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We clarify and extend further the idea we developed before that baryonic matter at high density has an
emergent “pseudoconformal symmetry.” It is argued that as baryonic density exceeds n ≃ n1=2 ≳ 2n0, a
topology change mimicking the baryon-quark continuity takes place at n1=2. In terms of skyrmions, this
corresponds to the transition from skyrmions to half-skyrmions and impacts on the equation of state of
dense baryonic matter. The emergence in medium at n1=2 of parity-doublet symmetry—which is invisible in
QCD in a matter-free vacuum—plays the crucial role. The consequence of the topology change is that
massive compact stars carry the “pseudoconformal sound velocity” v2s=c2 ≈ 1=3 at n≳ n1=2 signaling a
precursor to the precocious emergence of scale symmetry as well as a local symmetry hidden in QCD in the
matter-free vacuum. A highly significant prediction of this work is that the topology change density from
normal matter to half-skyrmion matter, up to date inaccessible either by QCD proper or by terrestrial
experiments, could possibly be pinned down within the range 2 < n1=2=n0 < 4, commensurate with the
range expected for a continuous hadrons-to-quarks or -gluons transition.
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I. INTRODUCTION

A. Objective

Baryonic matter above the nuclear equilibrium density
n0 ∼ 0.16 fm−3, say, n ≳ 2n0, is totally unknown both
theoretically and experimentally and has been a long-
standing challenge to nuclear physicists. The most glaring
case for this situation is aptly illustrated in the nuclear
symmetry energy that enters in the equation of state (EOS) of
asymmetric baryonic matter relevant to (neutron-rich) com-
pact stars. While constrained by experiments up to ∼n0, the
symmetry energy given by available theoretical models can
wildly vary above n0, presenting a total wilderness, and the
available experiments, mainly coming from heavy-ion
experiments, are unable to weed out the wilderness. The
lattice approach, presently the only nonperturbative tool in
QCD, cannot access the density regime involved.
The recent LIGO/Virgo detection of gravitational waves

emitted from coalescing neutron stars GW170817 [1]
opens a new era of nuclear physics. With such ongoing
and upcoming detections, it is reasonable to expect that
astronomical observations will bring answers to outstand-
ing problems in both astrophysics and nuclear physics,
such as, for example, the structure of highly dense matter in
compact stars and ultimately the origin of proton mass.

In this paper, we follow the strategy first proposed
in [2,3] to access high baryon density in a single field
theoretic framework involving only hadronic degrees of
freedom. It exploits topology, scale symmetry and local
flavor symmetry, all invisible in QCD in the vacuum. The
underlying idea developed is basically different from what
is currently adopted in the nuclear-astrophysics community.
Topology enters at high density in the framework in place

of quarks and gluons, dilatonic scalar figures signaling the
precursor to the emergence of scale symmetry broken in the
vacuum and the vector meson ρ, embodying hidden flavor
local symmetry, manifests explicitly at what is called the
vector manifestation (VM) fixed point. At the vector mani-
festation fixed point, the vector meson mass goes to zero,
exposing local flavor symmetry which is absent in QCD in
the vacuum. At a certain high density, a topology change
takes place and affects profoundly the properties of neutron
stars, such as the sound velocity and the tidal deformability
[3]. The purpose of the present work is to sharpen and extend
the arguments developed in the previous work [2,3].

B. Theoretical tool

Our principal tool is the effective Lagrangian—and,
more broadly, the approach anchored on it—called
bsHLS that incorporates, in addition to the (pseudo-)
Goldstone bosons, π, and the nucleons that figure in
standard chiral perturbation theory (SχPT), the lowest-
lying vector mesons ρ and ω and a scalar meson, dilaton,
χ (or σ). As formulated in detail in [2] (and references cited
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therein) and briefly reviewed below, the parameters of the
effective field theory (EFT) Lagrangian are endowed with
various QCD condensates such as hq̄qi; hG2i, etc., brought
in by thematching between theEFTandQCDvia correlators
[4]. Given that the condensates depend on the vacuum
involved, and in a nuclear medium, the vacuum is changed
by density, the bare parameters of the Lagrangian must
thereby depend on density. This dependence is referred
to as “intrinsic density dependence (IDD)” as opposed to
density dependence induced by nuclear correlations, called
“induced density dependence,” that needs to be taken into
account in doing renormalization decimations.

C. Outcome

The consequences are striking. Even though the trace of
the energy-momentum tensor (TEMT) is found not to be
zero, the sound velocity in massive stars is found to
converge quite precociously to v2s=c2≈1=3, what is com-
monly associated with conformal invariance. Combined
with currently available information from heavy-ion
collisions and from stellar observations such as the tidal
deformability inferred from gravitational waves and accu-
rately measured maximum star masses, the topology
change density, accessible neither experimentally nor
theoretically, can be pinned down to within the range

2 < n1=2=n0 < 4: ð1Þ
This paper is organized as follows: In Sec. II, we discuss

the role of topology in chiral effective theory and the impact
of topology change on nuclear dynamics in dense matter.
In Sec. III, we specify the hidden symmetries of QCD
involved and their role in the effective field theory bsHLS.
We devote ourselves in Sec. IV to discuss how to access in
bsHLS the dilaton-limit fixed point at which the sym-
metries, i.e., parity doubling, scale symmetry and flavor
local symmetry, are revealed. We then obtain the equation
of state of the pseudoconformal nuclear matter in Sec. V
and study the compact-star properties in Sec. VI. The
outcome of the analysis is that the density at which the
topology change takes place could be pinned down. Our
further discussions and perspectives are given in Sec. VII.

II. TOPOLOGY

A. Return of “Cheshire cat”

Although not rigorously proven, it is generally consid-
ered most likely that at some high density going above n0,
there should be a change of degrees of freedom from
hadrons to those of QCD, namely, quarks and gluons. The
changeover seems to be indispensable in compact stars for
accounting for the ≳2-solar-mass stars and more specifi-
cally in the approach we are presenting in this paper for
what we call “pseudoconformal” sound velocity of stars
v2s=c2 ≃ 1=3 that sets in precociously at n≳ 3n0. In this
paper we approach this changeover in terms of topology

change as a “trade-in” from baryons to strongly coupled
quarks. The idea is motivated by the Cheshire cat mecha-
nism [5] given by the chiral bag model for the baryons [6].
The basic premise of the chiral bag model (CBM) is

anchored on the observation that the spontaneous breaking of
chiral symmetry in QCD is tied to quark confinement [7].
Although confinement is not verywell understood, the CBM
relates in terms of a bag model the manifestation of broken
chiral symmetry with quarks and gluons confined inside a
bag—called the MIT bag—and Goldstone bosons (π) (and
heavier mesons) living outside of the bag coupled to the
quarks and gluons inside by suitable boundary conditions.
What is crucial in this model is that the Goldstone boson
(pion) can carry a baryon charge in the guise of a skyrmion
[8] and renders the bag as a “gauge artifact.” It has transpired
in the decades of developments that physics at low energy
should be independent of the confinement size, say, bag
radius R. Thus, for example, a baryon can be equally
described as the MIT bag (R ¼ ∞) as well as the skyrmion
(R ¼ 0). This is the Cheshire cat (CC) principle [5]. Lacking
an exact bosonization technique in (3þ 1) dimensions, this
is only an approximation—perhaps too drastic—in nature
except for the topological charge, i.e., baryon charge. It is
technically involved to do fully rigorous calculations to
check how the notion of the Cheshire cat phenomenonworks
in hadron dynamics. It has been, however, looked at in detail
for the flavor-singlet axial charge (FSAC) of the proton g0A. It
has been shown that the FSAC is indeed independent of the
confinement size [9]. This quantity involves an intricate
interplay ofUAð1Þ anomaly with color boundary conditions,
so a highly nontrivial manifestation of the CC phenomenon.

