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A method of evaluation of spacelike QCD observables DðQ2Þ is developed, motivated by the
renormalon structure of these quantities. A related auxiliary quantity D̃ðQ2Þ is introduced, which is
renomalization scale independent only at the one-loop level, and a large-β0-type renormalon motivated
Ansatz is made for the Borel transform of this quantity. This leads to a “dressed” Borel transform of the
considered observable DðQ2Þ. Subsequently, a Neubert-type distribution is obtained for the observable.
The described method is then applied to the massless Adler function and the related decay ratio of the τ
lepton semihadronic decays. Comparisons are then made with an evaluation method at higher truncated
orders, developed in our earlier works, which is a renormalization scale invariant extension of the diagonal
Padé approximants.
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I. INTRODUCTION

The perturbative QCD (pQCD) running coupling
aðQ2Þ≡ αsðQ2Þ=π (where Q2 ≡ −q2), in the usual theo-
retical known renormalization schemes, has the peculiar
property of having a significantly different regime of
holomorphic (analytic) behavior in the Q2-complex plane
than the spacelike QCD observables DðQ2Þ such as current
correlators, nucleon structure functions, and their sum
rules. Namely, on the one hand, the general principles of
quantum field theories (QFTs) imply [1,2] that these
observables DðQ2Þ are holomorphic functions in the Q2-
complex plane with the exception of a part of the negative
semiaxis, Q2 ∈ Cnð−∞;−M2

thr�, where Mthr ∼ 0.1 GeV is
a threshold scale comparable with the lightest meson mass.1

On the other hand, the pQCD coupling aðQ2Þ has in
general singularities along the negative semiaxis and, in
addition, singularities outside the negative semiaxis, usu-
ally on the positive semiaxis 0 ≤ Q2 ≤ Λ2

Lan. These are
called Landau singuarities or Landau ghosts, and the
point Q2

br ¼ Λ2
Lan ∼ 10−2 − 1 GeV2 is the Landau branch-

ing point. This difference between the singularities of
DðQ2Þ and aðQ2Þ represents a problem in QCD from

the theoretical, and from the practical, point of view.
Theoretically, in pQCD the leading-twist part (and the
Wilson coefficients of the higher-twist part) of DðQ2Þ is a
function of aðκQ2Þ, where 0 < κ ∼ 1 is a chosen fixed
renormalization scale parameter. Hence the evaluated total
observable DðaðκQ2Þ;Q2Þev does not fulfill the holomor-
phic properties required by the QFT principles. Practically,
for low spacelike scales Q2, jQ2j≲ 1 GeV2, the argument
μ2 ¼ κQ2 in the coupling aðκQ2Þ is either close to or within
the regime of the Landau singularities, making the evalu-
ation of aðκQ2Þ and thus of DðaðκQ2Þ;Q2Þev either
unreliable or impossible.
This problem was addressed systematically first in

Refs. [3–6], with analytic perturbation theory (APT). It
consists of replacing the pQCD coupling aðQ2Þ by a related
holomorphic running coupling AðQ2ÞðAPTÞ which is hol-
omorphic in Q2 ∈ Cnð−∞; 0� and has the same disconti-
nuity (spectral) function ρAðσÞ≡ ImAðσe−iπÞ across the
cut along the negative semiaxis as the corresponding
(underlying) pQCD coupling a: ρAðσÞ ¼ ρaðσÞ. The

APT analogs AðAPTÞ
n ðQ2Þ of the powers aðQ2Þn, and their

explicit expressions at one-loop, were obtained and used
also for n noninteger [7] [fractional analytic perturbation
theory (FAPT)]. For reviews of (F)APT we refer to
Refs. [8–11], and for further applications to Refs. [12–14].
Other holomorphic variants of QCD have been proposed

and used since then; cf. Refs. [15–35].2 The significant
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1The indicated regime is usually called the (generalized)
spacelike regime; and the semiaxis Q2 ∈ ð−∞;−M2

thr� is called
the timelike regime. Here, Q2 ≡ −q2 ¼ −ðq0Þ2 þ q⃗ · q⃗, where q
is the relevant 4-momentum in the considered process.

2Mathematical packages for evaluation of specific couplingsA
and their power analogs are in Refs. [24,36,37] and on the web
page [38]. Theoretically, the construction for the analogs AnðQ2Þ
of the powers aðQ2Þn in general AQCD variants was performed
in Ref. [21] for integer n, and in [39] for noninteger n.
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difference between most of them and the (F)APT is usually
the behavior of the spectral function of the coupling
ρAðσÞ in the low-momentum regime 0 ≤ σ ≲ 1 GeV2.
The coupling of Refs. [15] is infinite at Q2 ¼ 0, but
in most of the other works the coupling is finite nonzero
there, 0 < Að0Þ < ∞. Nonetheless, in some of the works
the coupling has zero value at Q2 ¼ 0, Að0Þ ¼ 0;
cf. Refs. [17,29,34,35,40]. On the other hand, large volume
lattice calculations of the dressing functions of the Landau
gauge gluon and ghost propagators [41–45] give at low Q2

the results which can be interpreted as implying Að0Þ ¼ 0,
when the coupling is defined in a natural way as the product
of the obtained gluon and the square of the ghost dres-
sing function, AðQ2Þ ¼ const × ZglðQ2ÞZghðQ2Þ2. Similar
behavior of the mentioned dressing functions is also
obtained in the Gribov-related and Dyson-Schwinger
equations (DSE) approaches [45–47]. A different definition
[48,49] of the low-Q2 running coupling AðQ2Þ, which
involves an additional factorQ2=½Q2 þMðQ2Þ2�, where the
parameter function MðQ2Þ is usually called dynamical
gluon mass, leads with such dressing functions to a
coupling with Að0Þ > 0.
In most of the mentioned QCD variants (AQCD), the

coupling AðQ2Þ and its power analogs AnðQ2Þ are, or can
be, constructed by dispersive methods, automatically
ensuring the wanted holomorphic properties of the cou-
pling. In such dispersive approaches, nonperturbative con-
tributions are naturally generated in the couplings AðQ2Þ
and AnðQ2Þ. Similar kind of dispersive approaches can be
applied also directly to the spacelike QCD observables
DðQ2Þ [33,40,50–56], i.e., without referring to the
coupling.
In this work, a method motivated by the renormalon

structure of spacelike QCD observables DðQ2Þ is devel-
oped. In order to obtain a practical and unambiguous
evaluation of the observables DðQ2Þ with such a method,
the coupling AðQ2Þ should not have Landau singularities.
As the starting point, an auxiliary quantity D̃ðQ2Þ is
introduced in Sec. II, which is renormalization scale
invariant only at the one-loop level. Physically motivated
one-loop-type (large-β0-type) renormalon Ansätze are
made for the Borel transform B½D̃�ðuÞ of the latter quantity,
leading to “dressed” renormalon expression for the Borel
transform B½D�ðuÞ of the original observable. In Sec. III,
the parameters in the expression for B½D̃�ðuÞ are fixed by
requiring the reproduction of the known perturbation series
coefficients of the observable DðQ2Þ, specifically in the
case of the Adler function. Subsequent application of the
Neubert approach [57] to the Borel transform of this
observable gives us the characteristic distribution function
GDðtÞ of this observable. With GDðtÞ we can evaluate the
value of DðQ2Þ, the evaluation being without infrared (IR)
ambiguity in AQCD variants with IR-safe couplings
AðQ2Þ. In the usual perturbative QCD (pQCD) the

evaluation has ambiguity due to the concurrence of the
Landau singularities of the pQCD coupling aðQ2Þ ¼
αsðQ2Þ=π and the IR renormalon. This approach is then
applied to the evaluation of the massless Adler function
DðQ2Þ in Sec. III B and the related (timelike) τ lepton
semihadronic decay ratio rτ in Sec. III C, in two versions of
QCD with IR-safe coupling (2δ [23,24] and 3δ AQCD
[35]), and in pQCD in the corresponding schemes. In
Sec. IV the obtained results are compared with those
obtained with a generalization of the diagonal Padé method
at high truncated orders, a method developed in our earlier
works. The conclusions are presented in Sec. V. Some
additional details are presented in appendices: in
Appendix A specific recursion relations for the coefficients
kmðnÞ and k̃mðnÞ introduced in Sec. II A; in Appendix B the
two used AQCD variants; in Appendix C the method of

obtaining specific constants CðXÞi;j appearing in Sec. II C is
explained; and in Appendix D explicit expressions are
given for specific integrals of the Adler characteristic
functions needed in Sec. III C.

II. BARE AND DRESSED BOREL TRANSFORMS

A. Logarithmic perturbation expansion

A spacelike QCD observableDðQ2Þ is considered whose
perturbation expansion in powers of aðQ2Þ≡ αsðQ2Þ=π, in
a given renormalization scheme, has the form

DptðQ2Þ¼d0aðQ2Þþd1aðQ2Þ2þ���þdnaðQ2Þnþ1þ���:
ð1Þ

This power series can be reorganized into a series in
logarithmic derivatives

ãnþ1ðQ2Þ≡ ð−1Þn
βn0n!

�
d

d lnQ2

�
n
aðQ2Þ ðn ¼ 0; 1; 2;…Þ;

ð2Þ

where β0 is the first coefficient in the beta function of the
perturbative renormalization group equation (RGE)

daðQ2Þ
d lnQ2

≡βðaðQ2ÞÞ

¼−β0aðQ2Þ2−β1aðQ2Þ3−β2aðQ2Þ4− � � � ð3aÞ

¼ −β0aðQ2Þ2½1þ c1aðQ2Þ þ c2aðQ2Þ2 þ � � ��:
ð3bÞ

Mass-independent schemes will be considered here, where
the first two coefficients are universal (scheme indepen-
dent): β0 ¼ ð1=4Þð11 − 2Nf=3Þ and β1 ¼ ð1=16Þð102−
38Nf=3Þ, where Nf is the number of effective quark
flavors. This work will concentrate on the low-jQ2j regime

GORAZD CVETIČ PHYS. REV. D 99, 014028 (2019)

014028-2



(jQ2j ≲ 1 GeV2) where Nf ¼ 3. The higher beta coeffi-
cients cj ≡ βj=β0 (j ¼ 2; 3;…) characterize the renormal-
ization scheme. The usual MS scaling convention for
momenta Q2 will be used throughout (⇔ Λ2

QCD ¼ Λ̄2).
Repeated use of the RGE (3) makes it possible to express

the logarithmic derivatives Eq. (2) as a power series

ãnðQ2Þ ¼ aðQ2Þn þ
X∞
m¼1

kmðnÞaðQ2Þnþm: ð4Þ

For example, we have ã1 ¼ a and

ã2 ¼ a2 þ c1a3 þ c2a4 þ c3a5 þ � � � ; ð5aÞ

ã3 ¼ a3 þ 5

2
c1a4 þ

�
3c2 þ

3

2
c21

�
a5 þ � � � ; ð5bÞ

ã4 ¼ a4 þ 13

3
c1a5 þ � � � ; ð5cÞ

ã5 ¼ a5 þ � � � ; etc:; ð5dÞ

where the dependence on Q2 was omitted for simplicity of
notation [an ≡ aðQ2Þn, ãn ≡ ãnðQ2Þ]. Step-by-step inver-
sion of these relations makes it possible to express separate
powers in terms of the logarithmic derivatives

aðQ2Þn ¼ ãnðQ2Þ þ
X∞
m¼1

k̃mðnÞãnþmðQ2Þ: ð6Þ

For example, we have

a5 ¼ ã5 þ � � � ; ð7aÞ

a4 ¼ ã4 −
13

3
c1ã5 þ � � � ; ð7bÞ

a3 ¼ ã3 −
5

2
c1ã4 þ

�
−3c2 þ

28

3
c21

�
ã5 þ � � � ; ð7cÞ

a2 ¼ ã2 − c1ã3 þ
�
−c2 þ

5

2
c21

�
ã4

þ
�
−c3a5 þ

22

3
c1c2 −

28

3
c31

�
ã5 þ � � � ; ð7dÞ

etc. When these expressions for each of the powers an are
substituted in the power expansion Eq. (1) of DðQ2Þ, the
rearranged expansion in the logarithmic derivatives [log-
arithmic perturbation expansion (lpt)] is obtained

DlptðQ2Þ ¼ d̃0aðQ2Þ þ d̃1ã2ðQ2Þ þ d̃2ã3ðQ2Þ þ � � �
þ d̃nãnþ1ðQ2Þ þ � � � ; ð8Þ

where the new coefficients d̃n are specific combinations of
dn, dn−1;…; d0

d̃n ¼
Xn−1
s¼0

k̃sðnþ 1 − sÞdn−s ðn ¼ 1; 2;…; k̃0ðmÞ ¼ 0Þ;

ð9Þ

and where the coefficients k̃sðnþ 1 − sÞ are those appear-
ing in the relations (6). The more explicit form of Eqs. (9) is

d̃0 ¼ d0; d̃1 ¼ d1; d̃2 ¼ d2 − c1d1; ð10aÞ

d̃3 ¼ d3 −
5

2
c1d2 þ

�
−c2 þ

5

2
c21

�
d1; ð10bÞ

d̃4 ¼ d4 −
13

3
c1d3 þ

�
−3c2 þ

28

3
c21

�
d2

þ
�
−c3 þ

22

3
c1c2 −

28

3
c31

�
d1; ð10cÞ

d̃5 ¼ d5 −
77

12
c1d4 þ

�
−6c2 þ

791

36
c21

�
d3

þ
�
−
7

2
c3 þ

123

4
c1c2 −

1631

36
c31

�
d2

þ
�
−c4 þ

119

12
c1c3 þ 6c22 −

949

18
c21c2 þ

1631

36
c41

�
d1;

ð10dÞ

etc. The inverse relations are

dn ¼
Xn−1
s¼0

ksðnþ 1 − sÞd̃n−s ðn ¼ 1; 2;…; k0ðmÞ ¼ 0Þ;

ð11Þ

where the coefficients ksðnþ 1 − sÞ are those appearing in
the relations (4). We refer to Appendix A for recursion
relations which allow us to obtain the coefficients kmðnÞ
and k̃mðnÞ to any order in any given renormalization
scheme.
Having obtained the modified coefficients d̃n [via

Eqs. (9)–(10)], an auxiliary quantity D̃ðQ2Þ is constructed
whose power expansion is obtained by the formal replace-
ments ãnðQ2Þ ↦ aðQ2Þn in the logarithmic perturbation
expansion (8)

D̃ðQ2Þ ¼ d̃0aðQ2Þ þ d̃1aðQ2Þ2 þ d̃2aðQ2Þ3 þ � � �
þ d̃naðQ2Þnþ1 þ � � � : ð12Þ

While the observable DðQ2Þ is independent of the renorm-
alization scale μ2 (i.e., κ-independent where κ ≡ μ2=Q2)
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DptðQ2Þ ¼ d0aðμ2Þ þ d1ðκÞaðμ2Þ2 þ d2ðκÞaðμ2Þ3
þ � � � þ dnðκÞaðμ2Þnþ1 þ � � � ; ð13aÞ

DlptðQ2Þ ¼ d̃0aðμ2Þ þ d̃1ðκÞã2ðμ2Þ þ d̃2ðκÞã3ðμ2Þ
þ � � � þ d̃nðκÞãnþ1ðμ2Þ þ � � � ; ð13bÞ

the quantity D̃ is not an observable because it is κ-
independent only at the one-loop level.3,4 Namely, the
dependence of the coefficients dnðκÞ and thus of d̃nðκÞ on
the renormalization scale parameter κ is determined
uniquely by the μ2-independence of DptðQ2Þ, and then
the quantity

D̃ðQ2; κÞ ¼ d̃0aðμ2Þ þ d̃1ðκÞaðμ2Þ2 þ d̃2ðκÞaðμ2Þ3
þ � � � þ d̃nðκÞaðμ2Þnþ1 þ � � � ð14Þ

is κ-dependent at the level beyond one-loop. More spe-
cifically, it is possible to check that μ2-independence of the
series (13b) implies the following κ-dependence of the
coefficients d̃nðκÞ:

d
d ln κ

d̃0ðκÞ ¼ 0; ð15aÞ

d
d ln κ

d̃nðκÞ ¼ nβ0d̃n−1ðκÞ ðn ≥ 1Þ: ð15bÞ

As a consequence, d̃0ðκÞ is κ-independent, and

d̃nðκÞ ¼ d̃n þ
Xn
k¼1

�
n

k

�
ðβ0 ln κÞkd̃n−k ðn ≥ 1Þ; ð16Þ

where d̃n ≡ d̃nð1Þ. This implies that, if aðμ2Þwere obtained
from aðQ2Þ by one-loop RGE running, the expansion (14)
would be μ2-independent (note: κ ≡ μ2=Q2).
Based on the relations (15), it is the straightforward to

show that the Borel transform of the quantity D̃ðQ2; κÞ of
Eq. (14)

B½D̃�ðu; κÞ≡ d̃0ðκÞ þ
d̃1ðκÞ
1!β0

uþ d̃2ðκÞ
2!β20

u2

þ � � � þ d̃nðκÞ
n!βn0

un þ � � � ð17Þ

has a simple (“one-loop-type”) κ-dependence

B½D̃�ðu; κÞ ¼ κuB½D̃�ðuÞ: ð18Þ

We point out that this is not an approximate, but exact κ-
dependence. On the other hand, the Borel transform of the
perturbation series Eq. (13a) of the observable DðQ2Þ has
the κ-dependence that is only approximately of the type
(18), namely at the one-loop level approximation.
These considerations suggest that the Borel transform

B½D̃�ðuÞ of the auxiliary quantity D̃ðQ2Þ has a one-loop
(large-β0) type renormalon structure

B½D̃�ðuÞ ¼ 1

ðp − uÞk ;
1

ðpþ uÞk ; ð19Þ

where p and k are positive integers. The first structure
represents a large-β0-type k-fold IR renormalon at u ¼ p,
and the second a large-β0-type k-fold UV renormalon
at u ¼ −p. For example, the IR and UV p double
pole renormalons (DP, k ¼ 2) generate coefficients d̃n ∝
ðnþ 1Þ!ðβ0=pÞn and ðnþ 1Þ!ð−β0=pÞn, respectively; the
single pole (SP, k ¼ 1) variant generates d̃n ∝ ðnÞ!ðβ0=pÞn
and ðnÞ!ð−β0=pÞn, respectively. In addition to these struc-
tures, the IR and UV p subleading renormalon (SL,
“k ¼ 0”) can (and will) be included

B½D̃�ðuÞ ¼ − lnð1 − u=pÞ; lnð1þ u=pÞ; ð20Þ

which, although not meromorphic functions, generate
the analogous “subleading” type of coefficients d̃n ¼
ðn − 1Þ!ðβ0=pÞn and ðn − 1Þ!ð−β0=pÞn, respectively.
In practice, for QCD spacelike observables DðQ2Þ we

know the exact values of only the first three or four
coefficients dn and d̃n (i.e., n ¼ 0, 1, 2, 3). One of the
aims of the present work is to obtain a physically motivated
estimate of all the other higher-order coefficients dn and d̃n
(n ≥ 4). The idea is to make a physically motivated Ansatz
for the Borel transform B½D̃�ðuÞ as a sum of the (one-loop
type) renormalon terms of the form Eqs. (19)–(20), and
adjust the weights of these renormalon terms so that the
(known) values of the first three or four coefficients d̃n are
reproduced.5 However, before embarking on this, it has to
be checked first whether the forms Eqs. (19)–(20) generate
physically acceptable coefficients d̃n. Namely, the gener-
ated coefficients d̃n lead, via the relations (11), to the
coefficients dn for the power expansion (1) of the

3In this work the κ-dependent quantities at κ ¼ 1 (i.e.,
for μ2 ¼ Q2) are simply denoted without reference to κ;
e.g., dnðκ ¼ 1Þ≡ dn, D̃ðQ2; κ ¼ 1Þ≡ D̃ðQ2Þ.

