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The DD* potentials are studied within the framework of heavy meson chiral effective field theory. We
obtain the effective potentials of the DD* system up to O(e?) at the one-loop level. In addition to the one-
pion exchange contribution, the contact and two-pion exchange interactions are also investigated in detail.
Furthermore, we search for the possible molecular states by solving the Schrodinger equation with the
potentials. We notice that the contact and two-pion exchange potentials are numerically non-negligible and
important for the existence of a bound state. In our results, no bound state is found in the / = 0 channel
within a wide range of the cutoff parameter, while there exists a bound state in the / = 1 channel as the

cutoff is near m, in our approach.
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I. INTRODUCTION

Chiral effective field theory (ChEFT) is an effective field
theory respecting the chiral symmetry of quantum chromo-
dynamics (QCD) at low momenta. A prominent feature of
ChEFT is that the results are expanded as a power series of
small momenta rather than small coupling constants, which
enables us to systematically study the nonperturbative
regime of the strong interaction. Pseudo-Goldstone bosons,
such as pions and kaons with light masses, play very
important roles in the low-energy processes. Chiral sym-
metry constrains the form of the interaction quite strongly.
Owing to the clear power-counting scheme, ChEFT is a
very powerful tool for investigating the properties of light
pseudoscalar bosons [1-3].

The situation becomes complicated when heavy hadrons
are involved. The power-counting rule is broken because
of the large hadron masses. However, for a system with
a single heavy hadron and a few light pseudoscalar bosons,
the power-counting scheme can be easily rebuilt, and
many approaches of ChEFT have been developed to deal
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with the relevant scatterings, interactions, electromagnetic
moments, and other properties of such a system. Heavy
hadron chiral perturbation theory, infrared regularization,
and the extended-on-mass-shell scheme are frequently used
in the single-heavy-hadron sector [4—18]. Unfortunately,
these approaches cannot be directly extended to study the
properties of a few heavy hadrons, like the nuclear force.

Two-nucleon interactions cause another power-counting
problem. Two approximately on-shell nucleons in loop
diagrams cause an extra enhancement compared to naive
power counting, which prevents us from directly calculat-
ing the scattering matrix. Weinberg proposed a frame-
work to deal with this issue [19,20]. One can first calculate
an effective potential, i.e., the sum of all two-particle-
irreducible (2PI) diagrams, and then iterate it (using,
e.g., the Lippmann-Schwinger or Schrodinger equation)
to retrieve the two-particle-reducible (2PR) contributions.
Weinberg’s formalism has since been extended and further
developed [21-32]. For example, a unitary transformation
was used to remove the energy dependence of the potential
in Refs. [23,24]. The renormalization of potentials was
carefully studied in Refs. [25,26,33-35]. The authors of
Ref. [27] revisited the nucleon-nucleon potential up to
next-to-next-to-next-to-leading order within ChEFT. In
Refs. [28,29] the nucleon-antinucleon potential was inves-
tigated within ChEFT. Very recently, a covariant formalism
of the N-N interaction was proposed in Ref. [30]. Three-
body and even four-body nuclear forces have been sys-
tematically studied within ChEFT; see Refs. [31,32] for a
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review. The application of ChEFT has definitely advanced
our understanding of the nuclear force [36].

With successes in the study of the nuclear force, one may
wonder whether ChEFT can help us comprehend the
interactions of heavy (charmed, bottomed) meson systems.
Obviously, since a heavy meson is heavier, we can make
some assumptions such as the heavy-quark limit without
worry, and thus heavy hadron ChEFT is even more suitable
than that in the nucleon system.

The XYZ and similar exotic states have attracted a lot of
interest in hadron physics, and it is well known that the
interaction between heavy mesons is responsible for the
strange behavior close to the threshold in charmonium and
bottomonium spectra (see Ref. [37] for a review). This
started with the discovery of the famous X(3872), which
was observed by the Belle Collaboration in the B decay
process BT~ — K™~z z~J/y in 2003 [38]. X(3872) is
extremely close to the threshold of D°D*°. Its mass is much
smaller than quark model predictions (such as the Godfrey-
Isgur model [39]) if it is regarded as y/, (2P) charmonium,
and moreover it has a large decay width for the isospin
violation process X(3872) — J/yp. After that, more XYZ
and other exotic state candidates were discovered, such
as the recently observed pentaquarks P.(4380)% and
P.(4450)" [40] and the still debated X (5568) [41].

There are many models dealing with these states, such as
the one-boson-exchange molecular model, some under-
lying multiquark models, the kinematical effect, and so on
(see Ref. [37] for a review). For example, in Refs. [42,43]
the D’(:)Dz‘s) and DD* systems were studied within the local
hidden gauge formalism to dynamically generate ¥ (3940),
7(3930), X(4160), and Z.(3900). In Ref. [44], the DD*
system and its relation to Z.(3900) were investigated using
the covariant spectator theory. Z.(3900) was also studied
using the pole-counting rule [45]. The authors of Ref. [46]
discussed D)D) using constituent quark models, and
solved the four-body Schrodinger equation with the
Gaussian expansion method. The contact interaction of
DD*(BB*) was investigated in Ref. [47] using effective
field theory, which was implemented with the heavy quark
symmetry. The DD* system was also intensively studied
with different kinds of effective field theories; see
Refs. [48-58] and many other works cited therein. For
example, in Ref. [48] the DD* system was studied with X
effective field theory using perturbative pions. In Ref. [50],
X(3872) and DD* were studied using nonperturbative
pions. Moreover, the authors of Ref. [58] further included
the effects of the D* width. The study of hadronic
molecules with effective field theories was reviewed
in Ref. [59].

As mentioned above, there are many models dealing
with heavy meson systems. Among them, the one-boson-
exchange model has been used to interpret many exotic
phenomena and make predictions that have been verified by
later experimental discoveries of new particles. This model

can provide the dynamical potentials of hadron systems,
and then one can solve the Schrodinger equation to see if
there is a bound state. The model has been widely used to
study the interaction of two-heavy-hadron systems and
related exotic states. The study of the charmed-anticharmed
system and X(3872) has a long history. It started with the
study of pion and o exchanges in Ref. [60], was directly
extended to the multistate exchanges [61], and then
included more complicated effects from S-D mixing
[62], isospin violation [63], and so on. After the develop-
ment of the boson exchange model (see the discussion in
Ref. [64]), ChEFT was used to study the nuclear force,
which helped to develop our current understanding of these
phenomena. Following this trend, it is natural to use ChEFT
to study heavy meson systems.

There have been many studies of heavy meson systems
using the one-boson-exchange model and effective field
theories, as mentioned above. Here, we investigate their
higher-order effects in chiral effective field theory;
we then discuss the potential in coordinate space and
search for the bound state by solving the Schrodinger
equation. We also compare our results with the one-boson-
exchange model.

In this work, we focus on the doubly charmed-meson
system DD*, which is clearer than the hidden charmed
system due to the absence of annihilation channels. It
provides us with another way to understand heavy-flavor
dynamics and nonperturbative QCD. Furthermore, it is
analogous to the deuteron since they both have con-
tact, one-pion exchange (OPE), and two-pion exchange
(TPE) contributions without annihilation channels in our
framework.

Currently, the only observed doubly heavy-flavor system
is the Eff baryon, which was first discovered by the
SELEX Collaboration [65]. Systems like ccu and ccd have
been discussed a lot, and their properties (such as masses
and electromagnetic moments) require further clarification
[66-73]. Very recently, the LHCb Collaboration confirmed
the existence of 21" but disfavored the mass measured at
SELEX [74]. Using current techniques and experiments it
is also possible to search for the doubly charmed boson
made of DD*.

