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We apply the path optimization method to a QCD effective model with the Polyakov loop at finite
density to circumvent the model sign problem. The Polyakov-loop extended Nambu–Jona-Lasinio model is
employed as the typical QCD effective model and then the hybrid Monte Carlo method is used to perform
the path integration. To control the sign problem, the path optimization method is used with complex-
ification of temporal gluon fields to modify the integral path in the complex space. We show that the
average phase factor is well improved on the modified integral-path compared with that on the original one.
This indicates that the complexification of temporal gluon fields may be enough to control the sign problem
of QCD in the path optimization method.
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I. INTRODUCTION

Investigation of the phase structure of quantum chromo-
dynamics (QCD) is one of the important subjects in the
study of the hot and dense QCD matter. If we directly
obtain the phase diagram at finite temperature (T) and
density from the first-principles calculation such as the
lattice QCD simulation, there are no fog in the exploration.
Lattice QCD, however, has the sign problem at finite real
chemical potential (μ) and then we cannot obtain the
reliable results at finite density. To circumvent the sign
problem, several methods have been proposed such as the
Taylor expansion method [1–3], the reweighting method
[4,5], the analytic continuation method [6–8], the canonical
approach [9–13] and so on. However, we cannot go beyond
the μ=T ∼ 1 line by using those methods; e.g., see Ref. [14].
Recently, new ideas have been applied to attack the sign

problem such as the complex Langevin method [15,16] and
the Lefschetz-thimble method [17–19]. Both methods are
based on the complexification of dynamical variables.
The complex Langevin method is based on the stochastic
quantization and thus it does not have the sign problem, in
principle. In the Lefschetz-thimble method, one should

solve flow equations to construct the new integral path
which is corresponding to the steepest descent trajec-
tory; this trajectory is so called the Lefschetz thimble.
Unfortunately, these methods have some serious problems
and thus it is difficult to apply it to QCD at high density: In
the complex Langevin method, there is the possibility that it
is converged to wrong results due to the excursion and
singular problems [20,21]. In comparison, the Lefschetz
thimble method has the global sign problem when two or
more Lefschetz thimbles contribute to the path integral and
then there is the serious cancellation between them; e.g.,
see Ref. [19]. In addition, we should evaluate the Jacobian
induced by the modification of the integral path and it leads
the serious increase of the numerical cost. Furthermore, the
Jacobian induces the residual sign problem because the
oscillation of the Boltzmann weight arises. Also, we may
face the problem to draw thimbles when the classical or the
effective action has singular points [22]. Recently, some
attempts to extend the complex Langevin method and the
Lefschetz thimble method have been proposed; the uni-
fication approach of both methods [23], the modification
method [24], the extension of the thimble regularization
[25,26], the dynamical stabilization [27], the path opti-
mization [28–31] and the sign-optimized manifold con-
struction [32]. In this study, we concentrate on the path
optimization method (POM).
In Ref. [28], we have proposed the new method which

we call the path optimization method motivated by the
Lefschetz thimble method. The path optimization method is
strongly improved in Ref. [29] by introducing the feedfor-
ward neural network to optimize the modified integral
path. In this method, we first complexify the variables of
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integration as in the Lefschetz thimble method. Then, the
modified integral path is constructed to minimize the
cost function which reflects the seriousness of the sign
problem. Therefore, we can treat the sign problem as the
optimization problem. The sign problem in the simple
one-dimensional integration [28,30] and the complex λϕ4

theory [29] are found to be under controlled. Unfortunately,
the numerical cost of the path optimization method is still
heavy and thus we cannot apply it to QCD yet, but this
method has large extensibility compared with the Lefschetz
thimble method and thus we can still dream to apply it to
QCD in the future.
Because of several difficulties in QCD as mentioned

above, QCD effective models have been widely used to
investigate the QCD phase structure because such effec-
tive model is much easier than original QCD. The
Polyakov-loop extended Nambu–Jona-Lasinio (PNJL)
model [33–35] is one of the famous and powerful effective
models. Unfortunately, the PNJL model has the model sign
problem [36,37] even in the mean-field approximation
because one particular global minimum perfectly dominate
the path integration and then the thermodynamic potential
can be complex. It should be noted that this complex nature
of the thermodynamic potential is not related with insta-
bilities; the correct thermodynamic potential should be real.
In this study, we consider the PNJL model and the path

optimization method to circumvent the model sign prob-
lem. This article is organized as follows. In Secs. II and III,
we explain the formulation of the PNJL model and the path
optimization method, respectively. The numerical results
are shown in Sec. IV. Section V is devoted to summary.

