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The low-temperature representation for the quark condensate in a weak magnetic field H is known up to
two-loop order. Remarkably, at one-loop order, the published series for the quark condensate in the chiral
limit and H ≪ T2 are inconsistent. Using an alternative representation for the kinematical Bose functions,
we derive the series to arbitrary order in H=T2 and show that both published results are incorrect.
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I. INTRODUCTION

The low-energy behavior of quantum chromodynamics
in the presence of a magnetic field has been explored
by many authors in great detail. In particular, the quark
condensate at finite temperature and magnetic field has
been calculated with different techniques. These include
lattice QCD [1–7], chiral perturbation theory [8–13], the
Nambu–Jona-Lasinio model and its extensions [14–17],
and yet other methods [18–21]. Likewise, the related
phenomena of magnetic catalysis and inverse magnetic
catalysis have been studied in Refs. [22–31]. A nice review
of QCD in a magnetic field is provided by Andersen
et al. [32].
Of particular interest in our study is the low-temperature

expansion of the quark condensate in the chiral limit in a
weak magnetic field H. Remarkably, the corresponding
series provided by the author of Refs. [8–11] and the author
of Refs. [12,13] are inconsistent. The motivation for the
present study is to decide which of the two published
results is correct, and to go to higher orders in the weak
magnetic field expansion. Our calculation is based on chiral
perturbation theory, much like Refs. [8–13], but it relies
on an alternative representation for the kinematical Bose
functions that appear at one-loop order.
As it turns out, the series we derive below is different

from both of the two published results. We have checked
that our series perfectly coincides with the exact result that
we have evaluated numerically. We stress that criticism is
not directed towards the one-loop evaluation of the partition
function, where the many different calculations all lead to
the same result. Rather, our intention is to point out that, in
the low-temperature expansion of the quark condensate at

one-loop order, errors exist concerning the weak magnetic
field expansion H ≪ T2 in the chiral limit. More impor-
tantly, the correct series is derived in the present study for
the first time.
It should be emphasized that the errors in the published

series cannot be “detected” in the many articles [1–31] that
also deal with the finite-temperature quark condensate in a
magnetic field. The point is that the chiral limit in these
references is implemented by numerically extrapolating
the exact one-loop result (that is valid for arbitrary finite
pion masses M) to the case M → 0—and not by using a
series expansion for the chiral limit. Note also that, away
from the chiral limit, there are no discrepancies or errors:
all different calculations concerning the one-loop result
coincide. Still, in view of the fact that the quark condensate
is a fundamental quantity in quantum chromodynamics,
we believe it is important to provide the (correct) low-
temperature series for this quantity in a weak magnetic field
in the chiral limit.
The article is organized as follows: In Sec. II, we review

the two published results that refer to the low-temperature
expansion of the quark condensate in weak magnetic fields
in the chiral limit. In Sec. III, the one-loop evaluation of the
quark condensate within chiral perturbation theory—based
on an alternative representation for the Bose functions—is
presented, and the weak magnetic field expansion in the
chiral limit is derived. We then compare our series with the
two published results in Sec. IV, and finally conclude in
Sec. V. Technical aspects of the evaluation are relegated to
two Appendixes. In Appendix A, chiral perturbation theory
calculations are discussed explicitly. In Appendix B, we
provide the (analytical) connection between the represen-
tation for the Bose-Einstein functions used in the literature
(Refs. [8–13]) and the one used here.

II. PUBLISHED SERIES FOR THE CHIRAL LIMIT

Our analysis concerns the low-temperature expansion of
the quark condensate in the chiral limit in a weak magnetic
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field. The weak magnetic field limit is implemented by
jqHj ≪ T2, where jqj stands for the electric charge of the
pion. The relevant quantity is

hq̄qi
h0jq̄qj0i ; ð2:1Þ

where h0jq̄qj0i is the quark condensate at zero temperature
and zero magnetic field. Two series are available in the
literature for the above quantity in the chiral limit: up to
one-loop order, the author of Refs. [8–11] obtains

hq̄qi
h0jq̄qj0i ¼ 1þ CjqHj

16π2F2
−

T2

8F2
−
7

ffiffiffiffiffiffiffiffiffiffijqHjp
T

48πF2

−
jqHj

16π2F2
log

jqHj
T2

; jqHj ≪ T2;

C ¼ log 2 − 2γE þ 2 log 4π þ 1

3
; ð2:2Þ

while the author of Refs. [12,13] ends up with

hq̄qi
h0jq̄qj0i ¼ 1þ jqHj log 2

16π2F2
−

T2

8F2
þ 5

ffiffiffiffiffiffiffiffiffiffijqHjp
T

48πF2
þ � � � ;

jqHj ≪ T2: ð2:3Þ
Both series contain the leading term at zero temperature,

jqHj log 2
16π2F2

; ð2:4Þ

which is linear in the magnetic field and positive, and has
been derived in the pioneering paper by Shushpanov and
Smilga [33].1 As far as finite-temperature corrections are
concerned, we first have a term that does not involve the
magnetic field,

−
T2

8F2
; ð2:5Þ

derived a long time ago in the original article by Gasser and
Leutwyler [34]. However, in a nonzero magnetic field, the
two series disagree with respect to the leading contribution
at finite temperature: the coefficients of the

ffiffiffiffi
H

p
T term are

different both in magnitude and in sign. Finally, according
to Refs. [8–11], logarithmic terms of the formH logðH=T2Þ
also emerge.
In order to make the low-temperature expansion in the

weak magnetic field limit (jqHj ≪ T2) more transparent,
we factorize out temperature and use the relevant expansion
parameter ϵ < 1,