The D® D™ (BHB™) system was studied in Ref. [75]
to search for bound and resonant states, and they used pion
and vector-meson exchange potentials which are con-
strained by heavy quark symmetry and chiral symmetry.
They found that in the isospin-O channel there exists a
bound state in the S wave with a binding energy of
62.3 MeV, but no bound state was found in the S-wave
isospin-1 channel. The D*)D®) system was studied in
Ref. [76] using the one-boson-exchange model, and it was
found that there exists a bound state consisting of DD* with
a binding energy of 5-43 MeV in the isospin-0 channel.
The authors of Ref. [77] investigated deuteron-like mole-
cules with both open charm and bottom using heavy-meson
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effective theory. In Ref. [78], charm-beauty meson bound
states were dynamically generated from the B*)D™) and
B®)D™) interactions and their scattering lengths were
obtained. There have also been lattice studies of BB
and BB* interactions [79-81]. In particular, the authors
of Ref. [81] considered both diquark-antidiquark and
meson-meson configurations. In Ref. [82], we investigated
the BB interaction within heavy meson chiral effective
field theory (HMChEFT). We obtained the potentials
of the BB system at the one-loop level, and discussed
the contact and two-pion exchange contributions in
momentum space.

In this work we investigate the DD* system. As we
mentioned before, we need to study the potentials first, and
then we can indirectly access the physical observables.
Furthermore, the potential in coordinate space can give us
more intuitive information about interactions between
mesons, and we can further solve a dynamic equation to
see whether there exists a hadronic molecule. This paper
is organized as follows. After this Introduction, we eluci-
date the framework in Secs. II and III. In Sec. IV, we give
the results for the potentials in momentum space. In Sec. V,
we study the potentials in coordinate space to search for
possible molecules. Finally, in Sec. VI we summarize and
present our conclusions.

II. LAGRANGIANS AND THE
WEINBERG SCHEME

To study the DD* system using HMChEFT, we need to
derive the Lagrangians and provide results systematically
in a strict power-counting scheme. Our results are arranged
order by order with the small parameter € = p/A,, where p
can be the momentum of a pion, the residual momentum of
heavy mesons, or the D-D* mass splitting, and A,
represents either the chiral symmetry breaking scale or
the mass of the heavy mesons. In this work, flavor SU(2)
symmetry is always assumed.

A. Lagrangians at the leading order

At the leading order O(¢?), both OPE diagrams and
contact diagrams contribute to the amplitudes, and thus
we should first build the Lagrangians for DD*z inter-
action vertices, the corresponding contact vertices, and
SO on.

The DD*z Lagrangian at leading order [83-85] is
given by

Ly, = —((iv- 0H)H) + (Hv -TH) + g(HyiysH)

1 _
—§5<HUWHGW>. (1)

In the above, the H field represents the (D, D*) doublet in
the heavy-quark limit,

H

1+7, . :
= T(P,ﬂ/” +iPys),

- . T
H=y"H'y" = (Ply" + iPTys) —=,

P = (D° D7), P; = (D*O,D”)ﬂ. (2)

v = (1,0,0,0) stands for the 4-velocity of the H field. The
last term in Eq. (1) is included to account for the D-D* mass
shift which is not zero in the chiral limit, and 6 is the mass
difference in the (D, D*) doublet. The axial-vector field u
and chiral connection I' are expressed as

L=3l08  w=3{Ead O

where & = exp(i¢p/2f), f is the bare constant for pion
decay, and

T

¢=ﬁ(% ”U>- @)

— T

T -

The contact Lagrangian at O(e”) is constructed as
follows [47,51,82]:

L) = D, Tr[Hy,H|Tr[Hy"H]
+ D, Tr[Hy,ysH|Tr[Hy"ysH]
+ E,Tr[Hy,w*H|Tt[Hy"z,H|
+ E, Tr[Hy,yst*H|Tr[Hy*ys7,H], (5)

where D, D,, E,, and E}, are four independent low-energy
constants (LECs).

B. Lagrangians at the next-to-leading order

At chiral order O(e?), the amplitudes consist of the
contact corrections, OPE corrections, and TPE amplitudes.
These one-loop amplitudes must be renormalized with the
help of O(e?) Lagrangians. The divergences in the one-
loop amplitudes are canceled by the infinite parts of the
LECs in the following Lagrangians [82]:

L3 = DIT[Hy, H]Te[Hy" H|Tr(y.,)
+ DYTe[Hy,ysH)Tr[Hy*ys H|Tr(y ;)
+ ENTr[Hy,x*H|Tr[Hy 7, H|Tr(y )
+ EyTr[Hy,yst* HTr[Hy*yst H Te (), (6)
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£ = {D” Tr[(v - DH)y,(v - DH)|Tr[Hy*H]
,Tr[(v-DH)y, H|Tr[(v- DH)y*H|
[(v- DH)y,H]|Tt[Hy*(v - DH))
+D” r[((v D)2H)y,H|Tr[Hy"H]
+D;51Tr[(v DH)y,ys(v- DH)|Tt[Hy!ysH] + --
+ EY,Tr[(v - DH)y, (v - DH)|Tt[Hy ,H) + - --
+ Ep, Tr[(v - DH)y,yst*(v - DH)|Tr[Hy*yst,H]
+---}+Hec, (7)

Tr

Y ={D{Tr[(DH)y,ys(D* )| Te[Hy,ysH]
+ DiTe[(D*H)y,ysH|Tr[(D"H)y,ysH]
+ D{Tr[(D*H)y,ysH|Tr[Hy,ys(D*H)]
+ D{Tr[(D*D*H)y,ysH)Tt[Hy,ysH]
+ E{Tt[(D*H)y,yst*(D*H)|Tr[Hy,rs7,H]
+---}+Hec., ..., (8)

where

B 1
Xt =X+ —ETY[)&L
= EyE £ EE,
X =mz. 9)

Note that the term Efé‘,d) in Ref. [82] vanishes in our SU
(2) case.

In addition to canceling the divergences of the loop
diagrams, the above Lagrangians also contain finite parts
that contribute to tree-level diagrams at O(e?). They are
governed by the large number of LECs appearing in

Egs. (6)—(8).

C. Weinberg scheme

In this work, we adopt Weinberg’s power-counting
scheme to study the DD* systems [19,20]. This framework
has been widely applied to nucleon-nucleon systems, as
mentioned in the Introduction. Let us start with a nucleon-
nucleon TPE box diagram, depicted in Fig. 1. As illustrated

P P-1

>
==

P P+1

FIG. 1. A typical TPE box diagram of the nucleon-nucleon
interaction. The solid line stands for the nucleon and the dashed
line stands for the pion.

in Ref. [82], the amplitude can be written using the heavy
hadron formalism:

/d4l ! ! X -
0 p0_ i 4 i g0 po_ & . ;
P+ P —5-+ie=l" + P° — 50—+ ie

:i/d3l/dl° — —
P+ P — i +ie=1"+ PO — 5+ ie

X oo

T
_/d3lpo_1( 7 >+i8...

M,

:/d3l i
P’ 1 (4 % .
2 (2M]N + zzvf,v) + e

(2My)
b2
—/d3lf"', (10)
2My) + 1€
where my is the mass of the nucleon, ¢; = P +7, and

-

g, =P — 1. Naive power counting gives the [° integral
O(|P|™"), while we notice from Eq. (10) that the [° integral
should be of O(|P|™

|i’|‘l. Such an enhancement definitely violates the power-
counting rule, which would invalidate the chiral expansion.
As pointed out in Refs. [19,20], the origin of such a
contradiction comes from the double poles in Eq. (10),
which is related to the 2PR part of the box diagram
in Fig. 1.

With the above analysis in mind, we find ourselves in
the same situation when studying the interaction of the
doubly charmed meson pair, and thus cannot directly
calculate the scattering amplitude. Alternatively, we can
apply Weinberg’s power-counting scheme. First, with the
usual power-counting rule, we compute the 2PI contribu-
tions of all diagrams, which leads to the effective potentials.
Then, we substitute the potentials into iterated equations
(such as the Lippmann-Schwinger or Schrodinger equa-
tion) to recover the 2PR contributions. Finally, we obtain
the desired scattering amplitudes or energy levels.