II. FORMULATION

In this work, we employ the PNJL model as the QCD
effective model. The PNJL model can describe the
chiral symmetry breaking/restoration and the approximate
confinement-deconfinement transition. Also, it can well
reproduce QCD properties at finite imaginary chemical
potential which is a big advantage from the viewpoint of
the topologically determined confinement-deconfinement
transition [38–40]. The following formulation and the
computation of the Monte-Carlo PNJL model is based
on Ref. [41].

A. Polyakov-loop extended
Nambu–Jona-Lasinio model

The Euclidean action of the two-flavor PNJL model is

ΓPNJL ¼
Z

d4xE½q̄ð−i=Dþm0 − μγ0Þq

−Gfðq̄qÞ2 þ ðq̄iτ⃗γ5qÞ2g� − βVVΦðΦ; Φ̄Þ; ð1Þ

where β ¼ 1=T, V is the three-dimensional spatial volume,
q denotes the two-flavor quark-fields, m0 does the current

quark mass, Dν ¼ ∂ν − iAνδν4, G is the coupling constant
of the four-fermi interaction, Φ (Φ̄) means the Polyakov
loop (its conjugate) and VΦ expresses the gluonic
contribution.
The (effective) action which is used in the present

Monte-Carlo calculation is S ¼ βVV where V is the
effective potential and the grand-canonical partition func-
tion then becomes

Z ¼
Z Y

k

dzke−S½zk�; ð2Þ

where zk means the dynamical variables in the momentum
space. In the present study, we truncate the auxiliary
fields to k ¼ 0 components and thus our Monte-Carlo
result is matched with the mean-field approximation in the
infinite volume limit. This truncation, the homogeneous
field ansatz, is also used in the previous work of the
Monte Carlo PNJL model with μ ¼ 0 in Ref. [41].
With the homogeneous auxiliary-field ansatz after the

Hubbard-Stratonovich transformation, the effective action
is simplified as Γ ¼ βVV. Then, the effective potential is
expressed as

V ¼ VNJL þ VΦ; ð3Þ

where VNJL is the contributions of the NJL part. In the
actual calculation, we employ the Polyakov gauge,
∂4A4 ¼ 0.
The actual form of VNJL becomes

VNJL ¼ −2Nf

Z
Λ

d3p
ð2πÞ3

h
NcEp − Nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

0

q

þ T lnðf−fþÞ
i
þGðσ2 þ π⃗2Þ; ð4Þ

where Nf (Nc ¼ 3) is the number of flavor (color), Λ is the
three-dimensional momentum cutoff and

f− ¼ 1þ 3ðΦþ Φ̄e−βE
−
p Þe−βE−

p þ e−3βE
−
p ;

fþ ¼ 1þ 3ðΦ̄þΦe−βE
þ
p Þe−βEþ

p þ e−3βE
þ
p ; ð5Þ

with E∓
p ¼ Ep ∓ μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2p þ 2NþN−

q
∓ μ and εp ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þM2 þ N2
p

. In the present calculation, we keep the
momentum cutoff in the thermal contributions. The auxi-
liary fields are redefined as

M¼m0−2Gσ; N¼−2Gπ0; N�¼−2Gπ�: ð6Þ

with π0 ¼ π3 and π� ¼ ðπ1 � iπ2Þ=
ffiffiffi
2

p
. The unit of M and

σ are [GeV] and [GeV3] and thus G is [GeV−2]. The
functional form of the Polyakov loop and its conjugate are
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Φ ¼ 1

Nc
trc½eiβA4 � ¼ 1

Nc
½eiβϕ1 þ eiβϕ2 þ eiβϕ3 �;

