ fðoff endÞT ðyÞÞ − 1

9
ðfðδÞT ðyÞ − δfðδÞT ðyÞÞ þM2ðM2

T þm2
ϕÞ

3M2
TM

2
T

fðδÞϕ ðyÞ
�
; ð109Þ

each of which has been defined previously. Finally, the splitting function for the additional decuplet diagram induced by the
gauge link, Fig. 1(k), is obtained from Eq. (55),

δfðKRÞT ðyÞ ¼ −2i
C2
TϕΛ

8

3M2
Tf

2

Z
d4k
ð2πÞ4 y

�ðM2
T −m2

ϕÞ2ðΔ2
T −m2

ϕÞ
DϕDTD5

Λ
þ ðk2 þm2

ϕÞð2M2
T þ Δ2

T −m2
ϕÞ − ðM2

T − 2Δ2
TÞM2

T − k4

DTD5
Λ

þ 1

DϕD5
Λ
ð4ðp · kÞ2 þ 3m4

ϕ − ð3k2 þ 3M2
T þ Δ2

T −MTΔTÞm2
ϕ − ð4k2 − 6m2

ϕ þ 2M2
TÞðp · kÞ

þ k2M2
T þM3

TΔT þ k4Þ − 1

D5
Λ
ð3M2

T þ 5M2 þ 4MMT − 3m2
ϕ − 6p · kÞ

�
δ

�
y −

kþ

pþ

�
: ð110Þ

With integration over k−, the splitting function for the nonlocal KR gauge link diagram can be simplified to a sum of
nonlocal off-shell and δ-function contributions,

δfðKRÞT ðyÞ ¼ C2
TϕM

2
T

ð4πfÞ2
�
−4δfðoffÞT ðyÞ þ 1

18
δfðδÞT ðyÞ −M2ðM2

T −m2
ϕÞ

6M2
TM

2
T

δfðδÞϕ ðyÞ
�
: ð111Þ

From Eqs. (85), (100), (109) and (111), one can then
explicitly verify that gauge invariance for the decuplet
baryon contributions is satisfied through the relation

fðrbwÞϕT ðyÞ ¼ fðrbwÞTϕ ðyÞ þ fðKRÞT ðyÞ þ δfðKRÞT ðyÞ: ð112Þ

This generalizes the result from Ref. [29] to nonlocal
interactions in the presence of vertex functions parametriz-
ing the extended nature of the proton.

C. Leading nonanalytic behavior

Having derived the complete set of splitting functions for
the one-loop diagrams in Fig. 1 for the dissociation of a
proton to a pseudoscalar meson (ϕ) and an SU(3) octet (B)
or decuplet (T) baryon, in the rest of this section we discuss
the characteristics of each of the functions and illustrate
their relative shapes and magnitudes numerically. The
full set of functions includes 8 basis functions that are

nonzero in the local limit, ffðonÞB ; fðoffÞB ; fðonÞT ; fðon endÞ
T ;

fðoffÞT ; fðoff endÞT ; fðδÞT ; fðδÞϕ g, and 4 nonlocal functions,
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fδfðoffÞB ; δfðoffÞT ; δfðδÞT ; δfðδÞϕ g, that vanish for pointlike par-
ticles. All of the diagrams in Fig. 1 are then represented by
splitting functions that can be written as linear combina-
tions of these basis functions.
Before presenting the numerical results for the splitting

functions for the case of the covariant dipole form factor in
Eq. (56), we first identify some features of the basis
functions that do not depend on details of the regularization
method, but are entirely determined by the infrared behav-
ior of the chiral loops. Namely, expanding the lowest
moments hfii of the basis splitting functions,

hfii ¼
Z

1

0

dyfiðyÞ; ð113Þ

as a series in the pseudoscalar meson mass mϕ, the
coefficients of terms that are nonanalytic (NA) in m2

ϕ (either
odd powers of mϕ or logarithms of mϕ) are determined by
the low-energy properties of the nucleon and do not depend
on the ultraviolet behavior of the functions [19–23]. In
particular, the moments of the on-shell and off-shell func-

tions fðonÞB , fðoffÞB , fðonÞT , fðoffÞT and the δ-function terms fðδÞϕ

and fðδÞT all receive NA contributions, while the purely
nonlocal functions and the decuplet endpoint contributions

fðon endÞ
T and fðoff endÞT are entirely analytic.
For the octet intermediate states, we find the NA

contribution to the on-shell moment hfðonÞB i is given by

M2hfðonÞB ijNA ¼
8<
:

ð4m2
ϕ − 6Δ2Þ logm2

ϕ þ 6RΔ log
Δ − R
Δþ R

; Δ > mϕ;

ð4m2
ϕ − 6Δ2Þ logm2

ϕ þ 6RΔ


π − 2 arctan

Δ
R

�
; Δ < mϕ;

ð114Þ

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 −m2

ϕ

q
and R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − Δ2
q

. This agrees

with the result found in Ref. [29] for strange octet
contributions. In particular, for the latter case, when
Δ < mϕ, the mass difference Δ approaches zero first in
the chiral limit, mϕ → 0. The resulting LNA term is then
simply 4m2

ϕ logm
2
ϕ, consistent with Refs. [20–24,27]. For

the case Δ > mϕ, expanding R as R ¼ Δ −m2
ϕ=2Δþ

Oðm4
ϕÞ one finds that the Δ2 logm2

ϕ terms cancel, leaving
behind the same LNA behavior ∼m2

ϕ logm
2
ϕ,

M2hfðonÞB ijLNA ¼ ð4m2
ϕ − 6Δ2Þ logm2

ϕ þ 6Δ2 logm2
ϕ

− 3m2
ϕ logm

2
ϕ

¼ m2
ϕ logm

2
ϕ; Δ > mϕ ð115Þ

but with a coefficient that is now 4 times smaller than for
the Δ < mϕ case.

For the off-shell moment hfðoffÞB i, the NA contribution is

M2hfðoffÞB ijNA ¼
8<
:

−2m2
ϕ logm

2
ϕ −

2R3

MB
log

Δ − R
Δþ R

; Δ > mϕ;

−2m2
ϕ logm

2
ϕ þ

2R3

MB



π − 2 arctan

Δ
R

�
; Δ < mϕ:

ð116Þ

The LNA behavior of the moment, hfðδÞϕ i, of the δ-function term is

M2hfðδÞϕ ijLNA ¼ −m2
ϕ logm

2
ϕ: ð117Þ

These results generalize the LNA expressions given for hyperons and kaons in Ref. [29].

For the decuplet intermediate states, the NA term for the on-shell moment hfðonÞT i is

M2
ThfðonÞT ijNA ¼

8>>><
>>>:

ð8m2
ϕ − 12Δ2

TÞ
3

logm2
ϕ þ 4RTΔT log

ΔT − RT

ΔT þ RT
; ΔT > mϕ;

ð8m2
ϕ − 12Δ2

TÞ
3

logm2
ϕ þ 4RTΔT



π − 2 arctan

ΔT

RT

�
; ΔT < mϕ;

ð118Þ
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where RT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

T −m2
ϕ

q
and RT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − Δ2
T

q
. For the case ΔT < mϕ, one finds in the ΔT → 0 limit the LNA behavior

8
3
m2

ϕ logm
2
ϕ. For ΔT > mϕ, one may again expand RT as RT ¼ ΔT −m2

ϕ=2ΔT þOðm4
ϕÞ, and note that the LNA term

remains ∼m2
ϕ logm

2
ϕ due to a cancellation of the terms proportional to Δ2

T logm
2
ϕ,

M2
ThfðonÞT ijLNA ¼ ð8m2

ϕ − 12Δ2
TÞ

3
logm2

ϕ þ 4Δ2
T logm

2
ϕ − 2m2

ϕ logm
2
ϕ

¼ 2

3
m2

ϕ logm
2
ϕ; ΔT > mϕ: ð119Þ

In both cases, therefore, the LNA term is given by m2
ϕ logm

2
ϕ, although the coefficient for ΔT > mϕ is 4 times smaller than

that for ΔT < mϕ in the chiral limit.

The NA contribution to the moment of the decuplet off-shell function hfðoffÞT i is given by

M2
ThfðoffÞT ijNA ¼

8>>><
>>>:

2

3
m2

ϕ logm
2
ϕ þ

4R3
T

3MT
log

ΔT − RT

ΔT þ RT
; ΔT > mϕ;

2

3
m2

ϕ logm
2
ϕ −

4R3
T

3MT



π − 2 arctan

ΔT

RT

�
; ΔT < mϕ:

ð120Þ

The decuplet δ-function moment does not have an LNA
term, but has contributions at higher order in mπ ,

M2
ThfðδÞT ijLNA ¼ 0: ð121Þ

The decuplet results for the total LNA behavior coincide
with those for the πΔ intermediate states in Ref. [27],
arising from the fðonÞT and fðδÞϕ terms in Eq. (85), if the
πNΔ coupling constant gπNΔ in [27] is related to the
meson–octet–decuplet coupling constant C in Eq. (1) by
g2πNΔ ¼ C2=ð2f2Þ.
We stress that these results are completely general,

depending only on the infrared properties of pseudoscalar
meson loops, following directly from the symmetries of the
chiral Lagrangian. They are independent of short-distance
contributions, which are model dependent, and so provide
us with a powerful tool that can be used to verify whether
any model is consistent with the chiral symmetry properties
of QCD.