), i.e., the true order is enhanced by

III. EFFECTIVE POTENTIALS
OF THE DD* SYSTEM

The effective potentials of the DD* system receive
contributions from the contact and OPE diagrams at the
leading order O(e°). At the next-to-leading order O(€?),
there are both tree and one-loop corrections. The effective
potentials V are related to the Feynman amplitudes M of
2PI diagrams,

-1
=M, (11)
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(a) (b)

FIG. 2. Tree-level diagrams of the processes DD* — DD* at
O(€°). The left diagram represents the contact terms, and the right
one is the one-pion-exchange diagram. The solid, double-solid,
and dashed lines stand for the D, D*, and a pion, respectively.

which follows from the one-boson-exchange model
(despite some differences in conventions) [86,87].

At the lowest order O(€), there are two diagrams at tree
level, as illustrated in Fig. 2. They represent the contact and
OPE contributions, respectively. The contact terms mainly
affect the short-range interaction between particles, while
the OPE contribution determines the behavior of the long-
range interaction.

With the Lagrangians (1) and (5), the corresponding
amplitudes can be easily computed. For the process
D(p;)D*(p,) = D(p3)D*(p4) with isospin [ =1, the
amplitudes for the diagrams in Figs. 2(a) and 2(b) read

Mgoz)l(a) = i(=8D, 4 8D), — 8E, + 8E})e(p,) - €*(pa).
(12)

& PuPy

M(O) 2 5”(172)5*”(174)-

1=1(b) — ’<_1)f2 P2 —m (13)
For the process D(p,)D*(p,) = D(p3)D*(p4) with I = 0,
the amplitudes are

M) = i(24E, +24E, — 8D, — 8D, )e(p2) - € (pa).
(14)

& Puby
fpr-m

In the above equations, the momentum p = p; — p4, the
superscript (0) denotes the order O(e”), and the subscripts
“l =0, 1” stand for the process DD* — DD* with isospin
0 and 1, respectively.

At O(e?), a number of diagrams emerge. The tree
diagrams at O(e?) are similar to Fig. 2(a), but the vertices
should be replaced with those from the Lagrangians (6)—(8).
There are three additional sets of one-loop diagrams.

The diagrams in the first set are for one-loop correc-
tions to the contact terms. They are depicted in Fig. 3.
Figures 3(al)—(al2) represent contributions from the wave-
function renormalization of external legs.

We show the second set of diagrams in Fig. 4. They
represent one-loop corrections to the OPE diagrams.

0 .
My = i(=3)

e (p2)e™ (ps)- (15)

\">< >"<
(a2)

(al) (a4)
(a6) >§ ><
HKARXAXX

FIG. 3. One-loop corrections to the contact terms at O(e?). The
solid, double-solid, and dashed lines stand for D, D*, and a pion,
respectively.

Figures 4(b1)-4(b6) and Figs. 4(b8)—4(b9) contribute to
the renormalization of the DD*x vertex. Therefore, we
must use the value for the bare coupling g in M® at O(e°)
to avoid double counting. We show the relation between the
bare coupling g and the experimental coupling ¢/® in
Eq. (B1) in Appendix B. Similarly, the bare decay constant
f should be used in Egs. (13) and (15) as well.

The final set is for the TPE diagrams, which are shown
in Fig. 5. They are important for the medium-range
interaction.

(bl) (b2) (b3) (b4)
(/ \> </ \: VRN

T T T = ‘l

| | - |

(b5) (b6) (d7) (b8)
Il/ \‘ 4[/ \\:| l/ \‘ I l/ \‘ I

(b9) (b10) (bl1) (b12)

FIG. 4. One-loop corrections to the one-pion-exchange dia-
grams at O(e?). The solid, double-solid, and dashed lines stand
for D, D*, and a pion, respectively.

014027-5



HAO XU, BO WANG, ZHAN-WEI LIU, and XIANG LIU

PHYS. REV. D 99, 014027 (2019)

(c1)
(c5) (c6) () (c8)
(c9) (c10)

FIG. 5. Two-pion-exchange diagrams at O(e?). The solid,

double-solid, and dashed lines stand for D, D*, and a pion,
respectively.

As discussed in the previous section, some diagrams
(such as the box diagrams in Fig. 5) contain a 2PR part that
should be subtracted. If there is a loop function of a box
diagram like

1 1
d*l 16
/ v~l—|—a+is—v-l—a+i€x (16)

following Refs. [82,88], we can separate the 2PR and 2PI
parts as

1 1
vel+a+ie—v-l—a-+ie

1 1
= — |- —+27z5(v-1+a)|.
v-l+a+ie| v-l+a-+ie

(17)

The term proportional to the Dirac é function is just the 2PR
part, which should be dropped in the potentials.

All of the one-loop amplitudes of the diagrams in
Figs. 3-5 for the processes DD* — DD* are shown in
Appendix A. The divergences of the loop functions are
regularized using dimensional regularization, and sub-
tracted using the modified minimal subtraction scheme.
Also, we list the definitions of the loop functions
in Appendix C. The finite parts of the high-order
Lagrangians should also contribute to tree-level diagrams
at O(e?), and they are governed by a large number of LECs.
However, we need plenty of data for DD* (or other
channels, such as DD or DD) scattering in different partial
waves to fit these LECs, but this is currently lacking.
Therefore, in the present work we only focus on the loop
contributions at O(€?).

We can easily obtain the potentials VP2 and VP2 from
the Feynman amplitudes by multiplying by a factor —1/4.
The polarized vectors in the potentials were dealt with
delicately in Ref. [89]. In this work, we only consider the
S-wave interaction, which leads to the following substitu-
tions in Egs. (12)—(15) and (A1)—(A33):

(18)

E(py) € (ps) = 1,

P, (19)

W | =

?7(1’2) '773*074) '?7 e

where we follow the one-boson exchange model in
Refs. [86,87]. After all of these procedures, the effective
potentials V5" and VP4 in momentum space can be
obtained. However, the potentials are energy dependent. A
solution to this problem was proposed in Refs. [23,24],
where a unitary transformation was used to get rid of the
energy dependence. In this work, we just set the transferred
energies equal to zero, i.e., p° =0 and ¢° = 0 for sim-
plicity, as in the one-boson exchange model [60]. Also, we
set the residual energies of the heavy mesons equal to zero.

IV. NUMERICAL RESULTS OF POTENTIALS
IN MOMENTUM SPACE

We use the following input parameters to obtain the
numerical results: m, = 0.139 GeV, the mass difference
0 =0.142 GeV, f, = 0.086 GeV, and the renormalization
scale u = 4xf. Many methods have been used to inves-
tigate the constant for D*)D®)z coupling, such as the
lattice studies [90-92], QCD sum rules [93-97], and other
approaches [98—100]. The experimental process D* — Dx
was fit to obtain the renormalized coupling ¢'® [101], and
we get the bare coupling g = 0.65 by using the O(€?)
correction in Eq. (B1).

First, we list the results for the contact contributions.
For VPP in the isospin-1 channel, the effective potentials
at O(€”) and O(€?) are

VW = -2D, +2D, - 2E, + 2E,, (20)
VP, = —(0.253 + 0.031i)D;, + 0.044E,
— (0.166 + 0.030i)E,,. (1)
For the isospin-0 channel, we obtain
W = —2D, — 2D, + 6E, + 6E,, (22)
@ _ . .
VP = —(1.214 + 0.190i)E, + (0.116 + 0.047i)D,,
+ (0.025 — 0.143/)E,,. (23)

Obviously, the contact contributions are just constants, and
they result in §(r) potentials in coordinate space, which
describes the short-distance effect. From Eqs. (20)—(23), we
see that the convergence of the series expansion is good.
From Egs. (21) and (23), the contact coupling constant D,
does not appear in the effective potential at O(e?) because
the contributions from the D, term are canceled among the
various diagrams in Fig. 3.