B. Topology change

We now propose to apply an argument along the line of
the Cheshire cat mechanism to implement the possible
change of degrees of freedom as the density goes above n0
to the range of densities relevant to compact stars, viz.
∼ð5–7Þn0. Rough consideration based on the increase of
hadronic size at increasing density and the onset of quark
percolation suggests that the quark or gluon degrees of
freedom could enter at ∼2n0. For example, a very likely
scenario consistent with the existence of ∼2-solar-mass
stars posits the intervention of strong-coupled quark matter
in a smooth hadron-quark transition at ∼ð2–4Þn0 with the
perturbative QCD effect setting in at≳10n0 and, ultimately,
the color-flavor locking (CFL) at ∼100n0 [10].1 In this
paper, we propose that the intervention of the quark or

1There have been numerous works in which the quark degrees
of freedom are implemented explicitly, typically with phase
transitions, in the equation of state for compact stars, among
which notable is Ref. [11]. It will be seen in what follows that our
approach differs basically from what is involved in those
approaches. In particular, the transition involved will not be of
the Landau-Ginzburg-Wilsonian paradigm of phase transitions.
We will elaborate on this point in Sec. VII.
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gluon degrees of freedom be captured by a topology
change as a possible implementation of the continuous
hadron-quark continuity. For our purpose, it seems more
appropriate to consider the quark-hadron continuity in the
form of quarkyonic matter applied to compact stars [12,13].
The difference from the quark-hadron continuity is that

topology change involves “hadronic” variables onlywhereas
in the latter explicitly twodifferent variables figure. It isworth
pointing out here that the quarkyonic matter could be
“baryonic” [14] as will be discussed further later.
We will be concerned with densities of order ≲10n0, so

we will not venture into the CFL regime. However as
shown in [15], it is feasible to phrase even the CFL phase
involving asymptotic densities in terms of hadronic vari-
ables, e.g., “pions,” “vector mesons,” etc. We think it
should be possible to formulate this picture in terms of a
Cheshire cat phenomenon.
The topology changewewill consider is natural inQCD at

largeNc and large density. At that limit, the baryonic matter,
QCD suggests, must be in the form of crystal populatedmost
likely by half-skyrmions. There is a hint for this in the Sakai-
Sugimoto holographic QCDmodel [16], which is thought to
represent QCD in that limit [17]. Numerical simulation
shows indeed that skyrmions put on a face-centered-cubic
(fcc) crystal lattice change over to half-skyrmions in CC as
the lattice size is reduced, corresponding to the increase of
density. The topology change density is referred to as n1=2.
For a review see [18]. The numerical value for n1=2 cannot be
pinned down from the skyrmionmodel because it depends on
various quantities, such as the degrees of freedom included in
the Lagrangian, but the transition itself, being topological, is
considered to be robust. From here on we will assume this
robustness in our discussions.
What takes place in the changeover here, loosely called

transition throughout this paper, is not a bona fide Landau-
Ginzburg-type phase transition since it involves no local
order parameter. At the transition we are concerned with,
what corresponds to Σ≡ hq̄qi—called quark condensate—
goes to zero when space-averaged, Σ̄ → 0, but is not zero
locally, bearing inhomogeneity [19]. Thus the vanishing of
Σ̄ does not signal chiral symmetry restoration. There are
pions present, so the symmetry is still broken. This implies
that Σ is not an order parameter of chiral symmetry. There
must then be something else that represents the order
parameter of chiral symmetry. It is presently unknown what
that is [20].2 The situation is somewhat like a pseudogap in
superconductivity [22].3

As discussed in [23], the half-skyrmions that appear at
n ≥ n1=2 are confined to a skyrmion, so they are not
propagating objects. The key observation is that there
are hidden gauge symmetries in the chiral field U ¼
e2iπ=fπ that figures in the skyrmion Lagrangian. Apart from
the hidden (non-Abelian) local symmetry discussed below,
it has a hidden local Uð1Þ symmetry. To see this, let us
consider the hedgehog ansatz for the static chiral field,
U0ðrÞ,

U0ðrÞ ¼ eiτ⃗·r̂θðrÞ; ð2Þ

where θðrÞ is the chiral angle that goes from 0 to π. When r̂
is parameterized by the CP1 field z with z†z ¼ 1,

r̂ ¼ z†σz; ð3Þ

then U0 is invariant under the Uð1Þ gauge transformation
z → eiκðrÞz. Elevating this redundancy to the Uð1Þ gauge
field, one finds the skyrmion theory as the Uð1Þ gauge field
coupled to a massless scalar field. There is then a “hidden”
monopole in the theory and the regularized monopole can
be identified with the skyrmion [23,24].
Furthermore there are other monopole solutions. Among

them there are monopole and half-skyrmion solutions that
have infinite energy at infinity when separated but bound to
finite-energy skyrmions. Thus one can think of a skyrmion
as a monopole of confined half-skyrmions.4

Given that they are confined, the object of half-
skyrmions is a modified baryon. The half-skyrmions could
very well be present in nuclei. Indeed even an α particle can
be reasonably considered as a complex of eight half-
skyrmions [26]. What distinguishes the state of matter
for density n < n1=2 from that of n ≥ n1=2 is that Σ̄, nonzero
in n < n1=2, goes to zero at n ¼ n1=2 while fπ stays nonzero
across n1=2.

C. Nuclear symmetry energy

A striking effect of the topology change at high density is
the dramatic change in the structure of the nuclear
symmetry energy. This was first seen in dense skyrmion
matter simulated on a crystal lattice [27]. The symmetry
energy for baryonic matter, Esym, that figures in the energy
per nucleon of the baryonic matter EðnÞ at density n as

Eðn; αÞ ¼ Eðn; α ¼ 0Þ þ EsymðnÞα2 þOðα4Þ; ð4Þ

where α ¼ ðN − ZÞ=ðN þ ZÞ with NðZÞ being the number
of neutrons (protons) in the system, plays the key role in the2That it could be a four-quark condensate has been discussed.

There are arguments however that such four-quark condensates as
an order parameter are ruled out by a refined ’t Hooft anomaly
matching even in the presence of density [21].

3The possible analogy to superconductivity [22]: Σ̄ is the
analog to the spectral gap Δs and the pion decay constant fπ to
the (pairing) order parameter Δ0.

4This configuration is different from what is thought to happen
in the Néel-VBS (valence bond solid) transition in (2þ 1)
dimensions where the monopole event is suppressed by a Berry
phase and hence the half-skyrmions are deconfined in what is
known as a “deconfined quantum critical phenomenon” [25].
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EOS of compact-star matter. The Esym can be obtained from
the skyrmion matter by collective-quantizing the pure
neutron matter (i.e., α ¼ 1). It is given by Esym ¼
1=ð8IÞ þOð1=NcÞ2, where I is the isospin moment of
inertia [27]. At high density and large Nc we expect this
result to be justified. Being topological it should be robust.
A surprising result found in [27] is that since Σ̄ goes to zero
as density approaches n1=2, there appears a cusp at n1=2,
with the symmetry energy dropping going toward n1=2,
then turning over and increasing as the density increases
beyond n1=2. This cusp is highly robust against strong
interactions [28] but, being semiclassical, is expected to be
smoothed by higher order nuclear correlations. Also the
pion mass will intervene in eliminating discontinuity in the
cusp structure. In [2], this cusp was reproduced in terms of
the tensor force constructed with the Lagrangian. This cusp
structure can be simply understood in terms of the behavior
of the nuclear tensor force [27].

D. Parity-doublet structure in topology change

The topology change that drives Σ̄, nonzero in the
skyrmion phase simulated in fcc, to zero in CC at n1=2
exposes parity-doublet structure in baryonic matter [29].
We will see below that this will play a crucial role for the
pseudoconformal structure.
On a crystal lattice, the effective pion decay constant f�π

encoding the IDD (precisely defined below in Sec. III C) is
found to drop smoothly as the lattice is reduced, roughly in
consistency with chiral perturbation theory, toward the
density n1=2, but stops dropping at n1=2 where half-
skyrmions appear and remains constant ∼ð60–80Þ% of
the free-space value in the half-skyrmion phase [30]. The
in-medium nucleon mass m�

N tracks closely the in-medium
pion decay constant f�π multiplied by a scale-invariant
factor proportional to

ffiffiffiffiffiffi
Nc

p
which indicates that the large

Nc dominance holds in the medium as it does in free
space and stays constant [29]. Given that Σ̄ → 0 in the
half-skyrmion phase, we associate this constant with
the chiral-invariant mass m0 that we will encounter in
the parity-doublet baryon model discussed below in
Sec. IV. It is significant that such a chirally invariant term
is not explicitly present in the Lagrangian with which the
skyrmion crystal is constructed and hence must be gen-
erated by nuclear correlations.

III. HIDDEN SYMMETRIES OF QCD

In order to proceed to implement the topology change
described above in an EFT framework, we exploit sym-
metries of QCD that are not visible in the matter-free
vacuum that could emerge in a dense medium through
strong nuclear correlations. We focus on two, one, scale
symmetry and the other, hidden local symmetry (HLS).
Since this matter is discussed in detail elsewhere [2,3], we

briefly summarize only the key points relevant to our line of
arguments developed.