4It is straightforward to see that the relations (9) and (11) are
valid at any κ (> 0), not just κ ¼ 1, i.e., the coefficients k̃sðmÞ and
ksðmÞ are independent of κ: d̃nðκÞ ¼

P
n−1
s¼0 k̃sðnþ 1 − sÞdn−sðκÞ

and dnðκÞ ¼
P

n−1
s¼0 ksðnþ 1 − sÞd̃n−sðκÞ.

5It is mentioned here in advance that, knowing the Borel
transform of the auxiliary quantity D̃ðQ2Þ allows one to construct
the Neubert-type of characteristic function GDðtÞ for the observ-
able DðtÞ, and thus to evaluate the (leading-twist) part of DðQ2Þ
as an integral over t involving GDðtÞ and the running coupling
aðtQ2Þ.
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observable DðQ2Þ,6 and the question is whether the
(higher-order) coefficients dn obtained in this way fulfill
the physically motivated expectations. The latter expect-
ations are contained in the expected renormalon structure of
the Borel transform of the observable DðQ2Þ

B½D�ðu; κÞ≡ d0ðκÞ þ
d1ðκÞ
1!β0

uþ d2ðκÞ
2!β20

u2 þ � � �

þ dnðκÞ
n!βn0

un þ � � � : ð21Þ

B. Full renormalon structure of DðQ2Þ
In many cases of spacelike observables DðQ2Þ such as

Adler function, the expected structure of B½D�ðu; κÞ is
known and comes from the IR and UV renormalons. The
IR renormalon leads to an ambiguity of the Borel integral,
the origin of this ambiguity is the low-momentum regime of
the Feynman integrals, and consequently [58–60] the Q2-
dependence of these terms must agree with the power-
suppressed (higher-twist) terms appearing in the operator
product expansion (OPE). A D-dimensional OPE term of
the spacelike observable DðQ2Þ has the form

ĈOD
ðaQÞ

hÔDi
ðQ2ÞD=2 ¼ COD

ðaQÞ
hODðQ2Þi
ðQ2ÞðD=2Þ ; ð22Þ

where aQ ≡ aðQ2Þ, COD
ðaQÞ is the Wilson coefficient

of the operator [usually of the form 1þOðaQÞ], hÔDi
is a scale-invariant operator, and hODðQ2Þi is the Q2-
dependent operator with anomalous dimension

γOD
≡ −

d lnhODðQ2Þi
d lnQ2

¼ γð1ÞOD
aQ þ γð2ÞOD

a2Q þ � � � ð23Þ

which then gives the relation between hODðQ2Þi and hÔDi

hODðQ2Þi ¼ hÔDi exp
�
−
Z

aQ

const

γOD
ðaμÞ

βðaμÞ
daμ

�

¼ const × ðaQÞγ
ð1Þ
OD

=β0

�
1þ 1

β0
ðγð2ÞOD

− γð1ÞOD
c1ÞaQ

þOða2QÞ
�
: ð24Þ

Furthermore, RGE gives for the inverse powers of Q2 the
expression

1

ðQ2ÞD=2 ¼ const × exp

�
−

D
2β0aQ

�
ðaQÞ−ðD=2Þðc1=β0Þ

× ½1þ bðDÞ
1 aQ þ bðDÞ

2 a2Q þOða3Þ�; ð25Þ

where the overall constant is Q2-independent and renorm-

alization scheme independent, and the bðDÞ
j coefficients are

bðDÞ
1 ¼ D

2β0
ðc21 − c2Þ; ð26aÞ

bðDÞ
2 ¼ 1

2
ðbðDÞ

1 Þ2 − D
4β0

ðc31 − 2c1c2 þ c3Þ: ð26bÞ

The Q2-dependence of the OPE operator term is then

DðDÞ
OPEðQ2Þ¼ const×ðaQÞγ

ð1Þ
OD

=β0 ½1þ ĉðDÞ
1 aQþ ĉðDÞ

2 a2Q

þOða3Þ�hÔDiexp
�
−

D
2β0aQ

�
ðaQÞ−ðD=2Þðc1=β0Þ

× ½1þbðDÞ
1 aQþbðDÞ

2 a2QþOða3Þ�; ð27Þ

where the first series, with coefficients ĉðDÞ
j , represents

the product of the Wilson coefficient COD
ðaQÞ ¼ const ×

ð1þ C1aQ þ � � �Þ and of the subleading effects of the
exponent of the integral with the anomalous dimension (24)

½1þ C1aQ þ � � ��
�
1þ

�
γð2ÞOD

β0
− γð1ÞOD

β1
β20

�
aQ þ � � �

�

¼
�
1þ

X∞
j¼1

ĉðDÞ
j ajQ

�
: ð28Þ

On the other hand, the Q2-dependence coming from the IR
renormalon ambiguity of the IR u ¼ p renormalon can be

obtained by evaluating the imaginary part ImDðQ2Þð�Þ
IR;p;BI

of the generalized principal value of the Borel integral

DðQ2Þð�Þ
IR;p;BI ¼

1

β0

Z þ∞�iϵ

�iϵ
du exp

�
−

u
β0aQ

�
B½DIR;p�ðuÞ;

ð29Þ

where the Borel transform of the IR p renormalon takes the
Ansatz

B½DIR;p�ðuÞ

¼ πdIRp

ðp − uÞγ̃ð1Þp

½1þ b̃ð2pÞ1 ðp − uÞ þ b̃ð2pÞ2 ðp − uÞ2 þ � � ��:

ð30Þ

Direct evaluation gives for this ambiguity (cf., e.g., [61])

6Note that the relations (11), with the same coefficients ksðmÞ,
are valid at any renormalization scale μ2 ¼ κQ2, i.e., dnðκÞ ¼P

n−1
s¼0 ksðnþ 1 − sÞd̃n−sðκÞ; cf. also footnote 4.
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1

π
ImDðQ2Þð�Þ

IR;p;BI

¼∓ dIRp
Γð−γ̃ð1Þp þ 1Þ sinðπðγ̃ð1Þp − 1ÞÞ

β
γ̃ð1Þp

0

× exp

�
−

p
β0aQ

�
a
−γ̃ð1Þp þ1

Q ½1þ ðb̃ð2pÞ1 ðγ̃ð1Þp − 1Þβ0ÞaQ

þ ðb̃ð2pÞ2 ðγ̃ð1Þp − 1Þðγ̃ð1Þp − 2Þβ20Þa2Q þOða3Þ�: ð31Þ

As mentioned, the Q2-dependence of the OPE term
Eq. (27) is the same as that of the renormalon ambiguity
Eq. (31), leading to the following expressions of the Borel
renormalon parameters in terms of the corresponding OPE
operator parameters:

p ¼ D
2
; γ̃ð1Þp ¼ 1 −

γð1ÞOD

β0
þ p

c1
β0

; ð32aÞ

b̃ð2pÞ1 ¼ 1

β0ðγ̃ð1Þp − 1Þ
ðbð2pÞ1 þ ĉð2pÞ1 Þ;

b̃ð2pÞ2 ¼ 1

β20ðγ̃ð1Þp − 1Þðγ̃ð1Þp − 2Þ
ðbð2pÞ2 þ ĉð2pÞ1 bð2pÞ1 þ ĉð2pÞ2 Þ;

ð32bÞ

The coefficient p is a positive integer for spacelike
observables. The corresponding expressions for the coef-
ficients ðdnÞIR;p at anþ1

Q in the perturbation expansion (“pt”)

DðQ2ÞIR;p;pt ¼
X∞
n¼0

ðdnÞIR;paðQ2Þnþ1; ð33Þ

can then be obtained directly from the Borel transform (30),
using the expansion (21) for κ ¼ 1

ðdnÞIR;p ¼ πdIRp

pγ̃ð1Þp Γ½γ̃ð1Þp �
Γðγ̃ð1Þp þ nÞ

�
β0
p

�
n

×

�
1þ ðbð2pÞ1 þ ĉð2pÞ1 Þ p

β0

1

ðγ̃ð1Þp − 1þ nÞ

þ ðbð2pÞ2 þ ĉð2pÞ1 bð2pÞ1 þ ĉð2pÞ2 Þ
�
p
β0

�
2

×
1

ðγ̃ð1Þp − 1þ nÞðγ̃ð1Þp − 2þ nÞ
þO

�
1

n3

��
:

ð34Þ

When considering the UV u ¼ −p renormalon contri-
bution DðQ2ÞUV;p, whose Borel transform has the Ansatz

B½DUV;p�ðuÞ

¼ πdUVp

ðpþ uÞγ̄ð1Þp

½1þ b̄ð2pÞ1 ðpþ uÞ þ b̄ð2pÞ2 ðpþ uÞ2 þ � � ��;

ð35Þ

the previous analysis can be repeated analogously [62]
(cf. also [63]), considering aQ as negative, aQ ¼ −jaQj, and
in the Borel integral the integration over u now goes from
�iϵ to �iϵ −∞. The corresponding (formal) OPE oper-
ators have dimension D ¼ −2p (< 0), and the relations
analogous to those of Eqs. (32) are

p ¼ −
D
2
; γ̄ð1Þp ¼ 1 −

γð1ÞOD

β0
− p

c1
β0

; ð36aÞ

b̄ð2pÞ1 ¼ 1

ð−β0Þðγ̄ð1Þp −1Þ
ðbð−2pÞ1 þ ĉð−2pÞ1 Þ;

b̄ð2pÞ2 ¼ 1

β20ðγ̄ð1Þp −1Þðγ̄ð1Þp −2Þ
ðbð−2pÞ2 þ ĉð−2pÞ1 bð−2pÞ1 þ ĉð−2pÞ2 Þ;

ð36bÞ

and the corresponding coefficients ðdnÞUV;p at anþ1
Q in the

perturbation expansion (“pt”) of DUV;p are

ðdnÞUV;p ¼ πdUVp

pγ̄ð1Þp Γ½γ̄ð1Þp �
Γðγ̄ð1Þp þ nÞ

�
β0
−p

�
n

×

�
1þ ðbð−2pÞ1 þ ĉð−2pÞ1 Þ

�
−p
β0

�
1

ðγ̄ð1Þp − 1þ nÞ

þ ðbð−2pÞ2 þ ĉð−2pÞ1 bð−2pÞ1 þ ĉð−2pÞ2 Þ
�
−p
β0

�
2

×
1

ðγ̄ð1Þp − 1þ nÞðγ̄ð1Þp − 2þ nÞ
þO

�
1

n3

��
:

ð37Þ

C. Generation of the full renormalon structure from
the one-loop-type renormalon structure

This section addresses the question of what kind of the
renormalon structure for the observable DðQ2Þ is obtained
when the one-loop-type of renormalon structures
Eqs. (19)–(20) are adopted for the auxiliary quantity
D̃ðQ2Þ Eq. (12). We will see that the full renormalon
structures of the type Eqs. (30) with (32) are obtained in the
case of IR renormalons, and those of Eqs. (35) with (36) in
the case of UV renormalons. The numerical investigation
will be performed in more detail in two specific renorm-
alization schemes: the Lambert scheme with c2 ¼ −4.9,
and (four-loop) Lambert MiniMOM (LMM) scheme. These
are the two schemes in which IR-safe (and holomorphic)
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QCD couplingsAðQ2Þwere constructed [23,35] which can
be used naturally later on in the numerical evaluations of
the observables DðQ2Þ, giving unambiguous numerical
results. This is so because these couplings, although
coinciding practically with the underlying perturbative
coupling aðQ2Þ at high jQ2j, do not have Landau singu-
larities at lower jQ2j≲ 1 GeV2. For more details on these
couplings, the reader is referred to Appendix B.
In practice, the Borel transforms of the form Eqs. (19)–

(20) generate d̃n coefficients from which, in practice, the
coefficients dn up to n ¼ nmax ¼ 70 were generated via the
relations (11), using Mathematica software [64] (cf. also
Appendix A). These dn coefficients, at large n, are then
compared with the expressions of the form of Eqs. (34) and
(37) originating from the form of the full renormalon Borel
transforms B½D�ðuÞ as suggested by the theory, Eqs. (30)–
(32) and (35)–(36). It will be seen that the numerical results
confirm that these structures are really reproduced.
Specifically, for the p ¼ 2 and p ¼ 3 IR renormalons,

four cases were considered (in the LMM, Lambert, and MS
schemes) for the one-loop-type Ansätze for the Borel
transforms B½D̃�ðuÞ of the auxiliary quantity D̃ðQ2Þ:
double pole (DP), single pole (SP), subleading (SL),
subsubleading (SSL),

B½D̃�ðuÞIR;p;DP ¼
πd̃IRp;2

ðp − uÞ2 ; ð38aÞ

B½D̃�ðuÞIR;p;SP ¼ πd̃IRp;1
ðp − uÞ ; ð38bÞ

B½D̃�ðuÞIR;p;SL ¼ πd̃IRp;0ð−1Þ ln
�
1 −

u
p

�
; ð38cÞ

B½D̃�ðuÞIR;p;SSL ¼ πd̃IRp;−1ðp − uÞ ln
�
1 −

u
p

�
; ð38dÞ

These Borel transforms generate the following perturbation
expansion coefficients d̃n of the corresponding auxiliary
quantities D̃ðQ2Þ:

ðd̃nÞIR;p;DPjd̃IRp;2¼p2=π ¼ ðnþ 1Þ!
�
β0
p

�
n
; ð39aÞ

ðd̃nÞIR;p;SPjd̃IRp;1¼p=π ¼ n!

�
β0
p

�
n
; ð39bÞ

ðd̃nÞIR;p;SLjd̃IRp;0¼1=π ¼ ðn − 1Þ!
�
β0
p

�
n

ðn ≥ 1Þ; ð39cÞ

ðd̃nÞIR;p;SSLjd̃IRp;−1¼1=ðpπÞ ¼ ðn−2Þ!
�
β0
p

�
n
ðn≥2Þ; ð39dÞ

The corresponding coefficients dn of the observableDðQ2Þ
that are obtained numerically from these d̃n’s by the
aforementioned relations (11), turn out to agree at high
n with the following expressions to a high precision
(n ≤ nmax with nmax ¼ 70 was used):

ðdnÞIR;p;DP ¼
πdIRp;2

pγ̃pþ1Γðγ̃p þ 1ÞΓðγ̃p þ 1þ nÞ
�
β0
p

�
n
�
1þ ðbð2pÞ1 þ Cð2pÞ1;2 Þ

�
p
β0

�
1

ðγ̃p þ nÞ

þ ðbð2pÞ2 þ bð2pÞ1 Cð2pÞ1;2 þ Cð2pÞ2;2 Þ
�
p
β0

�
2 1

ðγ̃p þ nÞðγ̃p − 1þ nÞ þO
�
1

n3

��
; ð40aÞ

ðdnÞIR;p;SP ¼
πdIRp;1

pγ̃pΓðγ̃pÞ
Γðγ̃p þ nÞ

�
β0
p

�
n
�
1þ ðbð2pÞ1 þ Cð2pÞ1;1 Þ

�
p
β0

�
1

ðγ̃p − 1þ nÞ

þ ðbð2pÞ2 þ bð2pÞ1 Cð2pÞ1;1 þ Cð2pÞ2;1 Þ
�
p
β0

�
2 1

ðγ̃p − 1þ nÞðγ̃p − 2þ nÞ þO
�
1

n3

��
; ð40bÞ

ðdnÞIR;p;SL ¼ πdIRp;0
pγ̃p−1Γðγ̃p − 1ÞΓðγ̃p − 1þ nÞ

�
β0
p

�
n
�
1þ ðbð2pÞ1 þ Cð2pÞ1;0 Þ

�
p
β0

�
1

ðγ̃p − 2þ nÞ þO
�
1

n2

��
; ð40cÞ

ðdnÞIR;p;SSL ¼ πdIRp;−1
pγ̃p−2Γðγ̃p − 2ÞΓðγ̃p − 2þ nÞ

�
β0
p

�
n
�
1þ ðbð2pÞ1 þ Cð2pÞ1;−1Þ

�
p
β0

�
1

ðγ̃p − 3þ nÞ þO
�
1

n2

��
; ð40dÞ

where the coefficients bðDÞ
j are given in Eqs. (26), and for the index γ̃p the following notation is used [cf. also Eq. (32a)]:

γ̃p ≡ 1þ p
c1
β0

: ð41Þ
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The coefficients Cð2pÞj;k (j ¼ 1, 2) and the ratios dIRp;k=d̃
IR
p;k are given in the upper part of Table I (IR, p ¼ 2, 3) for the

mentioned (four-loop) LMM scheme and the Lambert scheme (with c2 ¼ −4.9). In Appendix C it is explained how the

values and the uncertainties of the coefficients Cð2pÞj;k were extracted.
The Borel transforms corresponding to the expressions (40) are

B½D�ðuÞIR;p;DP ¼
πdIRp;2

ðp − uÞγ̃pþ1

�
1þ ðbð2pÞ1 þ Cð2pÞ1;2 Þ

β0γ̃p
ðp − uÞ þ ðbð2pÞ2 þ bð2pÞ1 Cð2pÞ1;2 þ Cð2pÞ2;2 Þ

β20γ̃pðγ̃p − 1Þ ðp − uÞ2 þ � � �
�
; ð42aÞ

B½D�ðuÞIR;p;SP ¼
πdIRp;1

ðp − uÞγ̃p
�
1þ ðbð2pÞ1 þ Cð2pÞ1;1 Þ

β0ðγ̃p − 1Þ ðp − uÞ þ ðbð2pÞ2 þ bð2pÞ1 Cð2pÞ1;1 þ Cð2pÞ2;1 Þ
β20ðγ̃p − 1Þðγ̃p − 2Þ ðp − uÞ2 þ � � �

�
; ð42bÞ

B½D�ðuÞIR;p;SL ¼ πdIRp;0
ðp − uÞγ̃p−1

�
1þ ðbð2pÞ1 þ Cð2pÞ1;0 Þ

β0ðγ̃p − 2Þ ðp − uÞ þ � � �
�
; ð42cÞ

B½D�ðuÞIR;p;SSL ¼ πdIRp;−1
ðp − uÞγ̃p−2

�
1þ ðbð2pÞ1 þ Cð2pÞ1;−1Þ

β0ðγ̃p − 3Þ ðp − uÞ þ � � �
�
: ð42dÞ

These Borel transforms have, at least at the leading order, the structure of the theoretically expected Borel transforms of the

IR p renormalons, Eqs. (30)–(32), if the leading anomalous dimension coefficient γð1ÞO2p
=β0 in Eq. (32a) is an integer. The

latter condition appears to be satisfied for spacelike observables.
Analogously, also the UV p ¼ 1 renormalons were considered numerically, in the mentioned three renormalization

schemes, for the double-pole (DP), single-pole (SP), and the subleading (SL) cases:

B½D̃�ðuÞUV;p¼1 ¼
πd̃UVp;2

ðpþ uÞ2 ;
πd̃UVp;1

ðpþ uÞ ; πd̃
UV
p;0ð−1Þ ln

�
1þ u

p

�����
p¼1

: ð43Þ

They generate the coefficients

ðd̃nÞUV;p¼1 ¼ ðnþ 1Þ!ð−β0Þn; n!ð−β0Þn; ðn − 1Þ!ð−β0Þn; ð44Þ
respectively,7 for d̃UV1;j ¼ 1=π. From these coefficients d̃n, the coefficients dn generated by the relations (11) agree
numerically with the following expressions to a high precision:

TABLE I. The numerically extracted values of the coefficients CðDÞ
1;k , C

ðDÞ
2;k , and the ratios d

X
p;k=d̃

X
p;k, for X ¼ IR with p ¼ 2, 3 (D ¼ 2p),

and X ¼ UV and p ¼ 1 (D ¼ −2p) in two renormalization schemes: (four-loop) Lambert MiniMOM (LMM) scheme, and Lambert
scheme (Lamb., with c2 ¼ −4.9).