Φ̄ ¼ 1

Nc
½e−iβϕ1 þ e−iβϕ2 þ e−iβϕ3 �; ð7Þ

where

ϕ1 ¼ A3 þ
1ffiffiffi
3

p A8; ϕ2 ¼ −A3 þ
1ffiffiffi
3

p A8

ϕ3 ¼ −ðϕ1 þ ϕ2Þ ¼ −
2ffiffiffi
3

p A8; ð8Þ

and then A4 are diagonalized because we use the Polyakov
gauge; A4¼diagðA3þA8=

ffiffiffi
3

p
;−A3þA8=

ffiffiffi
3

p
;−2A8=

ffiffiffi
3

p Þ.
In this paper, we choose the logarithmic Polyakov-loop

potential [42] as the gluonic contribution;

VΦ

T4
¼ −

1

2
aTΦ̄Φþ bT lnðhÞ; ð9Þ

where

h ¼ 1 − 6Φ̄Φþ 4ðΦ̄3 þΦ3Þ − 3ðΦ̄ΦÞ2; ð10Þ

with

aT ¼a0þa1

�
T0

T

�
þa2

�
T0

T

�
2

; bT ¼b3

�
T0

T

�
3

: ð11Þ

The parameters should be set to reproduce the lattice QCD
data in the pure gauge limit. In the present calculation, we
complexify A3 and A8 to weaken the sign problem and then
the imaginary part of A3 and A8 are fixed via Eq. (14);
details are shown in Sec. III.
The present Polyakov-loop potential may induce

the singularities such as the logarithmic cut. One of the
promising attempts to deal with this problem is the
modification of the Polyakov-loop potential. The second
term of the Polyakov-loop potential appears as VT3

0b3 ×
lnðhÞ in the Boltzmann weight. Therefore, when VT3

0b3
becomes the natural number, the singularity does not
matter. In the present case, VT3

0b3 is not the natural
number, but it depends on the model details. It is known
that there is another form of the Polyakov-loop potential
that is the polynomial form [35] which can also reproduce
the lattice QCD data in the pure gauge limit; this model
does not have the logarithmic singularity. Nevertheless, it
should be noted that the path optimization method can
reproduce the correct result with the logarithmic Polyakov-
loop potential as shown later. Therefore, the path
optimization method can practically work well in the
present setup.

B. System volume and parameters

In this study, we follow the lattice formalism and thus V
can be expressed [41] as

V ¼ N3
sa3 ¼

N3
s

T3Nt
¼ k

T3
; ð12Þ

where Ns (Nt) are the number of spatial (temporal) lattice
sites and a is the lattice spacing. Then, V should depend on
the temperature. In this article, we use the homogeneous
ansatz and thus our Monte Carlo simulation reaches the
mean-field results in the infinite volume limit. The finite
size effect is just jumped into the game via V on the
Boltzmann weight in the present calculation and then the
effective potential itself does not have explicit finite size
effect. This treatment is perfectly matched with that used
in Ref. [41]. In principle, we must consider the lattice
regularization in order to introduce the finite size effects.
However, such inconsistency becomes smaller and smaller
when the system volume becomes larger and larger and
thus it is a minor problem in this study. Full simulation of
the lattice PNJL model is our future work.
The present PNJL model has three parameters, G, m0

and Λ in the NJL part. The actual values of the para-
meters are taken from Ref. [43]; m0 ¼ 5.5 MeV, G ¼
5.498 GeV−2 and Λ ¼ 631.5 MeV. The parameters in the
Polyakov-loop potential is taken from Ref. [42];

a0¼3.51; a1¼−2.47; a2¼15.2; b3¼−1.75; ð13Þ

with T0 ¼ 270 MeV.

III. PATH OPTIMIZATION METHOD

To deal with the model sign problem appearing at finite
density, we here introduce the path optimization method.

A. Introduction to POM

In the path optimization method, we start from the
complexification of the variables of the integration,
xi ∈ R → zi ∈ C where i ¼ 1;…; n with the dimension
of integration n. To construct the new integral path in the
complex plane, we prepare the cost function which should
be related with the seriousness of the sign problem. The
functional form of the new integral path is represented by
using the feedforward neural network with some param-
eters which are optimized via the minimization of the cost
function. Since the neural network even with the mono
hidden-layer can approximate any kind of continuous
function on the compact subset as long as we can use
sufficient number of units in the layer [44,45], the neural
network seems to be suitable for the path optimization
method. Details are shown in Ref. [28].
In the path optimization method, we represent zi by

using the parametric quantity (t) as
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ziðtÞ ¼ ti þ i½wifiðtÞ þ bi�; ð14Þ