A. Flavor local symmetry

QCD has no flavor (local) gauge symmetry but the chiral
field U ¼ e2iπ=fπ in the effective SUðNfÞL × SUðNfÞR
chiral Lagrangian has redundancies. For instance, written
in terms of LðeftÞ and RðightÞ fields, one such (local)
redundancy is h†ðxÞhðxÞ ¼ 1 inserted between the chiral R
and L fields as

UðxÞ ¼ ξ†LðxÞξRðxÞ ¼ ξ†LðxÞhðxÞ†hðxÞξRðxÞ: ð5Þ

There can of course be infinite such redundancies sand-
wiched between the L and R fields. These redundancies can
be elevated to gauge symmetries by introducing gauge
fields. If kinetic energy terms are generated by dynamics,
then they can give rise to a local gauge theory consisting of
an infinite tower of vector mesons. How this can actually
happen in hadronic dynamics was recently discussed for
one redundancy in [31].5

In string theory, such an infinite tower of hidden local
gauge fields does arise from 5DYang-Mills theory [16] and
can account for the vector dominance structure of the
nucleon EM form factors [34]. For our problem restricted to
two flavors (Nf ¼ 2) defined at the chiral scale, we do not
need all the high tower of vector fields, so we focus on the
lowest vector mesons ρ and ω with ρ ∈ SUð2Þ and
ω ∈ Uð1Þ, integrating out the higher members of the tower.
As explained below, the flavor Uð2Þ symmetry for the
vector mesons, fairly good at low density, is strongly
violated at high density, so they will be treated separately.
Thus we will be primarily interested in

hðxÞ ∈ SUð2ÞLþR ×Uð1ÞLþR: ð6Þ

Written in terms of one-forms

α̂kμ ¼
1

2i
ðDμξR · ξ†R þDμξL · ξ†LÞ;

α̂⊥μ ¼
1

2i
ðDμξR · ξ†R −DμξL · ξ†LÞ; ð7Þ

where the covariant derivative is defined as DμξR;L ¼
ð∂μ − iVμÞξR;L with

5It is perhaps not recognized in the nuclear theory community
working on chiral effective field theory with pions only that local
gauge symmetry is in fact in the theory but hidden in higher chiral-
order terms. That one can write down a hidden gauge symmetric
Lagrangianwith thevectormanifestation fixedpoint à laYamawaki
[31] implies that the vector mesons can be thought of as emergent-
symmetry fields from a nonlinear sigma model (say, in the chiral
limit) [32,33]. This implies that looking in relativistic heavy-ion
experiments for whatwas thought to be “Brown-Rho” scalingwas a
“wild goose chase” in the wrong places.
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VμðxÞ ¼
gρ
2
ρaμτ

a þ gω
2
ωμI2×2; ð8Þ

the HLS Lagrangian to the leading order in the power
counting is

LM ¼ f2πtr½α̂⊥μα̂
μ
⊥� þ aρf2πtr½α̂kμα̂μk�

þ ðaω − aρÞf2πtr½α̂kμ�tr½α̂μk�

−
1

2
tr½ρμνρμν� −

1

2
tr½ωμνω

μν�: ð9Þ

Here aV for V ¼ ðρ;ωÞ is a parameter that enters in the
mass formula m2

V ¼ aVf2πg2V [35]. For the ρ meson, aρ ¼ 2

gives the familiar Kawarabayashi-Suzuki-Riazuddin-
Fayyazuddin (KSRF) formula. Although this Lagrangian
is fairly well known, we have written it down explicitly here
for definition of the terms to be used below.
Let us ignore for the moment the ω meson and consider

only the ρ. We will come to the ω matter later since its
property is important for the role of parity-doublet symmetry.
The advantage of treating the ρ as a hidden local

symmetric field is that it can be considered on the same
footing as the pion, that is, the ρ mass being in some sense
as “light” as the pion mass. In fact treating it as such, one
can do a systematic chiral perturbation calculation as
shown in [35]. This makes a good sense in dense matter
as one expects the ρ mass to go down at increasing density.
The KSRF mass formula, successful in the matter-free
vacuum, becomes a lot more accurate as the hidden gauge
coupling gρ falls along with the chiral condensate. In fact,
Wilsonian RG analysis shows that the gauge coupling
should go to zero—hence also the mass—as the density
approaches what is called the VM fixed point [36,37]. Note
that the mass goes to zero not because the order parameter
of chiral symmetry fπ goes to zero at high density but
because the ρ-nucleon coupling goes to zero.6 It is at the
point where the ρ decouples approaching the VM fixed
point that the local gauge symmetry for the ρ manifests.
This symmetry is not in QCD in the matter-free vacuum.
Hence it is appropriate to view it as a symmetry “emerging”
in the system as the quark condensate is driven to zero. The
VM fixed point is estimated to lie at n≳ 20n0 [2].
If the ω were considered in Uð2Þ together with the ρ, it

would become massless at the same VM fixed point. It
would satisfy the same mass formula as the ρ in the form
m2

ω ¼ aωf2πg2ω, with aω ≈ aρ and gω ≈ gρ. This follows
from the HLS strategy. This works fairly well in the

vacuum and also at low density. But at high density the
Uð2Þ symmetry seems to be badly broken and hence the ω
mass does not seem to go to the VM fixed point arrived at
by the ρ.

B. Scale symmetry

The scalar meson of a mass ∼600 MeV denoted in the
nuclear literature as σ—and f0ð500Þ in the particle-data
booklet—has been a mysterious object since a long time.
For the conundrum associated with this object in nuclear
physics, we refer to [38]. Here, we take the point of view
adopted in [2]—and in previous works referred to therein—
that the scalar could be treated as a dilaton arising from
spontaneous breaking of scale symmetry which is explicitly
broken by the trace anomaly of QCD. We will avoid
delving into the long-standing controversy as to whether
the association of the scalar with an infrared fixed point
makes sense for two or three flavors we are concerned with.
It is of course a fundamental issue in theoretical physics.
Here we entertain the possibility along the line adopted in
the condensed matter circle on emergent symmetries—and
argue for evidence—for the emergence of scale symmetry
in a dense medium even though it may be absent or hidden
in QCD in the vacuum. We liken this situation to the hidden
gauge symmetry associated with the ρ meson in baryonic
system.
The crucial point our argument relies on is that scale

symmetry could actually be present but hidden in QCD
[39]. For this argument, we exploit Yamawaki’s simple
argument developed in connection with walking techni-
color theory involving a conformal window [40]. Briefly
stated, the argument goes as follows.
Starting with the linear sigma model, by making a series

of field redefinitions, one can arrive at the chiral-invariant
Lagrangian in terms of the chiral field U and the chiral
scalar field σ as

LLσ ¼
1

2
ð∂μσÞ2 þ

1

4
σ2 · Trð∂μU∂μU†Þ − ζVðσÞ; ð10Þ

where V is the potential depending on σ and ζ is a constant
to be dialled to between zero and ∞.
Let us consider two extreme limits: the strong coupling

limit ζ → ∞ and weak coupling limit ζ → 0.
First in the strong coupling limit, V → 0 which gives

hσi → f ¼ fπ . Then one simply gets the familiar nonlinear
sigma model

LLσM !ζ→∞
LNLσ ¼

f2π
4
· Trð∂μU∂μU†Þ: ð11Þ

Note that there is no scale symmetry in this case. The
hidden scale symmetry gets shoved into the kinetic energy
term.

6It will be seen below (in Sec. IV) that the ρ meson could
decouple from nucleons before the VM fixed point is arrived at.
This means that the ρ mass in dense medium can drop to zero
even if the gauge coupling gρ ≠ 0 and fπ ≠ 0. As pointed out in a
footnote above, this may have a different chiral symmetry
property in a dense medium from high-temperature systems
where the ρ mass goes to zero due to the VM fixed point.
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Now we turn to the weak coupling limit. Define the
scale-dimension-1 and mass-dimension-1 field χ, called the
“conformal compensator field,”

χ ¼ fχeσ=fχ : ð12Þ

Under scale transformation, χ transforms linearly while σ
transforms nonlinearly:

δχ ¼ ð1þ xμ∂μÞχ; δσ ¼ fχ þ xμ∂μσ: ð13Þ

Here fχ is the decay constant. Expressed in terms of the
field χ, the Lagrangian (10) can be written as

LLσM ¼ Lsinv − VðχÞ ð14Þ

with

Lsinv ¼
1

2
ð∂μχÞ2 þ

f2π
4

�
χ

fχ

�
2

· Trð∂μU∂μU†Þ; ð15Þ

VðχÞ ¼ ζ

4
f4χ

���
χ

fχ

�
2

− 1

�
2

− 1

�
; ð16Þ

with ∂
∂χ VðχÞjhχi¼fχ ¼ 0. The first term of (14) is scale

invariant with scale breaking lodged entirely in the poten-
tial (16). It is important to note that scale invariance is
obtained in the limit ζ → 0 from a linear sigma model. As is
well known, scale symmetry cannot be spontaneously
broken if ζ is exactly zero. This limiting process will
figure below in Sec. IV as approaching the “dilaton-limit
fixed point (DLFP).”
The potential (16) is the first term in a more general

potential that is anchored on the trace anomaly reflecting
the dimensional transmutation, an intrinsic property of
QCD,

VðχÞ
���
anomaly

¼ m2
χf2χ
4

�
χ

fχ

�
4
�
ln

χ

fχ
−
1

4

�
; ð17Þ

where ζ is buried in mχ . This yields hδVi ¼ −hθμμi ¼
m2

χf2χ
hχ4i
f4χ

=4 ¼ m2
χf2χ=4 and has a minimum at hχi ¼ fχ .