Type LMM: CðDÞ
1;k CðDÞ

2;k
dXp;k=d̃

X
p;k Lamb.: CðDÞ

1;k CðDÞ
2;k

dXp;k=d̃
X
p;k

X ¼ IR, p ¼ 2;DPðk ¼ 2Þ (−9.3� 2.0) (þ14.� 20.) (15.9� 0.5) (−4.8� 0.8) (þ47.� 6.) (0.738� 0.008)
X ¼ IR, p ¼ 2; SPðk ¼ 1Þ (−0.30� 0.27) (þ14.5� 2.0) (6.28� 0.02) (−0.38� 0.33) (þ22.5� 5.5) (0.290� 0.001)
X ¼ IR, p ¼ 2; SLðk ¼ 0Þ (þ9.3� 0.2) � � � (þ4.04� 0.01) (þ3.9� 0.6) � � � (0.186� 0.002)
X ¼ IR, p ¼ 2; SSLðk ¼ −1Þ (þ20.� 1.) � � � (þ7.03� 0.10) (þ8.2� 0.8) � � � (þ0.325� 0.006)

X ¼ IR, p ¼ 3;DPðk ¼ 2Þ (−7.3� 1.6) (−30.� 12.) (þ260.� 9.) (−4.6� 1.6) (þ43.� 7.) (þ1.12� 0.04)
X ¼ IR, p ¼ 3; SPðk ¼ 1Þ (−1.1� 1.1) (þ37.� 10.) (þ81.3� 1.7) (−0.8� 0.7) (þ41.� 14.) (þ0.338� 0.005)
X ¼ IR, p ¼ 3; SLðk ¼ 0Þ (þ8.8� 0.1) � � � (þ35.1� 0.1) (þ3.6� 1.9) � � � (þ0.146� 0.005)

X ¼ UV, p ¼ 1;DPðk ¼ 2Þ) (−9.0� 1.3) (−52.� 12.) (þ1.361� 0.011) (þ7.5� 1.2) (−64.� 25.) (−0.489� 0.004)
X ¼ UV, p ¼ 1;SPðk ¼ 1Þ (0.1� 0.1) (8.2� 0.5) (þ6.444� 0.004) (0.0� 0.2) (0.� 8.) (−2.310� 0.003)
X ¼ UV, p ¼ 1;SLðk ¼ 0Þ (þ8.6� 1.9) � � � (−8.11� 0.12) (−6.5� 0.6) � � � (þ2.91� 0.01)

7When changing the renormalization scale parameter κ≡ μ2=Q2 to κ ≠ 1, the generated coefficients (39) can be shown, by
the use of the relation (16), to change (in the IR p case): d̃nðκÞ=d̃n ¼ κpð1 − pðln κÞ=ðnþ 1ÞÞ, κp, κpð1þ pðln κÞ=nþ
Oð1=n2ÞÞ, for the cases DP, SP, SL, respectively. And in the UV p case they change d̃nðκÞ=d̃n ¼ κ−pð1þ pðln κÞ=ðnþ 1ÞÞ, κ−p,
κ−pð1 − pðln κÞ=nþOð1=n2ÞÞ, for the cases DP, SP, SL. The relative corrections to these relations, due to the finiteness of n, are
Oððpeðln κÞ=nÞnþ3=2Þ for DP and SP, and Oððpeðln κÞ=nÞnþ1=2Þ for SL.
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ðdnÞUV;p¼1;DP ¼
πdUV1;2

Γðγ̄1 þ 1ÞΓðγ̄1 þ 1þ nÞð−β0Þn
�
1þ ðbð−2Þ1 þ Cð−2Þ1;2 Þ 1

ð−β0Þ
1

ðγ̄1 þ nÞ

þ ðbð−2Þ2 þ bð−2Þ1 Cð−2Þ1;2 þ Cð−2Þ2;2 Þ 1

ð−β0Þ2
1

ðγ̄1 þ nÞðγ̄1 − 1þ nÞ þO
�
1

n3

��
; ð45aÞ

ðdnÞUV;p¼1;SP ¼
πdUV1;1
Γðγ̄1Þ

Γðγ̄1 þ nÞð−β0Þn
�
1þ ðbð−2Þ1 þ Cð−2Þ1;1 Þ 1

ð−β0Þ
1

ðγ̄1 − 1þ nÞ

þ ðbð−2Þ2 þ bð−2Þ1 Cð−2Þ1;1 þ Cð−2Þ2;1 Þ 1

ð−β0Þ2
1

ðγ̄1 − 1þ nÞðγ̄1 − 2þ nÞ þO
�
1

n3

��
; ð45bÞ

ðdnÞUV;p¼1;SL ¼ πdUV1;0
Γðγ̄1 − 1ÞΓðγ̄1 − 1þ nÞð−β0Þn

�
1þ ðbð−2Þ1 þ Cð−2Þ1;0 Þ 1

ð−β0Þ
1

ðγ̄1 − 2þ nÞ þO
�
1

n2

��
; ð45cÞ

and for the index γ̄p (with p ¼ 1) the following notation was used [cf. Eq. (36a)]:

γ̄p ≡ 1 − p
c1
β0

: ð46Þ

The generated Borel transforms are

B½D�ðuÞUV;1;DP ¼
πdUV1;2

ð1þ uÞγ̄1þ1

�
1þ ðbð−2Þ1 þ Cð−2Þ1;2 Þ

ð−β0Þγ̄1
ð1þ uÞ þ ðbð−2Þ2 þ bð−2Þ1 Cð−2Þ1;2 þ Cð−2Þ2;2 Þ

ð−β0Þ2γ̄1ðγ̄1 − 1Þ ð1þ uÞ2 þ � � �
�
; ð47aÞ

B½D�ðuÞUV;1;SP ¼
πdUV1;1

ð1þ uÞγ̄1
�
1þ ðbð−2Þ1 þ Cð−2Þ1;1 Þ

ð−β0Þðγ̄1 − 1Þ ð1þ uÞ þ ðbð−2Þ2 þ bð−2Þ1 Cð−2Þ1;1 þ Cð−2Þ2;1 Þ
ð−β0Þ2ðγ̄1 − 1Þðγ̄1 − 2Þ ð1þ uÞ2 þ � � �

�
; ð47bÞ

B½D�ðuÞUV;1;SL ¼ πdUV1;0
ð1þ uÞγ̄1−1

�
1þ ðbð−2Þ1 þ Cð−2Þ1;0 Þ

ð−β0Þðγ̄1 − 2Þ ð1þ uÞ þ � � �
�
: ð47cÞ

The numerically determined coefficients Cð−2Þ1;j and ratios

dUV1;j =d̃
UV
1;j are given in the lower part of Table I (UV, p ¼ 1),

in the two mentioned renormalization schemes.
One can also ask how the values of the coefficients and

ratios in Table I would be affected if the renormalization
scheme were truncated, e.g., cj ¼ 0 for j ≥ 5. The results
for the LMM scheme thus truncated are presented in
Table II, where also the results are included for the MS
scheme (with Nf ¼ 3) which is known to c4. Comparing
the results for LMM in Table I and for its truncated version
in Table II, one can see that the truncation does not
appreciably affect them. The UV p ¼ 1 results are almost
unaffected by this truncation.
The results in Tables I and II indicate that, in the cases of

SP [simple pole of B½D̃�ðuÞ], the correction coefficients

CðDÞ
j;1 are close to zero or even compatible with zero.

Furthermore, the ratios dXp;k=d̃
X
p;k in each of the considered

cases (X; p) are approximately (but not exactly) propor-
tional to Γðγ̃p þ k − 1Þ (k ¼ 2, 1, 0, −1). For example,
in the case IR p ¼ 2 we have for LMM scheme

ðdIR2;k=d̃IR2;kÞ=Γðγ̃2 þ k − 1Þ ¼ ð4.39� 0.13Þ, (4.46� 0.02),
(4.53� 0.01), (4.58� 0.06), for k ¼ 2, 1, 0, −1, respec-
tively; in the Lambert (c2 ¼ −4.9) scheme, these values
are (0.203� 0.002), (0.206� 0.001), (0.209� 0.002),
(0.212� 0.004), respectively.
Table III shows, in three different renormalization

schemes (LMM, c2 ¼ −4.9 Lambert, and MS), the con-
vergence of the generated dn coefficients in the case of IR
p ¼ 2 SP, with increasing n. Specifically, d̃n coefficients
are those given in Eq. (39b) with p ¼ 2, the coefficients dn
are then generated via the relations (11) up to8 n ¼ 70,
and they are divided by the truncated versions of the
n-dependent part JðnÞ of Eq. (40b) with p ¼ 2

JðnÞðLOÞ ¼ Γðγ̃2 þ nÞ
�
β0
2

�
n

ð48aÞ

8Mathematica software [64]was used to generate the coefficients
k̃s appearing in Eq. (9), based on specific recursion relations which
follow from the relations (4) and (6); cf. Appendix A.
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JðnÞðNLOÞ ¼ Γðγ̃2 þ nÞ
�
β0
2

�
n
�
1þ ðbð4Þ1

þ Cð4Þ1;1Þ
�
2

β0

�
1

ðγ̃2 − 1þ nÞ
�
; ð48bÞ

JðnÞðNNLOÞ ¼Γðγ̃2þnÞ
�
β0
2

�
n
�
1þðbð4Þ1 þCð4Þ1;1Þ

�
2

β0

�

×
1

ðγ̃2−1þnÞþðbð4Þ2 þbð4Þ1 Cð4Þ1;1þCð4Þ2;1Þ
�
2

β0

�
2

×
1

ðγ̃2−1þnÞðγ̃2−2þnÞ
�
: ð48cÞ

The values of the coefficients Cð4Þj;1 (j ¼ 1, 2) are the central
values given in Tables I and II. The results presented in
Table III show strong convergence of the mentioned ratios,
especially dn=JðnÞðNNLOÞ, toward n-independent values
when n increases.

III. ADLER FUNCTION

A. Construction of the generating Borel transforms

The massless Adler function, which is a logarithmic
derivative of the light-quark current correlator, is a specific
example of a spacelike QCD observable for which we have

TABLE II. The same as in Table I, but now for the LMM scheme truncated at c4 (TLMM: cj ¼ 0 for j ≥ 5), and for the MS scheme
(c̄j ¼ 0 for j ≥ 5). In both schemes Nf ¼ 3 was taken.

Type TLMM: CðDÞ
1;k CðDÞ

2;k dXp;k=d̃
X
p;k MS: CðDÞ

1;k CðDÞ
2;k dXp;k=d̃

X
p;k

X ¼ IR, p ¼ 2;DPðk ¼ 2Þ (−9.1� 1.9) (þ11.� 14.) (þ14.5� 0.4) (−7.8� 1.4) (þ35.� 10.) (þ4.59� 0.09)
X ¼ IR, p ¼ 2; SPðk ¼ 1Þ (−0.29� 0.26) (þ14.0� 2.2) (þ5.70� 0.02) (−0.03� 0.02) (þ1.7� 0.3) (þ1.7995� 0.0001)
X ¼ IR, p ¼ 2; SLðk ¼ 0Þ (þ8.85� 0.15) � � � (þ3.67� 0.01) (þ7.7� 0.4) � � � (þ1.155� 0.005)

X ¼ IR, p ¼ 3;DPðk ¼ 2Þ (−7.0� 1.6) (−26.� 12.) (þ199.� 7.) (−7.2� 1.2) (þ20.� 9.) (þ29.7� 0.8)
X ¼ IR, p ¼ 3; SPðk ¼ 1Þ (−1.0� 1.0) (þ37.� 10.) (þ61.9� 1.2) (−0.07� 0.06) (þ3.0� 0.8) (þ9.03� 0.01)
X ¼ IR, p ¼ 3; SLðk ¼ 0Þ (8.03� 0.05) � � � (þ26.84� 0.03) (þ9.1� 1.9) � � � (þ3.82� 0.13)

X ¼ UV, p ¼ 1;DPðk ¼ 2Þ (−9.1� 1.3) (−52.� 11.) (þ1.372� 0.011) (−10.1� 2.1) (−83.� 8.) (þ1.056� 0.014)
X ¼ UV, p ¼ 1;SPðk ¼ 1Þ (0.1� 0.1) (8.3� 0.5) (þ6.500� 0.004) (þ0.0� 0.0) (þ0.5� 0.1) (þ5.0098� 0.0001)
X ¼ UV, p ¼ 1;SLðk ¼ 0Þ (þ8.8� 1.9) � � � (−8.18� 0.12) (þ8.8� 1.7) � � � (−6.30� 0.08)

TABLE III. The coefficients d̃n of the IR p ¼ 2 SP case with d̃IR2;1 ¼ 2=π [Eq. (39b) with p ¼ 2], and various ratios involving the
corresponding coefficients dn generated via the relations (11): dn=d̃n, and dn=JðnÞðXÞ (X ¼ LO, NLO, NNLO); up to n ¼ 70. These
results are for the LMM, c2 ¼ −4.9 Lambert (Lamb.), and MS renormalization schemes (all with Nf ¼ 3).

Scheme n d̃n dn=d̃n dn=JðnÞðLOÞ dn=JðnÞðNLOÞ dn=JðnÞðNNLOÞ
LMM 1 1.125 1. 0.27512 −0.28003 0.22252

10 1.1784 × 107 41.034 0.89116 1.5963 1.4098
40 9.0729 × 1049 470.03 1.3144 1.4987 1.4896
50 1.0982 × 1067 679.36 1.3485 1.4969 1.4912
60 9.7572 × 1084 915.61 1.3715 1.4958 1.4918
70 4.5612 × 10103 1176.7 1.3881 1.4950 1.4921

Lamb. 1 1.125 1. 0.27512 0.082436 0.030582
10 1.1784 × 107 5.0885 0.11051 0.072666 0.064660
40 9.0729 × 1049 28.448 0.079550 0.069473 0.068653
50 1.0982 × 1067 38.996 0.077404 0.069301 0.068757
60 9.7572 × 1084 50.715 0.075968 0.069191 0.068804
70 4.5612 × 10103 63.525 0.074940 0.069116 0.068826

MS 1 1.125 1. 0.27512 0.46762 2.0610
10 1.1784 × 107 17.514 0.38035 0.41876 0.42586
40 9.0729 × 1049 148.67 0.41572 0.42662 0.42710
50 1.0982 × 1067 210.62 0.41805 0.42684 0.42715
60 9.7572 × 1084 280.12 0.41960 0.42696 0.42718
70 4.5612 × 10103 356.62 0.42069 0.42703 0.42719
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a large amount of theoretical information available.
Namely, its perturbation expansion (1) is known up to
∼a4, i.e., the coefficients dn for n ≤ 3 are exactly known
[65–67]. Further, the large-β0 (LB) expansion of its Borel
transform is also known [59,68,69],

B½D̃�ðu; κÞðLBÞ ¼ 32

3

κu exp½þð5=3Þu�
ð2 − uÞ

×
X∞
k¼2

ð−1Þkk
ðk − 1þ uÞ2ðkþ 1 − uÞ2 ð49aÞ

¼ 1þ d̃ðLBÞ1 ðκÞ
1!β0

uþ � � � þ d̃ðLBÞn ðκÞ
n!βn0

un þ � � � ; ð49bÞ

showing9 that in the large-β0 (resummed one-loop)
approximation the IR renormalon poles are double for p ¼
3; 4;… [⇒ −γð1ÞOD

=β0 ¼ 1 in Eq. (32a)], single for p ¼ 2

(γð1ÞO4
¼ 0), and the UV renormalon poles (p ¼ 1; 2;…) are

all double [−γð1ÞOD
=β0 ¼ 1 in Eq. (36a)]. In addition, for the

IR p ¼ 2 renormalon pole the subleading coefficient ĉð4Þ1

[cf. Eqs. (27)–(28)] is also known [59,71]

ĉð4Þ1 ¼ 7

6
− c1

�
¼ −

11

18
when Nf ¼ 3

�
: ð50Þ

Using all this information, a physically motivated Ansatz
for the Borel transform B½D̃�ðuÞ of the auxiliary quantity
D̃ðQ2Þ Eq. (12) of the Adler function will be written, where
the IR p ¼ 2 leading and subleading renormalons are
included, as well as the IR p ¼ 3 and UV p ¼ 1 leading
renormalons

B½D̃�ðuÞð4PÞ ¼ expðK̃uÞπ
�
d̃IR2;1

�
1

ð2−uÞþ α̃ð−1Þ ln
�
1−

u
2

��

þ d̃IR3;2
ð3−uÞ2þ

d̃UV1;2
ð1þuÞ2

�
: ð51Þ

Here, the superscript (4 P) indicates that the Ansatz contains
four adjustable parameters: the “scaling” parameter K̃ and
the renormalon residue parameters d̃IR2;1, d̃

IR
3;2, and d̃UV1;2 . It

turns out that the IR p ¼ 2 subleading parameter α̃ is fixed

by the knowledge of the subleading coefficient ĉð4Þ1

Eq. (50). Each one-loop-type IR renormalon term in the
Ansatz (51) generates the Borel transforms of the type (42)
and the corresponding contributions (40) to the perturba-
tion coefficients dn. When assuming K̃ ¼ 0 and requiring
that the two IR p ¼ 2 renormalons in Eq. (51) together
generate the ðdnÞIR;p¼2 coefficient of the form Eq. (34) with

the subleading part there having ĉð4Þ1 as given in Eq. (50),
the following condition is obtained:

α̃ ¼ α

�
dIR2;1
d̃IR2;1

��
dIR2;0
d̃IR2;0

�−1
; ð52Þ

where

α ¼ ðĉð4Þ1 − Cð4Þ1;1Þ
β0ðγ̃2 − 1Þ : ð53Þ

The ratios and the parameter Cð4Þ1;1 appearing in these
expressions are given in Table I. On the basis of the results
of the previous section, the expression (51) generates the
following Borel transform of the full Adler function D, at
the renormalization scale μ2 ¼ κQ2 ¼ expð−K̃ÞQ2:

B½D�ðu; κ ¼ e−K̃Þð4PÞ ¼ π

�
dIR2;1

ð2 − uÞγ̃2
�
1þ ðbð4Þ1 þ Cð4Þ1;1Þ

β0ðγ̃2 − 1Þ ð2 − uÞ þ ðbð4Þ2 þ Cð4Þ1;1b
ð4Þ
1 þ Cð4Þ2;1Þ

β20ðγ̃2 − 1Þðγ̃2 − 2Þ ð2 − uÞ2 þ � � �
�

þ dIR2;1α

ð2 − uÞγ̃2−1
�
1þ ðbð4Þ1 þ Cð4Þ1;0Þ

β0ðγ̃2 − 2Þ ð2 − uÞ þ � � �
�

þ dIR3;2
ð3 − uÞγ̃3þ1

�
1þ ðbð6Þ1 þ Cð6Þ1;2Þ

β0γ̃3
ð3 − uÞ þ ðbð6Þ2 þ Cð6Þ1;2b

ð6Þ
1 þ Cð6Þ2;2Þ

β20γ̃3ðγ̃3 − 1Þ ð3 − uÞ2 þ � � �
�

þ dUV1;2
ð1þ uÞγ̄1þ1

�
1þ ðbð−2Þ1 þ Cð−2Þ1;2 Þ

ð−β0Þγ̄1
ð1þ uÞ þ ðbð−2Þ2 þ Cð−2Þ1;2 bð−2Þ1 þ Cð−2Þ2;2 Þ

ð−β0Þ2γ̄1ðγ̄1 − 1Þ ð1þ uÞ2 þ � � �
��

;

ð54Þ

9The MS scale convention is used throughout this work. We recall that d̃nðκÞ can be expanded in powers of β0,
namely d̃nðκÞ ¼ cn;nðκÞβn0 þ cn;n−1ðκÞβn−10 þ � � � þ cn;−1ðκÞβ−10 , and d̃ðLBÞn ðκÞ ¼ cn;nðκÞβn0 , where cn;nðκÞ is renormalization scale
dependent and renormalization scheme independent [21,70], i.e., independent of the scheme parameters cj ¼ βj=β0 (j ≥ 2).
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and the notations Eqs. (41) and (46) for γ̃p and γ̄p were
used. The above Borel transform generates the Adler
function coefficients dnðκÞ at the value of the renormaliza-
tion scale parameter κ (≡μ2=Q2) ¼ expð−K̃Þ. As men-
tioned, if the value of the renormalization scale parameter
were κ ¼ 1 (K̃ ¼ 0), then the requirement of the repro-
duction of the correct contribution ðdnÞIR;p¼2 of Eq. (34), at

subleading order, with the known value of ĉð4Þ1 Eq. (50),
would imply that the α coefficient at dIR2;1 in Eq. (54) must
have the value as given in Eq. (53). It turns out that the
effect of κ ≠ 1 (K̃ ≠ 0) does not change this relation and the
relation (52). This is so because

ðdnÞIR;p¼2 ¼ e2K̃½1þOð1=n2Þ�ðdnðκÞÞIR;p¼2jκ¼expð−K̃Þ;

ð55Þ

i.e., the change of renormalization scale changes the
coefficient only by a constant factor, with no subleading
corrections (but with subsubleading corrections). This
relation can be understood if the IR p ¼ 2 part of the
Borel B½D̃�ðuÞ of Eq. (51) is reexpressed by expanding the
exponential expðK̃uÞ around u ¼ 2, which gives

B½D̃�ðuÞIR;p¼2

¼ expðK̃uÞπd̃IR2;1
�

1

ð2 − uÞ þ α̃ð−1Þ ln
�
1 −

u
2

��

¼ πd̃IR2;1 expð2K̃Þ
�

1

ð2 − uÞ þ α̃ð−1Þ ln
�
1 −

u
2

�

− K̃ þ α̃2K̃

�
1 −

u
2

�
ln

�
1 −

u
2

�
þOð2 − uÞ

�
: ð56Þ

The term ð1 − u=2Þ lnð1 − u=2Þ in the brackets is subsu-
bleading (SSL); comparison of the results Eqs. (40d) with
(40b) then gives that this term gives relative corrections
∼1=n2, i.e., the relation (55). Hence, in retrospect, we see
that the relations (52)–(53), which are subleading in their
nature, are not affected by K̃ ≠ 0 which is a subsubleading
effect [apart from the overall factor expð2K̃Þ].
In the case of the mentioned renormalization schemes

LMM and Lambert c2 ¼ −4.9 schemes, applicable in the
3δ AQCD and 2δ AQCD, respectively, and the truncated
(at c4) TLMM and MS schemes, the relations (52)–(53)
and the numerical results of Tables I and II give us the
values

α̃LMM ¼ −0.14� 0.12; ð57aÞ

α̃Lamb ¼ −0.10� 0.14 ð57bÞ

α̃TLMM ¼ −0.14� 0.11; ð57cÞ

α̃MS ¼ −0.255� 0.010: ð57dÞ

By far the most dominant source of uncertainty of α̃ is the

uncertainty δCð4Þ1;1 (cf. Tables I and II).
Since the Borel transform B½D̃�ðuÞ Eq. (51) has four free

parameters, and its power expansion generates the coef-
ficients d̃j, the four free parameters can be determined by
the knowledge of the first four coefficients d̃j (j ¼ 0, 1, 2,
3) in the considered scheme, whose values are given in
Table IV (second line). The Ansatz Eq. (51) was applied in
the LMM renormalization scheme, this led to three differ-
ent solutions. These solutions then give us predictions for
the next perturbation coefficient d̃4, which can be trans-
formed into the coefficient d4 in the MS scheme, with the
values d4ðMSÞ ¼ 338.2; 130.4; 3028. However, the effec-
tive charge (ECH) method [72] leads to the estimate
d4ðMSÞECH ¼ 275 [73,74]; the conservative estimate of
Ref. [62] is 0 < d4ðMSÞ < 642 [their preferred value is
d4ðMSÞ ¼ 283]; recent estimates [75] based on Padé
approximants give d4ðMSÞ ¼ 277� 51. For these reasons,
the solution which gives d4ðMSÞ ¼ 338.2was chosen here.
The results are given in Table V (first line). This model for

TABLE IV. The known perturbation coefficients dj and d̃j in
the MS, LMM and Lambert c2 ¼ −4.9 (Lamb.) renormalization
schemes (all with Nf ¼ 3). The canonical convention d0 ¼ d̃0 ¼
1 was used.

Scheme d1 d2 d3 d̃1 d̃2 d̃3
MS 1.63982 6.37101 49.0757 1.63982 3.45578 26.3849
LMM 1.63982 1.54508 8.01658 1.63982 −1.37016 −1.13924
Lamb. 1.63982 15.7421 83.5517 1.63982 12.8268 34.5787

TABLE V. The obtained values of K̃ and of the renormalon residues d̃Xi;j (X ¼ IR,UV) for the four-parameter
Ansatz (51) in the LMM scheme, and the five-parameter Ansatz (58) in the Lambert c2 ¼ −4.9 (Lamb.) scheme and
MS scheme, giving in all cases the same value d4ðMS; Nf ¼ 3Þ ¼ 338.2. For α̃ the corresponding central values in
Eqs. (57) were taken.

Scheme K̃ d̃IR2;1 d̃IR3;2 d̃IR3;1 d̃UV1;2

LMM −0.770405 −1.83066 11.0498 � � � 0.00588513
Lamb. 0.2228 4.74582 −1.04837 −5.89714 0.0276003
MS 0.5190 1.10826 −0.481538 −0.511642 −0.0117704
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the Adler function will be applied for the 3δ AQCD [35]
because this QCD variant was constructed in the LMM
renormalization scheme.
An additional goal here is to make comparisons of the

results obtained in this way with the analogous results
obtained in 2δ AQCD [23], which is a QCD variant
constructed in the Lambert c2 ¼ −4.9 renormalization
scheme. Therefore, a model for the Adler function will
now be constructed in this Lambert renormalization
scheme, by requiring additionally that the same value
d4ðMS; Nf ¼ 3Þ ¼ 338.2 be generated in this model.
This now implies one more condition (in total five con-
ditions) in this scheme. Hence, for the c2 ¼ −4.9 Lambert
renormalization scheme, the following Ansatz with one
more parameter is written (the IR p ¼ 3 renormalon will
have the double and the single pole):

B½D̃�ðuÞð5PÞ ¼ expðK̃uÞπ
�
d̃IR2;1

�
1

ð2−uÞþ α̃ð−1Þ ln
�
1−

u
2

��

þ d̃IR3;2
ð3−uÞ2þ

d̃IR3;1
ð3−uÞþ

d̃UV1;2
ð1þuÞ2

�
: ð58Þ

Applying the five conditions, the five parameters of this
Ansatz (K̃ and the four renormalon residues) are deter-
mined uniquely, and this solution is given in the second line
of Table V. The same procedure was repeated for the MS
scheme (no comparable AQCD version is available in that
scheme, though), and the results are included in Table V.10

Now we have the two models of Adler function,
in 4LMM and Lambert schemes, the two models
being presumably comparable because they give the same
value of the ∼a5 perturbation coefficient d4, namely
d4ðMS; Nf ¼ 3Þ ¼ 338.2.

B. Construction of the characteristic distribution
function GDðtÞ

Now the characteristic function FDðtÞ will be con-
structed, for the spacelike observables D with a rather
generic form of the Borel transform B½D̃�ðuÞ of the
correponding auxiliary quantity D̃. In this approach, mainly
Neubert’s construction [57] will be followed, who con-
structed such characteristic functions in the framework of
the large-β0 approximation in pQCD.
The characteristic function FDðtÞ is a function of a

dimensionless parameter t (t > 0) such that the integral

DresðQ2Þ ¼
Z þ∞

0

dt
t
FDðtÞaðtQ2Þ ð59Þ

represents the leading-twist part of the observable DðQ2Þ,
in the sense that it generates the correct logarithmic
perturbation expansion (13b) of the observable when the
coupling aðtQ2Þ is Taylor-expanded around aðQ2Þ

aðtQ2Þ ¼ aðκQ2Þ þ ð−β0Þ lnðt=κÞã2ðκQ2Þ þ � � �
þ ð−β0Þnlnnðt=κÞãnþ1ðκQ2Þ þ � � � ð60Þ

where the notation Eq. (2) is used. This means that FDðtÞ
must satisfy the following string of relations:

ð−β0Þn
Z þ∞

0

dt
t
FDðtÞlnn

�
t
κ

�
¼ d̃nðκÞ ðn ¼ 0; 1; 2;…Þ:

ð61Þ

Using these relations (with κ ¼ 1) and the expansion (17)
for the Borel transform B½D̃�ðuÞ, one obtains

B½D̃�ðuÞ ¼
Z þ∞

0

dt
t
FDðtÞt−u: ð62Þ

This means that B½D̃�ðuÞ is Mellin transform of the
characteristic function FDðtÞ. The inverse Mellin transform
than gives the characteristic function in terms of B½D̃�ðuÞ

FDðtÞ ¼
1

2πi

Z
u0þi∞

u0−i∞
duB½D̃�ðuÞtu; ð63Þ

where the integration is in the complex u-plane paralell to
the imaginary axis, and u0 is any real value where the
integral (62) exists, i.e., in the case of the Adler function
one can take −1 < u0 < þ2. One can choose u0 ¼ þ1, and
write the above integral along the real axis in terms of the
variable z such that u ¼ 1 − iz

FDðtÞ ¼
t
2π

Z þ∞

−∞
dzB½D̃�ðu ¼ 1 − izÞ expð−iz ln tÞ: ð64Þ

For the Borel transforms B½D̃� of the one-loop-type form
(38) and (43), the integrals (64) for FDðtÞ can be evaluated
in a straightforward way, by performing integration along
judicially chosen contours and using Cauchy theorem. For
the rather generic case of the Borel transform

B½D̃�ðuÞ¼ expðK̃uÞπ
�
d̃IR2;1

�
1

ð2−uÞþ α̃ð−1Þln
�
1−

u
2

��

þ d̃IRN;2

ðN−uÞ2þ
d̃IRN;1

ðN−uÞþ
d̃UVM;2

ðMþuÞ2þ
d̃UVM;1

ðMþuÞ
�
;

ð65Þ

10The polynomial five-loop β function [76] was used in the
Nf ¼ 3 regime, using as the Nf ¼ 3 reference value ā0 ≡
aðQ2

0;MSÞNf¼3 ¼ 0.0846346 at Q2
0 ¼ ð2m̄cÞ2 (where m̄c ¼

1.27 GeV). See Appendix B for more details, in particular
footnote 23 there for comparison of numerical values.
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the following result for the integrated observable DðQ2Þ is
obtained:

DðQ2Þres ¼
Z

∞

0

dt
t
GDðtÞaðte−K̃Q2Þ

þ
Z

∞

0

dt
t
GðSLÞ

D ðtÞ½aðte−K̃Q2Þ − aðe−K̃Q2Þ�;

ð66Þ

where the two characteristic functions are

GDðtÞ ¼ Gð−Þ
D ðtÞΘð1 − tÞ þ GðþÞ

D ðtÞΘðt − 1Þ; ð67aÞ

Gð−Þ
D ðtÞ ¼ πt2½d̃IR2;1 − d̃IRN;2t

N−2 ln tþ d̃IRN;1t
N−2�; ð67bÞ

GðþÞ
D ðtÞ ¼ π

tM
½d̃UVM;2 ln tþ d̃UVM;1�; ð67cÞ

GðSLÞ
D ðtÞ ¼ −α̃d̃IR2;1

πt2

ln t
Θð1 − tÞ; ð67dÞ

where Θ is the Heaviside step function, i.e., the result (66)
can be written as

DðQ2Þres ¼
Z

1

0

dt
t
Gð−Þ

D ðtÞaðte−K̃Q2Þ

þ
Z

∞

1

dt
t
GðþÞ

D ðtÞaðte−K̃Q2Þ

þ
Z

1

0

dt
t
GðSLÞ

D ðtÞ½aðte−K̃Q2Þ − aðe−K̃Q2Þ�:

ð68Þ

The characteristic functionGDðtÞ (¼ FDðe−K̃tÞ) is obtained
by closing the integration path of zwith the large semicircle
in the upper (lower) half plane for t < 1 (t > 1). For the

subleading (SL) contribution, the function GðSLÞ
D ðtÞ is

obtained by closing the z-path in the upper half plane
and integrating there along both sides of the cut ðþi;þi∞Þ
in order not to enclose it. It can be further noted that the SL
contribution contains in the integrand the subtraction
½aðte−K̃Q2Þ − aðe−K̃Q2Þ� instead of simply aðte−K̃Q2Þ,
because the SL contribution starts at ∼a2 because there
d̃0 ¼ 0 (the corresponding Borel transform expansion starts
at ∼u1). The relations (61) can now be rewritten in terms of
GDðtÞ (¼ FDðe−K̃tÞ) and include the SL contribution

d̃nðκÞ ¼ ð−β0Þn
�Z þ∞

0

dt
t
GDðtÞlnn

�
t
κ
e−K̃

�

þ
Z

∞

0

dt
t
GðSLÞ

D ðtÞ
�
lnn

�
t
κ
e−K̃

�
− lnn

�
1

κ
e−K̃

���
;

ð69Þ

for n ¼ 0; 1; 2;…. The form (65) of B½D̃�ðuÞ includes in its
form the cases of the four-parameter Ansatz (51) (N ¼ 3,
M ¼ 1, d̃IRN;1 ¼ 0 ¼ d̃UVM;1) which was applied in Sec. III A
to the Adler function in the LMM renormalization scheme,
and the five-parameter Ansatz (58) (N ¼ 3, M ¼ 1,
d̃UVM;1 ¼ 0) which was applied there to the Adler function
in the Lambert c2 ¼ −4.9 renormalization scheme. It can
be explicitly checked, e.g., with Mathematica software
[64], that the integrals (69) generate the very same
perturbation (lpt) coefficients d̃nðκÞ as the Borel transform
B½D̃�ðuÞ Eq. (65).
It should be pointed out that the coupling aðte−K̃Q2Þ in

the integrand (66) is, in principle, running to any chosen
loop order, thus representing the (leading-twist of the) full
observable DðQ2Þ. If the coupling aðte−K̃Q2Þ is one-loop
running

að1−l:Þðte−K̃Q2Þ ¼ aðQ2Þ
1þ aðQ2Þβ0 lnðte−K̃Þ

; ð70Þ

then the integral (66)[⇔ (68)] reproduces the perturbation
expansion (12) of the auxiliary quantity D̃ðQ2Þ when the
coupling (70) in the integral is expanded in powers
of aðQ2Þ.
The integral (66) is in pQCD in general ambiguous for

Q2 > 0 because of the Landau singularities of the pQCD
coupling aðte−K̃Q2Þ at low t values. To avoid this ambi-
guity, the integral (for Q2 > 0) is evaluated with the path
scale slightly above the real positive axis, aðte−K̃Q2 þ iϵÞ
and taking the real part of it (i.e., the generalized principal
value)

DðQ2ÞpQCDres ¼ Re
�Z

∞

0

dt
t
GDðtÞaðte−K̃Q2 þ iϵÞ

þ
Z

∞

0

dt
t
GðSLÞ

D ðtÞ½aðte−K̃Q2 þ iϵÞ

− aðe−K̃Q2 þ iϵÞ�g: ð71Þ

The ambiguity is proportional to the imaginary part

δDðQ2ÞpQCDres ¼ � 1

π
Im

�Z
∞

0

dt
t
GDðtÞaðte−K̃Q2 þ iϵÞ

þ
Z

∞

0

dt
t
GðSLÞ

D ðtÞ½aðte−K̃Q2 þ iϵÞ

− aðe−K̃Q2 þ iϵÞ�
�
: ð72Þ

On the other hand, the situation is essentially different in
the QCD variants with IR-safe couplingAðQ02Þ [the analog
of aðQ02Þ]. In those variants, the coupling AðQ02Þ is in
general holomorphic (analytic) function in theQ02-complex
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plane with the exclusion of (part of) the negative semiaxis:
Q02 ∈ Cnð−∞;−M2

thr�, where Mthr ∼ 0.1 GeV is a thresh-
old scale generally of the order of the light meson mass.
Two representative cases are the 2δAQCD and 3δAQCD,
cf. Appendix B for more details. In such QCD variants, the
evaluation of the integrals (66) [⇔ (68)] is unambiguous. In
such AQCD frameworks, these integrals represent an
unambigous resummation of the leading-twist part of the
spacelike observable DðQ2Þ, if one takes the position that
the Borel transforms B½D̃�ðuÞ of the type (65) represent the
correct generators of all the d̃n perturbation (lpt) coeffi-
cients of DðQ2Þ Eq. (13b). As argued in Appendix B, most
of the relations in Sec. II A survive in these QCD variants,
with the substitutions: a ↦ A, ãn ↦ Ãn, and an ↦ An.
Since the coupling AðQ2Þ in these AQCD frameworks
differs from the (underlying) pQCD coupling aðQ2Þ in the
same renormalization scheme by nonperturbative contri-
butions, we have one (crucial) difference, namely that the
power analogs An are not simple powers of A (An ≠ An);
cf. Appendix B. For example, the series (13) for the Adler
function (and any other spacelike observable) in such
AQCD frameworks gets the form