ϵ ¼ jqHj
T2

: ð2:6Þ

The two published series can then be cast into the general
form

hq̄qi
h0jq̄qj0i ¼ 1þ jqHj log 2

16π2F2
þ fq1

ffiffiffi
ϵ

p þ q2ϵ log ϵþ q3ϵ

þ q4ϵ2 þ q5ϵ3 þOðϵ4ÞgT2 −
1

8F2
T2 þOðT4Þ:

ð2:7Þ

Let us consider the quantity

QðϵÞ ¼ 1ffiffiffi
ϵ

p
T2

� hq̄qi
h0jq̄qj0i − 1 −

jqHj log 2
16π2F2

þ 1

8F2
T2 −OðT4Þ

�
: ð2:8Þ

In the limit ϵ → 0, we have

lim
ϵ→0

QðϵÞ ¼ q1: ð2:9Þ

Irrespective of whether or not a logarithmic contribution is
present,QðϵÞ should converge to the leading coefficient q1.
The authors of Refs. [8–11] and Refs. [12,13] end up with
different values for q1. This is our starting point. As it turns
out, our leading coefficient q1 is yet different from both of
the published results, and higher-order terms in our series
disagree with the Agasian series [8–11]. Our approach
relies on chiral perturbation theory, and the specific
representation for the kinematical functions we chose
allows for a systematic and transparent expansion in the
limit jqHj ≪ T2.

III. CHIRAL PERTURBATION THEORY
EVALUATION

The essentials of chiral perturbation theory have been
outlined in many excellent reviews, to which the interested
reader is referred (see, e.g., Refs. [35,36]). Here we merely
provide a brief sketch of the method and discuss the one-
loop evaluation.
The QCD Lagrangian for two flavors reads

LQCD ¼ −
1

2g2
trcGμνGμν þ q̄iγμDμq − q̄mq; ðq ¼ u; dÞ:

ð3:1Þ

In the present study, we focus on the isospin limitmu ¼ md.
The quark condensate,

h0jq̄qj0i; ð3:2Þ

is the order parameter associated with the spontaneously
broken chiral symmetry SUð2Þ × SUð2Þ → SUð2Þ. The
corresponding Goldstone bosons are the three pions.

1Note that the constant C in Eq. (2.2) involves further terms:
−2γE þ 2 log 4π þ 1

3
. As we comment at the end of Sec. IV, these

terms should not appear at zero temperature.
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In the effective field theory, the pion fields πiði ¼ 1; 2; 3Þ
are contained in the SUð2Þ matrix U ¼ expðiτiπi=FÞ,
where τi are the Pauli matrices and F is the (tree-level)
pion decay constant. The leading term in the effective
Lagrangian is of momentum order p2 and reads

L2
eff ¼

1

4
F2Tr½ðDμUÞ†ðDμUÞ −M2ðU þ U†Þ�; ð3:3Þ

where M is the (tree-level) pion mass. It should be pointed
out that the magnetic field H is taken into account by the
covariant derivative

DμU ¼ ∂μU þ i½Q;U�AEM
μ : ð3:4Þ

Q stands for the charge matrix of the quarks, Q ¼
diagð2=3;−1=3Þe, and the gauge field AEM

μ ¼ ð0; 0;
−Hx; 0Þ incorporates the constant magnetic field in
Landau gauge [32]. The next-to-leading piece in the
effective Lagrangian—L4

eff—is of momentum order p4,
and it involves various next-to-leading-order effective
constants li and hi that require renormalization (see
Appendix A). The explicit form of L4

eff can be found,
e.g., in Refs. [36,37].
Chiral perturbation theory refers to low temperatures,

small quark masses and weak magnetic fields. We first
consider the free energy density, from which the quark
condensate can be derived. The corresponding Feynman
diagrams, up to one-loop order p4, are depicted in Fig. 1.
Their evaluation leads to the following low-temperature
representation for the free energy density2:

z ¼ z0ðM; 0; HÞ − 3

2
g0ðM;T; 0Þ − g̃0ðM;T;HÞ þOðp6Þ:

ð3:5Þ

The quantity z0 is the free energy density at zero temperature,
while the two other contributions are finite-temperature
corrections: the first one refers to zero magnetic field, and
the second one incorporates the magnetic field.
As we show in Appendix A, the quark condensate

can then be obtained from the free energy density. Up to
one-loop order, we get

hq̄qi
h0jq̄qj0i ¼ 1 −

jqHj
16π2F2

Z
∞

0

dtt−1
�

1

sinhðtÞ −
1

t

�

−
3g1ð0; T; 0Þ

2F2
−
g̃1ð0; T;HÞ

F2
þOðp4Þ; ð3:6Þ

where h0jq̄qj0i is the quark condensate at zero temperature
and zero magnetic field.3 The first line in Eq. (3.6) refers
to zero temperature, while the kinematical functions
g1ð0; T; 0Þ and g̃1ð0; T;HÞ describe the behavior of the
system at finite temperature. We now analyze in detail the
structure of the above terms.
The basic object in the evaluation of the partition

function—or, equivalently, the free energy density—is
the thermal propagator GðxÞ for the pions in the back-
ground of a magnetic field. It can be constructed from the
zero-temperature propagator ΔðxÞ in Euclidean space by

GðxÞ ¼
X∞
n¼−∞

Δðx⃗; x4 þ nβÞ; β ¼ 1

T
: ð3:7Þ

The propagator Δ0ðxÞ, referring to the neutral pion, is not
affected by the magnetic field and takes the simple form