where w and b are parameters. This function means
ReðziÞ↠ImðziÞ. Parameters w, b and also parameters in
f are determined by using the back-propagation algorithm
[46]. Figure 1 shows the schematic figure of the neural
network used in this study. In the back-propagation, we
choose tanh for the activation function. In the following, we
represents parameters in the neural network as c ¼ fcig.
Details are shown in Refs. [28,29]. It should be noted that
the path optimization method leads the same results with
the original theory because of the Cauchy(-Poincare)’s
theorem as long as the integral path does not go across
singular points, Je−Γ ¼ 0. In the complex Langevin
method, singular points induce the problem because it
leads the singular drift term in the Langevin-time evolution,
the path optimization method can care for it.
In this study, we complexify A3 and A8 and then σ and π⃗

are still treated as real variables. Since it is known that the
model sign problem can be resolved by the complex-
ification of the temporal gluon fields in the Lefschetz-
thimble method [37], our treatment should work. In
addition, such treatment is consistent with the calculation
which imposes the CK symmetry on the fermion determi-
nant at finite density [47,48] where C and K denote the
charge conjugation and the complex conjugation, respec-
tively. Unfortunately, the Lefschetz-thimble method is
difficult to apply to the PNJL model because we should
solve flow equations and it sometimes encounter singular
points of the effective potential. The NJL model with the
repulsive vector-type interaction is a typical example [22];
the repulsive vector-type interaction induces the auxiliary
field, ω4 ¼ −q̄iγ0q, and it acts similarly to the Uð1Þ gauge
field in the Dirac determinant, DetDðμÞ where DðμÞ is the
Dirac operator. The origin of the sign problem is induced
via the combination of μ − iω4 in DðμÞ and the origin is
perfectly same with the case with the gluon field which
is the SUð3Þ gauge field. Of course, SUð3Þ is a more
complicated group than the Uð1Þ group and thus the sign

problem is more serious in the SUð3Þ gauge theory, but
similar tendency should be there. In comparison, the path
optimization method can avoid the problem and thus it is
suitable for the PNJL model analysis. It should be noted
that we may expect that the sign problem in QCD can be
weaken via the complexification of A3 and A8 because the
direct origin of the sign problem in QCD is the combination
of the temporal component of the gluon field and the
chemical potential in the Dirac determinant. It is perfectly
the same with the PNJL model. In the PNJL model, the
origin of the sign problem is clearly stated in Ref. [49] and
A8 is the main term which induces the sign problem in the
PNJL model. The other components of the gluon field may
strengthen the sign problem in QCD, but these are indirect
origins of the sign problem. If it is strong enough
accidentally, we should complexify all of the degree of
freedom.
It should be noted that the present path optimization with

the machine learning is unsupervised learning because we
do not need teacher data to obtain optimized parameters in
the neural network. We try to increase the average phase
factor compared with that in the previous optimization step.
The one attempt to introduce the supervised learning to the
study of the sign problem has been done in Ref. [50] based
on the generalized Lefschetz thimble method [51].

B. Optimization process

We use the following cost function in the calculation;

F ½zðtÞ�¼1

2

Z
dntjeiθðtÞ−eiθ0 j2× jJðtÞe−ΓðzðtÞÞj

¼
Z

dntjJðtÞe−ΓðzðtÞÞj−
����
Z

dntJðtÞe−ΓðzðtÞÞ
����; ð15Þ

where

θðtÞ ¼ argðJðtÞe−ΓðzðtÞÞÞ; θ0 ¼ argðZÞ;

JðtÞ ¼ det

�∂zi
∂tj

�
; ð16Þ

with the partition function Z. In the equation, zi represent
complexified A3 and A8 and also the real σ and π⃗. Thus,
we have 6 (σ, π0, π�, Re A3, Re A8) þ2 (ImA3, ImA8)
dynamical variables where latter two variables are induced
via the complexification and fixed via Eq. (14). If we wish
to take care of the periodicity of the effective potential for
Re A3 and Re A8, we should use periodic functional form
for those as inputs of the neural network like as Ref. [50].
When the wide spreading of the configurations in the
Monte-Carlo calculation becomes important, the periodic-
ity issue may become serious problem from the viewpoint
of the Cauchy-Poincaré’s theorem. Wewill revisit this point
in our forthcoming paper. In this study, configurations
are well localized in the range−π ≤ ReA3=T ≤ π and −π ≤
ReA8=ðT

