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The DD� potentials are studied within the framework of heavy meson chiral effective field theory. We
obtain the effective potentials of the DD� system up to Oðϵ2Þ at the one-loop level. In addition to the one-
pion exchange contribution, the contact and two-pion exchange interactions are also investigated in detail.
Furthermore, we search for the possible molecular states by solving the Schrödinger equation with the
potentials. We notice that the contact and two-pion exchange potentials are numerically non-negligible and
important for the existence of a bound state. In our results, no bound state is found in the I ¼ 0 channel
within a wide range of the cutoff parameter, while there exists a bound state in the I ¼ 1 channel as the
cutoff is near mρ in our approach.
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I. INTRODUCTION

Chiral effective field theory (ChEFT) is an effective field
theory respecting the chiral symmetry of quantum chromo-
dynamics (QCD) at low momenta. A prominent feature of
ChEFT is that the results are expanded as a power series of
small momenta rather than small coupling constants, which
enables us to systematically study the nonperturbative
regime of the strong interaction. Pseudo-Goldstone bosons,
such as pions and kaons with light masses, play very
important roles in the low-energy processes. Chiral sym-
metry constrains the form of the interaction quite strongly.
Owing to the clear power-counting scheme, ChEFT is a
very powerful tool for investigating the properties of light
pseudoscalar bosons [1–3].
The situation becomes complicated when heavy hadrons

are involved. The power-counting rule is broken because
of the large hadron masses. However, for a system with
a single heavy hadron and a few light pseudoscalar bosons,
the power-counting scheme can be easily rebuilt, and
many approaches of ChEFT have been developed to deal

with the relevant scatterings, interactions, electromagnetic
moments, and other properties of such a system. Heavy
hadron chiral perturbation theory, infrared regularization,
and the extended-on-mass-shell scheme are frequently used
in the single-heavy-hadron sector [4–18]. Unfortunately,
these approaches cannot be directly extended to study the
properties of a few heavy hadrons, like the nuclear force.
Two-nucleon interactions cause another power-counting

problem. Two approximately on-shell nucleons in loop
diagrams cause an extra enhancement compared to naive
power counting, which prevents us from directly calculat-
ing the scattering matrix. Weinberg proposed a frame-
work to deal with this issue [19,20]. One can first calculate
an effective potential, i.e., the sum of all two-particle-
irreducible (2PI) diagrams, and then iterate it (using,
e.g., the Lippmann-Schwinger or Schrödinger equation)
to retrieve the two-particle-reducible (2PR) contributions.
Weinberg’s formalism has since been extended and further
developed [21–32]. For example, a unitary transformation
was used to remove the energy dependence of the potential
in Refs. [23,24]. The renormalization of potentials was
carefully studied in Refs. [25,26,33–35]. The authors of
Ref. [27] revisited the nucleon-nucleon potential up to
next-to-next-to-next-to-leading order within ChEFT. In
Refs. [28,29] the nucleon-antinucleon potential was inves-
tigated within ChEFT. Very recently, a covariant formalism
of the N-N interaction was proposed in Ref. [30]. Three-
body and even four-body nuclear forces have been sys-
tematically studied within ChEFT; see Refs. [31,32] for a
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review. The application of ChEFT has definitely advanced
our understanding of the nuclear force [36].
With successes in the study of the nuclear force, one may

wonder whether ChEFT can help us comprehend the
interactions of heavy (charmed, bottomed) meson systems.
Obviously, since a heavy meson is heavier, we can make
some assumptions such as the heavy-quark limit without
worry, and thus heavy hadron ChEFT is even more suitable
than that in the nucleon system.
The XYZ and similar exotic states have attracted a lot of

interest in hadron physics, and it is well known that the
interaction between heavy mesons is responsible for the
strange behavior close to the threshold in charmonium and
bottomonium spectra (see Ref. [37] for a review). This
started with the discovery of the famous Xð3872Þ, which
was observed by the Belle Collaboration in the B decay
process Bþ− → Kþ−πþπ−J=ψ in 2003 [38]. Xð3872Þ is
extremely close to the threshold ofD0D̄�0. Its mass is much
smaller than quark model predictions (such as the Godfrey-
Isgur model [39]) if it is regarded as χ0c1ð2PÞ charmonium,
and moreover it has a large decay width for the isospin
violation process Xð3872Þ → J=ψρ. After that, more XYZ
and other exotic state candidates were discovered, such
as the recently observed pentaquarks Pcð4380Þþ and
Pcð4450Þþ [40] and the still debated Xð5568Þ [41].
There are many models dealing with these states, such as

the one-boson-exchange molecular model, some under-
lying multiquark models, the kinematical effect, and so on
(see Ref. [37] for a review). For example, in Refs. [42,43]
theD�

ðsÞD̄
�
ðsÞ andDD̄� systems were studied within the local

hidden gauge formalism to dynamically generate Yð3940Þ,
Zð3930Þ, Xð4160Þ, and Zcð3900Þ. In Ref. [44], the DD̄�
system and its relation to Zcð3900Þwere investigated using
the covariant spectator theory. Zcð3900Þ was also studied
using the pole-counting rule [45]. The authors of Ref. [46]
discussed Dð�ÞD̄ð�Þ using constituent quark models, and
solved the four-body Schrödinger equation with the
Gaussian expansion method. The contact interaction of
DD̄�ðBB̄�Þ was investigated in Ref. [47] using effective
field theory, which was implemented with the heavy quark
symmetry. The DD̄� system was also intensively studied
with different kinds of effective field theories; see
Refs. [48–58] and many other works cited therein. For
example, in Ref. [48] the DD̄� system was studied with X
effective field theory using perturbative pions. In Ref. [50],
Xð3872Þ and DD̄� were studied using nonperturbative
pions. Moreover, the authors of Ref. [58] further included
the effects of the D� width. The study of hadronic
molecules with effective field theories was reviewed
in Ref. [59].
As mentioned above, there are many models dealing

with heavy meson systems. Among them, the one-boson-
exchange model has been used to interpret many exotic
phenomena and make predictions that have been verified by
later experimental discoveries of new particles. This model