C. bsHLS Lagrangian

The hidden symmetries and topology change discussed
above are incorporated in an effective theory that we call
bsHLS, b standing for baryons brought in as solitons, i.e.,
skyrmions, s for the scalar dilaton and HLS for the hidden
local gauge bosons. The bsHLS Lagrangian so constructed
is defined at the chiral scale Λχ ≈ 4πfπ ∼ 1 GeV. The scale
involved in practical calculations in nuclear physics is
much lower. In standard chiral perturbation theory (SχPT),
the cutoff, in practice, is set at ∼ð400–500Þ MeV, integrat-
ing out the vector mesons and the dilaton scalar, and hence

involves the nucleons and pions only. In our approach, we
put the cutoff denoted ΛV slightly above the free-space
vector meson mass, so that the explicit degrees of freedom
we deal with are the vector mesons and the scalar dilaton in
addition to the pions and of course the nucleons. To define
the effective Lagrangian to do quantum calculations, we
need to fix the “bare” parameters of the Lagrangian. This
we imagine doing at the chiral scale Λχ where the vector,
axial vector and tensor correlators are matched between the
EFT and QCD. This is done with the tree-order terms in the
EFT and the operator product expansion in QCD [4]. This
procedure endows the bare7 parameters of the EFT
Lagrangian with QCD variables, particularly nonperturba-
tive ones such as condensates—quark, gluon, dilaton, etc.,
condensate associated with the vacuum. Those condensates
are scale dependent, so when brought down to the scale ΛV
where they figure in the treatment, they will in principle
evolve. But this evolution could be ignorable as is generally
assumed in the literature for low energy. We will do the
same in this paper. Now in contrast to standard chiral
perturbation approaches, however, we take into account the
dependence of the condensates on density since the con-
densates depend on the “vacuum” and in a nuclear medium
the vacuum changes with the density. The density depend-
ence that results from the matching will be called intrinsic
density dependence dubbed as IDD for short.
How the IDD figures in nuclear dynamics depends on the

density regime involved. For a reason that will become
clear, it is convenient to divide the density regime into two,
region I (RI) and region II (RII), the former for n < n1=2
and the latter for n ≥ n1=2 with n1=2 being the topology
change density. It turns out [2] that in RI, the IDD is mostly
governed by the dilaton condensate hχi which gets locked
to the quark condensate Σ≡ hq̄qi, so the two scale
together. Furthermore due to the scale symmetry incorpo-
rated into the bsHLS Lagrangian, the bare masses of the
hadrons also scale with the dilaton condensate. To a very
good approximation, what we call the “master scaling
relation”

m�
N

mN
≈
m�

χ

mχ
≈
m�

V

mV
≈
f�π
fπ

≈
hχi�
hχi ≡Φ; ð18Þ

where V ¼ ðρ;ωÞ, holds in RI. To the leading order in the
counting involved with both scale and chiral symmetries
[41], the hidden gauge coupling gV and the dilaton-nucleon
coupling gσN do not scale in RI.
It should be stressed that this expression (18) uses

approximate equality. The reason is that in practical
calculations at the scale ΛV < Λχ , there can be additional
corrections that are most often not big but in some cases are
important when fine-tuning is involved as in the case of the

7We will skip the quotation marks from here on. By bare we
will always mean the ones with the quotation marks.
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equilibrium properties of the nuclear matter ground state.
A non-negligible case is when many-body forces enter that
are of higher order in the scale-chiral counting when the
dilaton and the vector mesons are involved. For instance a
short-ranged three-body force which lies above the scale-
chiral counting, e.g., involving ω exchanges, when inte-
grated out, gives rise to an induced density dependence
referred to in [2] as DDinduced. This is to be distinguished
from IDD in the sense that DDinduced is inherently Lorentz
noninvariant, manifesting the spontaneous breaking of
Lorentz symmetry in the vacuum modified by density.8

We should stress that it should be feasible within the
framework of our approach to actually calculate DDinduced’s
in various channels. In this work, we resort to available
phenomenological inputs to fine-tune the parameters as
needed.
We now turn to region II. Here the topology change at

n1=2 makes a drastic effect on the EOS. The vanishing of Σ̄
in the skyrmion crystal can be interpreted in bsHLS as that
the spectral gap vanishes while the chiral order parameter
(i.e., the pion decay constant) remains nonzero. As we will
argue below, this makes the effective nucleon mass go to a
constant m0 ≠ 0. We will see also that the dilaton con-
densate hχi, on the way to the DLFP described below, goes
to a constant∝ m0; hence the dilaton massmσ as well as the
ωmassmω, both scaling asΦðnÞ in RI, remain unscaling in
RII. In a stark contrast, the ρ mass (and also the a1 mass,
i.e., isovector vectors [44,45]) drops to zero as the ρ-
nucleon coupling gρ goes to zero toward the VM fixed
point. It was shown in [2] that this takes place at n≳ 20n0,
way beyond the range of density relevant to massive
compact stars. Since the ρ mass, satisfying the KSRF
formula to all orders of loop corrections [35], goes ∝ the
ρ-nucleon coupling in a dense medium, the ρ mass must
drop as the density increases. This differs from the ω mass
because of possible strong breakdown of flavor Uð2Þ
symmetry for the vectors ρ and ω in RII. It will be seen
below that the intricate interplay of the DLFP (explained
below) and the VM fixed point leads to an extremely simple
pseudoconformal structure in RII.

IV. DILATON-LIMIT FIXED POINT

Starting with the parity-doublet bsHLS Lagrangian
constructed above, we dial a parameter of the EFT
Lagrangian to arrive at what is called DLFP theory [46].
The procedure is tantamount to going from a nonlinear
sigma model, hidden-gauge symmetrized, to a linear sigma

model in the unraveling of the hidden symmetries in QCD
described above.
First we simplify the bsHLS Lagrangian by dropping

Oðp4Þ terms. In fact this approximation can be justified.
We will treat the ρ meson and ω meson as the SUð2Þ and
Uð1Þ gauge fields, respectively. In fact, this particular
property of the ω meson is very important with respect
to that of the dilaton scalar χ as the density increases.

A. Dialing to parity doubling

We start with bsHLS with a chiral-invariant nucleon
mass m0 introduced in the Lagrangian. Such a mass term
does not exist in QCD proper. In fact we will see below (as
we saw with the skyrmion matter) that the parity-doublet
symmetry can arise from strong correlations in a dense
medium. We will indeed find it to show up at high density.
Here we will simply put it in by hand while keeping
consistency with symmetries and then expose it by dialing a
parameter similarly to what one does for scale symmetry
hidden in QCD as discussed above.
As done above, we will restrict ourselves to the

hidden local symmetry hðxÞ ¼ SUð2ÞV ×Uð1Þ. The
bsHLS Lagrangian to the leading order in scale-chiral
counting can be written as [47]9

L ¼ LN þ LM þ Lχ ; ð19Þ

LN ¼ Q̄iγμDμQ − g1fπ
χ

fχ
Q̄Qþ g2fπ

χ

fχ
Q̄ρ3Q

− im0Q̄ρ2γ5Qþ gvρQ̄γμα̂kμQþ gv0Q̄γμtr½α̂kμ�Q
þ gAQ̄ρ3γ

μα̂⊥μγ5Q; ð20Þ

LM ¼ f2π
f2χ

χ2tr½α̂⊥μα̂
μ
⊥� þ

aρf2π
f2χ

χ2tr½α̂kμα̂μk�

þ ðaω − aρÞf2π
2f2χ

χ2tr½α̂kμ�tr½α̂μk�

−
1

2
tr½ρμνρμν� −

1

2
tr½ωμνω

μν�; ð21Þ

Lχ ¼
1

2
∂μχ · ∂μχ − VðχÞ: ð22Þ

Here VðχÞ is the dilaton potential which will be specified
later, Q is the nucleon doublet

Q ¼
�
Q1

Q2

�
; ð23Þ

which transforms as Q → hðxÞQ, the covariant derivative
Dμ ¼ ∂μ − iVμ, ρi are the Pauli matrices acting on the

8A good case where this DDinduced enters is the explanation of
the long lifetime of C14 where the effect of IDDþ DDinduced
affects the tensor force in such a way to make the Gamow-Teller
matrix element nearly vanish at n ∼ n0 [42]. This DDinduced could
account for the difference in the scaling factor Φ, which at n ≈ n0
is ∼0.85 in this C14 dating process whereas it is ∼0.75 for the
proton gyromagnetic ratio δgpl in 208Pb [43].