ffiffiffi
3

p Þ ≤ π by using the simple complexification of

FIG. 1. The schematic figure of the feedforward neural network
used in this study for the case with the single input and output.
The dotted circles mean the bias and the thick arrows indicate the
weight. In the final step, we calculate Eq. (14) to obtain the
modified integral-path.
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A3 and A8. Of course, all points on the integral path can be
taken if we gather infinite number of configurations. In the
case with the finite number of configurations, the configu-
rations are localized and then the statistical sum should
work. This localization sometime induces the problem if
there are several relevant saddle points which is nothing but
the global sign problem; if the global sign problem arises,
we must consider the parallel tempering method used in the
Lefschetz-thimble method [52,53]. In the present model,
we should have the global sign problem very close to the
first-order transition line, but we are working in the
crossover region at present. In the NJL model, there are
at least two thimbles in the case with the first-order chiral
phase transition [29], but we consider T ¼ 100 MeV in this
study and then the transition is crossover. Therefore, we can
expect that the dominant thimble is only one in the present
calculation. Therefore, the localization means that the
present calculation practically works well. As shown later,
the present calculation actually well matched with the
mean-field approximation. Thus, we do not introduce the
periodic form of inputs in this study. This cost function is
proportional to heiθi and thus it reflects the seriousness
of the sign problem [29]. In the physical system, θ0 should
be 0. If we consider θ0 ≠ 0, we can apply the path
optimization method to other systems such as the complex
chemical potential.
In the hybrid Monte-Carlo method, we should evaluate

the expectation value of the cost function. To do this, we
replace the cost function as

F ½zðtÞ� → F ½zðtÞ�R
dntPðtÞ ; ð17Þ

where P is the appropriate probability distribution.
In the back-propagation procedure, we need the deriva-

tive of the cost function by ci. We represent it as dF i below.
After straightforward calculations, we finally reach the
expression

dF iðt; cÞ ¼ jJðtÞe−ΓðzðtÞÞj

× Re

�
ð1 − eiðθðtÞ−θ0ÞÞ ∂

∂ci logðJðtÞe
−ΓðzðtÞÞÞ

�
;

ð18Þ

In the hybrid Monte-Carlo method, we rewrite Eq. (18) as
similar to Eq. (17) with P. This cost function is responsible
to the alignment of the Boltzmann weight with each other
on the modified integral path if the points are relevant to the
path-integral.
To make our optimization easier, we employ the mini-

batch training. The configurations are divided as Nconfig ¼
nNbatch where Nbatch is the batch size and then the learning
is performed batch by batch. To include all updates of each

batch, the parameters in the feedforward neural network is
updated by replacing dFi by its mean-value as

dF iðt; cÞ →
1

Nbatch

XNbatch

k¼1

dF ðkÞðt; cÞ: ð19Þ

In one optimization step, we update n-times with Nbatch
configurations.
In this study, we use the simple feedforward neural

network with the hidden monolayer. Input is the original
integral path and output is its imaginary part. For the
optimizer, we employ the Adam algorithm [54];

vðjþ1Þ
i ¼ β1vðjÞ þ ð1 − β1ÞdF i;

rðjþ1Þ
i ¼ β2rðjÞ þ ð1 − β2ÞdF 2

i ;

v̂ðjþ1Þ
i ¼ vðjþ1Þ

i

1 − βj1
; r̂ðjþ1Þ

i ¼ rðjþ1Þ
i

1 − βj2
;

cðjþ1Þ
i ¼ cðjÞi −

ηffiffiffiffiffiffiffiffiffiffiffi
r̂ðjþ1Þ
i

q
þ ϵ

v̂ðjþ1Þ
i ; ð20Þ

where j is the fictitious time step, dF i means ∂F=∂ci and
β1 and β2 are the smoothing factors of the exponential
moving average. This algorithm is based on the AdaGrad
algorithm [55] and the momentum method with preventing
the learning weight decay.