D. Phenomenology of meson–baryon
splitting functions

In this section we explore the features of the meson–
baryon splitting functions for the various octet and decuplet
contributions that are nonzero at y > 0, for a finite dipole
cutoff parameter Λ in Eq. (56). For illustration, we consider
the nucleon and lightest Λ hyperon states for the octet
baryons, and the Δ and Σ� for the decuplet states. Unless
otherwise indicated, we will use a typical value for the
cutoff mass of Λ ¼ 1 GeV.
In Fig. 2 we show the basis splitting functions for the on-

shell fðonÞB;T , off-shell f
ðoffÞ
B;T , and nonlocal off-shell δfðoffÞB;T

contributions, as well as the on-shell and off-shell endpoint

functions fðon endÞ
T and fðoff endÞT for the decuplet Δ and Σ�

states. For all baryon intermediate states, the on-shell

functions fðonÞB;T are positive at all y values and peak at
around y ¼ 0.1–0.2, depending on the mass of the baryon.
The main difference between the on-shell functions for the
different baryons is the magnitude: for the strange baryons
the functions are approximately an order of magnitude
smaller than for the nonstrange.

The off-shell functions fðoffÞB;T for the octet baryons are
negative, with magnitude comparable to the on-shell
functions. For decuplet baryons, the off-shell functions
increase as y → 0, and in fact dominate the small-y region.

The nonlocal off-shell functions fðoffÞB;T have the same sign as
the on-shell contributions, but are somewhat smaller in
magnitude. The additional on-shell and off-shell endpoint

contributions fðon endÞ
T and fðoff endÞT for the decuplet inter-

mediate states in Eqs. (88) and (104) are positive and
negative, respectively, with the former vanishing at y ¼ 0
and the latter increasing in magnitude as y → 0.
Interestingly, both the on-shell and off-shell endpoint

functions at Λ ¼ 1 GeV peak at rather small values of y,
while formally they become δ-functions at y ¼ 1 for
Λ → ∞. The dramatic change in the shape of the endpoint
functions with increasing Λ is illustrated in Fig. 3, which
shows the on-shell and off-shell endpoint terms as a
function of y for a range of Λ values from 1 GeV to
1 TeV. Of course, in practical calculations relevant for
phenomenological applications, the relevant values of Λ
would typically be of the order of hadronic scales,∼1 GeV;
the results for the largerΛ values shown in Fig. 3 are simply
to track numerically the evolution of the nonlocal results to
the local limit.
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Note that the derivation of the local limit of the endpoint
splitting functions, as in Eq. (89), includes the D0 term.
There, it was assumed that the constant Ω0 in D0 is very
large, although in the local limit it also satisfies Ω0 ≪ Λ2

[see Eq. (91)]. In order to observe the D0 contribution to
Eq. (90) in practice, we fix the parameter Ω0 to a very large
value, Ω0 ¼ 100 GeV2. As shown in Fig. 3, when Λ is
small, the contribution of D0 is negligible, and the on-shell
and off-shell endpoint distributions coincide with those in
Fig. 2(c) for Λ ¼ 1 GeV. (The endpoint functions decrease
in magnitude at y < 1with increasingΛ, so for clarity these
are normalized by their integrals, hfii, over all y. This then
renders the ratio for the off-shell end point function in

Fig. 3(b) positive, whereas the unnormalized distribution
in Fig. 2(c) is negative.) The D0 term can therefore be
dropped when considering the contribution of the nonlocal
endpoint functions for finite values ofΛ. On the other hand,
Fig. 3 clearly indicates that as Λ → ∞ the peaks of the
endpoint functions migrate to higher values of y, approach-
ing a shape that resembles a δ-function, δð1 − yÞ, in the
local limit.
The combinations of the various basis functions corre-

sponding to the rainbow and KR diagrams in Fig. 1 are
illustrated in Fig. 4 for the same intermediate states as in
Fig. 2. Again the main difference between the nonstrange
and strange baryon contributions is the magnitude of the

(a) (b)

FIG. 3. Normalized splitting functions fiðyÞ=hfii for the (a) on-shell endpoint and (b) off-shell endpoint contributions for the Δþ π
intermediate state, for different values of the dipole cutoff mass Λ (1 GeV to 1 TeV) and a fixed value of the constant Ω0 ¼ 100 GeV2.