can provide the dynamical potentials of hadron systems,
and then one can solve the Schrödinger equation to see if
there is a bound state. The model has been widely used to
study the interaction of two-heavy-hadron systems and
related exotic states. The study of the charmed-anticharmed
system and Xð3872Þ has a long history. It started with the
study of pion and σ exchanges in Ref. [60], was directly
extended to the multistate exchanges [61], and then
included more complicated effects from S-D mixing
[62], isospin violation [63], and so on. After the develop-
ment of the boson exchange model (see the discussion in
Ref. [64]), ChEFT was used to study the nuclear force,
which helped to develop our current understanding of these
phenomena. Following this trend, it is natural to use ChEFT
to study heavy meson systems.
There have been many studies of heavy meson systems

using the one-boson-exchange model and effective field
theories, as mentioned above. Here, we investigate their
higher-order effects in chiral effective field theory;
we then discuss the potential in coordinate space and
search for the bound state by solving the Schrödinger
equation. We also compare our results with the one-boson-
exchange model.
In this work, we focus on the doubly charmed-meson

system DD�, which is clearer than the hidden charmed
system due to the absence of annihilation channels. It
provides us with another way to understand heavy-flavor
dynamics and nonperturbative QCD. Furthermore, it is
analogous to the deuteron since they both have con-
tact, one-pion exchange (OPE), and two-pion exchange
(TPE) contributions without annihilation channels in our
framework.
Currently, the only observed doubly heavy-flavor system

is the Ξþþ
cc baryon, which was first discovered by the

SELEX Collaboration [65]. Systems like ccu and ccd have
been discussed a lot, and their properties (such as masses
and electromagnetic moments) require further clarification
[66–73]. Very recently, the LHCb Collaboration confirmed
the existence of Ξþþ

cc but disfavored the mass measured at
SELEX [74]. Using current techniques and experiments it
is also possible to search for the doubly charmed boson
made of DD�.
The Dð�ÞDð�ÞðBð�ÞBð�ÞÞ system was studied in Ref. [75]

to search for bound and resonant states, and they used pion
and vector-meson exchange potentials which are con-
strained by heavy quark symmetry and chiral symmetry.
They found that in the isospin-0 channel there exists a
bound state in the S wave with a binding energy of
62.3 MeV, but no bound state was found in the S-wave
isospin-1 channel. The Dð�ÞDð�Þ system was studied in
Ref. [76] using the one-boson-exchange model, and it was
found that there exists a bound state consisting ofDD� with
a binding energy of 5–43 MeV in the isospin-0 channel.
The authors of Ref. [77] investigated deuteron-like mole-
cules with both open charm and bottom using heavy-meson
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effective theory. In Ref. [78], charm-beauty meson bound
states were dynamically generated from the Bð�ÞDð�Þ and
Bð�ÞD̄ð�Þ interactions and their scattering lengths were
obtained. There have also been lattice studies of BB
and BB� interactions [79–81]. In particular, the authors
of Ref. [81] considered both diquark-antidiquark and
meson-meson configurations. In Ref. [82], we investigated
the B̄B̄ interaction within heavy meson chiral effective
field theory (HMChEFT). We obtained the potentials
of the B̄B̄ system at the one-loop level, and discussed
the contact and two-pion exchange contributions in
momentum space.
In this work we investigate the DD� system. As we

mentioned before, we need to study the potentials first, and
then we can indirectly access the physical observables.
Furthermore, the potential in coordinate space can give us
more intuitive information about interactions between
mesons, and we can further solve a dynamic equation to
see whether there exists a hadronic molecule. This paper
is organized as follows. After this Introduction, we eluci-
date the framework in Secs. II and III. In Sec. IV, we give
the results for the potentials in momentum space. In Sec. V,
we study the potentials in coordinate space to search for
possible molecules. Finally, in Sec. VI we summarize and
present our conclusions.

II. LAGRANGIANS AND THE
WEINBERG SCHEME

To study the DD� system using HMChEFT, we need to
derive the Lagrangians and provide results systematically
in a strict power-counting scheme. Our results are arranged
order by order with the small parameter ϵ ¼ p=Λχ, where p
can be the momentum of a pion, the residual momentum of
heavy mesons, or the D-D� mass splitting, and Λχ

represents either the chiral symmetry breaking scale or
the mass of the heavy mesons. In this work, flavor SU(2)
symmetry is always assumed.

A. Lagrangians at the leading order

At the leading order Oðϵ0Þ, both OPE diagrams and
contact diagrams contribute to the amplitudes, and thus
we should first build the Lagrangians for DD�π inter-
action vertices, the corresponding contact vertices, and
so on.
The DD�π Lagrangian at leading order [83–85] is

given by

Lð1Þ
Hϕ ¼ −hðiv · ∂HÞH̄i þ hHv · ΓH̄i þ ghH=uγ5H̄i

−
1

8
δhHσμνH̄σμνi: ð1Þ

In the above, the H field represents the ðD;D�Þ doublet in
the heavy-quark limit,

H ¼ 1þ =v
2

ðP�
μγ

μ þ iPγ5Þ;

H̄ ¼ γ0H†γ0 ¼ ðP�†
μ γμ þ iP†γ5Þ

1þ =v
2

;

P ¼ ðD0; DþÞ; P�
μ ¼ ðD�0; D�þÞμ: ð2Þ

v ¼ ð1; 0; 0; 0Þ stands for the 4-velocity of the H field. The
last term in Eq. (1) is included to account for theD-D� mass
shift which is not zero in the chiral limit, and δ is the mass
difference in the ðD;D�Þ doublet. The axial-vector field u
and chiral connection Γ are expressed as

Γμ ¼
i
2
½ξ†; ∂μξ�; uμ ¼

i
2
fξ†; ∂μξg; ð3Þ

where ξ ¼ expðiϕ=2fÞ, f is the bare constant for pion
decay, and

ϕ ¼
ffiffiffi
2

p  π0ffiffi
2

p πþ

π− − π0ffiffi
2

p

!
: ð4Þ

The contact Lagrangian at Oðϵ0Þ is constructed as
follows [47,51,82]:

Lð0Þ
4H ¼ DaTr½HγμH̄�Tr½HγμH̄�

þDbTr½Hγμγ5H̄�Tr½Hγμγ5H̄�
þ EaTr½Hγμτ

aH̄�Tr½HγμτaH̄�
þ EbTr½Hγμγ5τ

aH̄�Tr½Hγμγ5τaH̄�; ð5Þ

whereDa,Db, Ea, and Eb are four independent low-energy
constants (LECs).