Δ0ðxÞ ¼ ð2πÞ−d
Z

ddpeipxðM2 þ p2Þ−1

¼
Z

∞

0

dρð4πρÞ−d=2e−ρM2−x2=4ρ: ð3:8Þ

As for the two charged pions, it is convenient to start with
the representation for the zero-temperature propagator in
Minkowski space given in Refs. [32,40]:

Δ�ðxÞ ¼ exp½is⊥Φðx⊥Þ�
Z

d4p
ð2πÞ4 e

−ipxΔ�ðpk; p⊥Þ;

Δ�ðpk; p⊥Þ ¼ i
Z

∞

0

ds
cosðjqHjsÞ exp

�
isðp2

k −M2Þ

− ip2⊥
tanðjqHjsÞ

jqHj
�
; ð3:9Þ

where

FIG. 1. QCD partition function diagrams contributing up to
one-loop order in the low-temperature expansion. The filled circle
refers to L2

eff , while the number 4 in the box corresponds to L4
eff .

2The present evaluation parallels the evaluation of the partition
function in zero magnetic field, described in much detail in
Refs. [38,39].

3At one-loop order, up- and down-quark condensates coincide:
hūui ¼ hd̄di ¼ hq̄qi.

QUARK CONDENSATE IN A WEAK MAGNETIC FIELD PHYS. REV. D 99, 014030 (2019)

014030-3



Φðx⊥Þ ¼
jqHj
2

x1x2 ð3:10Þ

is the so-called Schwinger phase, and the other quantities
are

p2
k ¼ p2

0 − p2
3; p2⊥ ¼ p2

1 þ p2
2; s⊥ ¼ signðqHÞ:

ð3:11Þ

The point is that the summation over the Landau levels—
associated with the magnetic field—has already been
performed in Δ�. In the thermal propagator, there is then
only one sum left: the one induced by finite temperature.
This simplifies the calculation considerably. After integra-
tion over the momenta, and going from Minkowski to
Euclidean space, we obtain

Δ�ðxÞ ¼ jqHj
ð4πÞd2 e

−s⊥jqHjx1x2=2
Z

∞

0

ds
e−sM

2

s sinhðjqHjsÞ

× exp

�
−
x24 þ x23

4s
−
jqHjðx21 þ x22Þ
4 tanhðjqHjsÞ

�
; ð3:12Þ

from which the thermal propagator for the charged pions
can be constructed via Eq. (3.7).
Up to one-loop order, the thermal propagator GðxÞ only

has to be evaluated at the origin x ¼ 0, where it can be
decomposed into the T ¼ 0 contribution and a second piece
that refers to finite temperature,

Gð0Þ ¼ Δð0Þ þ g1ðM;T;HÞ: ð3:13Þ

The latter belongs to the class of kinematical Bose
functions grðM;T;HÞ defined by

grðM;T;HÞ ¼ Td−2r−2

ð4πÞrþ1
jqHj

Z
∞

0

dt
tr−

d
2

sinhðjqHjt=4πT2Þ

× exp
�
−

M2

4πT2
t
��

S
�
1

t

�
− 1

�
: ð3:14Þ

Here, SðzÞ is the Jacobi theta function,

SðzÞ ¼
X∞
n¼−∞

expð−πn2zÞ: ð3:15Þ

The kinematical Bose functions grðM;T;HÞ describe the
thermodynamic properties of the pions in the presence of
magnetic fields. For the effective theory to be consistent,
the quantities T, M, and H must be small with respect to
the underlying QCD scale Λ ≈ 1 GeV. In this study, we are
particularly interested in the chiral limit M → 0 and the
weak magnetic field limit jqHj ≪ T2.
We proceed with the evaluation of the functions

grðM;T;HÞ. Since the Taylor expansion of the inverse
hyperbolic sine starts with

1

sinhðtÞ ¼
1

t
þOðtÞ; ð3:16Þ

we perform the following subtraction in the integrand4:

grðM;T;HÞ ¼ Td−2r−2

ð4πÞrþ1
jqHj

Z
∞

0

dttr−
d
2

�
1

sinhðjqHjt=4πT2Þ −
4πT2

jqHjt
�
exp

�
−

M2

4πT2
t

��
S

�
1

t

�
− 1

�

þ Td−2r

ð4πÞr
Z

∞

0

dttr−
d
2
−1 exp

�
−

M2

4πT2
t

��
S

�
1

t

�
− 1

�
: ð3:17Þ

The second term describes pions in zero magnetic field, and
it has been evaluated before in Ref. [41]:

grðM;T; 0Þ ¼ 2

Z
∞

0

dρ

ð4πρÞd2 ρ
r−1 expð−ρM2Þ

×
X∞
n¼1

expð−n2=4ρT2Þ: ð3:18Þ

We thus consider the first term that depends on the
magnetic field,

g̃rðM;T;HÞ ¼ jqHjd2−r
ð4πÞd2

Z
∞

0

dttr−
d
2

�
1

sinhðtÞ −
1

t

�

× exp

�
−

M2

jqHj t
��

S

� jqHj
4πT2t

�
− 1

�
:

ð3:19Þ

Since the analysis of g̃rðM;T;HÞ is rather technical, we
relegate it to an Appendix. In the same Appendix A, we
also discuss the structure of the T ¼ 0 contribution in
the free energy density z0ðM; 0; HÞ. Here we just provide
the final representation for the quark condensate in the
chiral limit and jqHj ≪ T2. The latter limit is implemented
by expanding the various quantities in Eq. (3.6) in the
parameter ϵ,4Note that we just subtract and re-add a term.
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ϵ ¼ jqHj
T2