DAQCDðQ2Þ ¼ d̃0Aðμ2Þ þ d̃1ðκÞÃ2ðμ2Þ þ d̃2ðκÞÃ3ðμ2Þ
þ � � � þ d̃nðκÞÃnþ1ðμ2Þ þ � � � ð73aÞ

¼ d0Aðμ2Þþd1ðκÞA2ðμ2Þþd2ðκÞA3ðμ2Þ
þ �� �þdnðκÞAnþ1ðμ2Þþ �� � ; ð73bÞ

where d̃0 ¼ d0 ¼ 1, the definition of the couplings Ãk and
Ak is given in Appendix B [Eqs. (B11) and (B14)] and, as
always, κ ≡ μ2=Q2 is the (arbitrary) dimensionless renorm-
alization scale parameter (0 < κ ∼ 1). The terms in the
series (73) do not suffer from Landau singularities at low

positive Q2 (0 ≤ Q2 ≲ 1 GeV2), in contrast to the terms in
the pQCD series (13). However, the series (73) are
asymptotically divergent, as are also the pQCD series
(13). The corresponding resummation of the series
DAQCDðQ2Þ, with the characteristic functions GDðtÞ and

GðSLÞ
D ðtÞ, turns out to be completely similar to the resum-

mation (68) in pQCD, with the simple substitution a ↦ A

DðQ2ÞAres ¼
Z

1

0

dt
t
Gð−Þ

D ðtÞAðte−K̃Q2Þ

þ
Z

∞

1

dt
t
GðþÞ

D ðtÞAðte−K̃Q2Þ

þ
Z

1

0

dt
t
GðSLÞ

D ðtÞ½Aðte−K̃Q2Þ −Aðe−K̃Q2Þ�:

ð74Þ

In contrast to pQCD, these integrals are unambiguous
because the coupling AðQ02Þ has no Landau singularities,
and there is no need to employ the (generalized) principal
value approach Eqs. (71)–(72).
In Figs. 1(a) and 1(b) the resulting Adler function

DðQ2ÞAres is presented for positive Q2, as a function of

Q≡ ffiffiffiffiffiffi
Q2

p
, in 3δ AQCD (in the LMM renormalization

scheme) and in 2δ AQCD (in the Lambert c2 ¼ −4.9
renormalization scheme), respectively. In both cases, the
results in the corresponding underlying pQCD (i.e., pQCD
in the LMM and the Lambert renormalization scheme) are
included, using the resummation form Eq. (71) with the
uncertainty estimate Eq. (72). The pQCD curves are not
included for very low Q < 0.6 GeV because there they
have more erratic behavior.
In Fig. 2, the two mentionedAQCD curves for the Adler

function DðQ2ÞAres are presented in one figure, and, for
comparison, the pQCD curves in the (five-loop) MS

(a) (b)

FIG. 1. The radiative Adler function Eq. (73) resummed with the characteristic function according to Eq. (74), as a function of

Q≡ ffiffiffiffiffiffi
Q2

p
, for positive Q2, in (a) 3δ AQCD (in the LMM renormalization scheme), and (b) 2δ AQCD (in the Lambert c2 ¼ −4.9

renormalization scheme). Included are also the results Eqs. (71)–(72) in the underlying pQCD (in the same renormalization schemes).
We refer to the text for more details.
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renormalization scheme are included according to
Eqs. (71)–(72). All these curves were evaluated in
ðAÞQCD variants which correspond at the very high scale
Q2 ¼ M2

Z to the MS scheme value πaðM2
Z;MSÞ ¼ 0.1185,

and to the value of the τ lepton semihadronic decay ratio

rðD¼0Þ
τ ¼ 0.201 in 2δ AQCD [23] and in 3δ AQCD [35] in
specific approaches.11 The two programs used for the
numerical evaluation are freely available at the www site
[38], and are written in Mathematica language. Further, as
mentioned in Sec. III A, the higher order d̃n coefficients of
the Adler function in the three cases (LMM, Lambert, and
MS) do not mutually agree when transformed to a common
renormalization scheme (e.g., to MS); however, the con-
struction was such that the first five such coefficients

mutually agree (d̃MS
0 ;…; d̃MS

5 ), the first four being the

known coefficients (d̃MS
j ⇒ dMS

j , where j ¼ 0;…; 3;
d0 ¼ 1), and the fifth coefficient being mutually the same

(dMS
4 ¼ 338.19). One aspect in Fig. 2 that catches the

attention is the significantly different behavior of the
radiative Adler function at Q < 0.5 GeV in the two
AQCD variants; this is a consequence of the fact that
the 2δ AQCD coupling AðQ2Þ freezes in the deep IR
regime at the nonzero value Að0Þ ≈ 0.66, while the 3δ
AQCD coupling goes to zero as AðQ2Þ ∼Q2 when
Q2 → 0, where the latter property is suggested by the
results of the large volume lattice calculations of the
dressing functions of the Landau gauge gluon and ghost
propagators [41] (cf. also [42–44]). The reader can refer to
Appendix B for more details on the couplings A and Ãn in
2δ and 3δ AQCD.

C. Evaluation of the semihadronic τ decay ratio rτ
In the previous section it was described how to evaluate

the leading-twist part of the spacelike observables DðQ2Þ
from the Borel transforms B½D̃�ðuÞ of the auxiliary quantity
D̃ðQ2Þ. This evaluation is unambiguous in AQCD where
no Landau singularities are present in the coupling AðQ02Þ
[and thus in ÃnðQ02Þ]. If DðQ2Þ is the (massless) Adler
function, this evaluation then allows one to evaluate, again
unambiguously, the τ lepton semihadronic decay ratio

rðD¼0Þ
τ [the strangeless and massless leading-twist (D ¼ 0)
part]

rðD¼0Þ
τ ¼ 1

2π

Z
π

−π
dθð1þ eiθÞ3ð1 − eiθÞDðm2

τeiθÞ; ð75Þ

where the Adler functionDðQ2Þ has expansions of the form
Eqs. (13) with d0 ¼ d̃0 ¼ 1.12 Using the expression (68) for
D leads to

rðD¼0Þ
τ ¼ 1

2π

Z
π

−π
dθð1þ eiθÞ3ð1 − eiθÞ

�Z
∞

0

dt
t
GDðtÞAðte−K̃m2

τeiθÞ þ
Z

∞

0

dt
t
GðSLÞ

D ðtÞ½Aðte−K̃m2
τeiθÞ −Aðe−K̃m2

τeiθÞ�
�
:

ð76Þ

The (IR-safe and holomorphic) coupling A can be written in terms of the dispersion integral along its cut

AðQ2Þ ¼ 1

π

Z
∞

0

dσρAðσÞ
ðσ þQ2Þ ; ð77Þ

where ρA is the discontinuity (spectral) function of A along its cut, ρAðσÞ ¼ ImAð−σ − iϵÞ, and the integration starts
generically at σ ¼ 0 [in 2δAQCD and 3δAQCD ρA is zero up to σ ¼ M2

thr ¼ M2
1, cf. Eq. (B3)]. Substituting the dispersion

integral (77) into Eq. (76) and exchanging the order of integration, gives

FIG. 2. The AQCD curves for the Adler function DðQ2ÞAres of
Figs. 1(a) and 1(b). Included for comparison is the resummed
pQCD Adler function DðQ2ÞpQCDres in the (five-loop) MS
scheme, using Eqs. (71)–(72). All the three frameworks corre-
spond to αsðM2

Z;MSÞ ¼ 0.1185.

11See Sec. III C for more explanation on rðD¼0Þ
τ .

12This decay ratio is in the canonical form, i.e., its perturbation expansion starts with coefficient one: ðrτÞpt ¼ aþOða2Þ.
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rðD¼0Þ
τ ¼ 1

π

�Z
∞

0

dt
t
GDðtÞ

Z
∞

0

dσρAðσÞGðσ; te−K̃m2
τÞ þ

Z
∞

0

dt
t
GðSLÞ

D ðtÞ
Z

∞

0

dσρAðσÞ½Gðσ; te−K̃m2
τÞ − Gðσ; e−K̃m2

τÞ�
�
;

ð78Þ

where

Gðσ; tm2Þ≡ 1

2π

Z
π

−π

dθð1þ eiθÞ3ð1 − eiθÞ
ðσ þ tm2eiθÞ ¼ Θðσ − tm2Þ 1

σ
þ Θðtm2 − σÞ 1

tm2

�
2 − 2

�
σ

tm2

�
2

þ
�

σ

tm2

�
3
�
; ð79Þ

where m2 ≡ e−K̃m2
τ . This then leads to the following expression for r

ðD¼0Þ
τ only in terms of the spectral function ρAðσÞ and

the characteristic functions GDðtÞ and GðSLÞ
D ðtÞ of the Adler function:

rðD¼0Þ
τ ¼ rðLÞτ þ rðSLÞτ ; ð80aÞ

rðLÞτ ¼ 1

π

�
2

m2

Z
∞

0

dt
t2
GDðtÞ

Z
tm2

0

dσρAðσÞ −
2

m6

Z
∞

0

dt
t4
GDðtÞ

Z
tm2

0

dσσ2ρAðσÞ

þ 1

m8

Z
∞

0

dt
t5
GDðtÞ

Z
tm2

0

dσσ3ρAðσÞ þ
Z

∞

0

dt
t
GDðtÞ

Z
∞

tm2

dσ
σ
ρAðσÞ

�
; ð80bÞ

rðSLÞτ ¼ 1

π

�
2

m2

Z
∞

0

dt
t
GðSLÞ

D ðtÞ
�
1

t

Z
tm2

0

dσρAðσÞ −
Z

m2

0

dσρAðσÞ
�

−
2

m6

Z
∞

0

dt
t
GðSLÞ

D ðtÞ
�
1

t3

Z
tm2

0

dσσ2ρAðσÞ −
Z

m2

0

dσσ2ρAðσÞ
�

þ 1

m8

Z
∞

0

dt
t
GðSLÞ

D ðtÞ
�
1

t4

Z
tm2

0

dσσ3ρAðσÞ −
Z

m2

0

dσσ3ρAðσÞ
�
þ
Z

∞

0

dt
t
GðSLÞ

D ðtÞ
Z

m2

tm2

dσ
σ
ρAðσÞ

�
: ð80cÞ

These double integrals can be reduced further to single integrals by integration by parts in t

rðLÞτ ¼
�
−2

Z
∞

0

dtρAðtm2ÞF 1ðtÞ þ 2

Z
∞

0

dtt2ρAðtm2ÞF 3ðtÞ

−
Z

∞

0

dtt3ρAðtm2ÞF 4ðtÞ þ
�
Að0Þ þ

Z
∞

0

dt
t
ρAðtm2ÞF 0ðtÞ

��
ð81aÞ

rðSLÞτ ¼
�
−2

Z
1

0

dtρAðtm2Þ½F ðSLÞ
1 ðtÞ − CðSLÞ

1 � þ 2

Z
1

0

dtt2ρAðtm2Þ½F ðSLÞ
3 ðtÞ − CðSLÞ

3 �

−
Z

1

0

dtt3ρAðtm2Þ½F ðSLÞ
4 ðtÞ − CðSLÞ

4 � þ
Z

1

0

dt
t
ρAðtm2Þ½F ðSLÞ

0 ðtÞ − CðSLÞ
0 �

�
ð81bÞ

where we recall that m2 ¼ e−K̃m2
τ ; the functions F j, F

ðSLÞ
j and the constants CðSLÞ

j are

F jðtÞ ¼
1

π

Z
t

þ∞

du
ujþ1

GDðuÞ ¼ Θðt − 1ÞF ðþÞ
j ðtÞ þ Θð1 − tÞF ð−Þ

j ðtÞ ðj ¼ 0; 1; 3; 4Þ; ð82aÞ

F ðSLÞ
j ðtÞ ¼ 1

π

Z
t

1=2

du
ujþ1

GðSLÞ
D ðuÞ ðj ¼ 0; 1; 3; 4Þ; ð82bÞ

CðSLÞ
j ¼ j

Z
1

0

dttj−1F ðSLÞ
j ðtÞ ðj ¼ 1; 3; 4Þ; CðSLÞ

0 ¼ F ðSLÞ
0 ð0Þ: ð82cÞ

Using the expressions (67) for the characteristic functions GD and GðSLÞ
D in the above integrations, the explicit expressions

for the integrand functions F j and F ðSLÞ
j can be obtained and are given in Appendix D.
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The quantity rðD¼0Þ
τ has been evaluated in the 2δ AQCD

[23] and 3δ AQCD [35] frameworks in specific approx-

imations. In 2δ AQCD, rðD¼0Þ
τ was obtained in [23] by

evaluation of the leading-β0 (LB) resummation analogous

to the one described here [because all the coefficients d̃ðLBÞj

in the Adler function are known, cf. Eqs. (49)], and adding
the beyond-leading-β0 (bLB) contribution obtained from

the known coefficients d̃j − d̃ðLBÞj (j ≤ 3). In 3δ AQCD,

rðD¼0Þ
τ was obtained in [35] by evaluation of the known
truncated series (73a) for the Adler function (i.e., truncated
at d̃3Ã4), which happened to give almost the same value as
the extended diagonal Padé (dPA) approximation for the

Adler function, G½M=M�
D ðQ2ÞAQCD with M ¼ 2; cf. the next

Sec. IV. Here, the programs [38] were used for the 2δ
AQCD (in the mentioned Lambert scheme) and 3δ AQCD
(in the LMM scheme) where the parameters of the coupling
AðQ2Þ are adjusted so that at very high momenta the
coupling corresponds to the MS value αsðM2

Z;MSÞ ¼
0.1185, and gives the value rðD¼0Þ

τ ¼ 0.201 obtained in
the two aforementioned respective approximate
approaches. These two programs were also used in the
previous Sec. III B in the evaluation of the Adler function
for positiveQ2, and the reader is referred to Appendix B for
more details.

The obtained results for rðD¼0Þ
τ using the resummed

expression obtained in this section, Eqs. (81), are

rðD¼0Þ
τ ¼ 0.2056 ð3δ AQCD;LMM schemeÞ; ð83aÞ

rðD¼0Þ
τ ¼ 0.1973 ð2δ AQCD;Lamb: schemeÞ: ð83bÞ

This is to be compared with the value rðD¼0Þ
τ ¼ 0.201

obtained in 3δ and 2δ AQCD by the approximate methods
mentioned in the previous paragraph (cf. also footnote 20 in
Appendix B). For the SL coefficient α̃ the central values
(57) α̃ ¼ −0.14, −0.10 were used, respectively. However,

the results for rðD¼0Þ
τ , and for the (resummed) Adler

function DðQ2ÞAres, depend only weakly on the choice
of α̃. For example, if α̃ ¼ 0 is taken in 3δ AQCD (in the

LMM scheme), the result changes to rðD¼0Þ
τ ¼ 0.2066, very

close to the value in Eq. (83a); this is so because, with the
change of α̃, the other parameters in the Borel transform
(51) change accordingly so as to reproduce the four known
coefficients d̃j (j ¼ 0;…; 3).13 Nonetheless, the SL term
proportional to α̃ was included in the Borel transform
Ansätze (51) and (58) because of the knowledge of the

exact value of the parameter ĉð4Þ1 , Eq. (50), which makes it

possible to extract the value of α̃ [cf. Eqs. (52)–(53)],
although in general with significant uncertainties,
Eqs. (57).

IV. FROM ASYMPTOTICALLY DIVERGENT
SERIES TO A CONVERGENT SEQUENCE

Here, another method of evaluation of the leading-twist
part of spacelike observablesDðQ2Þ will be used, a method
which grows increasingly effective when the number of
known coefficients d̃n in the logarithmic perturbation
expansion (13b) increases. This method was proposed in
Ref. [77] for the case when the number of known
coefficients is even (d̃0;…; d̃2M−1), and was modified in
Ref. [78] to be applicable when the number of known
coefficients is odd. Later this method was applied inAQCD
variants where the AðQ2Þ coupling is IR-safe and hol-
omorphic outside the negative semiaxis in the complex
Q2-plane [25,70,79]. It is an extension of the diagonal Padé
(dPA) approach, where the latter gives a result which is
renormalization scale independent at the one-loop level
[80]. The result of this extended dPA approach is exactly
renormalization scale independent. The 2M-degree
(½M=M�) approximant fo DðQ2Þ is constructed from the
knowledge of the coefficients d̃jðκÞ (j ¼ 0; 1;…; 2M − 1)
of the expansion (13b) by considering first the correspond-
ing power expansion (14) of the auxiliary quantity
D̃ðQ2; κÞ (truncated at ∼a2M−1) and constructing from it
the diagonal Padé (dPA) ½M=M�, i.e., ratio of two poly-
nomials of degree M

P½M=M�
D̃

ðaμ;Q2Þ ¼ d̃0
aμð1þ

P
M−1
j¼1 Nja

j
μÞ

ð1þP
M
k¼1DkakμÞ

; ð84Þ

where aμ ≡ aðμ2Þ and the 2M − 1 coefficients Nj, Dk are
determined by the condition that the expansion of the above
expression in powers of aμ reproduce the (known) coef-
ficients d̃1ðκÞ;…; d̃2M−1ðκÞ. The ratio (84) can always be
decomposed into a sum of simple fractions

P½M=M�
D̃

ðaμ;Q2Þ ¼ d̃0
XM
k¼1

α̃j
aμ

ð1þ ũjaμÞ

¼ d̃0
XM
k¼1

α̃ja
ð1−l:Þ
ðμ2Þ ðκjQ2Þ; ð85Þ

where að1−l:Þðμ2Þ ðκjQ2Þ is the value of the coupling a RGE-

evolved from the scale μ2 (≡κQ2) to κjQ2 by one-loop
RGE

að1−l:Þðμ2Þ ðκjQ2Þ ¼ aμ
ð1þ β0 lnðκj=κÞaμÞ

; ð86Þ13If α̃ ¼ 0 is used in B½D̃�ðuÞ, Eq. (51), the resulting value of
dMS
4 becomes 300.92 (for α̃ ¼ −0.14 it is 338.19).
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and the complex constants α̃j and κj ¼ κ expðũj=β0Þ in
Eq. (85) are independent of the renormalization scale μ2 ≡
κQ2 and of the physical scale Q2, [77]. Further, we have

XM
j¼1

α̃j ¼ 1: ð87Þ

The diagonal Padé (85) is independent of the initial
renormalization scale μ2 in the approximation of one-loop,
but it is not exactly μ2-independent. To extend this
resummation in such a way as to get the exact
μ2-independence, the crucial point was to realize that α̃j
and κj are μ2-independent constants. The one-loop
RGE-evolved quantities að1−l:ÞðκjQ2Þ are replaced by the
exactly (n-loop) RGE-evolved couplings aðκjQ2Þ, leading to

G½M=M�
D ðQ2ÞpQCD ¼ d̃0

XM
k¼1

α̃jaðκjQ2Þ: ð88Þ

This is now exactly μ2-independent,14 and can be shown
[77] to agree with the perturbation expansion of the full
observable DðQ2Þ to the order ∼a2M