B. Lagrangians at the next-to-leading order

At chiral order Oðϵ2Þ, the amplitudes consist of the
contact corrections, OPE corrections, and TPE amplitudes.
These one-loop amplitudes must be renormalized with the
help of Oðϵ2Þ Lagrangians. The divergences in the one-
loop amplitudes are canceled by the infinite parts of the
LECs in the following Lagrangians [82]:

Lð2;hÞ
4H ¼ Dh

aTr½HγμH̄�Tr½HγμH̄�TrðχþÞ
þDh

bTr½Hγμγ5H̄�Tr½Hγμγ5H̄�TrðχþÞ
þ Eh

aTr½Hγμτ
aH̄�Tr½HγμτaH̄�TrðχþÞ

þ Eh
bTr½Hγμγ5τ

aH̄�Tr½Hγμγ5τaH̄�TrðχþÞ; ð6Þ
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Lð2;vÞ
4H ¼ fDv

a1Tr½ðv ·DHÞγμðv ·DH̄Þ�Tr½HγμH̄�
þDv

a2Tr½ðv ·DHÞγμH̄�Tr½ðv ·DHÞγμH̄�
þDv

a3Tr½ðv ·DHÞγμH̄�Tr½Hγμðv ·DH̄Þ�
þDv

a4Tr½ððv ·DÞ2HÞγμH̄�Tr½HγμH̄�
þDv

b1Tr½ðv ·DHÞγμγ5ðv ·DH̄Þ�Tr½Hγμγ5H̄� þ � � �
þ Ev

a1Tr½ðv ·DHÞγμτaðv ·DH̄Þ�Tr½HγμτaH̄� þ � � �
þ Ev

b1Tr½ðv ·DHÞγμγ5τaðv ·DH̄Þ�Tr½Hγμγ5τaH̄�
þ � � �g þ H:c:; ð7Þ

Lð2;qÞ
4H ¼fDq

1Tr½ðDμHÞγμγ5ðDνH̄Þ�Tr½Hγνγ5H̄�
þDq

2Tr½ðDμHÞγμγ5H̄�Tr½ðDνHÞγνγ5H̄�
þDq

3Tr½ðDμHÞγμγ5H̄�Tr½Hγνγ5ðDνH̄Þ�
þDq

4Tr½ðDμDνHÞγμγ5H̄�Tr½Hγνγ5H̄�
þ Eq

1Tr½ðDμHÞγμγ5τaðDνH̄Þ�Tr½Hγνγ5τaH̄�
þ � � �g þ H:c:;…; ð8Þ

where

χ̃� ¼ χ� −
1

2
Tr½χ��;

χ� ¼ ξ†χξ† � ξχξ;

χ ¼ m2
π: ð9Þ

Note that the term Lð2;dÞ
4H in Ref. [82] vanishes in our SU

(2) case.
In addition to canceling the divergences of the loop

diagrams, the above Lagrangians also contain finite parts
that contribute to tree-level diagrams at Oðϵ2Þ. They are
governed by the large number of LECs appearing in
Eqs. (6)–(8).

C. Weinberg scheme

In this work, we adopt Weinberg’s power-counting
scheme to study the DD� systems [19,20]. This framework
has been widely applied to nucleon-nucleon systems, as
mentioned in the Introduction. Let us start with a nucleon-
nucleon TPE box diagram, depicted in Fig. 1. As illustrated

in Ref. [82], the amplitude can be written using the heavy
hadron formalism:

i
Z

d4l
i

l0 þ P0 − ⃗q2
1

2MN
þ iε

i

−l0 þ P0 − ⃗q2
2

2MN
þ iε

× � � �

¼ i
Z

d3l
Z

dl0
i

l0 þ P0 − ⃗q2
1

2MN
þ iε

i

−l0 þ P0 − ⃗q2
2

2MN
þ iε

× � � �

¼
Z

d3l
π

P0 − 1
2

�
⃗q2
1

2MN
þ ⃗q2

2

2MN

�
þ iε

� � �

¼
Z

d3l
π

P⃗2

ð2MNÞ −
1
2

�
⃗q2
1

2MN
þ ⃗q2

2

2MN

�
þ iε

� � �

¼ −
Z

d3l
π

⃗ l2

ð2MNÞ þ iε
� � � ; ð10Þ

where mN is the mass of the nucleon, q⃗1 ¼ P⃗þ ⃗ l, and
q⃗2 ¼ P⃗ − ⃗ l. Naive power counting gives the l0 integral
OðjP⃗j−1Þ, while we notice from Eq. (10) that the l0 integral
should be of OðjP⃗j−2Þ, i.e., the true order is enhanced by
jP⃗j−1. Such an enhancement definitely violates the power-
counting rule, which would invalidate the chiral expansion.
As pointed out in Refs. [19,20], the origin of such a
contradiction comes from the double poles in Eq. (10),
which is related to the 2PR part of the box diagram
in Fig. 1.
With the above analysis in mind, we find ourselves in

the same situation when studying the interaction of the
doubly charmed meson pair, and thus cannot directly
calculate the scattering amplitude. Alternatively, we can
apply Weinberg’s power-counting scheme. First, with the
usual power-counting rule, we compute the 2PI contribu-
tions of all diagrams, which leads to the effective potentials.
Then, we substitute the potentials into iterated equations
(such as the Lippmann-Schwinger or Schrödinger equa-
tion) to recover the 2PR contributions. Finally, we obtain
the desired scattering amplitudes or energy levels.