: ð3:20Þ

Up to one-loop order, the low-temperature expansion of the
quark condensate in the chiral limit and jqHj ≪ T2 then
takes the form

hq̄qi
h0jq̄qj0i ¼ 1þ jqHj log 2

16π2F2
þ
� jI1

2
j

8π3=2F2

ffiffiffi
ϵ

p
−

log 2
16π2F2

ϵ

−
a1
F2

ϵ2 −
a2
F2

ϵ4 þOðϵ6Þ
�
T2

−
1

8F2
T2 þOðT4Þ; ð3:21Þ

where

I1
2
¼

Z
∞

0

dtt−1=2
�

1

sinhðtÞ −
1

t

�
≈ −1.516256;

a1 ¼ −
ζð3Þ
384π4

; a2 ¼
7ζð7Þ

98304π8
: ð3:22Þ

The analytical representation for the coefficients ap can be
found in Appendix A, along with the numerical values for
the first few coefficients a1;…; a5 in Table II. The series at
finite temperature in nonzero magnetic field is thus domi-
nated by the square-root term ∝

ffiffiffi
ϵ

p
, followed by a term

linear in ϵ. The remaining corrections involve even powers
of ϵ.

IV. DISCUSSION AND COMPARISON OF SERIES

We now discuss and compare our series, Eq. (3.21),
with the two results in the literature. The temperature-
independent contribution in the quark condensate that
involves the magnetic field,

jqHj log 2
16π2F2

; ð4:1Þ

is the Shushpanov-Smilga term derived a long time ago
[33], and later confirmed in Refs. [8–13], among others.
However, comparing our leading temperature-dependent
contribution,

ffiffiffiffiffiffiffiffiffiffijqHjp
T

8π3=2F2
jI1

2
j; ð4:2Þ

with the respective leading terms in the two published
series, Eq. (2.2),

−
7

ffiffiffiffiffiffiffiffiffiffijqHjp
T

48πF2
; ð4:3Þ

and Eq. (2.3),

5
ffiffiffiffiffiffiffiffiffiffijqHjp

T
48πF2

; ð4:4Þ

we observe disagreement with either result. Still, it is
interesting to note that the leading term obtained by
Andersen, Eq. (4.4), numerically almost coincides with ours,

5

48π
≈ 0.0331573;

1

8π3=2
jI1

2
j ≈ 0.0340375: ð4:5Þ

In particular, it is also positive. As far as higher-order
contributions are concerned, we cannot confirm the emer-
gence of logarithmic terms of the form H logðH=T2Þ as
suggested in Refs. [8–11]. Moreover, since the leading term
of the Agasian series, Eq. (4.3), comes with the wrong sign,
the series clearly fails to describe the quark condensate in the
weak magnetic field limit.
To underline the correctness of our series, we perform a

simple numerical test. First of all, we establish the con-
nection between our kinematical functions and those in the
literature. The representation for the kinematical functions
used by the authors of Refs. [8–13] is the same as the one
used in Ref. [42], where numerical data are available. The
relevant Bose function for the quark condensate in the
chiral limit reads

Rð0; T;HÞ ¼ ϵT2

2π

X∞
k¼0

Z
∞

−∞

dz
2π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ð2kþ 1Þϵ

p

×
1

exp½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ð2kþ 1Þϵ

p
� − 1

: ð4:6Þ

Using Table I of Ref. [42], we have verified that the
connection between the kinematical function Rð0; T;HÞ
and our representation g̃1ð0; T;HÞ,

g̃1ð0; T;HÞ ¼ ϵT2

16π2

Z
∞

0

dtt−1
�

1

sinhðϵt=4πÞ −
4π

ϵt

�

×

�
S

�
1

t

�
− 1

�
; ð4:7Þ

is given by5

Rð0; T;HÞ
T2

−
1

12
¼ g̃1ð0; T;HÞ

T2
: ð4:8Þ

Apart from this numerical consistency check, inAppendixB
we analytically derive the above identity.
Having established equivalence between previous analy-

ses and ours through Eq. (4.8), any discrepancies in the
weak magnetic field limit jqHj ≪ T2 can be traced back to

5Note that the ratio jqHj=T2 ¼ ϵ, both in Rð0; T; HÞ and
g̃1ð0; T; HÞ, is arbitrary—we are not necessarily referring to the
weak magnetic field limit jqHj ≪ T2.
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the expansion of the kinematical functions in the param-
eter ϵ ¼ jqHj=T2.
We now perform a numerical test that consists of

comparing our series with the exact result. More precisely,
we consider successive approximations in the brace6

� jI1
2
j

8π3=2F2

ffiffiffi
ϵ

p
−

log 2
16π2F2

ϵ −
a1
F2

ϵ2 þOðϵ4Þ
�

ð4:9Þ

of the expansion (3.21), and we compare them with the
exact result given by the Bose function

−
g̃1ð0; T;HÞ

T2
: ð4:10Þ

In Table I, we provide numerical data referring to the terms
in the brace [Eq. (4.9)]. The first entry,Oð ffiffiffi

ϵ
p Þ, corresponds

to the leading contribution. In the second entry, OðϵÞ, we
also include the term linear in ϵ, while in the third entry,
Oðϵ2Þ, we include all three terms displayed in Eq. (4.9). We
notice a clear hierarchy: the

ffiffiffi
ϵ

p
term yields a very good

leading approximation, while subsequent terms are heavily
suppressed—our series hence converges very fast.
A final remark concerns the structure of the low-

temperature series and the various limits involved. First,
all three series refer to the chiral limitM → 0. Then, in our
low-temperature expansion (3.21), terms are ordered
according to ascending powers of T, while the accompany-
ing coefficients depend on the ratio ϵ ¼ jqHj=T2. At zero
temperature, the series (3.21) reduces to the Shushpanov-
Smilga term as it should, and the dominant contribution in
the low-temperature expansion is of order T2.
On the other hand, as one approaches zero temperature,

the Agasian series Eq. (2.2) formally reduces to

CjqHj
16π2F2

; C ¼ log 2 − 2γE þ 2 log 4π þ 1

3
; ð4:11Þ

which contradicts the original Shushpanov-Smilga result
[33]. According to Refs. [8–11], the extra terms −2γE þ
2 log 4π þ 1

3
originate from the expansion of the quark

condensate at finite temperature: they should therefore
disappear in the limit T → 0.