G½M=M�
D ðQ2ÞpQCD −DðQ2ÞðlÞpt ¼ Oða2Mþ1Þ: ð89Þ

This resummation was applied in pQCD [81] with reduced
success because some of the complex (or real) parameters
κj usually turn out to be small (jκjj < 1), so that the scale
ðκjQ2Þ is in the vicinity or on the Landau singularities,
making evaluation aðκjQ2Þ unrealistic or impossible.
Later, in Refs. [25,70,79], it was realized that this
resummation can be applied in the AQCD frameworks,
i.e., with IR-safe and holomorphic AðQ2Þ coupling, with
the same values of α̃j and κj

G½M=M�
D ðQ2ÞAQCD ¼ d̃0

XM
k¼1

α̃jAðκjQ2Þ; ð90aÞ

G½M=M�
D ðQ2ÞAQCD−DðQ2ÞAQCD¼OðÃ2Mþ1Þ¼Oða2Mþ1Þ;

ð90bÞ

where DðQ2ÞAQCD is the expansion in logarithmic deriv-

atives Ãnðμ2Þ in AQCD, Eq. (73a). In contrast to pQCD,
in the AQCD variants the small jκjj values are not a
problem, because there are no Landau singularities of
AðQ02Þ [and thus of ÃnðQ02Þ] in the Q02-complex plane.
This approach was applied to the known four-term

truncated series D½4�
AdlðQ2Þ for the Adler function (d̃j

known up to jmax ¼ 2M − 1 ¼ 3, i.e., M ¼ 2) for various
AQCD variants in Refs. [25,35,70,79]; and in
Refs. [70,79] to the large-β0 (LB) part of the Adler

function, DðLBÞ
Adl ðQ2Þ, which is known to all orders

[cf. Eqs. (49)]. However, the AQCD series (73) is in
general asymptotically divergent.15 Specifically, the

sequence fD½2M�
AQCDðQ2; κÞ;M ¼ 1; 2;…g of the truncated

AQCD series (B12) (for N ¼ 2M)

D½2M�
AQCDðQ2; κÞ ¼ d̃0AðκQ2Þ þ d̃1ðκÞÃ2ðκQ2Þ þ � � �

þ d̃2M−1ðκÞÃ2MðκQ2Þ; ð91Þ

is asymptotically divergent at any Q2, because of the
renormalon-type behavior of the coefficients d̃n ∼ n! at

large n. Further, the extended dPA G½M=M�
D ðQ2ÞAQCD,

Eq. (90a), is based on the truncated series (91), i.e., it
is based on the knowledge of the first 2M coefficients d̃n
(n ¼ 0; 1;…; 2M − 1). Therefore, applying the extended
dPA method (90) to DAdlðQ2Þ, and taking into account the
relations Eq. (90b), one may conservatively expect that the

sequence of the extended dPA’s, fG½M=M�
D ðQ2ÞAQCD;M ¼

1; 2;…g, will be asymptotically divergent, too, for all or at

least some values of Q2. In the case of LB-partDðLBÞ
Adl ðQ2Þ,

applied in various AQCD variants, the results of
Refs. [70,79] strongly indicate that this is not so, and
that the mentioned sequence of extended dPA’s is a
convergent sequence, for all complex Q2 for which
AðQ2Þ is holomorphic, i.e., in the entire spacelike regime
Q2 ∈ Cnð−∞;−M2

thr�.
We recall that in Sec. III A the (leading-twist) Adler

function DAdlðQ2Þ was constructed in two models, i.e., the
Adler function (73a) whose coefficients d̃n are generated
(a) by the one-loop type Borel B½D̃�ðuÞ of Eq. (51), in the
LMM renormalization scheme, where 3δAQCD [35] is
applied, and (b) by B½D̃�ðuÞ of Eq. (58), in the c2 ¼ −4.9
Lambert renormalization scheme, where 2δAQCD [23] is
applied. In Table V the parameters of these two Borel
transforms were given. In both Adler function models, the
first four known coefficients d̃j (⇔ dj) are reproduced
(j ¼ 0, 1, 2, 3), and, in addition, both models give the same
value of the next coefficient, which in the MS scheme is
d4ðMS; Nf ¼ 3Þ ¼ 338.2. Further, we recall that in both
models the full leading-twist Adler function can be evalu-
ated (resummed) exactly, by integrations involving the

corresponding characteristic functionsGDðtÞ andGðSLÞ
D and

the coupling Aðte−K̃Q2Þ; cf. Sec. III B. In view of the
discussion in the previous paragraph, the natural question14Note that the original power series (14) for D̃ðQ2; κÞ, from

which this approximant for DðQ2Þ was constructed, is at an
arbitrary normalization scale μ2 ¼ κQ2. 15This is true even for the LB-part DðLBÞ

Adl ðQ2Þ; cf. [70,79].
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appearing at this point is whether the sequence of extended

dPA’s, fG½M=M�
D ðQ2ÞAQCD;M ¼ 1; 2;…g, applied in these

two models, is a convergent sequence; and, if it is, whether
it converges to the exact values as determined by the
mentioned integration with the characteristic functions. If
the reply to both these questions is positive, the next natural
question would be whether this sequence for the Adler
function, when applied in the contour integral (75) for the τ

semihadronic decay ratio rðD¼0Þ
τ , leads to a sequence

rðD¼0Þ
τ ð½M=M�Þ converging to the exact value of rðD¼0Þ

τ

as obtained with the method of characteristic functions
Eqs. (81).
In Figs. 3(a) and 3(b) the Adler function for 3δ AQCD

framework is presented, evaluated with the extended dPA
method (90) with M ¼ 2 and M ¼ 5. For comparison, we
include also the exact evaluation, Eq. (74) using the
characteristic function. We can see that it is almost impos-
sible to distinguish by eye the extended dPA M ¼ 5 curve
from the exact curve, even in the zoomed version Fig. 3(b).

In Figs. 4(a) and 4(b) the analogous results for the
2δ AQCD framework are presented, with similar
conclusions.
Both figures indicate that we have a converging sequence

fG½M=M�
D ðQ2ÞAQCD;M ¼ 1; 2;…g when the index M

increases, for all positive Q2, and that the sequence
converges to the exact value as obtained with the character-
istic functions of each Adler function model.
When Q2 is complex, the convergence to the exact value

persists, but gets slower for the values of Q2 which are
closer to the cut on the negative semiaxis. In Fig. 5
analogous results as in the previous Figs. 3 and 4 are
presented, but now for complex Q2 ¼ jQ2j expðiπ=4Þ,
where the real and imaginary parts of the resulting Adler
function DAdlðQ2Þ are presented separately.

In Table VI the numerical results for G½M=M�
D ðQ2ÞAQCD for

3δ and 2δAQCD are given, atQ2 ¼ 0.5, 1.0 and 2.0 GeV2,
when the indexM increases. These results clearly show that
we have indeed convergent sequences. In Table VI the

(a) (b)

FIG. 3. The Adler function Eq. (73) as a function of Q ¼
ffiffiffiffiffiffi
Q2

p
for positive Q2, evaluated with the extended dPA method Eq. (90) for

M ¼ 2 andM ¼ 5, in 3δAQCD: (a) for 0 < Q < 2 GeV; (b) closeup version, for 0.25 GeV < Q < 1 GeV. The exact result resummed
with the characteristic function according to Eq. (74) is included as a solid line, for comparison.

(a) (b)

FIG. 4. The analogous results as in Fig. 3, but now for 2δ AQCD: (a) for 0 < Q < 2 GeV; (b) closeup version, for
0.35 GeV < Q < 1 GeV.
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corresponding values of the truncated AQCD series (91)
were included in parentheses (with κ ¼ 1), which clearly
show, as expected, that such series are asymptotically
divergent, with divergence setting in at terms ∼ÃnðQ2Þ
with 2 × 2 < n < 2 × 5.
In order to better visualise the convergence and/or

asymptotic divergence with increasing index number,
Figs. 6(a) and 6(b) show the behavior of the extended

dPA sequence fG½M=M�
D ðQ2ÞAQCD;M ¼ 1; 2;…g as a func-

tion of index N ¼ 2M (¼ 2; 4;…; 16), for Q2 ¼ 1 GeV2,
in the considered 3δ and 2δ AQCD, respectively. For
comparison, the exact value of the considered cases is
included (as obtained with characteristic functions in
Sec. III B), as well as the corresponding values of the

truncated AQCD series D½N�
AQCDðQ2; κ ¼ 1Þ Eq. (B12), for

N ¼ 1; 2;… (“logderivs”); this series can be written also in
the form of Eq. (B13) (with κ ¼ 1), where the power
analogs AnðQ2Þ are not equal to the naive powers AðQ2Þn.
For additional comparison, in Figs. 6 were included the
results of the truncated AQCD series where the terms
dn−1AnðQ2Þ are replaced by the naive (and thus incorrect)

power terms dn−1AðQ2Þn (“naive powers”).16,17 It can be
seen in Fig. 6 that the extended dPA sequence is consis-
tently convergent, it converges to the exact value, and that

(a)

(c) (d)

(b)

FIG. 5. The Adler function Eq. (73) as a function of jQj≡ ffiffiffiffiffiffiffiffiffi
jQ2j

p
for complexQ2 ¼ jQ2j expðiπ=4Þ, evaluated with the extended dPA

method Eq. (90) for M ¼ 2 and M ¼ 5: (a) real part, in 3δ AQCD; (b) imaginary part, in 3δ AQCD; (c) real part, in 2δ AQCD;
(d) imaginary part, in 2δ AQCD. Included as the solid line is the exact result resummed with the characteristic function according to
Eq. (74).

16In [70] it was argued that the naive power terms AðQ2Þn
in AQCD variants in general bring spurious uncontrollable
nonperturbative contributions, in contrast to the logarithmic
derivatives ÃnðQ2Þ and the related power analogs AnðQ2Þ;
cf. also Eqs. (B13)–(B14) in Appendix B.

17On the other hand, in Ref. [82] a perturbative (pQCD)
coupling aðQ2Þ ¼ AðQ2Þ was constructed which has no Landau
singularities and reproduces the correct values of rτ. In this case,
the construction (B14) gives An ≈ an (the equality becoming
increasingly better when the truncation index N increases), and
the extended Padé (88) or equivalently (90) can be applied, due to
the absence of the Landau singularities, and gives a convergent
sequence, presumably converging to the exact value. However, it
is unclear how to construct a renormalon-motivated model (58)
for the higher order “exact” coefficients dn of the Adler function
in this case, because the pQCD scheme of this holomorphic
pQCD coupling has the scheme coefficients cn ¼ βn=β0 growing
so fast with increasing n that the renormalon structure is severely
affected by the transformation into this scheme (with the
exception of the p ¼ 1 UV renormalon).
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the sequence of truncated AQCD is asymptotically diver-
gent, i.e., it approximately stabilizes at 3 ≤ N ≤ 6, and for
6 < N is starts diverging. The sequence of the truncated
series in naive powers, on the other hand, does not show
any clear stabilization, it appears to be more divergent.

The τ decay ratio parameter rðD¼0Þ
τ can also be evaluated

with this method, by evaluating the Adler function
Dðm2

τ expðiθÞÞ in the integrand of the contour integral
Eq. (75) with the described extended dPA method. If the
latter method gives convergent sequence in principle for all
complex Q2 [including those not far from the negative
semiaxis where AðQ2Þ has a cut], then it is expected that

the obtained sequence rðD¼0Þ;½M=M�
τ

rðD¼0Þ;½M=M�
τ

¼ 1

2π

Z
π

−π
dθð1þ eiθÞ3ð1 − eiθÞG½M=M�

D ðm2
τeiθÞAQCD

ð92Þ

converges to the exact value of rðD¼0Þ
τ , Eqs. (83), although

more slowly. This is really the case, as the obtained results
presented in Table VII show.

TABLE VI. Numerical results for extended dPA evaluation of Adler function, Eq. (90), in 3δ and 2δAQCD, for increasing indexM at
three different values of squared momenta Q2 ¼ 0.5, 1.0 and 2.0 GeV2. At each value, the value of the corresponding truncated series
(91) is given in parentheses (with κ ¼ 1), for comparison. Included below is the exact value obtained by the use of the characteristic
function, Eq. (74), for comparison. At then end is given also the analogous value obtained in the underlying pQCD (i.e., in the LMM and
Lambert scheme, respectively) by using the generalized principal value Eqs. (71)–(72).

M 3δ: Q2 ¼ 0.5 GeV2 1 GeV2 2 GeV2 2δ: Q2 ¼ 0.5 GeV2 1 GeV2 2 GeV2

2 0.28300 (0.28320) 0.21682 (0.21700) 0.16031 (0.16035) 0.26518 (0.27341) 0.20091 (0.20019) 0.15193 (0.14884)
5 0.27761 (0.92350) 0.21542 (0.68605) 0.16085 (-0.02698) 0.25862 (0.03642) 0.19940 (0.05317) 0.15344 (0.12759)
10 0.27662 (∼106) 0.21491 (∼106) 0.16089 (∼105) 0.25809 (∼105) 0.19976 (∼105) 0.15385 (∼105)
20 0.27665 (∼1026) 0.21484 (∼1025) 0.16087 (∼1023) 0.25828 (∼1023) 0.19969 (∼1025) 0.15377 (∼1025)

Exact 0.27666 0.21483 0.16087 0.25827 0.19968 0.15378
pQCD 0.111� 0.073 0.247� 0.039 0.181� 0.007 0.251� 0.082 0.245� 0.024 0.168� 0.007

(a) (b)

FIG. 6. The convergence of the sequence of extended dPAs fG½M=M�
D ðQ2ÞAQCD;M ¼ 1; 2;…g, atQ2 ¼ 1 GeV2, as a function of index

N ¼ 2M ¼ 2; 4;…; 16: (a) in the considered 3δAQCD; (b) in the considered 2δAQCD. Included is, for comparison, the corresponding

sequence fD½N�
AQCDðQ2; κ ¼ 1Þ;N ¼ 1; 2;…g of truncated AQCD Eq. (B12), and the sequence of the truncated series with naive power

terms dn−1AðQ2Þn. The exact value, obtained in Sec. III B, is presented as the black horizontal line.

TABLE VII. Numerical results for the τ decay parameter rðD¼0Þ
τ

as calculated with the extended dPA method, Eq. (92), in 3δ
and 2δ AQCD, for increasing index M. Included below is the
exact value obtained by the use of the characteristic function,
Eqs. (81)–(82), for comparison.

M rðD¼0Þ
τ ð3δÞ rðD¼0Þ

τ ð2δÞ
2 0.20102 0.19014
5 0.20460 0.19436
10 0.20500 0.19770
15 0.20511 0.19708
20 0.20535 0.19748

Exact 0.20559 0.19732
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V. CONCLUSIONS

In QCD we often face the problem of evaluation of the
spacelike renormalization scale and scheme independent
quantities DðQ2Þ, such as current correlators, nucleon
structure functions and their sum rules, etc. The evaluation
of the leading-twist part (which is usually dominant and
strongly influences the values of the extracted parameters
of the OPE higher-twist terms) has at least three aspects
making the evaluation difficult and imprecise: (a) at low
values jQ2j≲ 1 GeV2, the evaluation of the pQCD cou-
pling aðκQ2Þ≡ αsðκQ2Þ=π (where 0 < κ ∼ 1 is the
renormalization scale parameter) cannot be performed
reliably because the scale μ2 ¼ κQ2 is either close to, or
in the regime of, the Landau singularitiers of the coupling;
(b) the coefficients dnðκÞ of the perturbation series of
DðQ2Þ are not known, with the exception of the first few;
(c) even if we knew these coefficients, or had a reasonable
physically motivated estimate for them, the resulting
perturbation series

P
dnðκÞaðκQ2Þnþ1 would be asymp-

totically divergent, even in the high-momentum regime
jQ2j > 1 GeV2, due to the renormalon growth of the
coefficients dnðκÞ ∼ n!. This work addresses all three
issues, and brings new insights in particular to the aspects
(b) and (c).
The solution of the problem (a) has been known for some

time, and it consists of two parts: (a1) replacing the pQCD
coupling aðκQ2Þ by a coupling AðκQ2Þ which has no
Landau singularities, i.e., it is holomorphic (analytic) in the
complex Q2-plane with the exception of (a part of) the
negative semiaxis, thus reflecting qualitatively the correct
holomorphic properties of the spacelike observablesDðQ2Þ
in theQ2-complex plane; (a2) reorganizing the perturbation
series DðQ2Þ ¼ P

dnðκÞaðκQ2Þnþ1 into a series DðQ2Þ ¼P
d̃nðκÞãnþ1ðκQ2Þ with logarithmic derivatives ãnþ1

[Eqs. (2) and (13)], and replacing these pQCD logarithmic
derivatives by the corresponding logarithmic derivatives
Ãnþ1 of A [cf. Eqs. (73) and (B11)]. Such QCD variants
can be called (holomorphic) AQCD frameworks.
In this work a solution to the problems (b) and (c) was

proposed. In Sec. II, for any spacelike observable DðQ2Þ,
an auxiliary quantity D̃ðQ2; κÞ was introduced. Its per-
turbation (power) series D̃ðQ2; κÞ ¼ P

d̃nðκÞaðκQ2Þnþ1,
Eq. (14), agrees with the (logarithmic derivatives)
perturbation series of the observable DðQ2Þ ¼P

d̃nðκÞãnþ1ðκQ2Þ only in the one-loop approximation
(in which ãnþ1 ¼ anþ1). The Borel transform B½D̃�ðu; κÞ
of this quantity was shown to have the one-loop-type
renormalization scale dependence, and consequently
physically motivated specific Ansätze for B½D̃�ðu; κÞ were
proposed which capture the known (one-loop-type, or
large-β0-type) renormalon structure of the observable
DðQ2Þ. The parameters in this Borel transform were
adjusted in such a way that the first few known

coefficients d̃n of the observable DðQ2Þ were reproduced.
Reexpansion of the obtained B½D̃�ðuÞ in powers of u then
generated a (physically motivated) set of coefficients d̃n at
all n. Reorganizing backward the obtained logarithmic
derivative expansion of DðQ2Þ ¼ P

d̃nðκÞãnþ1ðκQ2Þ into
power expansion DðQ2Þ ¼ P

dnðκÞaðκQ2Þnþ1 then gen-
erated the perturbation (power) expansion coefficients dn
at all n. The generation of dn coefficients from d̃n coef-
ficients, via the replacement anþ1 ↦ ãnþ1 in D̃, can be
viewed as a dressing procedure which incorporates an
important part of the radiative beyond-one-loop correc-
tions.18 This was further motivated in Sec. II C where the
effect of this dressing was shown to give the full renormalon
structure for the resulting Borel transforms B½D�ðuÞ.
Specifically for the (massless) Adler function DðQ2Þ, the
perturbation expansion coefficients d̃n (and dn) were gen-
erated in Sec. III A in three different renormalization
schemes. This addresses the mentioned problem (b).
However, according to the mentioned aspect (c), the

resulting perturbation series for DðQ2Þ, Eqs. (13) in pQCD
and Eq. (73) in holomorphic AQCD frameworks, are
asymptotically divergent, primarily because of the fast
growth of the coefficients d̃n; dn ∼ n!. Therefore, the
Neubert-type of characteristic distribution function GDðtÞ
of the observable DðQ2Þ was constructed in Sec. III B, as
the inverse Mellin transform of B½D̃�ðuÞ, leading to the
evaluation (resummation) of (the leading-twist part of) the
observable DðQ2Þ as an integral over t of the product of
GDðtÞ=t and the coupling aðtk0Q2Þ or Aðtk0Q2Þ, Eqs. (68)
and (74) [where k0 ¼ expð−K̃Þ > 0]. In pQCD, due to the
Landau singularities of the coupling aðtk0Q2Þ, this evalu-
ation becomes ambiguous at Q2 > 0, cf. Eqs. (71)–(72),
while in the holomorphic AQCD frameworks there is no
ambiguity, cf. Eq. (74). In Sec. III B the (massless) Adler
function as a function ofQ2 was explicitly evaluated in this
way, in two AQCD frameworks, namely 3δ [35] and 2δ
AQCD [23], as well as in the corresponding underlying
pQCD frameworks and in MS pQCD. This addresses the
aforementioned problem (c).
In addition, the described formalism was extended to the

evaluation of the timelike observables RðsÞ, when the latter
can be expressed as integral transformations of the corre-
sponding spacelike observables DðQ2Þ. Thus, in Sec. III C

the semihadronic τ lepton decay ratio rðD¼0Þ
τ was evaluated

18We notice that the d̃n coefficients, although generated by the
one-loop-type Borel transform B½D̃�ðuÞ, contain also the radiative
correction effects which are in general beyond-one-loop. Only the
leading-β0 (LB)part d̃