III. EFFECTIVE POTENTIALS
OF THE DD� SYSTEM

The effective potentials of the DD� system receive
contributions from the contact and OPE diagrams at the
leading order Oðϵ0Þ. At the next-to-leading order Oðϵ2Þ,
there are both tree and one-loop corrections. The effective
potentials V are related to the Feynman amplitudes M of
2PI diagrams,

V ¼ −1
4

M; ð11Þ
FIG. 1. A typical TPE box diagram of the nucleon-nucleon
interaction. The solid line stands for the nucleon and the dashed
line stands for the pion.
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which follows from the one-boson-exchange model
(despite some differences in conventions) [86,87].
At the lowest order Oðϵ0Þ, there are two diagrams at tree

level, as illustrated in Fig. 2. They represent the contact and
OPE contributions, respectively. The contact terms mainly
affect the short-range interaction between particles, while
the OPE contribution determines the behavior of the long-
range interaction.
With the Lagrangians (1) and (5), the corresponding

amplitudes can be easily computed. For the process
Dðp1ÞD�ðp2Þ → Dðp3ÞD�ðp4Þ with isospin I ¼ 1, the
amplitudes for the diagrams in Figs. 2(a) and 2(b) read

Mð0Þ
I¼1ðaÞ ¼ ið−8Da þ 8Db − 8Ea þ 8EbÞεðp2Þ · ε�ðp4Þ;

ð12Þ

Mð0Þ
I¼1ðbÞ ¼ ið−1Þ g

2

f2
pμpν

p2 −m2
εμðp2Þε�νðp4Þ: ð13Þ

For the processDðp1ÞD�ðp2Þ → Dðp3ÞD�ðp4Þwith I ¼ 0,
the amplitudes are

Mð0Þ
I¼0ðaÞ ¼ ið24Ea þ 24Eb − 8Da − 8DbÞεðp2Þ · ε�ðp4Þ;

ð14Þ

Mð0Þ
I¼0ðbÞ ¼ ið−3Þ g

2

f2
pμpν

p2 −m2
εμðp2Þε�νðp4Þ: ð15Þ

In the above equations, the momentum p ¼ p1 − p4, the
superscript (0) denotes the order Oðϵ0Þ, and the subscripts
“I ¼ 0, 1” stand for the process DD� → DD� with isospin
0 and 1, respectively.
At Oðϵ2Þ, a number of diagrams emerge. The tree

diagrams at Oðϵ2Þ are similar to Fig. 2(a), but the vertices
should be replaced with those from the Lagrangians (6)–(8).
There are three additional sets of one-loop diagrams.
The diagrams in the first set are for one-loop correc-

tions to the contact terms. They are depicted in Fig. 3.
Figures 3(a1)–(a12) represent contributions from the wave-
function renormalization of external legs.
We show the second set of diagrams in Fig. 4. They

represent one-loop corrections to the OPE diagrams.

Figures 4(b1)–4(b6) and Figs. 4(b8)–4(b9) contribute to
the renormalization of the DD�π vertex. Therefore, we
must use the value for the bare coupling g inMð0Þ at Oðϵ0Þ
to avoid double counting. We show the relation between the
bare coupling g and the experimental coupling gð2Þ in
Eq. (B1) in Appendix B. Similarly, the bare decay constant
f should be used in Eqs. (13) and (15) as well.
The final set is for the TPE diagrams, which are shown

in Fig. 5. They are important for the medium-range
interaction.

(a) (b)

FIG. 2. Tree-level diagrams of the processes DD� → DD� at
Oðϵ0Þ. The left diagram represents the contact terms, and the right
one is the one-pion-exchange diagram. The solid, double-solid,
and dashed lines stand for the D, D�, and a pion, respectively.

(a1) (a2) (a3) (a4)

(a5) (a6) (a7) (a8)

(a9) (a10) (a11) (a12)

(a13) (a14)

FIG. 3. One-loop corrections to the contact terms at Oðϵ2Þ. The
solid, double-solid, and dashed lines stand for D, D�, and a pion,
respectively.

(b1) (b2) (b3) (b4)

(b5) (b6) (b7) (b8)

(b9) (b10) (b11) (b12)

FIG. 4. One-loop corrections to the one-pion-exchange dia-
grams at Oðϵ2Þ. The solid, double-solid, and dashed lines stand
for D, D�, and a pion, respectively.
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As discussed in the previous section, some diagrams
(such as the box diagrams in Fig. 5) contain a 2PR part that
should be subtracted. If there is a loop function of a box
diagram like

Z
d4l

1

v · lþ aþ iε
1

−v · l − aþ iε
× � � � ; ð16Þ

following Refs. [82,88], we can separate the 2PR and 2PI
parts as

1

v · lþ aþ iε
1

−v · l − aþ iε

¼ 1

v · lþ aþ iε

�
−

1

v · lþ aþ iε
þ 2πδðv · lþ aÞ

�
:

ð17Þ

The term proportional to the Dirac δ function is just the 2PR
part, which should be dropped in the potentials.
All of the one-loop amplitudes of the diagrams in

Figs. 3–5 for the processes DD� → DD� are shown in
Appendix A. The divergences of the loop functions are
regularized using dimensional regularization, and sub-
tracted using the modified minimal subtraction scheme.
Also, we list the definitions of the loop functions
in Appendix C. The finite parts of the high-order
Lagrangians should also contribute to tree-level diagrams
atOðϵ2Þ, and they are governed by a large number of LECs.
However, we need plenty of data for DD̄� (or other
channels, such as DD̄ or DD) scattering in different partial
waves to fit these LECs, but this is currently lacking.
Therefore, in the present work we only focus on the loop
contributions at Oðϵ2Þ.
We can easily obtain the potentials VDD�

I¼1 and VDD�
I¼0 from

the Feynman amplitudes by multiplying by a factor −1=4.
The polarized vectors in the potentials were dealt with
delicately in Ref. [89]. In this work, we only consider the
S-wave interaction, which leads to the following substitu-
tions in Eqs. (12)–(15) and (A1)–(A33):

⃗εðp2Þ · ⃗ε�ðp4Þ ↣ 1; ð18Þ

⃗εðp2Þ · p⃗⃗ε�ðp4Þ · p⃗ ↣
1

3
p⃗2; ð19Þ

where we follow the one-boson exchange model in
Refs. [86,87]. After all of these procedures, the effective
potentials VDD�

I¼1 and VDD�
I¼0 in momentum space can be

obtained. However, the potentials are energy dependent. A
solution to this problem was proposed in Refs. [23,24],
where a unitary transformation was used to get rid of the
energy dependence. In this work, we just set the transferred
energies equal to zero, i.e., p0 ¼ 0 and q0 ¼ 0 for sim-
plicity, as in the one-boson exchange model [60]. Also, we
set the residual energies of the heavy mesons equal to zero.