V. CONCLUSIONS

The quark condensate at low temperatures, small pion
masses, and weak magnetic fields has been studied up to
two-loop order in the literature. It was not our intention to
contribute to the well-explored phenomena concerning
hadrons in magnetic fields that include (inverse) magnetic
catalysis. Rather, our point was to draw attention to
discrepancies between two published one-loop results,
Refs. [8–13], concerning the low-temperature expan-
sion of the quark condensate in the chiral limit in weak
magnetic fields.
Our approach relies on chiral perturbation theory,

but we have used an alternative representation for the
kinematical Bose functions—different from the represen-
tations used in Refs. [8–13]. Remarkably, we find that the
leading term at finite temperature in the expansion of the
quark condensate in a weak magnetic field (jqHj ≪ T2),
and in the chiral limit, does not coincide with either of the
two published terms. As far as higher-order corrections
are concerned, our approach allows for a systematic
derivation of these contributions that illuminates the
structure of the series.
The low-temperature series is dominated by a square-

root term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqHj=T2

p
that is positive, much like the (zero-

temperature) Shushpanov-Smilga term. The next term is
linear in jqHj=T2 and negative, while subsequent correc-
tions involve even powers of jqHj=T2 with alternating
signs. Higher-order terms are heavily suppressed, such that
our series converges very rapidly.
Invoking the exact one-loop expression for the quark

condensate—valid for arbitrary ratio jqHj=T2—we have
numerically verified that our expansion correctly describes
the quark condensate in weak magnetic fields. We have also
observed that the series published in Refs. [8–11] fail to
approximate the exact result.

TABLE I. Leading terms in our series (3.21) for the finite-temperature quark condensate in the limit jqHj ≪ T2. The
ffiffiffi
ϵ

p
term provides

a very good approximation for the exact result, and the series converges rapidly. The notation is explained in the text.

ϵ −g̃1=T2 Oð ffiffiffi
ϵ

p Þ OðϵÞ Oðϵ2Þ
0.1 0.010 324 985 705 0 0.010 763 604 92 0.010 324 664 34 0.010 324 985 705 8
0.05 0.007 391 628 082 12 0.007 611 018 032 0.007 391 547 742 0.007 391 628 082 17
0.01 0.003 359 859 894 97 0.003 403 750 739 0.003 359 856 681 0.003 359 859 894 97
0.005 0.002 384 869 003 67 0.002 406 815 229 0.002 384 868 200 0.002 384 869 003 67
0.001 0.001 071 971 118 72 0.001 076 360 492 0.001 071 971 087 0.001 071 971 118 72
0.0005 0.000 758 907 108 297 0.000 761 101 803 2 0.000 758 907 100 3 0.000 758 907 108 297
0.0001 0.000 339 936 133 675 0.000 340 375 073 9 0.000 339 936 133 4 0.000 339 936 133 675

6Note that each term in the brace has to be multiplied by a
factor of F2 in order to make the comparison with −g̃1=T2, which
is dimensionless.
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APPENDIX A: EXPLICIT CALCULATIONS

In this Appendix, we first discuss the free energy density
at zero temperature. We then consider the kinematical Bose
functions g̃rðM;T;HÞ in the chiral limit and analyze their
behavior in weak magnetic fields (jqHj ≪ T2). Collecting
results, we provide the representation for the quark con-
densate in the chiral limit and jqHj ≪ T2. Finally, we show
how to extract the leading terms in the expansion of the
quark condensate in a straightforward way.

1. Zero temperature

The free energy density at zero temperature, up to one-
loop order, amounts to

z0ðM; 0; HÞ ¼ −F2M2 − ðl3 þ h1ÞM4 þ 4h2jqHj2

þ 1

2
M4λþ I1 þ I2 þOðp6Þ;

I1 ¼ −
jqHjd2
ð4πÞd2

Z
∞

0

dtt−
d
2
−1 exp

�
−

M2

jqHj t
�
;

I2 ¼ −
jqHjd2
ð4πÞd2

Z
∞

0

dtt−
d
2

�
1

sinhðtÞ −
1

t

�

× exp

�
−

M2

jqHj t
�
: ðA1Þ

The integral I1 can be written as

I1 ¼ M4λ −
M4

64π2
; ðA2Þ

where λ

λ ¼ 1

2
ð4πÞ−d

2Γ
�
1 −

1

2
d

�
Md−4

¼ Md−4

16π2

�
1

d − 4
−
1

2
fln 4π þ Γ0ð1Þ þ 1g þOðd − 4Þ

�

ðA3Þ

contains a pole at d ¼ 4. It should be stressed that factors
of jqHj cancel: the integral I1 does not depend on the
magnetic field. The UV divergence in I1—along with the
UV divergence in the term 1