014027-6



DD* POTENTIALS IN CHIRAL EFFECTIVE FIELD ...

PHYS. REV. D 99, 014027 (2019)

V(q) (GeV?)

-12 L L L L L n
0.00 0.05 0.10 0.15 0.20 0.25 0.30
q(GeV)

FIG. 6. OPE and TPE potentials VP2 for the isospin-0 channel.
q stands for the 3-momentum in units of GeV, and the y axis
represents the effective potential in units of GeV~2. The red
dotted and green dashed lines describe the OPE potentials at the
leading and next-to-leading order, individually. The blue dot-
dashed line is for the TPE potential. The sum of the three
contributions is represented by the black solid line.

Next, we focus on the properties of the OPE and TPE
contributions. We illustrate the corresponding potentials for
channels with isospin 0 and 1 in Figs. 6 and 7, respectively,
ranging from g = |q| = 0 to 300 MeV.

From Figs. 6 and 7, one can see that the OPE contri-
butions at O(e®) are dominant in both the / = 0 and I = 1
channels since the green dashed lines are close to the black
solid ones. The OPE potentials at O(e?) are small com-
pared to those at O(e”). The sums of the OPE contributions
are negative in Figs. 6 and 7, which means the OPE
interaction is attractive in both the / = 0 and / = 1 channel.
We also notice that the OPE interaction for / = 0 is more
attractive than for 7 = 1.
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FIG.7. OPE and TPE potentials V24", The line types and color
schemes match those of Fig. 6.

The situation for the TPE potentials is more complicated.
The TPE contributions behave differently in the / = 0 and
I =1 channels. In Fig. 6, the TPE interaction for the / = 0
channel is attractive in the range 0-300 MeV, and it tends to
grow beyond 300 MeV. The TPE potential at O(e?) is
larger than the OPE one at O(°) in the range 0-60 MeV,
while the OPE contribution rapidly exceeds that of TPE
when ¢ is larger than 60 MeV, and becomes dominant. We
can say that the convergence of the chiral series is good.
Looking at Fig. 7, we see that the TPE potential is repulsive
in the range 0—120 MeV, while it becomes attractive as ¢
increases beyond the range. The TPE potential at O(€?) is
smaller than the OPE contribution at O(e°) in the lower
range of the momentum, and becomes comparable for large
momenta. This seems to indicate that the convergence of
the chiral series would be spoiled at larger transferred
momenta. From the blue dot-dashed lines in Figs. 6 and 7,
we see that the TPE interaction for / = 1 is more attractive
than that for 7 = 0.

Let us turn to the sum of these three contributions. The
total contribution in Fig. 6 for VP4 is attractive, while in
Fig. 7 for VPP it is less attractive and tends to be repulsive
as g becomes smaller than 50 MeV because of the repulsive
TPE contribution. This makes us wonder whether there
a bound state could form in the DD* system with the
inclusion of contact contributions.

V. POTENTIALS IN COORDINATE SPACE AND
POSSIBLE MOLECULAR STATES

Although the pion exchange interaction is attractive at
most momenta, there can still be no bound states if it is not
attractive enough. Moreover, the contact interaction might be
repulsive, which would further decrease the possibility for
the existence of a bound state. Thus the contact potentials
must first be obtained numerically by determining the LECs.
After that, we can investigate the effective potentials in
coordinate space, and then solve the Schrodinger equation to
search for possible molecular states.

A. Determination of LECs

We determine the LECs in the contact contributions
(20)—(23) with the resonance saturation model [64,102—
105]. We assume that these short-range couplings result
from the p and ¢ exchanges as in Ref. [106], as well as
other meson exchanges (scalar and axial-vector). Although
it may be a rough estimate, it is meaningful to make such an
attempt. The D) D)V Lagrangian respecting heavy quark
symmetry and U(2) flavor symmetry is given by [76]

Lyny = ip{Hv, (V¥ = p")H) + il(Ho, F* (p)H).  (24)

In the above, H is the same as in Eq. (2), F,, = 0,p, —
0P, — lpu-pu) with p, :"%f;ﬂ, and the multiplet p is
defined by
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AL + H
N V2 V2
p"z( ) . £> . (25)
P it a

The coupling constants g, = 5.8, 1= 0.56 GeV~!, and
f = 0.9 [76]. As for the scalar exchanges S (o, fy, ag), we
use [76,105]

Lups = gHHS<HSI:I>7 (26)

where 9HHay(fy) = \/§9HH¢; [105], 9uue = 297”3, and g, =
3.73 [107]. For the axial-vector mesons Ay (a;, f), we use

ﬁHHAV = 9HHA, <H7/,4}’5AI\4/H>- (27)

After matching the meson exchange amplitudes to the
contact amplitudes with four independent isospin channels
of DODH - DH DX we obtain

b P _ & g g _Pa_ 5
T 8mL 2ml 12m3 T eml 4ml
(0] c fo P o
2 2
g g
D, = % E, = SH”;‘V . (28)
ma| mf]

However, we cannot find any inputs for the axial-vector
meson coupling gypa,, and therefore we simply assume
that the low-energy constants are saturated by resonances
with masses below 800 MeV. We estimate their errors with
the contributions from the other four particles: f, ag, f1,
and ay. |gypa,| is set to fg, ~5. We finally get the
numerical values

D, =-6.62+£0.15, E,=-574+£045,

B. Potentials in coordinate space

After the determination of the LECs, we are ready to
transfer the potentials into coordinate space:

V(r) = / : 2":)3 V(q)ear. (30)

However, since V(q) in ChEFT is proportional to the
power series of q, the divergence of the higher-order terms
is much worse. The evaluation of V(r) is essentially a
nonperturbative problem, and it originates from the resum-
mation of the 2PI potentials. We have to regularize
Eq. (30) nonperturbatively. Enormous efforts have been
made to explore the nonperturbative renormalization
[21,23,108-113]. Here we resort to a simple Gaussian
cutoff exp(—p>"/A>") to suppress the higher-momentum
contributions, as in Refs. [22,24,30]. We use n = 2 as in

0.00

-0.04

—_

% L

o -0.08 -

NS L

s B

a -0.12 -
i |- = = contact
r- 49 e 1-1

-0.16 e 21 4

-0.20

0 2 4 6 8 10 12 14 16 18 20
r(Gev')

FIG. 8. S-wave potentials of the DD* system with / =0 in
units of GeV. The green dashed, red dotted, and blue dot-dashed
lines stand for the contact, OPE, and TPE contributions, respec-
tively. The full potential is shown by the black solid line.

Ref. [30]. In the nucleon-nucleon ChEFT, the value of the
cutoff parameter is commonly below the p meson mass
[27], and therefore we adopt A = 0.7 GeV in our work.

The resulting full potentials are shown in Figs. 8 and 9,
where we set A = 0.7 GeV. From Figs. 8 and 9, we find
that the OPE and TPE interactions are attractive in both
cases, and the contact terms lead to an attractive interaction
in the / = 0 channel and a repulsive interaction inthe / = 1
channel. Obviously, this difference increases the possibility
for a bound state to form in the / = 0 channel rather than in
the I = 1 channel. Let us focus on the total results. The
total short-distance potential for the / =1 channel is
repulsive and small, while that for the / = 0 channel is
attractive and large.

AN T T T T T T T T T T T T T T T T T

012 * —

= = = contact
....... 11
== 27
| Tota1]

V() (GeV)

PR NP N R (U SUR NS S SRR
o 2 4 6 8 10 12 14 16 18 20

r(GeV")

FIG. 9. S-wave potentials of the DD* system with / =1 in
units of GeV. The line types and color schemes match those
of Fig. 8.
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C. Possible bound states

With the potentials in hand, we are finally able to solve
the Schrodinger equation. We find a bound state with a
binding energy around 17.5 MeV in the / = 0 channel, and
there is no bound state in the / = 1 channel.