FIG. 2. Splitting functions versus meson momentum fraction y for the proton dissociations into (a) N þ π, (b) Λþ K, (c) Δþ π, and
(d) Σ� þ K state, for the on-shell fðonÞ (red solid curves), off-shell fðoffÞ (blue dashed), and nonlocal off-shell δfðoffÞ (black dotted)
contributions. For the decuplet Δ and Σ� states, additional contributions from on-shell endpoint fðon endÞ (red dot-dashed) and off-shell
endpoint fðoff endÞ (blue dot-dot-dashed) are included. All results correspond to the covariant dipole form factor in Eq. (56) with cutoff
mass Λ ¼ 1 GeV.
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functions, with the strange being an order of magnitude or
more suppressed. The total meson-coupling rainbow func-

tions, fðrbwÞϕB and fðrbwÞϕT , generally have very similar shape to
the corresponding on-shell functions in Fig. 2. The baryon-

coupling rainbow functions, fðrbwÞBϕ and fðrbwÞTϕ , have similar
magnitude and are generally positive at intermediate y, but
become more negative as y → 0. The latter behavior is

canceled by the KR functions fðKRÞB;T at small y, especially
for the decuplet contributions, such that the sum of the
baryon-coupling rainbow and KR diagrams satisfies

Eqs. (78) and (112). The nonlocal KR functions, δfðKRÞB;T ,

at nonzero y values are proportional to −4 times the
nonlocal off-shell functions [Eqs. (77) and (111)], and
hence are negative at y > 0. Some degree of cancelation

therefore takes place between the local fðKRÞB;T and nonlocal

δfðKRÞB;T functions at intermediate and large values of y.
The pattern of cancelations between the various con-

tributions from the basis functions to particular diagrams in
Fig. 1 is further explored in Fig. 5, which shows the
decomposition of the splitting function for the nucleon-

coupling rainbow diagram, fðrbwÞNπ . For the case of the
covariant dipole form factor with Λ ¼ 1 GeV, Fig. 5(a),
one observes very strong cancelation between the positive

FIG. 4. Splitting functions versus y for proton dissociations into various meson–baryon intermediate states as in Fig. 2, but for the total
contributions to the meson-coupling rainbow diagrams in Fig. 1(a) and (h) (red solid curves), baryon-coupling rainbow diagrams in
Fig. 1(b) and (i) (blue dashed), KR diagrams in Fig. 1(c) and (j) (green dot-dashed), and nonlocal KR diagrams in Fig. 1(d) and (k) (black
dotted). Contributions from the tadpole and bubble diagrams in Fig. 1(e)–(g) at y ¼ 0 are not shown here.

FIG. 5. Decomposition of the splitting function for the nucleon-coupling rainbow diagram in Fig. 1(b) for (a) the nonlocal chiral
theory with dipole regulator, and (b) the local chiral theory with a symmetry preserving Pauli-Villars regulator. The value of the
Pauli-Villars mass parameters Λ is determined by normalizing to the momentum carried by the interacting nucleon, hyi ¼ R

1
0 dyyfðyÞ,

for the dipole regulator with Λ ¼ 1 GeV.
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on-shell and negative off-shell contributions, with the total
closely resembling the purely nonlocal off-shell function
δfðoffÞ. At first sight this may be perplexing, if one
interprets the result to suggest that the total nucleon-
coupling rainbow function may be very small in the
pointlike limit, where δfðoffÞ vanishes. In practice, however,
the on-shell and off-shell functions vary differently with Λ,
so that the degree of cancelation depends on the cutoff.
This is illustrated in Fig. 5(b), which shows the decom-

position of fðrbwÞNπ for the case of a local theory with a Pauli-
Villars regulator, which preserves the necessary symmetries
of the theory [28,29]. In this case there is no nonlocal
contribution, and the total is given by the sum of the on-
shell and off-shell terms. For the on-shell splitting function