2
M4λ of Eq. (A1)—can be

absorbed into the next-to-leading-order effective constants
l3 and h1 in the standard manner, i.e., in chiral perturbation
theory where no magnetic field is present (for details, see,
e.g., Ref. [37]).
The integral I2, that does depend on the magnetic

field, also diverges in the limit d → 4. The singularity is

proportional to jqHj2 and can be absorbed into the next-to-
leading-order effective constant h2. Explicitly, we subtract
the next Taylor term in the expansion of the inverse
hyperbolic sine in I2, such that the integral

−
jqHjd2
ð4πÞd2

Z
∞

0

dtt−
d
2

�
1

sinhðtÞ−
1

t
þ t
6

�
exp

�
−

M2

jqHjt
�

ðA4Þ

becomes finite if one approaches the physical dimension
d → 4. The remainder,

Î2 ¼
jqHjd2
6ð4πÞd2

Z
∞

0

dtt−
d
2
þ1 exp

�
−

M2

jqHj t
�
; ðA5Þ

can be expressed in terms of λ as

Î2 ¼ −
jqHj2
3

λ −
jqHj2
96π2

: ðA6Þ

Gathering results, the renormalized free energy density at
zero temperature takes the form

z0ðM; 0; HÞ

¼ −F2M2 þ M4

64π2
ðl̄3 − 4h̄1 − 1Þ þ jqHj2

96π2
ðh̄2 − 1Þ

−
jqHj2
16π2

Z
∞

0

dtt−2
�

1

sinhðtÞ −
1

t
þ t
6

�
exp

�
−

M2

jqHj t
�

þOðp6Þ: ðA7Þ

Up to the factors γ3=32π2, δ1=32π2, and δ2=32π2, the
constants l̄3, h̄1, and h̄2 are the running coupling constants
at the fixed renormalization scale μ ¼ Mπ , where Mπ ≈
139.6 MeV is the physical pion mass (for details, see,
e.g., Ref. [41]).

2. Finite temperature

We now turn to finite temperature, where the kinematical
Bose functions

g̃rðM;T;HÞ ¼ jqHjd2−r
ð4πÞd2

Z
∞

0

dttr−
d
2

�
1

sinhðtÞ −
1

t

�

× exp

�
−

M2

jqHj t
��

S

� jqHj
4πT2t

�
− 1

�

ðA8Þ

become relevant. Our analysis proceeds along the lines
of Ref. [43]. From the very start, we refer to the chiral
limit that we implement by M → 0, while keeping T and
jqHj fixed. Changing integration variables, and defining
ϵ ¼ jqHj=T2, we first write
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g̃rð0; T;HÞ

¼ ϵ

ð4πÞrþ1
Td−2r

Z
∞

0

dtt−
d
2
þr

�
1

sinhðϵt=4πÞ −
4π

ϵt

�

×

�
S

�
1

t

�
− 1

�
: ðA9Þ

The integral is split into two pieces, namely 0 ≤ t ≤ 1 and
1 ≤ t < ∞. In the second interval, we use the Jacobi
identity

SðtÞ ¼ 1ffiffi
t

p Sð1=tÞ ðA10Þ

and change the integration variable t → 1=t. This then
leads to

g̃rð0;T;HÞ¼ ϵ

ð4πÞrþ1
Td−2r

Z
1

0

dtt−
d
2
þr

�
1

sinhðϵt=4πÞ−
4π

ϵt

�

×

�
S

�
1

t

�
−1

�
þ ϵ

ð4πÞrþ1
Td−2rfIAþIBþICg;

ðA11Þ

with

IA ¼
Z

1

0

dtt
d
2
−r−5

2

�
1

sinhðϵ=4πtÞ −
4πt
ϵ

��
S
�
1

t

�
− 1

�
;

IB ¼
Z

1

0

dtt
d
2
−r−5

2

�
1

sinhðϵ=4πtÞ −
4πt
ϵ

�
;

IC ¼ −
Z

1

0

dtt
d
2
−r−2

�
1

sinhðϵ=4πtÞ −
4πt
ϵ

�
: ðA12Þ

The integral IB we decompose as

IB ¼
Z

∞

0

dtt
d
2
−r−5

2

�
1

sinhðϵ=4πtÞ −
4πt
ϵ

�

−
Z

∞

1

dtt
d
2
−r−5

2

�
1

sinhðϵ=4πtÞ −
4πt
ϵ

�
: ðA13Þ

After a few trivial manipulations, we end up with

IB ¼ IB1 þ IB2;

IB1 ¼
ϵ
d
2
−r−3

2

ð4πÞd2−r−3
2

Z
∞

0

dtt−
d
2
þrþ1

2

�
1

sinhðtÞ −
1

t

�
;

IB2 ¼ −
Z

1

0

dtt−
d
2
þrþ1

2

�
1

sinhðϵt=4πÞ −
4π

ϵt

�
: ðA14Þ

The integral IC is processed in an analogous way, with the
result

IC ¼ IC1 þ IC2;

IC1 ¼ −
ϵ
d
2
−r−1

ð4πÞd2−r−1
Z

∞

0

dtt−
d
2
þr

�
1

sinhðtÞ −
1

t

�
;

IC2 ¼
Z

1

0

dtt−
d
2
þr

�
1

sinhðϵt=4πÞ −
4π

ϵt

�
: ðA15Þ

3. Representation for the quark condensate

We now focus on the quark condensate in the chiral limit,

hq̄qi ¼ h0jq̄qj0i
�
1 −

1

F2

∂
∂M2

ðz − z0ðM; 0; 0ÞÞ
�
M2¼0

;