The radial wave function for the / = 0 channel is plotted
in Fig. 10. It extends over a rather large distance, which
means the constituents D and D* are separated.

It is worth noticing that in the pion and vector-meson
exchange potential model [75] a bound state was found
with a binding energy of 62.3 MeV in the [/ = 1 channel,
while no state was found in the / = 1 channel. In the one-
boson exchange model, a bound state was also found in the
I = 0 channel, with a binding energy of about 5-43 MeV
and a reasonable cutoff [76]. No bound state was found in
the I = 1 channel in that model either [76]. Our results are
consistent.

From Fig. 9, we notice that the contact interaction is
repulsive at short distances. However, we still cannot find a
bound state even if we drop the contact interaction in the
I =1 channel, which implies that the pion exchange
interaction is not attractive enough to bind DD*. If we
repeat these steps and turn off the contact potential in the
I = 0 channel, the shallow bound state disappears. We also
cannot obtain a reasonable energy eigenvalue of the
Schrodinger equations if we keep the OPE potentials
themselves for the two channels. The attractive contact
and TPE interactions are important for the existence of a
molecule in the / = 0 channel.

Theoretically, obtained observables (such as the binding
energy) are independent of the regularization procedure in
Eq. (30). The formal dependence on the cutoff A in Eq. (30)
can be compensated by the A dependence of the LECs.
However, in practice the results are sometimes sensitive to
different choices of A. Here we investigate the influence of
the cutoff with the LECs fixed. We plot the full potentials

u(r) (Gev'™)

0.0 : ' : '

16 I 24
r(GeV'")

FIG. 10. The radial wave function with the full potential
depicted in Fig. 8.

with different cutoffs in Fig. 11. From the figure, we notice
that the potential becomes deeper and steeper for short
distances as the cutoff increases. After solving the
Schrodinger equation, we obtain binding energies of 1.1,
17.5, and 53.1 MeV with A = 0.6 GeV, 0.7 GeV, and m,,
respectively. The binding energy is sensitive to the cutoff.
However, a bound-state solution exists as the cutoff is near
m,,. Furthermore, as we stressed earlier, the cutoff depend-
ence can be compensated if we readjust the LECs at
different cutoffs.

There also exist other sources of uncertainties. First, we
discuss the uncertainty from the resonance saturation model
which is utilized to determine the LECs of the contact
terms. From the numerical values of D, and E, in Eq. (29),
we can see that the contributions from f, and a, are small,
and the p, w, and o exchanges dominate D, and E,,. For D,
and E, in Eq. (29), the uncertainties from the axial-vector
exchanges are not small, and therefore they have con-
siderable effects on the binding energy. However, the
estimation of the axial-vector contributions is quite rough,
and we hope to obtain much more reliable input for gy py,
in the future. In general, the uncertainty in Eq. (29) gives
a binding energy of 17.5733"%3 MeV with, where the
first uncertainty comes from f, and a,, and the second
uncertainty comes from axial-vector mesons (a;, f).

Second, uncertainty can come from the axial coupling
g. When we include the experimental error [101]
(width and branching fraction), we obtain a bare coupling
g =0.65"092, and the binding energy in the I = 0 channel
with A = 0.7 GeV is 17.5738 MeV. We can see that the
binding energy is sensitive to the coupling g, but not much
sensitive as cutoff A. Including the uncertainties from D)
and E, ;) discussed above, we obtain a binding energy of

17.57713 at A = 0.7 GeV. This uncertainty is largely due
to axial-vector mesons, as the uncertainty from g is

0.07 — 7T T T T T T T T T T T 1
s
[} o
O g
= £ i
N R
S
021F & ¢ .
S —— A=0.6 GeV|
e e A=0.7 GeV|
02| ! o= A=m, .
!
L
-0.35 l‘ 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 " 1 "
0 2 4 6 8 10 12 14 16 18 20
r(GeV'")
FIG. 11. The total potentials of the DD* system in the S wave

with 7 = 0, where three cutoff values are adopted.
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FIG. 12. Some loop diagrams related to contact terms at O(e*).
The last three diagrams indicate the contribution from wave-
function renormalization to the contact loop diagrams at O(e?)
in Fig. 3.

moderate and the uncertainties from f; and a, are the
smallest.

The third uncertainty comes from the truncation error.
Here we partially estimate a few loop diagrams of the
contact contribution at O(e*) to show how large the
truncation error is. For the O(e*) contact loop contribution
there are many Feynman diagrams. We pick some diagrams
and plot them in Fig. 12. The first four diagrams of Fig. 12
each contain two separated loops, and the sum of these
reads

VW~ (=0.00016 — 0.00015i)(D, — D, + E, — Ej),
VY, ~ (=0.0039 — 0.0014i)D,, + (0.0117 4 0.0041)E,
-+ (0.0043 + 0.0019i)D,, — (0.0129 + 0.0057:)E,,.
(31)
We can see that they are generally O(IIW) relative to those at
O(€?) by comparing with Eqs. (21) and (23). The last three
diagrams in Fig. 12 indicate the wave-function renormal-

ization of the O(e?) diagrams in Fig. 3, and the sum of these
reads

VWY, ~ (0.0196 + 0.0060i)D, — 0.0034E,

+ (0.0127 + 0.0047$)E,, (32)

VW~ (0.0934 + 0.03214)E, — (0.0085 + 0.0054i)D,,
— (0.0039 — 0.0110i)E,. (33)

They are O(7;) relative to those at O(e*) from Egs. (21) and
(23). Therefore, we expect that when all of the contact

O(e*) diagrams are included the convergence may not
be bad.

VI. SUMMARY

In this work, we systematically studied the DD* system
with ChEFT. Due to the intrinsic difficulty of ChEFT, we
could not obtain the physical observables directly from the
Feynman diagrams. Instead, we calculated the potentials,
i.e., the sum of all of the 2PI diagrams, and then iterated
them into the Lippmann-Schwinger or Schrodinger equa-
tion to recover the 2PR contributions.

We investigated the DD* effective potentials in ChEFT
using Weinberg’s scheme. With the effective potentials
obtained in momentum space, we analyzed the contact,
OPE, and TPE contributions in detail. The OPE and TPE
contributions are free of many LECs, and thus they are
more model independent than the contact interaction since
the LECs were determined with the resonance saturation
model in this work. The OPE contribution at O(e?) is
smaller than that at O(e®). The potential from TPE at O(€?)
is relatively large compared to that from OPE at O(e°) in
the / = 1 channel, while it shows a good convergence in the
I = 0 channel. The TPE interaction is important and non-
negligible.

We have determined the LECs in contact contribu-
tions with the resonance saturation model, and further
explored the full potentials in coordinate space, which were
regularized with a simple Gaussian cutoff. The roles of
each contribution were discussed, and the total potentials
are very different in the two channels. We also discussed
the importance of the contact contribution and the influence
of the cutoff in detail. Furthermore, we discussed the
uncertainties of our approach, which come from the axial
coupling g, the LECs, and the truncation error. We found
that the TPE contribution is non-negligible and attractive in
general, while the contact contributions are an important
element and compete with the z-exchange contributions
to cause quite different behavior in each of the channels.
Despite the roughly estimated LECs, we found that there
is no bound state in the / = 1 channel for a wide range
of the cutoff parameter, while there is a bound state in
the I = 1 channel as the cutoff is near m,, in our approach.
The binding energy is sensitive to the cutoff. Our results
are consistent with those in the one-boson-exchange
model [76].

In this work we ignored many other subleading effects,
such as isospin violation, S-D mixing, recoil, and so on.
These effects can be investigated in the future, and our
framework shall be proved to be elegant.