9To simply the notations, we do not affix � to the parameters to
indicate IDDs.
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parity doublet, gv0 ¼ 1
2
ðgvω − gvρÞ, and aω, aρ, gA and

gvρ;vω are all dimensionless parameters.
To move towards a chiral symmetric Gell-Mann-Lévy

(GML)-type linear sigma model, we do the field repar-
ameterizations Z ¼ Uχfπ=fχ ¼ sþ iτ⃗ · π⃗, defining the
scalar s, and write (19) composed of two parts, one that
is regular, Lreg, and the other that is singular, Lsing, as
trðZZ†Þ≡ κ2 ¼ 2ðs2 þ πa2Þ → 0.10 The singular part that
arises solely from the scale-invariant part of the original
Lagrangian (19) takes the form

Lsing ¼ ðgvρ − gAÞAð1=tr½ZZ†�Þ
þ ðα − 1ÞBð1=tr½ZZ†�Þ; ð24Þ

where α≡ f2π=f2χ and

A ¼ −i
4
trðZZ†Þ−2ψ̄ ½trð∂ðZZ†ÞÞfZ;Z†g

− 2trðZZ†ÞðZ∂Z† þ Z†∂ZÞ�ψ

×
−i
2
trðZZ†Þ−1ψ̄ρ3γ5ðZ∂Z† − Z†∂ZÞψ ; ð25Þ

B ¼ −1
16α

trðZZ†Þ−1tr½∂μðZZ†Þ�tr½∂μðZZ†Þ�; ð26Þ

where

ψ ¼ 1

2
½ðξ†R þ ξ†LÞ þ ρ3γ5ðξ†R − ξ†LÞ�Q: ð27Þ

That Lsing be absent leads to the conditions that

gvρ − gA → 0; α − 1 → 0: ð28Þ

The second condition is precisely the locking of fπ and fχ
mentioned above. Using large Nc sum-rule and renormal-
ization-group arguments [46], we infer

gA − 1 → 0: ð29Þ

In the density regime where the GML-type linear sigma
model is valid, the nucleon mass can be given as

mN� ¼ ∓g2hsi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg1hsiÞ2 þm2

0

q
; ð30Þ

where hsi is the vacuum expectation value of s. As the
chiral symmetry restoration point is approached, hsi → 0,
so in the limit trðZZ†Þ → 0, we expect

mN� → m0: ð31Þ

These are the constraints that lead to the dilaton limit as
announced above. It follows then that

gρNN ¼ gρðgvρ − 1Þ → 0: ð32Þ

We thus find that in the dilaton limit, the ρmeson decouples
from the nucleon.11 In contrast, the limiting trðZZ†Þ → 0
does not give any constraint on (gvω − 1). The ω-nucleon
coupling remains nonvanishing in the Lagrangian which, in
unitary gauge and in terms of fluctuations s̃ and π̃ around
their expectation values, takes the form

LN ¼ N̄i∂N − N̄ M̂ N − g1N̄ðĜ s̃þρ3γ5iτ⃗ · ⃗π̃ÞN
þ g2N̄ðρ3s̃þ Ĝγ5iτ⃗ · ⃗π̃ÞN

þ ð1 − gvωÞgωN
=ω
2
N; ð33Þ

where N is in a parity eigenstate. This Lagrangian is the
same as the one given in [48] except for the ω-nucleon
interaction. This is just the nucleon part of the linear sigma
model in which the ω is minimally coupled to the nucleon,
applicable infinitesimally below the critical density nc with
the effective nucleon mass replacing m0.

B. Emergent parity doubling

Here we show that parity doubling arises by nuclear
correlations from bsHLS without parity-doublet symmetry
incorporated ab initio in contrast to what was obtained
above by dialing parameters from the bsHLS Lagrangian
with the chiral-invariant mass m0 put in by hand [49]. We
can do this in the mean-field approximation using the
simplified bsHLS Lagrangian which is obtained from (20)
by turning off m0 and put in parity eigenstates,

LN ¼ N̄iγμDμN − hfπ
χ

fχ
N̄N þ gvρN̄γμα̂kμN

þ gv0N̄γμtr½α̂kμ�N þ gAN̄γμα̂⊥μγ5N; ð34Þ

and VðχÞ is the dilaton potential that we take the form (16).
We consider the EFT Lagrangian effective in a vacuum

affected by density. Its bare parameters appropriate in that
modified vacuum carry the density dependence via the
correlators. This is the IDD plus DDinduced as explained.
Wewill loosely refer to this “effective” density dependence as
IDD� represented in the bare parameters as �-ed quantities.12

10It is worth pointing out that this limiting process is equivalent
to dialing ζ to 0 to go from a nonlinear sigma model to scale-
symmetric theory via a linear sigma model as was done with (10)
discussed above.

11Note as mentioned above that this decoupling occurs even if
the VM where gρ → 0 is not reached.

12In working with the thermodynamic potential it is important
to properly treat the density dependence of bare parameters as
discussed in [50]. Otherwise one loses the rearrangement terms
and hence fails to conserve the energy-momentum tensor.
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The point made in [3]—and even before in [2]—is that
the bsHLS Lagrangian suitably endowed with the IDD�,
when treated in the mean field, effectively gives the Landau
Fermi-liquid fixed-point structure [50].
The thermodynamic potential in the mean-field approxi-

mation takes the form

Ωðχ; nÞ ¼ 1

4π2

�
2E3

FpF −m�2
N EFpF −m�4

N ln

�
EF þ pF

m�
N

��

þ ðg�vω − 1Þ2
2aωf2πχ2=f2χ

n2 − VðχÞ − μðnÞn; ð35Þ

where EF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
F þm�2

N

p
and the chemical potential is

given as a function of density n by

μðnÞ ¼ EFðnÞ

þ ðg�vω − 1Þ2
aωf2πχ2=f2χ

nþ ðg�vω − 1Þ
aωf2πχ2=f2χ

n2
∂ðg�vω − 1Þ

∂n : ð36Þ

The nucleon mass is connected to the ω-nucleon coupling
by the equation of the motion for χ and ω, and the in-
medium property of the χ condensate—equivalently the in-
medium mass of the dilaton—controls the behavior of the
nucleon mass at high density. The nucleon mass depends
on χ̄ ¼ hχi via

m�
N ¼ hχ̄: ð37Þ

The gap equation for χ is

�
m2

N

π2f2χ

�
pFEF −m�2

N ln

�
pF þ EF

m�
N

��

−
ðg�vω − 1Þ2
aωf2πχ4=f2χ

n2 þm2
χ

2

�
χ2

f2χ

�
ln

�
χ2

f2χ

��
χ ¼ 0: ð38Þ

In the mean-field approach, the dilaton limit is reached as
χ̄ → 0. Suppose the ω-nucleon coupling drops slowly. This
not only causes the nucleon mass to drop slowly, but also
delays the dilaton limit, gA ¼ gvρ ¼ 1, to higher density.
This feature can be seen in Fig. 1 given in Ref. [49]. Let us
take the scaling of the ω-nucleon coupling in the simple
form

g�vω − 1

gvω − 1
¼ 1

1þ Bn=n0
: ð39Þ

Here the scaling of the hidden gauge coupling gω is
ignored, which is negligible. Thus only the scaling of
the effective coupling gvω intervenes.
For a given constant B, the nucleon mass is calculated by

fitting the binding energy and the pressure of nuclear matter
at n0. The two density-dependent quantities involved are
m�

χ and g�ω that are determined by the binding energy and

the pressure at n ¼ n0 for given B. The result is plotted in
Fig. 1. Remarkably the nucleon mass is found to drop
almost linearly in density to about 70% of the free-space
mass at a density denoted nA above n0. Up to ∼n0, the
dilaton condensate, locked to the quark condensate, is
consistent with the empirical value of the quark condensate
estimated from the in-medium pion decay constant mea-
sured in deeply bound pionic states [51]. It then stabilizes to
a constant for n≳ nA. We identify this density nA with
the skyrmion-to-half-skyrmion transition density n1=2 we
encountered above.
How this comes about is an intricate interplay between

the nucleon mass and the ω-NN coupling after n ∼ nA. This
is explained in the Appendix. Here we should stress that
this mean-field calculation was made with m0 ¼ 0.
Nevertheless, we have found m�

N ∼ 0.7mN in high density,
indicating that a nonvanishing m0 emerges dynamically.
The interplay between the nucleon mass and the ω-nucleon
coupling as revealed in this way is similar to what was
found by the renormalization group equation analysis [49]
and consistent with what was phenomenologically
observed in nuclear EFT description with IDD� modified
by the topology change [2].
In brief, this analysis suggests that as density reaches

nA ∼ n1=2 the nucleon mass goes as

mN ∝ hχi ∼ const; ð40Þ
and parity doubling emerges via an interplay between ω-
nuclear coupling and the dilaton condensate.

V. PSEUDOCONFORMAL EQUATION OF STATE

A. Trace of energy-momentum tensor at n ≥ n1=2
We now argue that the emergence of parity doubling,

scale symmetry and hidden local symmetry at n ≥ n1=2 has

FIG. 1. The ratio m�
N=mN ≈ hχi�=hχi0 as a function of density

for varying density dependence of g�vω. Note that for a given ω-
nuclear coupling, the nucleon mass stops dropping at a density nA
above nuclear matter density n0 and stays constant above that
density. Figure borrowed from Ref. [49].
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a drastic impact on the star structure. For this, we look at the
trace of the energy-momentum tensor. First we compute the
TEMT in the mean-field approximation with the bsHLS
Lagrangian. From the Lagrangian Eq. (34) together with
the dilaton potential (16), one obtains the energy density ϵ
and the pressure P (at T ¼ 0) of the form