ðLBÞ
n (∼βn0) of thecoefficients d̃n, cf.Eqs. (49),

represents the contributions of the one-loop-chain Feynman
diagrams. Nonetheless, since the Borel transforms B½D̃�ðuÞ, which
generate the (full) d̃n coefficients, turn out to have the one-loop-
type renormalization scale dependence [cf. Eq. (18)], the Ansätze
for B½D̃�ðuÞ were of the one-loop (large-β0) type.
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in this way, which is a weighted contour integral of the
Adler function DðQ2Þ along the circle Q2 ¼ m2

τ expðiθÞ in
the Q2-complex plane.
Finally, in Sec. IV a different evaluation of the (leading-

twist, massless) Adler functionDðQ2Þ was applied, namely
an earlier developed extended diagonal Padé (dPA)
evaluation method, which uses the truncated seriesP

n≤2M−1d̃nðκÞÃnþ1ðκQ2Þ of DðQ2Þ in AQCD to resum

it into an extended dPA G½M=M�
D ðQ2ÞAQCD. It turned out

that the corresponding sequence fG½M=M�
D ðQ2ÞAQCD;M ¼

1; 2;…g is convergent, for any Q2 outside the negative
semiaxis (where we have the cut of the coupling Aðk0Q2Þ,
where k0 > 0); further, the sequence converges to the exact
value of the (leading-twist) DðQ2Þ as obtained by the
aforementioned resummation via the characteristic function
GDðtÞ in Sec. III B. The same procedure was then repeated

for the decay ratio rðD¼0Þ
τ , where the extended dPA was

applied to the Adler function Dðm2
τ expðiθÞÞ on the

integration contour, and a sequence frðD¼0Þ;½M=M�
τ ;M ¼

1; 2;…g was obtained which converged again, and it

converged to the exact value rðD¼0Þ
τ obtained by the

aforementioned resummation with the characteristic func-
tion GDðtÞ in Sec. III C.
It should be pointed out that evaluations with the

described methods can be applied also to other spacelike
and timelike QCD observables, in the QCD variants with
IR-safe (and holomorphic) coupling AðQ2Þ, and will
presumably lead to comparably favorable results as they
do for the Adler function and τ decay ratio.
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APPENDIX A: RECURSION RELATIONS
FOR kmðnÞ AND k̃mðnÞ

Here, the recursion relations are presented for the
coefficients kmðnÞ and k̃mðnÞ, introduced in Eqs. (4) and
(6) in Sec. II A. The procedure for obtaining these recursion
relations is based on the reasoning explained in Sec. II A,
where some explicit expressions for these coefficients are
also given for low m and n, cf. Eqs. (5) and (7) [cf. also
Eqs. (10)].
The convention c0 ¼ 1 is taken, and cj ¼ βj=β0 (j ≥ 1);

cf. Eqs. (3). We recall that the coefficients cj (j ≥ 2)
characterize here the renormalization scheme (the momen-
tum scaling convention is fixed throughout this work by
using the usual MS scaling, i.e., Λ̄2). The recursion
relations for kmðnþ 1Þ in terms of ksðnÞ are

kmð2Þ ¼ cm ðm ¼ 0;…; N − 2Þ; ðA1aÞ

kmðnþ 1Þ ¼ 1

n

Xm
s¼0

ðnþ sÞcm−sksðnÞ

ðm ¼ 0;…; N − n − 1; n ¼ 2;…; N − 1Þ; ðA1bÞ
where the index N means that the recursion relations (4)
and (6) are considered truncated at ∼aN and at ∼ãN ,
respectively. In practice, in this work N acquired values up
to N ¼ 71. This means that the simple one-loop-type
generated coefficients d̃n [Eqs. (39) and (44)] were used
to generate the corresponding coefficients dn via the
relations (11) up to n ¼ N − 1 (i.e., up to n ¼ 70).
Once knowing the coefficients kiðjÞ, the recursion

relations for k̃mþ1ðnÞ in terms of k̃pðrÞ (p ≤ m) are

k̃0ðnÞ ¼ 1 ðn ¼ 2;…; NÞ; ðA2aÞ

k̃mþ1ðnÞ ¼ −
Xmþ1

s¼1

ksðnÞk̃mþ1−sðnþ sÞ

ðm ¼ 0;…; N − n − 1; n ¼ 2;…; N − 1Þ: ðA2bÞ

APPENDIX B: IR-SAFE AND HOLOMORPHIC
AQCD VARIANTS

The pQCD running coupling aðQ2Þ≡ αsðQ2Þ=π is a
solution of the perturbative RGE (pRGE) Eq. (3), where
the first two β-coefficients, β0 ¼ ð1=4Þð11 − 2Nf=3Þ and
β1 ¼ ð1=16Þð102 − 38Nf=3Þ, are universal, i.e., scheme
independent, in mass independent schemes. The other coef-
ficients cj ¼ βj=β0 (j ≥ 2) characterize in pQCD the renorm-
alization scheme [83]. Stated differently, the form of the
function βða; c2; c3;…Þ can be regarded as the definition of
the renormalization scheme. The momentum scale parameter
ΛQCD is not considered here as a scheme parameter, but rather
as the definition of the momentum (re)scaling, and a scaling
change can be equivalently described as a change of the
renormalization scale. In this work, theMS scaling definition
(Λ2

QCD ¼ Λ̄2) is used throughout.
When integrating the pRGE in a given or chosen

renormalization scheme, the resulting pQCD running
coupling aðQ2Þ usually acquires singularities on the
positive axis in the Q2-complex plane, 0 ≤ Q2 ≲ Λ2

QCD

(∼0.01–1 GeV2), in addition to the otherwise expected
singularities on the negative axis. On the other hand, the
general principles of quantum field theories imply that the
spacelike QCD observables DðQ2Þ, such as current corre-
lators and nucleon structure functions and their sum rules,
are holomorphic (analytic) functions in the Q2-complex
plane with the exception of a part of the negative semiaxis,
Q2 ∈ Cnð−∞;−M2

thr�, where Mthr ∼ 0.1 GeV [1,2]. The
pQCD running coupling aðQ2Þ therefore usually does not
reflect qualitatively these properties, because of the men-
tioned singularities (cut and branching points) on the
positive axis, 0 ≤ Q2 ≤ Λ2

Lan. This aspect of aðQ2Þ is
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considered unfortunate, especially if the coupling aðQ2Þ [or
aðμ2Þ with μ2 ¼ κQ2 ∼Q2] is to be used to evaluateDðQ2Þ
at low values jQ2j ≲ 1 GeV2. These singularities are called
Landau singularities or Landau ghosts, and the point Q2 ¼
Λ2
Lan is usually called the Landau branching point. The

application of the Cauchy theory to the integrand
aðQ02Þ=ðQ02 −Q2Þ in the Q02-complex plane leads then
to the following dispersion integral representation of the
pQCD coupling aðQ2Þ:

aðQ2Þ ¼ 1

π

Z þ∞

−Λ2
Lan−η

dσ
ρaðσÞ

ðσ þQ2Þ ; ðη → þ0Þ; ðB1Þ

where ρaðσÞ ¼ ImaðQ02 ¼ −σ − iϵÞ is called the disconti-
nuity or spectral function of a along its cut. The simplest
elimination of the disturbing Landau singularities is to
eliminate in the above dispersion integral the integration
part along the positive σ (negative Q02), this leading to the
minimal analytic [or analytic perturbation theory (APT)]
coupling [3–5]

AðAPTÞðQ2Þ ¼ 1

π

Z þ∞

0

dσ
ρaðσÞ

ðσ þQ2Þ : ðB2Þ

This coupling has the cut threshold σminð≡M2
thrÞ ¼ 0, and

the difference between this coupling and the underlying
pQCD coupling aðQ2Þ (i.e., the pQCD coupling in the
same renormalization scheme) at large jQ2j > 1 GeV2 is
appreciable, namely AðAPTÞðQ2Þ − aðQ2Þ ∼ ðΛ2

QCD=Q
2ÞN

with the index N ¼ 1.
We do know that at low squared momenta (jQ2j,

σ ≲ 1 GeV2) the pQCD coupling aðQ2Þ and its spectral
function ρaðσÞ do not describe correctly the physics.
Therefore, it appears natural to replace in the dispersion
integral (B2) the pQCD spectral function ρaðσÞ at
σ ≲ 1 GeV2 by another, unknown spectral function
ρAðσÞ ≠ ρaðσÞ. An efficient way of parametrizing this
spectral function ρAðσÞ in the low-momentum regime σ ≲
1 GeV2 is to represent it as a linear combination of Dirac
delta functions. This suggests then the following form for
the spectral function of the coupling AðQ2Þ:

ρðnδÞA ðσÞ ¼ π
Xn
j¼1

Rjδðσ −M2
jÞ þ Θðσ −M2

0ÞρaðσÞ; ðB3Þ

where we expect 0 < M2
1 < … < M2

n < M2
0, and M2

0 ∼
1 GeV2 can be called the pQCD-onset scale. The corre-
sponding coupling is now

AðnδÞðQ2Þ
�
≡ 1

π

Z
∞

0

dσ
ρAðσÞ

ðσ þQ2Þ
�

¼
Xn
j¼1

Rj

ðQ2 þM2
jÞ

þ 1

π

Z
∞

M2
0

dσ
ρaðσÞ

ðQ2 þ σÞ : ðB4Þ

The n Dirac delta functions in the spectral function thus
give ΔAIRðQ2Þ which is a linear combination of n
simple fractions∼1=ðQ2 þM2

jÞ, and this can be represented
as a near diagonal Padé approximant ΔAIRðQ2Þ ¼
½n=n − 1�ðQ2Þ. Such Padé approximants are known to
approximate usually the holomorphic functions in the Q2-
complex plane increasinglywell when the index n increases.
In Refs. [23,24] and [34,35], such couplings were

constructed, with two (n ¼ 2) and three (n ¼ 3) Dirac
delta functions, respectively, in specific renormalization
schemes of the underlying pQCD coupling a. The (2nþ 1)
parameters (M2

j , Rj, j ¼ 1;…; n; and M2
0) were then fixed

by several physically motivated conditions. Four of these
conditions were obtained by requiring that the AðQ2Þ
coupling at high jQ2j > 1 GeV2 practically coincides with
the underlying pQCD

AðnδÞðQ2Þ − aðQ2Þ ∼
�
Λ2

Q2

�
N

where∶ N ¼ 5: ðB5Þ

In addition, at moderate momenta jQ2j ∼m2
τ (∼1 GeV2)

the requirement was imposed that the well measured
physics of the semihadronic τ lepton decays be reproduced
correctly, i.e., that the (massless and strangeless) τ decay

ratio rðD¼0Þ
τ , defined theoretically in Eq. (75), gives the

values19

rðD¼0Þ
τ ¼ 0.201� 0.002: ðB6Þ

These values were imposed in a specific chosen evaluation
procedure that was considered relatively reliable.20 Finally,
the two additional conditions needed in 3δ AQCD were at

19It is known that the higher dimensional (higher-twist) terms
D > 0 contribute only little to rτ; cf. [35] and references therein.

20In 3δ AQCD, which was constructed in the LMM renorm-
alization scheme, rðD¼0Þ

τ was evaluated by the contour integration
(75) with the Adler function evaluated with the truncated series in
logarithmic derivatives, Eq. (73a), truncated at the last fully
known coefficient [d̃3Ã4ðQ2Þ]; this was considered reasonably
reliable, because the application of the corresponding extended
dPA (90) with M ¼ 2 to the Adler function gave practically the
same result for rðD¼0Þ

τ [35]. On the other hand, in 2δ AQCD,
which was constructed in the (c2 ¼ −4.9) Lambert renormaliza-
tion scheme, the two mentioned methods give substantially
different results (namely, 0.177 and 0.190, respectively, for the
2δ parameter values given in Table VIII. Since in this scheme the
leading-β0 (LB) parts d̃

ðLBÞ
j are relatively dominant in the known

coefficients d̃j (j ¼ 1, 2, 3) of the Adler function, and all d̃ðLBÞn

coefficients of the Adler function are known, the corresponding
LB parts of the Adler function were resummed, in the procedure
analogous to Eq. (74), and the remaining terms [beyond-LB:P

j¼1;2;3ðd̃j − d̃ðLBÞj ÞÃjþ1ðQ2Þ] were added; the use of such
(LBþ bLB) Adler function then led [23,24], via the contour
integration (75), to the result rðD¼0Þ

τ ðLBþ bLBÞ ¼ 0.203 −
0.002 ¼ 0.201 where 0.203 and −0.002 are the LB and bLB
contributions, respectively.
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very low momenta, namely that Að3δÞðQ2Þ ∼Q2 when
Q2 → 0, and that Að3δÞðQ2Þ acquires at positive Q2 a local
maximum at about Q2 ≈ 0.135 GeV2, in the Lambert
MiniMOM (LMM) renormalization scheme. These two
conditions are suggested by the large volume lattice
calculations [41] (cf. also [42–44]) of the dressing func-
tions ZglðQ2Þ and ZghðQ2Þ of the Landau gauge gluon and
ghost propagators in the MiniMOM renormalization
scheme [84,85], where the lattice coupling was defined
naturally as the product of these dressing functions:
Alatt ∝ ZglðQ2ÞZghðQ2Þ2.
The Lambert MM scheme, in which the 3δ AQCD

coupling was constructed, is just the MM scheme of the
lattice calculations [with the corresponding RGE scheme
coefficients cjðMMÞ, j ≥ 2] but with the usual (MS-type)
scaling (i.e., ΛQCD ¼ Λ̄). In Ref. [34] the Að3δÞ coupling
was constructed in a scheme which agrees with the
perturbative LMM scheme up to three-loop level (i.e.,
up to c2); in Ref. [35] the construction was refined to agree
with the known LMM scheme up to the four-loop level
(i.e., up to c3), i.e., the level known at present [84] for the
MM scheme. On the other hand, the 2δ AQCD coupling
Að2δÞðQ2Þ was constructed in the underlying Lambert
scheme with c2 ¼ −4.9 [24].
The β-functions βðaÞ defining the two schemes (Lambert

and four-loop LMM), and thus the underlying pQCD
running coupling aðQ2Þ ¼ αsðQ2Þ=π, have the Padé form

βðaÞ≡ d
d lnQ2

aðQ2Þ; ðB7aÞ

βLambða; c2Þ ¼ −β0a2
½1þ ðc1 − c2=c1Þa�

½1 − ðc2=c1Þa�
; ðB7bÞ

βLMMða; c2; c3Þ

¼ −β0a2
½1þ a0c1aþ a1c21a

2�
½1 − a1c21a

2�½1þ ða0 − 1Þc1aþ a1c21a
2� ;

ðB7cÞ

where in Eq. (B7c) we denoted

a0 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffi
c3=c31

q
; a1 ¼ c2=c21 þ

ffiffiffiffiffiffiffiffiffiffiffi
c3=c31

q
: ðB8Þ

In 2δ AQCD, the value of the scheme parameter c2 ¼
β2=β0 in the Lambert scheme β-function (B7b) can be
varied in a restricted interval, −5.9 < c2 < −2.0 if we
require that the pQCD onset scale M0 is M0 ≲ 1 GeV and
Amax (¼ Að0Þ) ≲1 [24]; the value c2 ¼ −4.9 is chosen. In
3δAQCD, the values of the scheme parameters c2 and c3 in
the LMM β-function (B7c) are adjusted to coincide with the

known values of MM scheme [84,85], namely cðMMÞ
2 ¼

9.2970 and cðMMÞ
3 ¼ 71.4538 (at Nf ¼ 3 which is used

throughout). RGEs with the β-functions (B7) can be solved
explicitly, giving the underlying pQCD running coupling
aðQ2Þ in terms of the Lambert functions W�1ðzÞ

aLambðQ2Þ ¼ −
1

c1

1

½1 − c2=c21 þW∓ðzÞ�
; ðB9aÞ

aLMMðQ2Þ¼ 2

c1

h
−

ffiffiffiffiffiffi
ω2

p
−1−W∓1ðzÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ffiffiffiffiffiffi

ω2

p þ1þW∓1ðzÞÞ2−4ðω1þ
ffiffiffiffiffiffi
ω2

p Þ
q i

−1
:

ðB9bÞ

In Eq. (B9b) the notations ω1 ¼ c2=c21, ω2 ¼ c3=c31 were
used. The squared momentum Q2 ≡ −q2 is in general
complex,Q2 ¼ jQ2j expðiϕÞ. The Lambert functionW−1 is
used when 0 ≤ ϕ < π, and Wþ1 when −π ≤ ϕ < 0. The
argument z ¼ zðQ2Þ in the Lambert functions W�1ðzÞ is

z≡ zðQ2Þ ¼ −
1

c1e

�
Λ2
L

Q2

�
β0=c1

; ðB10Þ

whereΛL is called the Lambert scale (ΛL ≲ 1 GeV2).21 The
solution (B9a) was obtained first in [87], and the solution
(B9b) in [86]. The solution (B9a) has one adjustable
scheme parameter (c2), and the solution (B9b) has two
(c2, c3). These solutions, and their spectral functions
ρaðσÞ ¼ ImaðQ2 ¼ −σ − iϵÞ, can be evaluated very effi-
ciently withMathematica,22 even at high values of jQ2j and
σ, allowing thus for an efficient evaluation of the dispersion
integrals in Eq. (B4). In this work, as the reference point for
the underlying coupling constant the value αsðM2

Z;MSÞ ¼
0.1185 was taken, which then determines the value of the
Lambert scale ΛL in the Nf ¼ 3 regime of low
jQ2j≲ 1 GeV2.23

21In Ref. [86], the expression (B10) without the factor 1=ðc1eÞ
was used for z, which just redefines the Lambert scale ΛL.22In Mathematica, W∓ðzÞ is called by the command
ProductLog½∓ 1; z�.