C. Simulation setup

The number of units in the hidden layer is set to
Nunit ¼ 4. For Adam algorithm, we use η ¼ 0.001,
α ¼ 0.999, β ¼ 0.9 and ϵ ¼ 10−8. In the minibatch train-
ing, we set to Nbatch ¼ 10. These parameters are so called
hyper parameters in the machine learning. Initial values of
parameters in the neural network are prepared based on
Xavier initialization [56].
In the calculation of the expectation values of operators,

we have generated 80 000 configurations analyzed each 50
trajectories for each optimization step. Then, the expect-
ation values are estimated after 2 times optimization.
Statistic errors are obtained by using the jackknife method
where the bin number is set to 10. The expectation value of
an operator (O) is obtained via the phase reweighting as

hOi ¼
R
dntOeiθjJðtÞe−ΓðzðtÞÞjR
dnteiθjJðtÞe−ΓðzðtÞÞj : ð21Þ

In this study, we calculate the chiral condensate and the
Polyakov loop.

IV. NUMERICAL RESULTS

The T-dependence of the chiral condensate and the
Polyakov loop at μ ¼ 0 is shown in Fig. 2. The mean-
field results in the infinite volume limit is also shown as the
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eye guide. Because of the finite size effect, hσi is deviated
from the mean-field results in the infinite volume limit and
this result is consistent with results obtained in Ref. [41]. In
the present calculation, V depends on T and thus the finite
size effect becomes serious when T increases. The expect-
ation values of π⃗ are consistent with zero in 2σ error. At
moderate T, the error bar becomes large because of the
spreading behavior of the configuration which may come
from the chiral properties. By increasing the configuration
number, we will make it small.
The μ-dependence of the average phase factor on the

original integral-path at T ¼ 100 MeV and μ ¼ 300 MeV
is shown in Fig. 3. We also show the results after twice
optimization in the figure. It can be clearly seen that heiθi

becomes small around the chiral transition region,
T ∼ 335 MeV, and then the model sign problem seriously
appears. In the present computation, we use k ¼ 64 and
thus heiθi does not become small so much, but it will be
worse when we consider larger k because heiθi is expo-
nentially suppressed by k. Because of this problem, we
need further investigation on the competition between the
suppression from the system size and the improvement via
the path optimization method in the average phase factor. It
will be reported elsewhere.
For the reader’s convenience, we show the scatter plot of

Re A3 and Re A8 at T ¼ 100 MeV and μ ¼ 300 MeV in
Fig. 4. The spreading behavior of Re A3 is larger than that
of Re A8 and then we can see the localized configurations.
To improve the average phase factor, we use the path

optimization method. Figure 5 shows the average phase
factor at each optimization step with T ¼ 100 MeV and
μ ¼ 300 MeV as an example. After one optimization step
(Nopt ¼ 1), the average phase factor becomes worse. Since

Φ

Φ
σ

σ

μ

FIG. 2. The T-dependence of hσi and hΦi at μ ¼ 0 where hσi is
normalized by that at T ¼ μ ¼ 0 in the infinite volume limit. The
dotted lines are mean-field results in the infinite volume limit as
the eye guide. The difference between the eye guide and our
Monte-Carlo result is nothing but the finite size effect which has
been observed in Ref. [41].

μ

FIG. 3. The μ-dependence of heiθi at T ¼ 100 MeV with
k ¼ 64. The dotted and solid lines indicate results on the original
and modified integral paths, respectively. The modified integral
path is obtained after twice optimization.
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FIG. 4. The scatter plot of Re A3 and Re A8 at T ¼ 100 MeV
and μ ¼ 300 MeV. We here use 80 000 configurations.

μ

θ

θ

θ

FIG. 5. The average phase factor at each optimization step with
T ¼ 100 and μ ¼ 300 MeV.
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the starting configurations used in the first optimization are
generated on the original integral-path and thus those are
expected to be located far from the relevant points of the
optimized integral-path and then the average phase factor
becomes worse temporally. However, the average phase
factor is significantly improved after few optimization
steps. In the optimization process, we employ widely used
parameter set of the Adam algorithm and thus the step size
of the optimization is expected to be not so large. The fast
optimization is considered as follows: In the present
calculation, the one optimization step has 8000 mini-batch
training where parameters in the neural network are
updated. Thus, the effective optimization step is large
and then we can sufficiently improve the average phase
factor with few Nopt. After the optimization, the probability
distribution can be different in the original configurations
and then the average phase factor once becomes worth. In
the second optimization step, we adopt the configuration
according to the optimized manifold and then the sufficient
average phase factor is obtained. In the case at T ¼
100 MeV and μ ¼ 300 MeV with k ¼ 64, Nopt ¼ 2 are
enough to make the average phase factor close to 1. It
should be noted that the present tendency of the improve-
ment depends on several initial conditions of parameters
and thus we should try with several set of parameters when
the optimization does not work. Also, an increase of units
in the hidden layer may lead to better convergence [57]. It
should be noted that we must improve the numerical cost of
the path optimization method in the future. The present
method need at least N3