We point out that the DD* molecule may be discovered
at experiments through various processes. Since at the
Tevatron and LHCb there are a number of B, events,
the DD* molecule can be produced via B, weak decays: the
singly Cabibbo-suppressed process B. — X(DD*)K, and
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the doubly Cabibbo-suppressed processes B, — X(DD*)x
and B. — X(DD*)D. Moreover, we hope the e*e™ proc-
esses such as ete™ — X(DD*)D D at Belle II can be
studied to observe this state. The molecular states may be
constructed through DD final states. We also expect that
lattice simulations could be used to test our results.

Our exploration of the DD* system can help to provide a
more profound understanding of the heavy meson system
and nonperturbative QCD. We expect that our results could
be tested by future LHCb and Belle II experiments and help
the extrapolations of future lattice simulations.
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APPENDIX A: ONE-LOOP AMPLITUDES
OF THE PROCESSES DD* — DD* AT O(€?)

We firstlist the amplitudes of the process D(p; ) D*(p,) —
D(p3)D*(p4). The difference between the amplitudes for
the / = 0 and / = 1 channels is just a factor.

For the one-loop corrections to the contact terms in
Fig. 3, the Feynman amplitudes are

P
—ig .
M&) = ZJTzAalfgz(m, @1, 0,)e(py) - € (pa)
with w; =v-p, — M, Wy =V py— M, (A1)
(2) _i 92 g *
M(az) - 7?‘402]22("1’“)1’“’2)8([72) - € (pa)
with @, =v-p,— M -9, Wy =0 py—M—5;
(A2)
0 _i¢, .
M(a3) - ZJTzAaBJ22(m?wlsw2)€(p2> - € (pa)
with @ =v-p,—M, wy,=v-p3—M-=35;, (A3)

M@;) = ——Au4J§2(m,w1,wz)8(pz) - €% (py4)

with @ =v-p —M -9, Wy =0v-p3—M—5;

(A4)
@ _18, .
M(as) = ZFAaSJzz(m’wl,a)z)g(Pﬁ - €"(pa)
with o, =v-p, — M -6, W, =v-py—M; (AS)

> 2
2 Lg *
Mty = 5 asT om0z, 0)e(p2) € ()

with @ =v-p; —M -, W, =v-p,—M; (A6)
0 _i8 .
M(u7) - ZJEAaﬂzz(m,wz,wl)f(Pz) )
with @, =v-py—M, W, =v-p3—M-=5;, (A7)
;2
2 —1g *
My =5 o Aus (.00, 0)e(p2) € ()

with @, =v-p, —M -9, Wy =0V py—M—0;

(A8)

(A9)
P2
2 Lg *
Mg, = 5 faAaola(m. 0. 02)e(pa) - € (ps)
with @y =v:-p,— M -9, Wy =0v-p3—M—0;
(A10)
;2
ig )
Mg)ll) - EFAalljgz(m»whwz)e(Pz) ~€(pa)

Wy =0:-py—M—9;
(A11)

with @, =v-p, —M -9,
2
) _ .9
Moz = =1 g Aazas
3 et 3 0t
X gaa)Jzz(m,a)l)+18wJ22(m,a)2)

x &(p2) - €"(Ps)
with w;, =v-p, —M, w, =v-p,—M -5, and with

W, =0 -ps—M,w,=v-ps—M -6, (A12)
2
2 Y 9 *
MEa>14) = —lJTzAam (830’132(”1»071))8(172) - € (pa)
with w;, =v-p;—M -5, and with
W, =v-p3—M-=56. (A13)

For the one-loop corrections to the OPE potentials in
Fig. 4, the Feynman amplitudes are

Pup B
- Qng(m’wl,wz)eﬂ(pﬁg “(pa)

P
M(z) _lg Abl‘z
p-—m

(m)*ZF
with @, =v-p3—M -9, Wy =0V-py—M;

(A14)
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2 ig* PuDy w
MEb)2) - 2f4Ab2 2” 2 55 (m, w1, ;)" (p2)e™ (pa)
with @y =v-p,—M -9, Wy =0v-p3—M—5;
(A15)
2 lg P Py KU
Misz) =g s s Tl o1, 02)e (p)e (1)
with wlzv-pl—M—é, W, =v-py—M; (Al6)
2 ig* DuPy w
My =5 s T (m. . 00)e (p2)e ()
with w; =v-p;—M -6, Wy =0V-py—M—5;
(A17)
Puly 2m? m
M(z) A H 2 —
(b5) — f4 b5p —m? m 1672 0 U
x &(p2)e™ (pa); (A18)
p Py 2m? m
ME) T g PuPe ey 2 (T
(b6) — f4 b6 7 2 | T 62 08 u
X &(p2)e™ (pa); (A19)
2
@ _,;9 Puby | 2 2m m
M(b7) f2 Ab7 2 = |:3f2 <2 L + _16_ IOg
x e(py)e* (P4); (AZO)
@ _ @ _
Mg =0 M) =0 (A21)
(2) g PuPy
M(b10+b11) = _lFAbIObll D2 —m?

3 3
X <§8a)J12’2(m, )+ Z@a)ng(m, a)2)>

x & (p2)e™ (pa)
with oy =v-p, — M, w, =v-p,—M — 05, and with
0 =v-ps—M, or=v-ps—M-=5, (A22)

2 p Pv

Mnglz) f4Ab12 : 2 < 80)]'2’2(;71 wl))
x & (p2)e™ (ps)
with w, =v-p,—M -5, and with

Wy =v-p3—M-56. (A23)

For the TPE potentials in Fig. 5, the Feynman amplitudes
are

2
M) = 4f4 A 2T 4 TE) + 44,1, I + A JE)

x &(p2) - € (p4)s (A24)

@ =i 9
4 f4

X 8(p2) a (p4) + (2ACZCQOJ§2 + 2A020J§3

+ (Acza +24020) 9095 + 24020034 + Ac2ado )

xq-e(p2)q-€(ps)]

Anl(2A02:9005) + 24005 + Aaqols)

with w=wv-p, — M, (A25)
2 iy >
MEC;) =4p “1A51(2A 349075, — A + Asa) 90475,

- 2A03c'62J§4 + 4Ac3c‘10‘]§1 - 2Ac30‘1052‘1§2
- 2Ac’3c‘§2J§3 + 4Ac‘3cJ34 - Ac3d‘1052J”1§1)€(P2)
" (ps) + (Aczaqod})

= (2A5: + Asa)9093; — 2A 50034 — 2A 504073,
—2A:;30J%3)q - €(p2)q - € (p4)]
with w=v-p,—M -5, (A26)
@ ig -2 T T
Mea) = 4 f [Acaaq0q° 11 = 3Acaado

(ZAC4C + Ac4d)qanJ§2 + 2Ac4cq2J24
- 6Ac4cq0‘l’%1 + 2Ac4c610512JT + 2Ac4cq J33

— 6T Lle(pa) - € ()
with w=v-p, —M-5; (A27)
@ _ig 2B B _ 2278
Ms) = ZFACS[(_q T3+ 515 — 47T 5h)e(pa)
e (pa) + (U5 = 4?5 + 175,
- 2¢* J + 7.] Z])ZJ%)
X q-€(p2)q - &' (pa)]
with @y =v-p—-M-6, w,=v-p,—M; (A28)

o[~ + (@)~ 97215,
+2(g%)?J%, + 1048, — 93%J%,
+(§%)?785)e(p2) - € (pa) + (=5,
+G2I5, - 795 + 24705, - 1I8, + G2I%)
x q-e(p2)q - € (pa)]
- M -6, Wy =0V:-py—M—9;
(A29)

with @, =v- p;
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TABLE I. The coefficients for the contact amplitudes in the processes DD* — DD*.