fðonÞN the Pauli-Villars regulating function takes the form

eFðonÞ
PV ðkÞ ¼ 1 −

D2
ϕB

D2
ΛPV

; ð122Þ

while for the off-shell splitting function fðoffÞN the regulator
is given by

eFðoffÞ
PV ðkÞ ¼ 1 −

DϕB

DΛPV

: ð123Þ

In order to compare the shapes more directly, we choose the
Pauli-Villars regulator to give the same total momentum

hyi ¼ R
1
0 dyyfðyÞ carried by the interacting nucleon in

fðrbwÞNπ , which yields ΛPV ¼ 0.34 GeV. These have similar
general features as the functions for the nonlocal theory
with covariant dipole regulator, with the small differences
in magnitude for the on-shell and off-shell contributions for
the dipole and Pauli-Villars regulators allowing a sizeable
nonzero total to remain.
While the contributions of the various splitting functions

at y > 0 are illustrated in Figs. 2 and 4, the relative
importance of the δ-functions terms at y ¼ 0 is demon-
strated in Fig. 6 by the integrated values of the basis
functions, hfi as a function of the covariant dipole form
factor cutoff massΛ. As expected, the magnitude of each of
the integrated functions increases with Λ, as more short-
distance contributions are included. For the nominal Λ ¼
1 GeV used in Figs. 2 and 4 the πN intermediate states
dominate, with the hyperon and decuplet contributions an
order of magnitude smaller. The picture changes for larger
cutoff values, and for Λ≳ 1.2 GeV some of the πΔ
contributions become as large as the πN. Of course, the
validity of a one-loop calculation for larger cutoffs is more
questionable, as contributions from higher-order terms
become increasingly more important. Interestingly, for
the octet baryons, the on-shell and nonlocal off-shell
contributions are positive, while the local off-shell and
both the (local and nonlocal) δ-function contributions are
negative. In contrast, for the decuplet states, all contribu-
tions are positive, with the exception of the off-shell end
point terms, as already indicated in Fig. 2.

FIG. 6. Integrals of splitting functions hfi versus Λ, for (a) N þ π, (b) Λþ K, (c) Δþ π and (d) Σ� þ K intermediates states, for the
on-shell (red solid curves), off-shell (blue dashed), nonlocal off-shell (blue dotted), local δ-function (green dot-dashed), and nonlocal δ-
function (green dotted) contributions. The decuplet states include additional contributions from on-shell endpoint (red dot-dot-dashed)
and off-shell end point (blue dot-dot-dashed) terms. All results correspond to the covariant dipole form factor in Eq. (56).
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V. CONCLUSION

In this paper we have for the first time used a nonlocal
covariant formulation of SU(3) chiral effective theory to
construct the framework necessary for systematically
computing the contributions from pseudoscalar meson
loops to parton distributions in the nucleon. The main
result of the present work has been the derivation from the
nonlocal theory of the lowest order proton → mesonþ
baryon splitting functions arising from transitions of the
initial state to intermediate states involving octet and
decuplet baryons, as well as those involving contact
interactions at zero momentum.
Since the contributions from the loop diagrams are

ultraviolet divergent, care must be taken to ensure that the
integrals are regularized in a way that preserves the under-
lying symmetries of the effective theory, such as gauge
invariance, Lorentz invariance, and chiral symmetry. A
common approach adopted in the literature involves the
use of local interactions with regulators that explicitly
depend on the 3-momentum of the meson. While this does
take into account the extended nature of hadrons and renders
finite results, this approach is in practice ad hoc and destroys
the local gauge and Lorentz invariance of the theory.
The virtue of the nonlocal formulation, on the other

hand, is that it allows the use of a 4-dimensional regulator
while preserving the gauge and Lorentz symmetries. In
this case the regulator is generated directly from the
nonlocal Lagrangian, and gives rise to additional diagrams
that appear from the expansion of the gauge link [see
Fig. 1(d), (g) and (k)].
To illustrate the characteristic features of the new non-

local splitting functions, we have used a simple dipole
function for the 4-dimensional regulator. The approach is
analogous to a resummation of chiral perturbation theory
using dimensional regularization, which is known to
provide better convergence at larger momenta, at the
expense of losing the power counting of the traditional
chiral perturbation theory. Our results reveal some novel
patters of cancelations among the local and nonlocal
functions in the rainbow and Kroll-Ruderman diagrams,
and illustrate the importance of nonlocal contributions for