23The underlying running pQCD coupling aðQ2Þ in the Nf ¼
3 regime is obtained in the following way: in the four-loop MS
scheme the coupling aðM2

Z;MS; Nf ¼ 5ÞÞ ¼ 0.1185=π is RGE-
evolved downwards in Q2, using the three-loop quark threshold
relations [88] at Q2 ¼ ð2m̄qÞ2 (q ¼ b, c; m̄b ¼ 4.20 GeV and
m̄c ¼ 1.27 GeV), giving ā0 ≡ aðQ2

0;MSÞNf¼3 ¼ 0.0846346 at
Q2

0 ¼ ð2m̄cÞ2. Then at this scale, the change of the renormaliza-
tion scheme is made [e.g., cf. Eq. (13) of Ref. [35]], giving
aðQ2

0Þ ¼ 0.0792708 in the c2 ¼ −4.9 Lambert scheme, and
aðQ2

0Þ ¼ 0.0897919 in the LMM scheme. The five-loop effects
in the mentioned RGE evolution are small; namely, in order to
reproduce the aforementioned value ā0 ¼ 0.0846346 when using
the polynomial five-loop MS β-function [76] and the correspond-
ing four-loop quark mass thresholds [89], the starting value of
αsðM2

Z;MSÞ ¼ 0.118577 is needed which is close to 0.1185.
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The obtained values of the parameters of the discussed
2δ and 3δ AQCD are given in Table VIII.24

The scheme parameters cj (j ≥ 2) of the LMM and
Lambert schemes, as well as the (five-loop) MS scheme, all
at Nf ¼ 3, are given in Table IX.
Once a specific coupling AðQ2Þ is obtained (a ↦ A),

the analogsAnðQ2Þ of the powers aðQ2Þn of the underlying
pQCD coupling, in general holomorphic AQCD, can be
obtained by the construction presented in Ref. [21] for
integer n, and in Ref. [39] for general (noninteger) n. The
construction of AnðQ2Þ from AðQ2Þ for integer n goes via
the logarithmic derivatives ofAðQ2Þ, in close analogy with
the pQCD definitions and relations in Sec. II A.
Here, the construction given in Ref. [21] for integer n

will be summarized. Since the coupling AðQ2Þ is the
holomorphic analog of the corresponding underlying
pQCD coupling aðQ2Þ (in the same renormalization
scheme), the linearity of the “analytization” aðQ2Þ ↦
AðQ2Þ implies that the logarithmic derivatives ãnþ1ðQ2Þ

of aðQ2Þ, Eq. (2), get replaced (i.e., “analytized”) inAQCD
by the completely analogous logarithmic derivatives
Ãnþ1ðQ2Þ of AðQ2Þ

Ãnþ1ðQ2Þ≡ð−1Þn
βn0n!

�
d

dlnQ2

�
n
AðQ2Þ ðn¼0;1;2;…Þ:

ðB11Þ

This construction is already enough to evaluate the (trun-
cated) AQCD series Eq. (73a)

D½N�
AQCDðQ2; κÞ ¼ d̃0AðκQ2Þ þ d̃1ðκÞÃ2ðκQ2Þ

þ � � � þ d̃N−1ðκÞÃNðκQ2Þ; ðB12Þ

where a weak renormalization scale dependence (κ-depend-
ence) now appears due to the truncation effect. The pQCD
analog of this expression is the truncated version of the
series Eq. (13b), truncated at d̃N−1ðκÞãNðκQ2Þ. Formally,
the truncated series (B12) differs from the full resultDðQ2Þ
by a term ∼ÃNþ1 (∼ãNþ1 ∼ aNþ1). The above truncated
series can be rewritten in terms of the coefficients dnðκÞ of
the original perturbation (power) series (13a)

D½N�
AQCDðQ2; κÞ ¼ d0AðκQ2Þ þ d1ðκÞA2ðκQ2Þ

þ � � � þ dN−1ðκÞANðκQ2Þ; ðB13Þ

where the power analogs An are linear combinations of
logarithmic derivatives Ãnþm in complete analogy with the
pQCD relations (6)

An ¼ Ãn þ
XN−n

m¼1

k̃nðmÞÃnþm ðn ¼ 2;…; NÞ; ðB14Þ

where the truncation is performed consistently at ÃN ; note
that AN ¼ ÃN in this truncation. We recall that the
truncated series (B13) has its pQCD analog in the ori-
ginal perturbation (power) series (13a) truncated at
dN−1ðκÞaðκQ2ÞN . We point out that, as long as AðQ2Þ
has some nonperturbative contributions in comparison to
its underlying pQCD coupling [such as terms
∼1=ðQ2 þM2Þk], we have AnðQ2Þ ≠ AðQ2Þn (n ≥ 2).
In such cases, even if the truncation index N in the relations
(B14) is very high, we do not have AnðQ2Þ ≈AðQ2Þn at

TABLE VIII. Values of the parameters of 2δ and 3δ AQCD coupling used here, for Nf ¼ 3: the dimensionless parameters sj ≡
M2

j=Λ2
L and rj ≡Rj=Λ2

L; the Lambert scale ΛL (in GeV); and the maximum value of the coupling for positive Q2. The “input”

parameter choice is αsðM2
Z;MSÞ ¼ 0.1185 and rðD¼0Þ

τ ¼ 0.201 (see the text for details).

AQCD ᾱsðM2
ZÞ rðD¼0Þ

τ s1 s2 s3 f1 f2 f3 s0 ΛL [GeV] πAmax

2δ 0.1185 0.201 18.727 1.0351 � � � 0.2928 0.5747 � � � 25.600 0.2564 2.0727
3δ 0.1185 0.201 3.970 18.495 474.20 −2.8603 11.801 5.2543 652. 0.11564 0.9156

TABLE IX. The values of scheme parameters cj ¼ βj=β0 in the
LMM and in the c2 ¼ −4.9 Lambert (Lamb.) scheme (note that in
the latter cj ¼ cj−12 =cj−21 ); Nf ¼ 3, and c1 ¼ 16=9. For compari-
son, the known MS coefficients (with Nf ¼ 3) are given as well.

j cjðLMMÞ cjðLamb:Þ cjðMSÞ
2 9.297 −4.9 4.47106
3 71.4538 13.5056 20.9902
4 201.843 37.2249 56.5876

5 684.698 102.601 � � �
10 1.57996 × 106 −16320.9 � � �
15 4.53556 × 107 2.5962 × 106 � � �
20 7.22843 × 1012 −4.12982 × 108 � � �
25 1.2884 × 1016 6.56937 × 1010 � � �
30 5.3876 × 1019 −1.045 × 1013 � � �
35 7.02458 × 1022 1.6623 × 1015 � � �
65 3.08253 × 1042 2.6932 × 1028 � � �
70 1.02063 × 1046 −4.28412 × 1030 � � �

24Note that the values of the 2δ AQCD parameters differ
somewhat from those of Table 2 of Ref. [24] (the case c2 ¼ −4.9
there), because there the high-momentum reference point was
taken to be aðM2

Z;MS; Nf ¼ 5Þ ¼ 0.1184=π, while here it is
aðM2

Z;MS; Nf ¼ 5Þ ¼ 0.1185=π.
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low values jQ2j≲ 1 GeV2.25 In [70] it was argued that if in
Eq. (B13) the naive powers AðQ2Þn were used instead of
AnðQ2Þ, this would bring into the series spurious uncon-
trollable nonperturbative contributions at jQ2j ≲ 1 GeV2. It
is therefore important to use the series in logarithmic
derivatives instead, i.e., Eq. (B12) [¼ Eq. (B13)], and
the related extended dPA expressions as explained here
in Sec. IV.
In Figs. 7(a) and 7(b) the couplings AðQ2Þ, A2ðQ2Þ are

presented, as a function of Q2 > 0, for the considered 2δ
and 3δAQCD, respectively. The corresponding underlying
pQCD coupling aðQ2Þ and the MS coupling āðQ2Þ are
included for comparison (all are for Nf ¼ 3). The coupling
A2ðQ2Þ is obtained by Eq. (B14) with the truncation index
N ¼ 4 (i.e., n ¼ 2,N ¼ 4). In these figures the naive power
AðQ2Þ2 is included, and we can see clearly that A2ðQ2Þ ≉
AðQ2Þ2 at low Q2. Further, it can be noted that pQCD
coupling aðQ2Þ in the LMM scheme has the branching
point at a rather large value Q2

br ¼ 1.33 GeV2, and it is not
a pole. In the Lambert scheme, aðQ2Þ has Q2

br ¼
0.068 GeV2 (it is a pole), and in the MS scheme Q2

br ¼
0.42 GeV2 (it is a pole). These curves can be obtained by
using the programs [38] written in Mathematica.

APPENDIX C: EVALUATION OF CðDÞ
i;j

COEFFICIENTS

Here it will be outlined how the values (and their ranges)

of the coefficients Cð2pÞj;k , appearing in the expressions (40)

and (45) for the coefficients dn, were estimated. In each of
those considered cases, the coefficient dn has a specific
n-dependence

dn ¼ SγΓðγ þ 1þ nÞ
�
β0
p

�
n
�
1þ a1

ðγ þ nÞ

þ a2
ðγ þ nÞðγ − 1þ nÞ þO

�
1

n3

��
: ðC1Þ

Here, p ¼ 2, 3 in the cases of IR p ¼ 2, 3; and the UV
p ¼ 1 case has formally p ¼ −1 in the above expression.26

The ratios can then be formed where the leading order (LO)
n-dependence is factored out, and then the logarithm
thereof is taken

SðnÞ≡ ln
�

dn
Γðγþ1þnÞðβ0pÞn

�
ðC2aÞ

¼ ln Sγ þ
a1
n

þ
�
a2 −

1

2
a21 − γa1

�
1

n2
þ O

�
1

n3

�
:

ðC2bÞ

It is then straightforward to check that the coefficients a1
and a2 can be extracted in the following approximate
forms:

a1 ¼ H1ðnÞ −
1

n
H2ðnÞ þO

�
1

n2

�
; ðC3aÞ

(a)

(b)

FIG. 7. The running couplings AðQ2Þ, A2ðQ2Þ, and the underlying pQCD coupling aðQ2Þ, as a function of positive Q2: (a) in the
considered 3δ AQCD case (in the LMM scheme); (b) in the considered 2δ AQCD case (in the c2 ¼ −4.9 Lambert scheme). For

comparison, the naive power AðQ2Þ2 [≠ A2ðQ2Þ] is included, as well as the five-loop MS coupling aMSðQ2Þ [normalized to

aMSðQ2
0Þ ≈ 0.08463; cf. footnote 23]. In all cases Nf ¼ 3.

25At high jQ2j > 1 GeV2 we have in general AnðQ2Þ≈
ÃnðQ2Þ ≈AðQ2Þn ≈ aðQ2Þn, due to the relation (B5), i.e.,
(2δ and 3δ) AQCD in the high-momentum regime is practically
indistinguishable from the underlying pQCD.

26The Nf-dependence of such expressions, for large Nf , is not
well understood, as pointed out in Ref. [90], because the factor Sγ
has, in general, some Nf-dependence.
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a2 ¼
1

2
H2ðnÞ þ

1

2
ðH1ðnÞÞ2 þ γH1ðnÞ þO

�
1

n

�
; ðC3bÞ

where the expressions HjðnÞ are specific derivatives
of SðnÞ

H1ðnÞ ¼ −n2
d
dn

SðnÞ; ðC4aÞ

H2ðnÞ ¼
�
n2

d
dn

�
2

SðnÞ: ðC4bÞ

These derivatives must be evaluated in discrete form,
because the ratios SðnÞ are known only at discrete
(positive) integer values of n

H1ðnÞ ¼ −
1

2
n2ðSðnþ 1Þ − Sðn − 1ÞÞ; ðC5aÞ

H2ðnÞ ¼
1

4
n2½ðnþ 1Þ2Sðnþ 2Þ − 2ðn2 þ 1ÞSðnÞ

þ ðn − 1Þ2Sðn − 2Þ�: ðC5bÞ

It turns out that the relation (C3a) is frequently useful to

estimate a1 and thus the NLO coefficients Cð2pÞ1;k . On the
other hand, the relation (C3b) gives only sometimes a
useful (but rough) estimate of a2 and thus of the NNLO

coefficients Cð2pÞ2;k .
Nonetheless, often it is necessary to complement these

estimates, or even to replace them, with the estimates
obtained with a combination of two additional indicators
which were regarded as necessary conditions and will be
explained in the following.
The following LO, NLO, and NNLO ratios will be

considered:

PðLOÞðnÞ≡ dn
Γðγ þ 1þ nÞðβ0pÞn

; ðC6aÞ

PðNLOÞðn; e1Þ≡ dn
Γðγ þ 1þ nÞðβ0pÞn½1þ e1

ðγþnÞ�
; ðC6bÞ

PðNNLOÞðn; e1; e2Þ

≡ dn
Γðγ þ 1þ nÞðβ0pÞn½1þ e1

ðγþnÞ þ e2
ðγþnÞðγ−1þnÞ�

: ðC6cÞ

Then the differences are formed

diffðXÞðnÞ ¼ PðXÞðnþ 1Þ − PðXÞðnÞ ðC7Þ

where X ¼ LO, NLO, NNLO. The idea is to adjust the
value of e1 to the correct value e1 ¼ a1, and the value

of e2 to the correct value e2 ¼ a2. For X ¼ NLO (as a
representative example), we have the following expansion:

diffðNLOÞðn; e1Þ ¼ −
Sγ
n2

�
ða1 − e1Þ þ

1

n
ð2a2 þOða1 − e1ÞÞ

þO
�
1

n2

��
: ðC8Þ

When we are approaching with the e1 estimate to the true
value a1, the first term in brackets, (a1 − e1), becomes
smaller, and becomes comparable with the second term at
large n (which is ∼1=n). This means that we can have, at a
large n, cancellation of these two terms. This means that we
have a sign change in these differences diffðNLOÞðnÞ at large
n when n increases. Therefore, such a sign change at
increasing n indicates that we have not sufficiently approxi-
mated e1 to the true value a1. On the other hand, when e1 is
adjusted to a1 with a sufficiently high precision, namely
when ja1 − e1j ≪ 2ja2j=n, the first term ða1 − e1Þ in
brackets of Eq. (C8) becomes negligible even at large n
(we go up to n ¼ 70), and the difference becomes

diffðNLOÞðn; e1 ≈ a1Þ ≈ −
Sγ2a2
n3

�
1þO

�
1

n

��
: ðC9Þ

This means that we must adjust the value e1 in such a way
that the sequence fdiffðNLOÞðn; e1Þ; n ¼ 30;…g has no sign
change (in practice we go up to n ¼ 70). Analogously, the
value e2 must be adjusted so closely to a2 that the sequence
fdiffðNNLOÞðn; a1; e2Þ; n ¼ 30;…g has no sign change.
These requirements of no sign change represent one of
the two mentioned necessary conditions for the determi-

nation of a1 and a2, and thus of Cð2pÞ1;k and Cð2pÞ2;k .
The other necessary condition is a somewhat arbitrary

(although a rather conservative) requirement that at each
next order we have at increasing n (40 < n ≤ 70) the
velocity of convergence better by at least a factor of 2.
Specifically, this means that at thus large n, one requires

jdiffðNNLOÞðn;e1;e2Þj<
1

2
jdiffðNLOÞðn;e1Þj<

1

4
jdiffðLOÞðnÞj:

ðC10Þ
With a combination of all these conditions, the values, or

rather the ranges of values, of the coefficients Cð2pÞ1;k and

Cð2pÞ2;k appearing in Tables I and II in Sec. II C were
estimated.

APPENDIX D: EXPLICIT EXPRESSIONS
FOR F j AND F ðSLÞ

j

The integrations (82) with the characteristic functions

GD and GðSLÞ
D of Eqs. (67a)–(67d) [corresponding to the

generic Borel transform B½D̃�ðuÞ, Eq. (65), which is the
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generator of coefficients d̃n] can be performed explicitly.
This gives

F ðþÞ
j ðtÞ ¼

�
−d̃UVM;2

1

ðM þ jÞ2tMþj ð1þ ðM þ jÞ ln tÞ

− d̃UVM;1
1

ðM þ jÞtMþj

�
; ðD1aÞ

F ð−Þ
j ðtÞ ¼

�
−d̃UVM;2

1

ðM þ jÞ2 − d̃UVM;1
1

ðM þ jÞ
− d̃IR2;1

1

ð2 − jÞ ð1 − t2−jÞ

− d̃IRN;2
1

ðN − jÞ2 ð1 − tN−j þ ðN − jÞtN−j ln tÞ

− d̃IRN;1
1

ðN − jÞ ð1 − tN−jÞ
�
; ðD1bÞ

where j ¼ 0, 1, 3, 4. The case when N ¼ j (e.g., when
N ¼ 3 ¼ j), the limiting value of the corresponding
expression is implied

lim
j→N

d̃IRN;2
1

ðN−jÞ2 ð1− tN−jþðN−jÞtN−j lntÞ¼ d̃IRN;2
1

2
ln2t:

ðD2Þ

Similarly, the corresponding integrals in the SL case (82b)
are (note that 0 < t < 1)

F ðSLÞ
j ðtÞ ¼ α̃d̃2;1ð−1Þ

Z
t

1=2

duu
uj ln u

ðj ¼ 0; 1; 3; 4Þ;

ðD3aÞ

F ðSLÞ
1 ðtÞ ¼ α̃d̃2;1½−liðtÞ þ lið1=2Þ�; ðD3bÞ

CðSLÞ
1 ¼

Z
1

0

dtF ðSLÞ
1 ðtÞ ¼ α̃d̃2;1½ln 2þ lið1=2Þ�; ðD3cÞ

F ðSLÞ
3 ðtÞ ¼ α̃d̃2;1½−Eið− ln tÞ þ Eiðln 2Þ�; ðD3dÞ

CðSLÞ
3 ¼3

Z
1

0

dtt2F ðSLÞ
3 ðtÞ¼ α̃d̃2;1½ln2þEiðln2Þ�; ðD3eÞ

F ðSLÞ
4 ðtÞ ¼ α̃d̃2;1½−Eið−2 ln tÞ þ Eiðln 4Þ�; ðD3fÞ

CðSLÞ
4 ¼ 4

Z
1

0

dt t3F ðSLÞ
4 ðtÞ ¼ α̃d̃2;1Eiðln 4Þ; ðD3gÞ

F ðSLÞ
0 ðtÞ ¼ α̃d̃2;1½−Eið2 ln tÞ þ Eið− ln 4Þ�; ðD3hÞ

CðSLÞ
0 ¼ F ðSLÞ

0 ð0Þ ¼ α̃d̃2;1Eið− ln 4Þ; ðD3iÞ

Here, liðzÞ and Ei are known functions whose integral
representations are

liðzÞ ¼
Z

z

0

u
ln u

; ðD4Þ

EiðzÞ ¼ −
Z

∞

−z

due−u

u
: ðD5Þ

These two functions are evaluated in Mathematica [64]
very fast (there, they are evaluated with the commands
LogIntegral½z� and ExpIntegralEi½z�, respectively).
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