IV. NUMERICAL RESULTS OF POTENTIALS
IN MOMENTUM SPACE

We use the following input parameters to obtain the
numerical results: mπ ¼ 0.139 GeV, the mass difference
δ ¼ 0.142 GeV, fπ ¼ 0.086 GeV, and the renormalization
scale μ ¼ 4πf. Many methods have been used to inves-
tigate the constant for Dð�ÞDð�Þπ coupling, such as the
lattice studies [90–92], QCD sum rules [93–97], and other
approaches [98–100]. The experimental process D� → Dπ
was fit to obtain the renormalized coupling gð2Þ [101], and
we get the bare coupling g ¼ 0.65 by using the Oðϵ2Þ
correction in Eq. (B1).
First, we list the results for the contact contributions.

For VDD�
I¼1 in the isospin-1 channel, the effective potentials

at Oðϵ0Þ and Oðϵ2Þ are

Vð0Þ
I¼1 ¼ −2Da þ 2Db − 2Ea þ 2Eb; ð20Þ

Vð2Þ
I¼1 ¼ −ð0.253þ 0.031iÞDb þ 0.044Ea

− ð0.166þ 0.030iÞEb: ð21Þ

For the isospin-0 channel, we obtain

Vð0Þ
I¼0 ¼ −2Da − 2Db þ 6Ea þ 6Eb; ð22Þ

Vð2Þ
I¼0 ¼ −ð1.214þ 0.190iÞEa þ ð0.116þ 0.047iÞDb

þ ð0.025 − 0.143iÞEb: ð23Þ

Obviously, the contact contributions are just constants, and
they result in δðrÞ potentials in coordinate space, which
describes the short-distance effect. From Eqs. (20)–(23), we
see that the convergence of the series expansion is good.
From Eqs. (21) and (23), the contact coupling constant Da

does not appear in the effective potential at Oðϵ2Þ because
the contributions from the Da term are canceled among the
various diagrams in Fig. 3.

(c1) (c2) (c3) (c4)

(c5) (c6) (c7) (c8)

(c9) (c10)

FIG. 5. Two-pion-exchange diagrams at Oðϵ2Þ. The solid,
double-solid, and dashed lines stand for D, D�, and a pion,
respectively.
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Next, we focus on the properties of the OPE and TPE
contributions. We illustrate the corresponding potentials for
channels with isospin 0 and 1 in Figs. 6 and 7, respectively,
ranging from q ¼ jqj ¼ 0 to 300 MeV.
From Figs. 6 and 7, one can see that the OPE contri-

butions at Oðϵ0Þ are dominant in both the I ¼ 0 and I ¼ 1
channels since the green dashed lines are close to the black
solid ones. The OPE potentials at Oðϵ2Þ are small com-
pared to those atOðϵ0Þ. The sums of the OPE contributions
are negative in Figs. 6 and 7, which means the OPE
interaction is attractive in both the I ¼ 0 and I ¼ 1 channel.
We also notice that the OPE interaction for I ¼ 0 is more
attractive than for I ¼ 1.

The situation for the TPE potentials is more complicated.
The TPE contributions behave differently in the I ¼ 0 and
I ¼ 1 channels. In Fig. 6, the TPE interaction for the I ¼ 0
channel is attractive in the range 0–300MeV, and it tends to
grow beyond 300 MeV. The TPE potential at Oðϵ2Þ is
larger than the OPE one at Oðϵ0Þ in the range 0–60 MeV,
while the OPE contribution rapidly exceeds that of TPE
when q is larger than 60 MeV, and becomes dominant. We
can say that the convergence of the chiral series is good.
Looking at Fig. 7, we see that the TPE potential is repulsive
in the range 0–120 MeV, while it becomes attractive as q
increases beyond the range. The TPE potential at Oðϵ2Þ is
smaller than the OPE contribution at Oðϵ0Þ in the lower
range of the momentum, and becomes comparable for large
momenta. This seems to indicate that the convergence of
the chiral series would be spoiled at larger transferred
momenta. From the blue dot-dashed lines in Figs. 6 and 7,
we see that the TPE interaction for I ¼ 1 is more attractive
than that for I ¼ 0.
Let us turn to the sum of these three contributions. The

total contribution in Fig. 6 for VDD�
I¼0 is attractive, while in

Fig. 7 for VDD�
I¼1 it is less attractive and tends to be repulsive

as q becomes smaller than 50 MeV because of the repulsive
TPE contribution. This makes us wonder whether there
a bound state could form in the DD� system with the
inclusion of contact contributions.

V. POTENTIALS IN COORDINATE SPACE AND
POSSIBLE MOLECULAR STATES

Although the pion exchange interaction is attractive at
most momenta, there can still be no bound states if it is not
attractive enough. Moreover, the contact interaction might be
repulsive, which would further decrease the possibility for
the existence of a bound state. Thus the contact potentials
must first be obtained numerically by determining the LECs.
After that, we can investigate the effective potentials in
coordinate space, and then solve the Schrödinger equation to
search for possible molecular states.

A. Determination of LECs

We determine the LECs in the contact contributions
(20)–(23) with the resonance saturation model [64,102–
105]. We assume that these short-range couplings result
from the ρ and ϕ exchanges as in Ref. [106], as well as
other meson exchanges (scalar and axial-vector). Although
it may be a rough estimate, it is meaningful to make such an
attempt. TheDð�ÞDð�ÞV Lagrangian respecting heavy quark
symmetry and U(2) flavor symmetry is given by [76]

LHHV ¼ iβhHvμðVμ − ρμÞH̄i þ iλhHσμνFμνðρÞH̄i: ð24Þ

In the above, H is the same as in Eq. (2), Fμν ¼ ∂μρν −
∂νρμ − ½ρμ; ρν� with ρμ ¼ igvffiffi

2
p ρ̂μ, and the multiplet ρ̂ is

defined by

FIG. 6. OPE and TPE potentials VDD�
I¼0 for the isospin-0 channel.

q stands for the 3-momentum in units of GeV, and the y axis
represents the effective potential in units of GeV−2. The red
dotted and green dashed lines describe the OPE potentials at the
leading and next-to-leading order, individually. The blue dot-
dashed line is for the TPE potential. The sum of the three
contributions is represented by the black solid line.