finite values of the regulator mass Λ. For the decuplet
intermediate states, our analysis is able to study numeri-
cally the transition from the case of a finite Λ to the
pointlike limit, which is realized most dramatically for the
on-shell and off-shell end point contributions to the baryon-
coupling rainbow and Kroll-Ruderman diagrams. We
verify explicitly that in the Λ → ∞ limit the nonlocal
generalization does indeed reproduce the results of the local
theory.
The results derived here will serve as a basis for future

applications of the formalism to computing meson loop
contributions to parton distributions in the nucleon. Within
the effective theory, these can be computed by matching
twist-two quark level and effective hadronic level operators,
which leads to a convolution representation for the PDFs,

qðxÞ ¼
X
j

Z
1

0

dy
y
fjðyÞqvj

�
x
y

�
; ð124Þ

where fjðyÞ are the meson–baryon splitting functions, and
qvj is the valence distribution for the quark flavor q in the
hadronic configuration j. In a forthcoming paper [43], we
will use this formalism to study flavor asymmetries in the
nucleon generated through meson loops, such as in the light
antiquark sea (d − u) or for strange quarks (s − s), con-
sistently within the 4-dimensional chiral effective theory
framework.

ACKNOWLEDGMENTS

We thank Xuangong Wang for helpful discussions. This
work is supported by NSFC under Grant No. 11475186, the
Sino-German CRC 110 “Symmetries and the Emergence of
Structure in QCD” project by NSFC under the Grant
No. 11621131001, the DOE Contract No. DE-AC05-
06OR23177, under which Jefferson Science Associates,
LLC operates Jefferson Lab; DOE Contract No. DE-
FG02-03ER41260; the Australian Research Council through
the ARC Centre of Excellence for Particle Physics at the
Terascale (CE110001104); and an ARC Discovery Project
No. DP151103101.

[1] J. Speth and A.W. Thomas, Adv. Nucl. Phys. 24, 83
(1997).

[2] S. Kumano, Phys. Rep. 303, 183 (1998).
[3] A.W. Thomas, Phys. Lett. 126B, 97 (1983).
[4] A. Baldit et al., Phys. Lett. B 332, 244 (1994).
[5] R. S. Towell et al., Phys. Rev. D 64, 052002 (2001).
[6] M. Arneodo et al., Phys. Rev. D 50, R1 (1994).
[7] K. Ackerstaff et al., Phys. Rev. Lett. 81, 5519 (1998).

[8] A. I. Signal andA.W. Thomas, Phys. Lett. B 191, 205 (1987).
[9] D. Mason et al., Phys. Rev. Lett. 99, 192001 (2007).

[10] S. Alekhin, S. A. Kulagin, and R. Petti, Phys. Lett. B 675,
433 (2009).

[11] J. J. Ethier, N. Sato, and W. Melnitchouk, Phys. Rev. Lett.
119, 132001 (2017).

[12] A.W. Schreiber, A. I. Signal, and A.W. Thomas, Phys. Rev.
D 44, 2653 (1991).

SALAMU, JI, MELNITCHOUK, THOMAS, and WANG PHYS. REV. D 99, 014041 (2019)

014041-24

https://doi.org/10.1007/b115010
https://doi.org/10.1007/b115010
https://doi.org/10.1016/S0370-1573(98)00016-7
https://doi.org/10.1016/0370-2693(83)90026-6
https://doi.org/10.1016/0370-2693(94)90884-2
https://doi.org/10.1103/PhysRevD.64.052002
https://doi.org/10.1103/PhysRevD.50.R1
https://doi.org/10.1103/PhysRevLett.81.5519
https://doi.org/10.1016/0370-2693(87)91348-7
https://doi.org/10.1103/PhysRevLett.99.192001
https://doi.org/10.1016/j.physletb.2009.04.033
https://doi.org/10.1016/j.physletb.2009.04.033
https://doi.org/10.1103/PhysRevLett.119.132001
https://doi.org/10.1103/PhysRevLett.119.132001
https://doi.org/10.1103/PhysRevD.44.2653
https://doi.org/10.1103/PhysRevD.44.2653


[13] W. Melnitchouk and A.W. Thomas, Z. Phys. A 353, 311
(1995).

[14] F. M. Steffens, H. Holtmann, and A.W. Thomas, Phys. Lett.
B 358, 139 (1995).

[15] D. Diakonov, V. Petrov, P. Pobylitsa, M. V. Polyakov, and
C. Weiss, Nucl. Phys. B480, 341 (1996).

[16] W. Melnitchouk and M. Malheiro, Phys. Rev. C 55, 431
(1997).