Ay -32D, - 32E, —48D, — 48E,
Ap 8D, — 24D, + 8E, + 40E, 24D, — 24D, — 24E, + 24E,
Ags -32D, — 32E, 48D, + 48E,
A 16D, — 80D, — 16E, + 80E, 48D, — 96D, — 96E,, + 48E,
As -32D, — 32E, 48D, + 48E,
A 8D, — 8D, + 8E, — 8E, 24D, + 24D, — 12E, — T2E,
A 8D, — 8D, + 8E, — 8E, 24D, + 24D, — 12E, — T2E,
Aas 0 ~48D,, + 144E,
Aad 0 —48D), + 144E,
Auto 16D, — 48E, 0
A 16D, — 48E, 0
Auals —8D, + 8D, — 8E, + 8E, —8D, — 8D, + 24E, + 24E,
Aus —8D, + 8D, — 8E, + 8E, —8D, — 8D, + 24E, + 24E,
o =g Ji(my,my, , ), respectively. JP: and JF are J7(my, m;,
M(g) = ZFAH[P J5e(pa) - € (pa) ®,@,,q) and Jf;(ml,mz,wl,a)z,q), respectively. These
5 . loop functions (like J7) are defined in Appendix C.
+J31p - €(p2)p - € (p4)] In Eqs. (A1)~(A33), the constants A are different for
with o, =v-p, —M -8, Wy, =v-py—M—6; different isospins. We list them in Tables I-III. The
remaining constants are
(A30)
; g4 Acp =1, Acie = Q(2)7 Ane = -1, Ang = -1,
2 = -
MGy = 3 Al 5 + 575 =3 Te(p2) Age==1,  Agi=—1, Aue=1, Agy=1
e (ps) + (U5 = @I% + 1T = 26705, (A34)
+ 7J§2 - 21»2153) xXq- e(pZ)q : 8*(p4)] for I =1, and
with @, =v-p, —M -6, Wy = V- Po; (A31)
Acp = -3, Acie = _3q%7 Ane = 3, Ana = 3,
. 4
2 —lg - - - = = = — =
MEc;) = ZFAw[(—qugl + (@)% = 9¢*T% Ase =3 Asa=3  Aue=-3 Aug=-3
=212 IR R _ 972 R (A35)
+2(q°)" 3, + 1075, = 94773
+ (@) I5)e(p2) - € (pa) + (=I5 +G2T5, for I =0.
= TI5 + 26705, =TI + GPUL)
xq-e(p2)q - € (pa)] TABLE II. The coefficients for the OPE amplitudes in the
with o, =v-p, —M -6, Wy =1v-py—M—56. processes DD* — DD*.
(A32) Abl AbZ Ab3 Ab4 AbS AbG Ab7 Af AblObll AblZ
I=1 -1 I -1 1 1/3 1/3 -1 -1 -1 -1
@ ig I=0-3 3 -3 3 1 1 -3 -3 -3 -3

M(cw) = ZFAcmﬁ?ZngE(Pz) € (pa)

+J5ip - e(p2)p - € (pa)]
. TABLE III. The coefficients for the TPE amplitudes in the
with @ =v-p; =M =9, ®y =v-py=M—0. processes DD* — DD*.

(A33)

Acla AcZ Ac3 Ac4 AC5 ACG Ac7 ACS Ac9 AclO

I=1 1 -2 2 -2 1 -1 -1 5 -5 =5
I=0 -3 =2 2 -2 9 -9 9 -3 3 3

In the above expressions, ij is shorthand notation for

Jg(ml,mz,q), and Jf]- and Jl-Tj are ij(ml,mz,a), q) and
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—g(1-L_ 5,0, 5)+—J (=5, 5)

In Egs. (A1)-(A33), M is the D meson mass, 0 is g(z) . ( 7

the mass difference between D* and D, m,m;, and m, 212 4f2
are all pion masses, p=p;—ps, q=p1—P3, MU IS 94 32 342
the renormalization scale in the dimensional regulari- — =5 0J5,(=8) — =5 0J5,(8) — 5 0J5,(0 ))
zation, and 8f 8f 4f
(B1)
L S eean)). (a36)
T 1622 \d—4 2( ad The expression relating the renormalized f(;) and the
bare f is well known:
APPENDIX B: RENORMALIZED AND 1 1 ( L m? ) <m>> (B2)
. ~ _log| =
BARE COUPLINGS f?z) f2 v f2 g

The relation between the experimental renormalized
coupling ¢'» and the bare coupling g in the Lagrangian is ~ We use f @) = f»=0.092 GeV.

APPENDIX C: DEFINITIONS OF SOME LOOP FUNCTIONS
We define the loop functions following Ref. [82]:

[ dP P {11170, 1Py a/b a/b a/b a/b a/b a/b
/ B T [T Tt e = W v i v I+ g1 (g v o)1 v ) (m. ),
(C1)
./leu‘*—D (1,12, 140, 111"}
2n)P (v-l+ o, +ie)|[(+/=)v - 1+ @, + ie] (1> — m* + i)
:{Jg/h an/h v vﬂjg/h+gaﬁjg/h ( Vi )Jg/h+ a,.f ng/h C2
= UL 2 (g V)5 + v oI (im0, @), (C2)
dPlyA=P {1,109, 190, 1117}
. ’ = J (IJ a [)’J 1/3J , v JF (lf)’yJF , .q),
’/ 2P P—ml+ie)(q +IF-me+id Vo, a1, q%d" 5, + 9% 05, (g v @)JI5 + q°q  q7 T3} (my, my, q)

(C3)

l, /le,ﬁ—D (119,190, 1°1P LY 1 1P 1Y 19
27)P [(+/=)v- I+ w+ie)(P—m? +ie)[(q+1)* —m3 + ie]
= {JI/S g d 1S oo 118 b g1 4 qergP IS om P IS (g v )T (g v @) + 2P TS + (2 v 0)aE)S
+(gv )5+ (g v o)L vt Tl (g v il + (v W + ' q T + (g v o) 4 vy
(@ VL (@Y )+ (g v o)l

T/S

+(gV gV o)y’ mmy.o.q), (C4)

, /le//l4_D {1,012, 1°1°, 1°1P 1 1°1P 17 19}
l
27)P (v 14w, +ie)[(+/=)v- 1+ w, +ie| (> —m? +ie)[(q+1)* — m3 + ie]
={J5"%.qI" + v I P g TP + g TP+ v T+ (g v )5 P (g v @IS + a7 P g TR + (v 0)J5°

+(gv 0)I5" + (g v ) I8 vt TP (gv I+ (9v )15 + 0 aP q TP + (v )T + vl TP
+(@ Vo) + (P v o) (g v )T+ (g v g v 0)Tg Y my my.0.05.9), (C5)
with
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gvuv=g+d gva=gPq +97q" + 979" gV v= gt + g7 + gl
@V v=qlqg v + q*q' P + ¢° P, q Vv v? =g v + ¢Pou’ + g* P,
gV g=grg° + g0 + 97" gV =99+ 9P + 479+ 797 + " 97 + I g,
gV v? =00 g% + v* g + v PP 4 1P g + PP g 4 VP g0,
@V v=gq v + ¢“q ¢ + ¢“¢P v + q*qPq"°, g Vv v} = @vPv + g v P + o’ + g*vPure?,
q* vV v* = g v + PP v + * PP + ¢ g v + gt P + qqP P,
gV gV v=gvg°+ g g + @ + g + P + ¢+ P + @ g+ g g