FIG. 7. OPE and TPE potentials VDD�
I¼1 . The line types and color

schemes match those of Fig. 6.
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ρ̂μ ¼
 ρ0ffiffi

2
p þ ωffiffi

2
p ρþ

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p

!μ

: ð25Þ

The coupling constants gv ¼ 5.8, λ ¼ 0.56 GeV−1, and
β ¼ 0.9 [76]. As for the scalar exchanges S (σ, f0, a0), we
use [76,105]

LHHS ¼ gHHShHSH̄i; ð26Þ

where gHHa0ðf0Þ ¼
ffiffiffi
3

p
gHHσ [105], gHHσ ¼ gπ

2
ffiffi
6

p , and gπ ¼
3.73 [107]. For the axial-vector mesons AV (a1, f1), we use

LHHAV
¼ gHHAV

hHγμγ5A
μ
VH̄i: ð27Þ

After matching the meson exchange amplitudes to the
contact amplitudes with four independent isospin channels
of Dð�ÞDð�Þ → Dð�ÞDð�Þ, we obtain

Da ¼ −
β2g2v
8m2

ω
−

g2s
2m2

σ
−

g2s0
12m2

f0

; Ea ¼ −
β2g2v
8m2

ρ
−

g2s0
4m2

a0

;

Db ¼
g2HHAV

8m2
a1

; Eb ¼
g2HHAV

8m2
f1

: ð28Þ

However, we cannot find any inputs for the axial-vector
meson coupling gHHAV

, and therefore we simply assume
that the low-energy constants are saturated by resonances
with masses below 800 MeV. We estimate their errors with
the contributions from the other four particles: f0, a0, f1,
and a1. jgHHAV

j is set to βgv ∼ 5. We finally get the
numerical values

Da ¼ −6.62� 0.15; Ea ¼ −5.74� 0.45;

Db ¼ 0� 1.96; Eb ¼ 0� 1.89: ð29Þ

B. Potentials in coordinate space

After the determination of the LECs, we are ready to
transfer the potentials into coordinate space:

VðrÞ ¼
Z

dq
ð2πÞ3 VðqÞe

iq·r: ð30Þ

However, since VðqÞ in ChEFT is proportional to the
power series of q, the divergence of the higher-order terms
is much worse. The evaluation of VðrÞ is essentially a
nonperturbative problem, and it originates from the resum-
mation of the 2PI potentials. We have to regularize
Eq. (30) nonperturbatively. Enormous efforts have been
made to explore the nonperturbative renormalization
[21,23,108–113]. Here we resort to a simple Gaussian
cutoff expð−p⃗2n=Λ2nÞ to suppress the higher-momentum
contributions, as in Refs. [22,24,30]. We use n ¼ 2 as in

Ref. [30]. In the nucleon-nucleon ChEFT, the value of the
cutoff parameter is commonly below the ρ meson mass
[27], and therefore we adopt Λ ¼ 0.7 GeV in our work.
The resulting full potentials are shown in Figs. 8 and 9,

where we set Λ ¼ 0.7 GeV. From Figs. 8 and 9, we find
that the OPE and TPE interactions are attractive in both
cases, and the contact terms lead to an attractive interaction
in the I ¼ 0 channel and a repulsive interaction in the I ¼ 1
channel. Obviously, this difference increases the possibility
for a bound state to form in the I ¼ 0 channel rather than in
the I ¼ 1 channel. Let us focus on the total results. The
total short-distance potential for the I ¼ 1 channel is
repulsive and small, while that for the I ¼ 0 channel is
attractive and large.

FIG. 9. S-wave potentials of the DD� system with I ¼ 1 in
units of GeV. The line types and color schemes match those
of Fig. 8.

FIG. 8. S-wave potentials of the DD� system with I ¼ 0 in
units of GeV. The green dashed, red dotted, and blue dot-dashed
lines stand for the contact, OPE, and TPE contributions, respec-
tively. The full potential is shown by the black solid line.
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C. Possible bound states

With the potentials in hand, we are finally able to solve
the Schrödinger equation. We find a bound state with a
binding energy around 17.5 MeV in the I ¼ 0 channel, and
there is no bound state in the I ¼ 1 channel.
The radial wave function for the I ¼ 0 channel is plotted

in Fig. 10. It extends over a rather large distance, which
means the constituents D and D� are separated.
It is worth noticing that in the pion and vector-meson

exchange potential model [75] a bound state was found
with a binding energy of 62.3 MeV in the I ¼ 1 channel,
while no state was found in the I ¼ 1 channel. In the one-
boson exchange model, a bound state was also found in the
I ¼ 0 channel, with a binding energy of about 5–43 MeV
and a reasonable cutoff [76]. No bound state was found in
the I ¼ 1 channel in that model either [76]. Our results are
consistent.
From Fig. 9, we notice that the contact interaction is

repulsive at short distances. However, we still cannot find a
bound state even if we drop the contact interaction in the
I ¼ 1 channel, which implies that the pion exchange
interaction is not attractive enough to bind DD�. If we
repeat these steps and turn off the contact potential in the
I ¼ 0 channel, the shallow bound state disappears. We also
cannot obtain a reasonable energy eigenvalue of the
Schrödinger equations if we keep the OPE potentials
themselves for the two channels. The attractive contact
and TPE interactions are important for the existence of a
molecule in the I ¼ 0 channel.
Theoretically, obtained observables (such as the binding

energy) are independent of the regularization procedure in
Eq. (30). The formal dependence on the cutoffΛ in Eq. (30)
can be compensated by the Λ dependence of the LECs.
However, in practice the results are sometimes sensitive to
different choices of Λ. Here we investigate the influence of
the cutoff with the LECs fixed. We plot the full potentials

with different cutoffs in Fig. 11. From the figure, we notice
that the potential becomes deeper and steeper for short
distances as the cutoff increases. After solving the
Schrödinger equation, we obtain binding energies of 1.1,
17.5, and 53.1 MeV with Λ ¼ 0.6 GeV, 0.7 GeV, and mρ,
respectively. The binding energy is sensitive to the cutoff.
However, a bound-state solution exists as the cutoff is near
mρ. Furthermore, as we stressed earlier, the cutoff depend-
ence can be compensated if we readjust the LECs at
different cutoffs.
There also exist other sources of uncertainties. First, we

discuss the uncertainty from the resonance saturation model
which is utilized to determine the LECs of the contact
terms. From the numerical values ofDa and Ea in Eq. (29),
we can see that the contributions from f0 and a0 are small,
and the ρ, ω, and σ exchanges dominateDa and Ea. ForDb
and Eb in Eq. (29), the uncertainties from the axial-vector
exchanges are not small, and therefore they have con-
siderable effects on the binding energy. However, the
estimation of the axial-vector contributions is quite rough,
and we hope to obtain much more reliable input for gHHVA

in the future. In general, the uncertainty in Eq. (29) gives
a binding energy of 17.5þ4.1þ18.3