[17] W. Melnitchouk and M. Malheiro, Phys. Lett. B 451, 224
(1999).

[18] F. Myhrer and A.W. Thomas, Phys. Lett. B 663, 302
(2008).

[19] A.W. Thomas, W. Melnitchouk, and F. M. Steffens, Phys.
Rev. Lett. 85, 2892 (2000).

[20] D. Arndt and M. J. Savage, Nucl. Phys. A697, 429 (2002).
[21] J. W. Chen and X. Ji, Phys. Lett. B 523, 107 (2001).
[22] J.-W. Chen and X. Ji, Phys. Rev. Lett. 87, 152002 (2001);

88, 249901(E) (2002).
[23] W. Detmold, W. Melnitchouk, J. W. Negele, D. B. Renner,

and A.W. Thomas, Phys. Rev. Lett. 87, 172001 (2001).
[24] M. Burkardt, K. S. Hendricks, C.-R. Ji, W. Melnitchouk,

and A.W. Thomas, Phys. Rev. D 87, 056009 (2013).
[25] C.-R. Ji, W. Melnitchouk, and A.W. Thomas, Phys. Rev. D

88, 076005 (2013).
[26] A. M. Moiseeva and A. A. Vladimirov, Eur. Phys. J. A 49,

23 (2013).
[27] Y. Salamu, C.-R. Ji, W. Melnitchouk, and P. Wang, Phys.

Rev. Lett. 114, 122001 (2015).
[28] X. G. Wang, C.-R. Ji, W. Melnitchouk, Y. Salamu, A. W.

Thomas, and P. Wang, Phys. Lett. B 762, 52 (2016).
[29] X. G. Wang, C.-R. Ji, W. Melnitchouk, Y. Salamu, A. W.

Thomas, and P. Wang, Phys. Rev. D 94, 094035 (2016).
[30] A.W. Thomas, Nucl. Phys. B, Proc. Suppl. 119, 50 (2003).
[31] A.W. Thomas, Adv. Nucl. Phys. 13, 1 (1984).
[32] J. Terning, Phys. Rev. D 44, 887 (1991).
[33] K. Wilson, Phys. Rev. D 10, 2445 (1974).
[34] C. Bloch, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 26, 1

(1950).
[35] H. Forkel, M. Nielsen, X.-M. Jin, and T. D. Cohen, Phys.

Rev. C 50, 3108 (1994).

[36] M. J. Musolf and M. Burkardt, Z. Phys. C 61, 433 (1994).
[37] S. Wang and M. K. Banerjee, Phys. Rev. C 54, 2883

(1996).
[38] B. Holdom, Phys. Rev. D 45, 2534 (1992).
[39] A. Faessler, T. Gutsche, M. A. Ivanov, V. E. Lyubovitskij,

and P. Wang, Phys. Rev. D 68, 014011 (2003).
[40] P. Wang, Eur. Phys. J. A 50, 172 (2014).
[41] F. C. He and P. Wang, Phys. Rev. D 97, 036007 (2018).
[42] F. C. He and P. Wang, Phys. Rev. D 98, 036007 (2018).
[43] Y. Salamu, C.-R. Ji, W. Melnitchouk, A. W. Thomas, P.

Wang, and X. Wang (to be published).
[44] E. E. Jenkins, Nucl. Phys. B368, 190 (1992).
[45] T. Ledwig, J. Martin Camalich, L. S. Geng, and M. J.

Vicente Vacas, Phys. Rev. D 90, 054502 (2014).
[46] T. R. Hemmert, B. Kubis, and U.-G. Meissner, Phys. Rev. C

60, 045501 (1999).
[47] T. R. Hemmert, U.-G. Meissner, and S. Steininger, Phys.

Lett. B 437, 184 (1998).
[48] A. V. Manohar, Lect. Notes Phys. 479, 311 (1997).
[49] R. D. Young, D. B. Leinweber, and A.W. Thomas, Prog.

Part. Nucl. Phys. 50, 399 (2003).
[50] J. M. M. Hall, D. B. Leinweber, and R. D. Young, Phys.