ϵ ¼ 1

4π2

�
2E3

FkF −m�2
N EFkF −m�4

N ln

�
EF þ kF

m�
N

��

þ gωðgvω − 1Þhω0in −
1

2
aωf2πg2ω

hχi2
f2χ

hω0i2 þ VðhχiÞ

ð41Þ

and

P ¼ 1

4π2

�
2

3
EFk3F −m�2

N EFkF þm�4
N ln

�
EF þ kF

m�
N

��

þ 1

2
aωf2πg2ω

hχi2
f2χ

hω0i2 − VðhχiÞ: ð42Þ

Using the solutions of the gap equations for χ and ω that
follow from extremizing (35), i.e.,

m2
Nhχi
π2f2χ

�
kFEF −m�2

N ln
�
kF þ EF

m�
N

��
−
aωf2π
f2χ

g2ωhω0i2hχi

þ ∂VðχÞ
∂χ

����
χ¼hχi

¼ 0; ð43Þ

gωðgvω − 1Þn − aωf2πg2ω
hχi2
f2χ

hω0i ¼ 0; ð44Þ

it is straightforward to derive from (41) and (42) the
vacuum expectation value (VEV) of the TEMT θμμ (we
work in the chiral limit)

hθμμi ¼ hθ00i −
X
i

hθiii ¼ ϵ − 3P

¼ 4VðhχiÞ − hχi∂VðχÞ∂χ
����
χ¼hχi

: ð45Þ

What is significant of this result is that in the mean field of
bsHLS, the TEMT is given solely by the dilaton con-
densate. This is in the chiral limit, but we expect this
relation to more or less hold for a small pion mass. From
what we learned from above, i.e., that the emergence of
parity doubling at n≳ n1=2 implies hχi → cm0 where c is a
constant, we have

hθμμi ∝ fðm0Þ ≠ 0 for n≳ n1=2: ð46Þ

As stated [2,3], the mean-field treatment of bsHLS
amounts to doing Landau Fermi-liquid fixed-point

approach ignoring corrections of Oð1=N̄Þ, where N̄ ¼
kF=ðΛ − kFÞ with Λ being the cutoff above the Fermi
sea. In [2], the corrections to the Fermi-liquid fixed-point
approximation were included in the so-called “V lowk RG”
formalism.13 It was found that with n1=2 ¼ 2n0, the TEMT
satisfied the behavior (46) for both nuclear matter
(α ¼ 0) and pure neutron matter (α ¼ 1) and hence for
β-equilibrated compact stars.

B. Pseudoconformal model (PCM)

As argued in detail in [49] and recounted briefly above, the
parity-doubling approaching the dilaton-limit fixed point
arises due two crucial effects taking place in the n ≥ n1=2
regime. One is the ρmeson decoupling from the system and
the other the interplay in the ω coupling to nucleons.
It is mysterious that these effects lead to a function

uniquely of the density-independent quantity m0 in the
TEMT for n ≥ n1=2. We do not have an understanding of
how this comes about. What is robust is that it leads to the
sound speed of stars v2s=c2 ¼ 1=3, usually associated with
conformal symmetry with a vanishing energy-momentum
tensor, hence called “conformal sound velocity.” What is
relevant here is that it also arises when the TEMT is density
independent. This is easily seen from that

∂
∂n hθ

μ
μi ¼ ∂ϵðnÞ

∂n ð1 − 3v2sÞ ¼ 0 ð47Þ

with v2s ¼ ∂PðnÞ
∂n = ∂ϵðnÞ

∂n . Since ∂ϵðnÞ
∂n ≠ 0 in the range of

densities involved,we immediately obtain the sound velocity
v2s=c2 ¼ 1=3. Since the TEMT is not equal to zero, it is
appropriate to call it “pseudoconformal sound velocity.”
In [2,3], it was shown that this pseudoconformal prop-

erty could simply be captured by a two-parameter formula.
Consider E=A for n ≥ n1=2 in the form

E=A ¼ −mN þ Xαxb þ Yαxd with x≡ n=n0; ð48Þ

where X, Y, b and d are parameters to be fixed and
α ¼ ðN − ZÞ=ðN þ ZÞ. The sound velocity takes the form

v2s ¼
dP=dx
dϵ=dx

¼ Xαbðbþ 1Þxb þ Yαdðdþ 1Þxd
Xðbþ 1Þ þ Yðdþ 1Þxd ; ð49Þ

where P is the pressure and ϵ is the energy density. If we
choose d ¼ −1 and b ¼ 1=3, then the E=A given by

13The V lowk renormalization group (RG) employed in [2], very
well known in the nuclear theory community, was explained in
detail there. There the formalism reviewed in [52]wasupdated so as
to incorporate the structure of bsHLS. Briefly for those outside of
the field, the V lowkRG purports to do a Wilsonian renormalization
group effective field theory treatment of many-nucleon systems
that go beyond the Fermi-liquid fixed-point approximation.
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E=A ¼ −mN þ Xαx1=3 þ Yαx−1 with x≡ n=n0 ð50Þ

has the sound velocity

v2s=c2 ¼ 1=3 ð51Þ

independently of Xα and Yα.
The PCM for the EOS provides then E=A given by the

union of that given by V lowk in RI (n < n1=2)—that is
constrained by the properties of normal nuclear and slightly
above reached by experiments—and that given by (50) in RII
(n ≥ n12)—that embodies pseudoconformal structure—with
the parametersXα and Yα fixed by the continuity at n ¼ n1=2
of the chemical potential and pressure

μI ¼ μII; PI ¼ PII at n ¼ n1=2: ð52Þ

VI. COMPACT STARS

We now apply the PCM formulated above to set both the
lower and upper bounds of the topology changeover
densities from the structure of dense compact-star matter.
The lower bound is indicated by the recent gravitational
wave data on the tidal deformability and the upper bound
by the available heavy-ion experimental data.

A. Tidal deformability and the lower bound of n1=2
It was shown in [2] that the property of the trace of the

energy-momentum tensor in RII (n ≥ n1=2) going as hθμμi ∝
hχi4 with the condensate becoming hχi density indepen-
dent, calculated in the mean field in bsHLS, was exactly
reproduced by the V lowkRG calculation. This equality was
verified when the topology change was taken at
n1=2 ¼ 2n0. While the mean-field calculation relies on
the Fermi-liquid fixed-point approximation that ignores
Oð1=N̄Þ corrections, the V lowkRG calculation includes (in
principle) all orders of 1=N̄ in the ring-diagram approach
[53,54]. To the extent that the ring-diagram approach which
goes beyond the Fermi-liquid fixed point is reliable for the
many-body problem at near the equilibrium density n0, one
expects it to remain valid before the topology change takes
place. Assuming that the validity holds up to n1=2, we can
take the result of [2] as a support for the PCM EOS for the
case of n1=2 ¼ 2n0. Since the V lowkRG approach success-
fully explains all properties of symmetric nuclear matter at
n ¼ n0 and even up to near 2n0 as measured in heavy-ion
experiments (e.g., the symmetry energy at n ¼ 2n0 [55];
see below), that the PCM—that treats RI in V lowk and RII
with (50)—reproduces the full V lowkRG results supports
the intricate scaling behavior in RII being captured by the
pseudoconformal structure.
There was, however, one potentially significant problem

in the calculation of [2] that was revealed by the recent
bound established on the dimensionless tidal deformability

Λ < 800 [1] for a 1.4-solar-mass (M1.4) star. While overall
star properties are fairly well explained—and that includes
the ≳2-solar mass and its radius—the Λ predicted by the
theory came out to ∼790 [2], which is a bit too high, given
that a more refined analysis of gravitational waves seems to
point to a lower bound [56] than what was announced in
[1]. Why this result can pose a problem for the PCM with
n1=2 ¼ 2n0 is that the central density of theM1.4 star comes
out to be n≳ 2n0 (see Table III) in the PCM, hence
coincident with the transition density where the EOS goes
from “soft” as needed at n ∼ n0 to “hard” above n0 so as to
accommodate the maximum mass ≳2.02M⊙. This means
that the changeover density must be higher than 2n0, thus
setting the lower bound for the topology change density,

n1=2 > 2n0: ð53Þ

It has indeed been verified that a higher n1=2 could resolve
this problem. In [3], the PCM with n1=2 ¼ 2.6n0 is found to
give, forM1.4,Λ ≈ 640with the central density atnc ≈ 2.3n0,
which is in the soft region RI. The resulting star properties,
however, remain practically the same as the case of
n1=2 ¼ 2n0. This consolidates the observation made
before—and reconfirmed below—that star properties are
fairly insensitive to the location of n1=2 in the vicinity of
∼2n0, where quarkdegrees of freedomare expected to figure.
The question then is, how far can one increase n1=2

without upsetting the good star properties? In particular we
are interested in how the range of density allowed by the
location of n1=2 compares with the range of the baryon-
quark continuity as in the phenomenological model of [10].
This question is highly relevant to the possible applicability
of the notion of Cheshire cat to dense matter.