−3.9−14.0 MeV with, where the
first uncertainty comes from f0 and a0, and the second
uncertainty comes from axial-vector mesons (a1, f1).
Second, uncertainty can come from the axial coupling

g. When we include the experimental error [101]
(width and branching fraction), we obtain a bare coupling
g ¼ 0.65þ0.02

−0.01 , and the binding energy in the I ¼ 0 channel
with Λ ¼ 0.7 GeV is 17.5þ9.6

−3.9 MeV. We can see that the
binding energy is sensitive to the coupling g, but not much
sensitive as cutoff Λ. Including the uncertainties fromDaðbÞ
and EaðbÞ discussed above, we obtain a binding energy of
17.5þ21.1

−15.0 at Λ ¼ 0.7 GeV. This uncertainty is largely due
to axial-vector mesons, as the uncertainty from g is

FIG. 10. The radial wave function with the full potential
depicted in Fig. 8.

FIG. 11. The total potentials of the DD� system in the S wave
with I ¼ 0, where three cutoff values are adopted.
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moderate and the uncertainties from f0 and a0 are the
smallest.
The third uncertainty comes from the truncation error.

Here we partially estimate a few loop diagrams of the
contact contribution at Oðϵ4Þ to show how large the
truncation error is. For the Oðϵ4Þ contact loop contribution
there are many Feynman diagrams. We pick some diagrams
and plot them in Fig. 12. The first four diagrams of Fig. 12
each contain two separated loops, and the sum of these
reads

Vð4Þ
I¼1 ∼ ð−0.00016 − 0.00015iÞðDa −Db þ Ea − EbÞ;

Vð4Þ
I¼0 ∼ ð−0.0039 − 0.0014iÞDa þ ð0.0117þ 0.0041iÞEa

þ ð0.0043þ 0.0019iÞDb − ð0.0129þ 0.0057iÞEb:

ð31Þ
We can see that they are generallyOð 1

100
Þ relative to those at

Oðϵ2Þ by comparing with Eqs. (21) and (23). The last three
diagrams in Fig. 12 indicate the wave-function renormal-
ization of theOðϵ2Þ diagrams in Fig. 3, and the sum of these
reads

Vð4Þ
I¼1 ∼ ð0.0196þ 0.0060iÞDb − 0.0034Ea

þ ð0.0127þ 0.0047iÞEb; ð32Þ

Vð4Þ
I¼0 ∼ ð0.0934þ 0.0321iÞEa − ð0.0085þ 0.0054iÞDb

− ð0.0039 − 0.0110iÞEb: ð33Þ

They areOð 1
10
Þ relative to those atOðϵ2Þ from Eqs. (21) and

(23). Therefore, we expect that when all of the contact

Oðϵ4Þ diagrams are included the convergence may not
be bad.

VI. SUMMARY

In this work, we systematically studied the DD� system
with ChEFT. Due to the intrinsic difficulty of ChEFT, we
could not obtain the physical observables directly from the
Feynman diagrams. Instead, we calculated the potentials,
i.e., the sum of all of the 2PI diagrams, and then iterated
them into the Lippmann-Schwinger or Schrödinger equa-
tion to recover the 2PR contributions.
We investigated the DD� effective potentials in ChEFT

using Weinberg’s scheme. With the effective potentials
obtained in momentum space, we analyzed the contact,
OPE, and TPE contributions in detail. The OPE and TPE
contributions are free of many LECs, and thus they are
more model independent than the contact interaction since
the LECs were determined with the resonance saturation
model in this work. The OPE contribution at Oðϵ2Þ is
smaller than that atOðϵ0Þ. The potential from TPE atOðϵ2Þ
is relatively large compared to that from OPE at Oðϵ0Þ in
the I ¼ 1 channel, while it shows a good convergence in the
I ¼ 0 channel. The TPE interaction is important and non-
negligible.
We have determined the LECs in contact contribu-

tions with the resonance saturation model, and further
explored the full potentials in coordinate space, which were
regularized with a simple Gaussian cutoff. The roles of
each contribution were discussed, and the total potentials
are very different in the two channels. We also discussed
the importance of the contact contribution and the influence
of the cutoff in detail. Furthermore, we discussed the
uncertainties of our approach, which come from the axial
coupling g, the LECs, and the truncation error. We found
that the TPE contribution is non-negligible and attractive in
general, while the contact contributions are an important
element and compete with the π-exchange contributions
to cause quite different behavior in each of the channels.
Despite the roughly estimated LECs, we found that there
is no bound state in the I ¼ 1 channel for a wide range
of the cutoff parameter, while there is a bound state in
the I ¼ 1 channel as the cutoff is near mρ in our approach.
The binding energy is sensitive to the cutoff. Our results
are consistent with those in the one-boson-exchange
model [76].
In this work we ignored many other subleading effects,

such as isospin violation, S-D mixing, recoil, and so on.
These effects can be investigated in the future, and our
framework shall be proved to be elegant.
We point out that the DD� molecule may be discovered

at experiments through various processes. Since at the
Tevatron and LHCb there are a number of Bc events,
theDD� molecule can be produced via Bc weak decays: the
singly Cabibbo-suppressed process Bc → XðDD�ÞK, and

FIG. 12. Some loop diagrams related to contact terms at Oðϵ4Þ.
The last three diagrams indicate the contribution from wave-
function renormalization to the contact loop diagrams at Oðϵ2Þ
in Fig. 3.
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the doubly Cabibbo-suppressed processes Bc → XðDD�Þπ
and Bc → XðDD�ÞD. Moreover, we hope the eþe− proc-
esses such as eþe− → XðDD�ÞD̄ D̄ at Belle II can be
studied to observe this state. The molecular states may be
constructed through DD final states. We also expect that
lattice simulations could be used to test our results.
Our exploration of theDD� system can help to provide a

more profound understanding of the heavy meson system
and nonperturbative QCD. We expect that our results could
be tested by future LHCb and Belle II experiments and help
the extrapolations of future lattice simulations.
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APPENDIX A: ONE-LOOP AMPLITUDES
OF THE PROCESSES DD� → DD� AT O(ϵ2)