Rev. D 82, 034010 (2010).
[51] R. Tegen and W. Weise, Z. Phys. A 314, 357 (1983).
[52] C. Hacker, N. Wies, J. Gegelia, and S. Scherer, Phys. Rev. C

72, 055203 (2005).
[53] L. M. Nath, B. Etemadi, and J. D. Kimel, Phys. Rev. D 3,

2153 (1971).
[54] W. Melnitchouk, A. W. Thomas, and A. I. Signal, Z. Phys. A

340, 85 (1991).
[55] M. Burkardt and Y. Koike, Nucl. Phys. B632, 311 (2002).
[56] H. Holtmann, A. Szczurek, and J. Speth, Nucl. Phys. A596,

631 (1996).
[57] W. Melnitchouk, J. Speth, and A.W. Thomas, Phys. Rev. D

59, 014033 (1998).
[58] X. Wang (private communication).

Correction: A second affiliation has been inserted for the first
author.

PARTON DISTRIBUTIONS FROM NONLOCAL CHIRAL … PHYS. REV. D 99, 014041 (2019)

014041-25

https://doi.org/10.1007/BF01292337
https://doi.org/10.1007/BF01292337
https://doi.org/10.1016/0370-2693(95)00923-9
https://doi.org/10.1016/0370-2693(95)00923-9
https://doi.org/10.1016/S0550-3213(96)00486-5
https://doi.org/10.1103/PhysRevC.55.431
https://doi.org/10.1103/PhysRevC.55.431
https://doi.org/10.1016/S0370-2693(99)00182-3
https://doi.org/10.1016/S0370-2693(99)00182-3
https://doi.org/10.1016/j.physletb.2008.04.034
https://doi.org/10.1016/j.physletb.2008.04.034
https://doi.org/10.1103/PhysRevLett.85.2892
https://doi.org/10.1103/PhysRevLett.85.2892
https://doi.org/10.1016/S0375-9474(01)01223-4
https://doi.org/10.1016/S0370-2693(01)01337-5
https://doi.org/10.1103/PhysRevLett.87.152002
https://doi.org/10.1103/PhysRevLett.88.249901
https://doi.org/10.1103/PhysRevLett.87.172001
https://doi.org/10.1103/PhysRevD.87.056009
https://doi.org/10.1103/PhysRevD.88.076005
https://doi.org/10.1103/PhysRevD.88.076005
https://doi.org/10.1140/epja/i2013-13023-x
https://doi.org/10.1140/epja/i2013-13023-x
https://doi.org/10.1103/PhysRevLett.114.122001
https://doi.org/10.1103/PhysRevLett.114.122001
https://doi.org/10.1016/j.physletb.2016.09.014
https://doi.org/10.1103/PhysRevD.94.094035
https://doi.org/10.1016/S0920-5632(03)01492-0
https://doi.org/10.1103/PhysRevD.44.887
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1103/PhysRevC.50.3108
https://doi.org/10.1103/PhysRevC.50.3108
https://doi.org/10.1007/BF01413182
https://doi.org/10.1103/PhysRevC.54.2883
https://doi.org/10.1103/PhysRevC.54.2883
https://doi.org/10.1103/PhysRevD.45.2534
https://doi.org/10.1103/PhysRevD.68.014011
https://doi.org/10.1140/epja/i2014-14172-0
https://doi.org/10.1103/PhysRevD.97.036007
https://doi.org/10.1103/PhysRevD.98.036007
https://doi.org/10.1016/0550-3213(92)90203-N
https://doi.org/10.1103/PhysRevD.90.054502
https://doi.org/10.1103/PhysRevC.60.045501
https://doi.org/10.1103/PhysRevC.60.045501
https://doi.org/10.1016/S0370-2693(98)00889-2
https://doi.org/10.1016/S0370-2693(98)00889-2
https://doi.org/10.1007/BFb0104287
https://doi.org/10.1016/S0146-6410(03)00034-6
https://doi.org/10.1016/S0146-6410(03)00034-6
https://doi.org/10.1103/PhysRevD.82.034010
https://doi.org/10.1103/PhysRevD.82.034010
https://doi.org/10.1007/BF01412932
https://doi.org/10.1103/PhysRevC.72.055203
https://doi.org/10.1103/PhysRevC.72.055203
https://doi.org/10.1103/PhysRevD.3.2153
https://doi.org/10.1103/PhysRevD.3.2153
https://doi.org/10.1007/BF01284484
https://doi.org/10.1007/BF01284484
https://doi.org/10.1016/S0550-3213(02)00263-8
https://doi.org/10.1016/0375-9474(95)00448-3
https://doi.org/10.1016/0375-9474(95)00448-3
https://doi.org/10.1103/PhysRevD.59.014033
https://doi.org/10.1103/PhysRevD.59.014033