B. Analysis for 2 ≤ ðn1=2=n0Þ ≤ 4

Now, we are in a position to make an explicit calculation
to see the impact of the topology change at n1=2 on the
equilibrium nuclear matter as well as the star properties.
As explained in [2], the scaling parameters may be

minimally fine-tuned in RI14 to fit the nuclear matter
properties around the saturation density and the results
for the V lowk calculation in RI can be fit extremely well by
the simple function

E=A ¼ Aα

�
n
n0

�
þ Bα

�
n
n0

�
Dα

ð54Þ

with α ¼ ðN − ZÞ=ðN þ ZÞ. We obtain to a high precision
the parameters of the fitting function (54) in RI. They are

14It is well recognized that the ground-state properties of the
equilibrium nuclear matter are extremely sensitive to parameters.
In the bsHLS framework, this can be understood as differences in
the cutoff scales involved with DDinduced for different mesonic
degrees of freedom, i.e., ρ, ω, χ, N, etc.
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listed in Table I. As expected, the parameters in the fitting
function vary a bit depending on the topology change
density n1=2 due to the fine-tuning needed for the properties
of normal nuclear matter.
Now in RII, E=A is simply given by (50) with the

continuity condition (52). The parameters of the function
(50) are summarized in Table II. We note that the fitting
parameters in RII are strongly dependent on the position
of n1=2, particularly for the pure neutron matter and
n1=2 ¼ 4n0.
In Fig. 2 is given the E=A predicted with the parameters

listed in Tables I and II. It is noteworthy that as the density
exceeds n1=2 with the appearance of the pseudoconformal
structure, the energy of the system E=A gets greater the
higher n1=2 is. In contrast, the property of the ground state
of nuclear matter is unaffected by the location of n1=2: At

the saturation density n0 ≃ 0.16 fm−3, the binding energy
BE and the compression modulus K are given, for all n1=2
considered, by

BE ¼ 15.65 MeV; K ¼ 228.9 MeV; ð55Þ

respectively, in consistency with the values widely quoted
in the literature.
The symmetry energy Esym predicted by the theory is

given in Fig. 3. As shown in [2] in the V lowkRG formalism,
the cusp found at the quasiclassical approximation [27] is
smoothed by higher-order 1=N̄ corrections. But it clearly
reflects the changeover from soft to hard in the EOS at n1=2:
The greater n1=2, the harder the Esym becomes. Up to
n ∼ 2n0, the symmetry energy is insensitive to n1=2. It is
consistent with the available empirical constraints. The
predictions

Esymðn0Þ ¼ 27.2 MeV; Esymð2n0Þ ¼ 51.7 MeV ð56Þ

more or less agree with the constraints Esymðn0Þ ¼
31.7� 3.2 MeV and Esymð2n0Þ ¼ 46.9� 10.1 MeV obta-
ined recently [55].
We now turn to the EOS that enters into the Tolman-

Oppenheimer-Volkoff (TOV) equation.
Fully equipped with the energy density ϵðnÞ gotten via

E=A calculated above

ϵðnÞ ¼ n

�
E0ðnÞ
A

þmN

�
; ð57Þ

and the pressure density

pðnÞ ¼ n
dϵðnÞ
dn

− ϵðnÞ; ð58Þ

we are now ready to proceed to predict the star properties.
First, the pressure density for neutron matter as a

function of density for the given locations of n1=2 is given
in Fig. 4. The results are compared with the bounds

TABLE I. Fitting parameters (in of MeV) in RI for symmetric
nuclear matter (α ¼ 0) and neutron matter (α ¼ 1) with different
choices of n1=2.

n1=2=n0 AI BI DI

α ¼ 0 α ¼ 1 α ¼ 0 α ¼ 1 α ¼ 0 α ¼ 1

2.0 [2] −45.5 9.11 30.1 2.14 1.54 4.08
3.0 −27.0 6.88 11.4 4.68 2.12 2.87
4.0 −24.0 4.09 8.86 6.84 2.28 2.57

TABLE II. Fitting parameters (in unit MeV) in RII for sym-
metric nuclear matter (α ¼ 0) and neutron matter (α ¼ 1) with
different choices of n1=2=n0.

n1=2=n0 Xα Yα

α ¼ 0 α ¼ 1 α ¼ 0 α ¼ 1

2.0 [2] 570 686 440 253
3.0 575 725 423 64.4
4.0 607 912 247 −946

Prediction for n1 2 3.0n0

Prediction for n1 2 2.0n0

Prediction for n1 2 4.0n0

0 1 2 3 4 5

0

100

200

300

400

500

n n0

E
A

M
eV

FIG. 2. Predicted E=A vs density for n1=2=n0 ¼ 2.0, 3.0 and
4.0. The upper (lower) curves are for pure neutron matter with
α ¼ 1 (symmetric nuclear matter with α ¼ 0).
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Prediction for n1 2 2.0n0
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FIG. 3. Predicted Esym vs density.
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presently available from heavy-ion experiments [57]. While
the pressures obtained for n1=2=n0 ¼ 2 and 3 are found
fully consistent with the bounds up to n ¼ 5n0, that for
n1=2 ¼ 4.0n0 deviates from the experimental bounds above
∼3n0. This result suggests the upper bound for n1=2,

n1=2 < 4n0: ð59Þ

Given the EOS described above, we are now in position
to fully analyze the compact-star properties using the TOV
equation. We follow the same procedure as in [2]. As there,
we take into account the presence of leptons in beta
equilibrium in solving the TOV equation.
We first plot in Fig. 5 the mass-radius relation of the

compact stars for different choice of n1=2. It is found that

the higher the n1=2, the larger the upper bound of the star
masses. The upper bound comes out to be roughly
(2.04 M⊙–2.23 M⊙) for 2.0 ≤ n1=2=n0 ≤ 4.0. This bound
is consistentwith the observation of themassive neutron stars
[58,59]. It is notable that, when n1=2 ≥ 3.0n0, changing the
position of n1=2 affects only the compact stars with mass
≲2.0 M⊙ although themass-radius relation is affected by the
topology change when 2.0n0 ≤ n1=2 ≤ 3.0n0.
In Fig. 6 is plotted the star mass vs the central density

of the stars. What is noteworthy is that the maximum
central density of the stars is about ∼ð4–5Þn0, more or less
independent of the topology change density.
We now turn to the star properties that distinguish the

pseudoconformal model from all others found in the
literature, namely, the sound velocity v2s=c2 ¼ 1=3 and
the tidal deformability Λ.
First the sound velocity.
The PCM, derived from the result of [2] obtained in

the full V lowkRG formalism with bsHLS for n1=2 ¼ 2n0
and confirmed in [3] for n1=2 ¼ 2.6n0, when applied to
n1=2 > 2.0n0, is by construction to yield the conformal
sound velocity v2s=c2 ¼ 1=3 for density ≳n1=2. As stated,
this can be taken as representing the signal for a change of
degrees of freedom from baryons to QCD degrees of
freedom at that density. We will discuss below what this
means in terms of observability of this prediction and the
role of hidden symmetries of QCD.
Next the tidal deformability Λ in gravitational waves.
As discussed in [3], the tidal deformability measured in

the neutron star mergers is sensitive to the position of the
topology change and hence offers a possibility to fix the
value of n1=2 if it can be tightened to a precise value. We
address this issue here.

Prediction for n1 2 4.0n0

Prediction for n1 2 2.0n0

Exp Tsang180706571

Prediction for n1 2 3.0n0

0 1 2 3 4 5
0

100

200

300

400

500

600

n n0

P
M

eV
fm

3

FIG. 4. Predicted pressure vs density compared with the
available experimental bound given by [57].
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n1 2 2.0 n0

n1 2 3.0 n0

10 11 12 13 14 15
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M
M

FIG. 5. Mass-radius relation of compact stars with different
choice of n1=2. Note that below M ≈ 2 M⊙, the curves for
n1=2=n0 ¼ 3.0 and 4.0 represented in red with black dots are
coincident.

n1 2 4.0 n0
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n1 2 3.0 n0
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FIG. 6. The star mass vs the central density. The red curve with
black dots stands for n1=2=n0 ¼ 3 and 4.
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The dimensionless tidal deformability parameter Λ
predicted for n1=2=n0 ¼ 2.0, 3.0 and 4.0 is plotted in
Figs. 7 and 8, the former vs the central density ncent and
the latter vs the star mass M. In Table III they are
summarized within the range of star masses relevant to

the LIGO/Virgo observation [1], together with the radii
involved.
There are striking differences between the results of

n1=2 ¼ 2.0n0 and those of n1=2 > 2.0n0. The former,
which, we suggested, is disfavored by the observation of
the bound Λ < 800, differs appreciably from the latter, all
of which share nearly the same properties of M vs ncent, Λ
and the radius R. Note that the radius is remarkably
independent of n1=2 as well as of M for n1=2 > 2.0n0.
The only clear difference in the latter is the maximum star
mass, which tends to be bigger, the greater the transition
density, reaching Mmax ∼ 2.3 M⊙. This indicates higher
n1=2 gives higher mmax but note however that n1=2 ¼ 4n0 is
disfavored—although not ruled out—by heavy-ion data for
the pressure pðnÞ for n≳ 3n0.
Now turning to the case of the Λ for the 1.4 M⊙ star [1]

that wewill denote asΛ1.4, what transpires from going from
n1=2 ¼ 2.0n0 to n1=2 > 2.0n0 is that the Λ1.4 does drop
significantly from ∼800 to ∼650. However it seems to
saturate to ∼650 for all n1=2 as long as n1=2 > 2.0n0. This is
quite reasonable—within the framework of the present
theory—in that Λ1.4 probes the density regime RI lying
below the density at which the putative change of degrees
of freedom takes place, that is, below where the hidden
symmetries of QCD emerge. This means that Λ1.4 is
ignorant of, or insensitive to, the pseudoconformal structure
that figures at n ≥ n1=2.
An important issue arises with this result. A more recent

analysis of [1] indicates [56,57] that the dimensionless Λ
could be tightened to a lower bound, Λ ¼ 300þ420