ðA16Þ

where

z ¼ z0ðM; 0; HÞ − 3

2
g0ðM;T; 0Þ − g̃0ðM;T;HÞ þOðp6Þ

ðA17Þ

is the (total) free energy density and

z0ðM; 0; 0Þ ¼ −F2M2 þ M4

64π2
ðl̄3 − 4h̄1 − 1Þ ðA18Þ

is the T ¼ 0 contribution that is independent of the
magnetic field. Accordingly, the one-loop representation
for the quark condensate in the chiral limit reads

hq̄qi
h0jq̄qj0i ¼ 1 −

jqHj
16π2F2

Z
∞

0

dtt−1
�

1

sinhðtÞ −
1

t

�

−
3g1ð0; T; 0Þ

2F2
−
g̃1ð0; T;HÞ

F2
þOðp4Þ: ðA19Þ

The first line refers to zero temperature, and the second line
refers to finite temperature.
Our final task is to explore the weak magnetic field limit

jqHj ≪ T2 that we obtain by expanding in the parameter ϵ

ϵ ¼ jqHj
T2

: ðA20Þ

A common factor in the various integrands considered in
Sec. A 2 of this Appendix is

1

sinhðϵt=4πÞ −
4π

ϵt
; ðA21Þ

which we expand into

1

sinhðϵt=4πÞ−
4π

ϵt
¼c1tϵþc2t3ϵ3þc3t5ϵ5þOðϵ7Þ: ðA22Þ
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The first few Taylor coefficients read

c1 ¼ −
1

24π
≈ −1.33 × 10−2;

c2 ¼
7

23040π3
≈ 9.80 × 10−6;

c3 ¼ −
31

15482880π5
≈ −6.54 × 10−9;

c4 ¼
127

9909043200π7
≈ 4.24 × 10−12;

c5 ¼ −
73

896909967360π9
≈ −2.73 × 10−15: ðA23Þ

Introducing the quantities α̃p, α̂p, and βp by

α̃p ¼
Z

1

0

dtcpt2p−2
�
S
�
1

t

�
− 1

�
;

α̂p ¼
Z

1

0

dtcpt−2p−
1
2

�
S

�
1

t

�
− 1

�
;

βp ¼
Z

1

0

dtcp

�
t−1 − t−

1
2

�
t2p−1; ðA24Þ

and defining the coefficients ap as

ap ¼ α̃p þ α̂p þ βp
16π2

; ðA25Þ

the low-temperature representation for the quark conden-
sate in the chiral limit and jqHj ≪ T2 then takes the form

hq̄qi
h0jq̄qj0i ¼ 1þ jqHj log 2

16π2F2
þ
� jI1

2
j

8π3=2F2

ffiffiffi
ϵ

p
−

log 2
16π2F2

ϵ

−
a1
F2

ϵ2 −
a2
F2

ϵ4 þOðϵ6Þ
�
T2

−
1

8F2
T2 þOðT4Þ: ðA26Þ

The integral I1
2
amounts to

I1
2
¼

Z
∞

0

dtt−1=2
�

1

sinhðtÞ −
1

t

�
≈ −1.516256; ðA27Þ

while numerical values for the first few coefficients ap in
the above expansion are provided in Table II.
Processing integrals in the same manner as described in

the previous section, and using the identity

2

π
z
2

Γ
�
z
2

�
ζðzÞ ¼

Z
∞

0

dtt
z
2
−1½SðtÞ − 1�; ðA28Þ

we can express the coefficients ap in terms of the Riemann
ζ function as

ap ¼ cp
8π2pþ3

2

Γ
�
2p −

1

2

�
ζð4p − 1Þ: ðA29Þ

The final representation for the quark condensate in the
chiral limit and jqHj ≪ T2 thus reads

hq̄qi
h0jq̄qj0i ¼ 1 −

1

8F2
T2 þ jqHj log 2

16π2F2

þ
� jI1

2
j

8π3=2F2

ffiffiffi
ϵ

p
−

log 2
16π2F2

ϵþ ζð3Þ
384π4F2

ϵ2

−
7ζð7Þ

98304π8F2
ϵ4 þOðϵ6Þ

�
T2 þOðT4Þ:

ðA30Þ

4. Straightforward derivation
of the leading terms

In order to readily derive the leading terms in the quark
condensate in the chiral limit and jqHj ≪ T2, we consider
the relevant Bose function

g̃1ð0; T;HÞ ¼ jqHj
16π2

Z
∞

0

dtt−1
�

1

sinhðtÞ −
1

t

�

×

�
S

� jqHj
4πT2t

�
− 1

�
; ðA31Þ

that we write as

g̃1ð0; T;HÞ ¼ −
jqHj
16π2

Z
∞

0

dtt−1
�

1

sinhðtÞ −
1

t

�

þ
ffiffiffiffiffiffiffiffiffiffijqHjp

T

8π3=2

Z
∞

0

dtt−1=2
�

1

sinhðtÞ −
1

t

�

× S

�
4πT2

jqHj t
�
: ðA32Þ

Note that the Jacobi theta function

SðzÞ ¼
X∞
n¼−∞

expð−πn2zÞ ðA33Þ

satisfies the identity

TABLE II. Numerical values for the coefficients ap defined by
Eq. (A25).

p ap

1 −3.213 618 447 12 × 10−5

2 7.567 263 558 63 × 10−9

3 −8.000 513 958 55 × 10−12

4 1.878 690 371 18 × 10−14

5 −7.807 742 162 39 × 10−17

QUARK CONDENSATE IN A WEAK MAGNETIC FIELD PHYS. REV. D 99, 014030 (2019)