+ gV g + PG + T g (Co)
|
b 5 a 1 3 1
J" is related to J¢ as J3T6:2L/ dx1(4b2—c)+16 2/ dx, b?
a a a a 0 ﬂ 0
Jg =T, Jiy ==, I3 = T3, T5 = U5, 1 1 ) ) 5
By= =T =T () g | < (40 =) log +log(—b2 +.)
1
J9 and J" can be reduced to 12;; i dx,b x (- b2+0)%
1 1 1 1 1
JNw,w,) = JYw) = Jw,)], C8 3 2 -+
(1,02) = - l7(n) = J(n)). (C8) +16”/0 dx, b (=B + ) MA dx, D
1 C13)
T @), wy) = J J(wy)]. (€9 (
(01, @) a)2+w,[ (01) +J%(02)]. (C9)
s T JI.=8L 1d b(2b*—c) + ! db3
J° is related to J? as 45 A X1 a2 A X1
s _ N — 1 !
Jo(v-q) =J5(=v-q).  Ji(v-q) =Jp(=v-q). +13 2/ dxy x b(2b? — ¢)[~log? +log(—b* + )]
T
Ih(v-q) = =J1(-v-q), By = T3 (-v-q). 1 01 3 [
3 1
y(v-q) = Th(=v-q).  I(v-q) = Th(-v-q). e ) e e t= 0 [ o)
IS5, (v-q) ==JL,(-v-q), S5 (v-q) =J5 (v q). 1
24( q) 24( q) 531( q) 31( q) 16 dx, x b4 (= b2+c)_’—i-—/ dx,E,
(v q) =5 (=v-q), (v q) = =J5(-v-q). 7 Jo
Cl4
Fu(v-q) = =J3(-v-q), Js(v-q) = J3s(=v- q). (C14)
Be(v-q) ==T4y(-v-q).  J§(v-q) =Ji(-v-q).  where
Tp(v-q) =Th(-v-q). (v q) =Jis(-v-q). (= x)- q o
IS, (v =JI(—v-q), I (v-q) =J(-v-q).
24( q) 445 q) 455( q) 455 q) = (1= x)2¢% = (1 = %)@ + x,(m? = m2) + m3 — ie,
‘]46(1) q) = —Ji(=v-q), J(v-q) = Ju(-v-q). »2
_ _ 2 2 _ 2
Jis(v-q) = =Tis(=v-q).  J(v-q) = ~Th(-v-q). P= { c=b {4” ) k’g( > +5b }
(C10) + (8% — 6bc)xtan™ ( b )}(2 c—b2)"
R and J® can be reduced to Ve —b? ’
E= c — b?[6(2b* — ¢)(log(c) — log [c — b*]) — 16b*
TH@n0) = (@) = (@2)). (€11 o oele) ~logle =4
b
JB (0, w,) = I (1) + TS (@,)]. C12 +3c] — 3(8b* — 8b%c + ¢ tan‘l( )}
( 1 2) a)2+601[ ( l) ( 2)] ( ) ] ( ) m
-1
All of the integrals in Egs. (C1)~(C5) can be reduced to x (3Ve=b%) ", (C15)
one- or two-dimensional Feynman parameter integrals
without difficulty. For example, and L is defined in Eq. (A36).

014027-15



HAO XU, BO WANG, ZHAN-WEI LIU, and XIANG LIU PHYS. REV. D 99, 014027 (2019)

One should notice that in Egs. (C1)—(C5), if the form of the integral (16) is encountered, the 2PR part must be subtracted
using Eq. (17).

However, the evaluations of the above loop integrals are not complete since the kinetic energy terms in the propagators

are not included. Here, we further illustrate the calculations considering the kinetic energy terms - We choose Jj b as an
example,

Dj,4-D 1
i/d 21” - — . (C16)
27" (g =D ][I — m? + ie]

We first apply the Feynman parametrization to Eq. (C16):

1 2/ J 1
— = y —
[—v-l—%—l—w—l—ie][lz—mz—l—ie] 0 [12—m2+2y(—v-l—%+a))+is]2

o 1
2/ dy
0 [P =2yv-1+y*0? —y*0? =2 (P — 1)+ 2yw — m? + ie)?
& 1
2/ dy S : (C17)
0 [(1=yv)* =y* =5 (P = 1)? + 2yw — m? + ie]?

[

With the substitution / — / + yv we obtain By closing the contour in the upper complex [, plane, we
obtain the /; integral

1
2/ dy
0 2=y =3 (p=12+2y0—m? +ie]?

1 .
(C18) / Ao T EPI —Ep - MReU(=E)). (€21

Next, we analyze the pole structure of the expression and
perform the [, integral. We first rewrite the polynomial of [, ~ where Res(f(—E;)) is the residue at —E;, which can be

in the denominator: evaluated by using
y o = .
P—y?—=(p=0%+2y0—m?>+ie 1 an-
M ; . Res(f(zp)) = Zlggm {W [(z = Zo)mﬂz)]}v
:lg_?—yz——(f)—l)2+2yw—m2+ie .
M (C22)
- [P AL BT 4 s ] i
ie.,
= [lo + Ell[lo — El, (C19)
- - Res(f(—E;))
where E; = \/lz+%(_j7—l)2+y2—2ya)+m2—i8.
Therefore, there exist two poles located at —E; and E;. = lim {d_l [(lo—( ) 2} }
—_— E _E
With the expressions above, Eq. (C16) becomes b 0 [10+ l] [ZO l]
= lim ——=
, /dDz,ﬂ—D 1 h==E (E;=1p)?
l —
(2m)? [_U A ie] (12— m? + ie] _ 2
(2E))?
/ /le/f‘ D 1 1 1 (C23)
D 217 _F 12 == o= . ’
[lo + E)J*[lo — E)] AP+ 2(P =12 +y* = 2yw+m>—ie]/?

0 dD ll 4-D 1
:21’/ dy/ 5 /dlol Rt E . 3
0 (27) o + E*[lo ~ E)] where the expression /° +2(D— 1)+ —2y0+m? —ie
(C20)  should be further simplified:
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Y 2 Y
y = M = M - 2 o Y\ 2 2 2
<1+M> [1—14_%4 +1+%p2+(y—w)2+m —w2—<1+M>l +(y—w)?+m*-w
N2 2 _ .2
:<1+l>[72+(y o tm e
M 14
Y2
=(1+=)["+A
(1+2)+a

with

Then, Eq. (C20) reduces to

) 00 dD—l l,u4_D ) 1 1 _ _1 00 dD—l lﬂ4_D 1
4, [ i gmrar 2 ¢ o g
u

Using

y—y+o, A—>71+y+_a, ,

Eq. (C26) can be further simplified to

1 /oo PRVARA ) ! ! /oo g K TH 1

2)0 T IR (1 + 5
1
YM

2

o n) TR (At 2
=1 [ p T[]

2 Jo TR+ 527 A
S0 TR

+_ y 3—¢ )+ €
2 Joo T 2r)F TR (1 + 5224
where ¢ =4 — D.
We first discuss the [;° part,
SUfeo e T 1 14w Tl [0 g3
2 Jo @ 2r)TE (1 +52)32A5 2 TE (47)>= Jo Y <y2-w2+mz>%
1+42

T [y
o T

T2 T (4n)* y - +m?)r

Notice that, if we assume M — oo, the expression above becomes

1 (4n)t pTlY [ L L HTETEOE] o
T e T g )
= (a2 4 )

The result above reproduces part of Jg where §%>/M in the propagator is not included.
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We now discuss the [© part:

sl LN B =1 (4 pTY
2L Qo) 5 TR (1 +52)32A: 2 T (4n)* /_

logp —

(1+52)%

Y0P =0 + m):

1 0 y+o\T (1452
Y YL dy(1 % M~
< T8 ¥ T er )/ y( " M> (07— a? + m);
( +

= =2 =2L
< o

1 Od
16)/y

1 1 0 y+o\7
= (4L -—1 — dy(1+7——
< i "g“&ﬂ)/_w y( H )

+
e

1 [0 y+o\7
—-— [ dy|1 1
87° ) y( * M ) 082

; C31
y: —w? +m? (C31)

where the term containing L [defined in Eq. (A36)] is a divergent part. The expression above will be further evaluated
numerically. If we assume M — oo again, the result can reproduce another part of Jg where §%/M in the propagator is not

included at the beginning.

The evaluations of the other loop integrals in Egs. (C1)—(C5) are similar.
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