−230 when
mass-weighed or to Λ ¼ 190þ390

−120 with R ¼ 11.9� 1.4 km
when the same EOS is used for the stars considered. Now
should the bound go down considerably lower than, say,
∼650 predicted by the theory (Table III), this could not be
accommodated by simply changing the topology change
density. Given that the M1.4 probes the RI regime, this
would require further fine-tuning of the parameters in RI
without disturbing the (good) properties of the equilibrium
nuclear matter. Whether this is feasible or not needs to be
seen. But it will not affect the pseudoconformal structure
that gives rise to the sound velocity v2s=c2 ¼ 1=3. A remark
relevant to this issue is made below.

n1 2 4.0 n0

n1 2 2.0 n0

n1 2 3.0 n0

1.5 2.0 2.5 3.0 3.5 4.0
0

200

400

600

800

1000

ncent n0

FIG. 7. The tidal deformability vs the central density.
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n1 2 2.0 n0

n1 2 3.0 n0

1.2 1.4 1.6 1.8 2.0
0

200

400

600

800
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FIG. 8. The tidal deformability as a function of the star mass.

TABLE III. Properties of compact stars with different masses and n1=2=n0.

ncent=n0 Λ=100 R=km

M=M⊙ n1=2 ¼ 2.0 n1=2 ¼ 3.0 n1=2 ¼ 4.0 n1=2 ¼ 2.0 n1=2 ¼ 3.0 n1=2 ¼ 4.0 n1=2 ¼ 2.0 n1=2 ¼ 3.0 n1=2 ¼ 4.0

1.12 1.81 2.00 2.00 25.3 22.5 22.5 12.7 12.6 12.6
1.22 1.88 2.10 2.10 16.7 14.2 14.2 12.8 12.7 12.7
1.31 1.95 2.20 2.20 11.6 9.50 9.50 12.9 12.8 12.8
1.40 2.02 2.30 2.30 7.85 6.52 6.52 13.0 12.8 12.8
1.49 2.17 2.40 2.40 5.54 4.50 4.50 13.1 12.8 12.8
1.57 2.31 2.50 2.50 4.00 3.25 3.25 13.1 12.8 12.8

YONG-LIANG MA and MANNQUE RHO PHYS. REV. D 99, 014034 (2019)

014034-14



VII. DISCUSSIONS AND PERSPECTIVES

Stated in brief, the principal result of this work is as
follows. With flavor local symmetry and scale symmetry,
invisible in QCD in the matter-free vacuum, and topology
intrinsic in baryonic structure implemented, we have devel-
oped the idea that the hidden symmetries together with
topology change could be revealed at high density commen-
surate with the density of compact stars. What plays a crucial
role there is the emergence of parity doubling together with
whatwe identify as the presence of a dilaton-limit fixed point.
The prediction of the approach is that there be pseudocon-
formal symmetry emerging at a density at which topology
change takes place in baryonic matter. Taking into consid-
eration the recent observation of the tidal deformability in the
gravitational waves from coalescing neutron stars, the pseu-
doconformal structure is found to set in at n > 2n0 with the
sound velocity converging to v2s=c2 ≈ 1=3 and staying until
the dilaton-limit fixed point estimated to be >20n0.
The bound for the dimensionless tidal deformability Λ

inferred from the recent LIGO/Virgo gravitation wave
suggests that the topology change cannot take place at a
density less than 2n0 and hence sets the lower bound
n1=2 > 2.0n0. Information from heavy-ion collisions indi-
cates further that the topology change cannot take place at
4n0, so that sets the upper bound n1=2 < 4n0. This gives the
bound (1) as announced.
The pseudoconformal sound velocity (51), predicted to

set in at n ≳ n1=2, typically at n ∼ 3n0, is totally at variance
with all other predictions found in the literature. Since it is
argued that such a sound velocity cannot be converged to
unless there is a change of degrees of freedom from
hadronic to QCD degrees of freedom [60], our result based
on topology change can be interpreted as capturing the
baryon-quark continuity which is thought to take place in
the same range of density [10].
Although much effort was devoted throughout the paper

to clearly distinguish our approach from other approaches
[11] where quark degrees of freedom are explicitly imple-
mented, it is perhaps worth repeating the key point of our
approach. In our approach the change of degrees of
freedom, namely the topology change, does not have
order parameters signaling the changeover from before
to after n1=2. In this sense the “phase” change does not
belong to the usual Landau-Ginzburg-Wilsonian paradigm.
Furthermore the appearance of the precocious (pseudo)
conformal sound velocity is in some sense natural in the
model. We find our scenario to resemble that given by the
quarkyonic matter which appears at a similar density
regime [13]. Given that half-skyrmions for density n >
n1=2 are confined into baryons, the half-skyrmion matter is
a baryonic matter. It seems plausible that the quarkyonic
matter is also a baryonic, albeit modified, matter as has
been hinted at by Ref. [14]. However our picture seems to
predict a (pseudo)conformal sound velocity at a density

(perhaps) much lower than that of quarkyonic [61]. This
may be due to the nature of large Nc approximations
involved in the two approaches.
What is highly surprising is that the extremely simple

PCM with the precocious sound velocity and a hint for
emerging symmetries fully captures the full V lowkRG
physics in giving global overall accounts of compact-star
properties more or less correctly. As far as we can see, there
is no contradiction between the pseudoconformal structure
we are advocating and the overall star observables so far
available. On the other hand, most of the currently
“successful” standard nuclear models, e.g., energy-density
functional approach, that carry no precocious conformal
sound velocity do not seem to get into serious conflict with
the currently available observations. So the crucial question
is, is the pseudoconformal sound velocity a quantity that is
indispensable for the EOS? If not, is the possible emer-
gence of hidden symmetries, which logically lead to the
conformal sound velocity, an unphysical phenomenon?
This question raises inevitably the issue as to whether the
sound velocity is a measurable quantity.
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APPENDIX: BEHAVIOR OF THE DILATON
CONDENSATE AT n ≥ nA

We found in Sec. IV B that, in the mean field, the dilaton
condensate drastically changes at nA. Here we show that
this behavior is caused by the change of the solution for
Eq. (38) as

χ̄∶ χ̄þ → χ̄− ðA1Þ
at n ∼ nA, where χ̄� are given by

m2
χ

f2χ
χ̄3�Σ̄� ¼ 3mN

4fχ
n

� n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3mN

4fχ

�
2

− 2
m2

χ

aωf2π
Σ̄�ðg�ω − 1Þ2

s
ðA2Þ

with Σ̄� ¼ jln ðχ̄2�=f2χÞj which are solutions to Eq. (38) in
the approximation that pF=mN is small. The drastic change
occurs at n ∼ nA, where χ̄þ ¼ χ̄− and the quantity χ̄ follows
the behavior of χ̄− after n ∼ nA.
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One can readily understand the above interplay between
the nucleon mass and the ω-NN coupling after n ∼ nA. The
behavior of χ̄ depends on how the product ðg�vω − 1Þ2n2
goes with density. If we expand the solution χ̄− in terms of
RðnÞ defined as

RðnÞ≡ 2
m2

χ

aωf2π
ln

�
fχ
χ̄−

�
2

ðg�vω − 1Þ2
�
3mN

4fχ

�
−2
; ðA3Þ

χ̄− is simplified to

χ̄3− ¼ 4

3

f3χ
aωf2πmN

ðg�vω − 1Þ2nþOðRðnÞÞ ðA4Þ

at intermediate density, n > nA, where RðnÞ < 1.
Consequently, if g�vω is constant, i.e., B ¼ 0, the VEV
goes like χ̄ ∼ n1=3. Whereas when the effective coupling
varies with density as ðg�vω − 1Þ2 ∼ 1=n, one finds χ̄∼ const
as well captured in Fig. 1.

As stressed we do not expect the DLFP to be on top of
chiral restoration or of the VM manifestation (in the chiral
limit), but it may be close to it. So an interesting question is
whether our mean-field model can say something about the
chiral restoration transition.
With the conformal compensator prescription, the ω-

meson mass term in the present context carries χ2. This
appears in the mean-field thermodynamic potential (35) in
the form of ðg�vω − 1Þ2n2=χ2 by use of the equation of
motion for ω0. Once the density is turned on, the inverse
power of χ generates a divergent contribution to the entire
Ω peaked at χ ¼ 0. This huge barrier prevents the VEV χ̄
from approaching the scale-symmetry (or equivalently
chiral-symmetry) restored state, χ̄ ¼ 0. In order to have
the flat χ after the onset density nA up to some density nB
and then have it drop to zero for chiral restoration, some
sort of level crossing must take place between the χ’s as the
density is increased. This may be related to the still-open
problem of low-mass scalars in nuclear and hadron physics
vis-à-vis with f0ð500Þ.
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