014030-9



SðzÞ ¼ 1ffiffiffi
z

p S

�
1

z

�
: ðA34Þ

The integral in the first line, Eq. (A32), is known
analytically,Z

∞

0

dtt−1
�

1

sinhðtÞ −
1

t

�
¼ − log 2; ðA35Þ

and gives rise to the correction linear in ϵ in Eq. (A26).
Regarding the second line, Eq. (A32), in the limit jqHj ≪ T2,
all contributions in the Jacobi theta function—except
n ¼ 0—are exponentially suppressed: the corresponding
integral hence reduces to I1

2
, Eq. (A27), and we immediately

obtain the leading temperature-dependent term in the weak
magnetic field expansion jqHj ≪ T2 in the chiral limit,ffiffiffiffiffiffiffiffiffiffijqHjp

T

8π3=2F2
jI1

2
j: ðA36Þ

APPENDIX B: REPRESENTATIONS FOR
BOSE-EINSTEIN FUNCTIONS

In this Appendix, we derive the analytical connection
between two alternative representations for the kinematical
functions that refer to the Bose gas. In either case, the basic
object of interest is the thermal propagator for the charged
pions in the background of a magnetic field. We first
consider the approach taken by the authors of Refs. [8–13].
In Appendix A of Ref. [13], the starting point is the
dimensionally regularized sum-integral

RðM;T;HÞ

¼ jqHj
2π

X∞
m¼0

T
X

P0¼2πnT

�
eγEΛ2

4π

�
ε

×
Z

dds−2p
ð2πÞds−2

1

P2
0 þ p2

z þM2 þ ð2mþ 1ÞjqHj ðB1Þ

that describes the thermal propagator for the charged pions.
The sum over m is due to the Landau levels induced by
the magnetic field, while the sum over n is over the
Matsubara frequencies related to finite temperature. The
various symbols occurring in Eq. (B1) are defined in
Appendix A of Ref. [13], and the solution of Eq. (B1)
is given by Eq. (A8) in that reference. Here we only need
the nonzero-temperature part RðM;T;HÞ of the (full)
thermal propagator RðM;T;HÞ, which, in the chiral limit,
amounts to

Rð0; T;HÞ ¼ ϵT2

2π

X∞
k¼0

Z
∞

−∞

dz
2π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ð2kþ 1Þϵ

p

×
1

exp½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ð2kþ 1Þϵ

p
� − 1

: ðB2Þ

Note that the physical limit ds → 3 (ε → 0) has been
taken.7

The approach pursued in the present article, on the
other hand, is based on the coordinate representation of
the thermal propagator, where the periodicity condition
induced by finite temperature corresponds to the sum over
n in the Euclidean time direction,

GðxÞ ¼
X∞
n¼−∞

Δðx⃗; x4 þ nβÞ; β ¼ 1

T
: ðB3Þ

According to Sec. III, the explicit expression for the
zero-temperature propagator of the charged pions Δ�ðxÞ
is given by

Δ�ðxÞ ¼ jqHj
ð4πÞd2 e

−s⊥jqHjx1x2=2
Z

∞

0

ds
e−sM

2

s sinhðjqHjsÞ

× exp

�
−
x24 þ x23

4s
−
jqHjðx21 þ x22Þ
4 tanhðjqHjsÞ

�
: ðB4Þ

It should be noted that we have used the representation
(D.15) for the zero-temperature propagator provided in
Ref. [32], where the sum over m related to the Landau
levels has already been performed. As described in Sec. III
of the present article, the relevant quantity for the quark
condensate at one-loop order is the thermal propagator
GðxÞ evaluated at the origin,

Gð0Þ ¼ Δð0Þ þ g1ðM;T;HÞ: ðB5Þ

In the above decomposition, Δð0Þ is the zero-temperature
propagator, while the finite-temperature part is given by the
Bose-Einstein function (or, equivalently, kinematical func-
tion) g1ðM;T;HÞ,

g1ðM;T;HÞ ¼ jqHj
ð4πÞ2

Z
∞

0

dt
t−1

sinhðjqHjt=4πT2Þ

× exp

�
−

M2

4πT2
t

��
S

�
1

t

�
− 1

�
; ðB6Þ

with the Jacobi theta function

SðzÞ ¼
X∞
n¼−∞

expð−πn2zÞ: ðB7Þ

In the chiral limit, the correspondence between the two
representations Rð0; T;HÞ and g1ð0; T;HÞ is thus given by
the identity

7The quantity ε ¼ ð3 − dsÞ=2 (where ds is the spatial dimen-
sion) should not be confused with our expansion parameter
ϵ ¼ jqHj=T2.
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Rð0; T;HÞ ¼ g1ð0; T;HÞ; ðB8Þ

based on the fact that we have calculated the same
quantity—namely, the thermal propagator—using two
different methods.
There is one last detail, though. The kinematical function

we use in our comparison of the various series in Sec. IV is
g̃1ð0; T;HÞ, and not g1ð0; T;HÞ. According to our decom-
position, Eq. (3.17), the former describes the purely non-
zero magnetic field part, while the latter also involves
terms that exclusively depend on temperature (and are
independent of the magnetic field). This is why in the
representation Rð0; T;HÞ, one also has to subtract the

purely T-dependent (and H-independent) part to make
the comparison. In the chiral limit, this term is (see
Ref. [41] or Appendix A of Ref. [44])

Rð0; T; 0Þ ¼ g1ð0; T; 0Þ ¼
T2

12
: ðB9Þ

This then leads to the analytical connection between the
two representations of Bose-Einstein functions,

Rð0; T;HÞ
T2

−
1

12
¼ g̃1ð0; T;HÞ

T2
: ðB10Þ
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