dof additional numerical cost where
Ndof ¼ 6. With the lattice regularization, we will consider
the system size also. To reduce the numerical cost, we will
need some more extension of the path optimization method.
One promising approach is the reduction of the Jacobian
computation; the diagonal ansatz of the Jacobian [32] and
the nearest-neighbor lattice-cites approximation [31] are
examples.

The μ-dependence of the chiral condensate and the
Polyakov-loop after performing the path optimization are
shown in Fig. 6. The mean-field results in the infinite
volume with imposing the CK symmetry to the fermion
determinant is also shown as the eye guide. Since there is
the finite size effect, the eye guide and our Monte-Carlo
results are deviated a little bit. Actually, if the shoulder of
the action which appears between the chiral symmetry
broken and restored points, the chiral condensate becomes
smaller (bigger) than that at low (high) T in the in-
finite volume limit. Therefore, the difference becomes
small at high μ region because the shoulder becomes
irrelevant. This tendency can be also seen from the
T-dependence of the chiral condensate in Fig. 2 and
Ref. [41]. We can correctly reproduce the relation hΦ̄i ≠
hΦi with hΦ̄i; hΦi ∈ R in the PNJL model at finite μ by
using the path optimization method. These results mean
that the path optimization method can well work in the
QCD effective model which has the model sign problem.
Also, we can expect that the complexification of the
temporal gluon field may be sufficient to control the sign
problem in the lattice QCD with the path optimization
method since the lattice QCD and the PNJL model share
similar properties about the sign problem.

V. SUMMARY

In this article, we apply the path optimization method
to the Polyakov-loop extended Nambu–Jona-Lasinio
(PNJL) model to circumvent the model sign problem.
This study is the first attempt to apply the path
optimization method to the effective model with
dynamical quarks based on QCD. The PNJL model
can describe the chiral phase transition and also
approximated confinement-deconfinement transition
and thus it is a good starting point to investigate the

FIG. 6. The left (right) panel shows the μ-dependence of hσi (hΦi) with T ¼ 100 and μ ¼ 300 MeV where hσi is normalized by that at
T ¼ μ ¼ 0 in the infinite volume limit. The dotted lines are mean-field results with imposing the CK symmetry on the fermion
determinant in the infinite volume limit as the eye guide.
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QCD phase structure at finite real chemical potential (μ).
Therefore, we choose it as the typical QCD effective
model in this article.
The temporal components of the gluon field, A3 and A8,

are complexified and the modified integral path in the
complex space is expressed by using the feedforward
neural network by minimizing the cost function which
reflects the seriousness of the sign problem. Then, the sign
problem becomes the optimization problem. Parameters in
the feedforward neural network are optimized via the back-
propagation method. The neural network tries to increase
the average phase factor compared with the previous
optimization step and thus it is nothing but the unsuper-
vised learning. The scalar and pseudo-scalar auxiliary fields
are treated as real valuables. This treatment is motivated by
the Lefschetz thimble analysis done in Ref. [37]. In the
actual optimization process, we use the minibatch training
with the Adam algorithm.
We have shown that our treatment of variables of

integration works well; the average phase factor is suffi-
ciently improved after the optimization at finite μ. This
means that the path optimization method can resolve the
model sign problem based on the hybrid Monte Carlo

method. In this study, we use the homogeneous ansatz for
the auxiliary fields and thus we cannot go beyond the
mean-field approximation, but it is a first step to correctly
treat the sign problem in the QCD effective models. By
considering the straightforward extension of the present
formulation, we will go beyond the mean-field approxi-
mation of the QCD effective models. We leave the actual
simulation as our future work. From these results, we may
expect that the complexification of the temporal gluon
fields is the sufficient way to control the sign problem in the
lattice QCD with the path optimization method because
QCD and the PNJL model share similar properties about
the sign problem.
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