Wefirst list the amplitudesof theprocessDðp1ÞD�ðp2Þ →
Dðp3ÞD�ðp4Þ. The difference between the amplitudes for
the I ¼ 0 and I ¼ 1 channels is just a factor.
For the one-loop corrections to the contact terms in

Fig. 3, the Feynman amplitudes are

Mð2Þ
ða1Þ ¼

−i
4

g2

f2
Aa1J

g
22ðm;ω1;ω2Þεðp2Þ · ε�ðp4Þ

with ω1 ¼ v · p2 −M; ω2 ¼ v · p4 −M; ðA1Þ

Mð2Þ
ða2Þ ¼

−i
2

g2

f2
Aa2J

g
22ðm;ω1;ω2Þεðp2Þ · ε�ðp4Þ

with ω1 ¼ v · p2 −M − δ; ω2 ¼ v · p4 −M − δ;

ðA2Þ

Mð2Þ
ða3Þ ¼

i
4

g2

f2
Aa3J

g
22ðm;ω1;ω2Þεðp2Þ · ε�ðp4Þ

with ω1 ¼ v · p2 −M; ω2 ¼ v · p3 −M − δ; ðA3Þ

Mð2Þ
ða4Þ ¼

−i
4

g2

f2
Aa4J

g
22ðm;ω1;ω2Þεðp2Þ · ε�ðp4Þ

with ω1 ¼ v · p1 −M − δ; ω2 ¼ v · p3 −M − δ;

ðA4Þ

Mð2Þ
ða5Þ ¼

i
4

g2

f2
Aa5J

g
22ðm;ω1;ω2Þεðp2Þ · ε�ðp4Þ

with ω1 ¼ v · p1 −M − δ; ω2 ¼ v · p4 −M; ðA5Þ

Mð2Þ
ða6Þ ¼

i
4

g2

f2
Aa6Jh22ðm;ω2;ω1Þεðp2Þ · ε�ðp4Þ

with ω1 ¼ v · p1 −M − δ; ω2 ¼ v · p2 −M; ðA6Þ

Mð2Þ
ða7Þ ¼

i
4

g2

f2
Aa7Jh22ðm;ω2;ω1Þεðp2Þ · ε�ðp4Þ

with ω1 ¼ v · p4 −M; ω2 ¼ v · p3 −M − δ; ðA7Þ

Mð2Þ
ða8Þ ¼

−i
2

g2

f2
Aa8Jh22ðm;ω2;ω1Þεðp2Þ · ε�ðp4Þ

with ω1 ¼ v · p1 −M − δ; ω2 ¼ v · p2 −M − δ;

ðA8Þ

Mð2Þ
ða9Þ ¼

−i
2

g2

f2
Aa9Jh22ðm;ω2;ω1Þεðp2Þ · ε�ðp4Þ

with ω1 ¼ v · p4 −M − δ; ω2 ¼ v · p3 −M − δ;

ðA9Þ

Mð2Þ
ða10Þ ¼

i
2

g2

f2
Aa10J

g
22ðm;ω1;ω2Þεðp2Þ · ε�ðp4Þ

with ω1 ¼ v · p2 −M − δ; ω2 ¼ v · p3 −M − δ;

ðA10Þ

Mð2Þ
ða11Þ ¼

i
2

g2

f2
Aa11J

g
22ðm;ω1;ω2Þεðp2Þ · ε�ðp4Þ

with ω1 ¼ v · p1 −M − δ; ω2 ¼ v · p4 −M − δ;

ðA11Þ

Mð2Þ
ða12þa13Þ ¼ −i

g2

f2
Aa12a13

×

�
3

8
∂ωJb22ðm;ω1Þ þ

3

4
∂ωJb22ðm;ω2Þ

�

× εðp2Þ · ε�ðp4Þ
with ω1 ¼ v · p2 −M; ω2 ¼ v · p2 −M − δ; and with

ω1 ¼ v · p4 −M;ω2 ¼ v · p4 −M − δ; ðA12Þ

Mð2Þ
ða14Þ ¼ −i

g2

f2
Aa14

�
9

8
∂ωJb22ðm;ω1Þ

�
εðp2Þ · ε�ðp4Þ

with ω1 ¼ v · p1 −M − δ; and with

ω1 ¼ v · p3 −M − δ: ðA13Þ

For the one-loop corrections to the OPE potentials in
Fig. 4, the Feynman amplitudes are

Mð2Þ
ðb1Þ ¼

i
4

g4

f4
Ab1

pμpν

p2 −m2
Jg22ðm;ω1;ω2Þεμðp2Þε�νðp4Þ

with ω1 ¼ v · p3 −M − δ; ω2 ¼ v · p2 −M;

ðA14Þ
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Mð2Þ
ðb2Þ ¼

i
2

g4

f4
Ab2

pμpν

p2 −m2
Jg22ðm;ω1;ω2Þεμðp2Þε�νðp4Þ

with ω1 ¼ v · p2 −M − δ; ω2 ¼ v · p3 −M − δ;

ðA15Þ

Mð2Þ
ðb3Þ ¼

i
4

g4

f4
Ab3

pμpν

p2 −m2
Jg22ðm;ω1;ω2Þεμðp2Þε�νðp4Þ

with ω1 ¼ v · p1 −M − δ; ω2 ¼ v · p4 −M; ðA16Þ

Mð2Þ
ðb4Þ ¼

i
2

g4

f4
Ab4

pμpν

p2 −m2
Jg22ðm;ω1;ω2Þεμðp2Þε�νðp4Þ

with ω1 ¼ v · p1 −M − δ; ω2 ¼ v · p4 −M − δ;

ðA17Þ

Mð2Þ
ðb5Þ ¼ i

g2

f4
Ab5

pμpν

p2 −m2

�
2m2Lþ 2m2

16π2
log

�
m
μ

��

× εμðp2Þε�νðp4Þ; ðA18Þ

Mð2Þ
ðb6Þ ¼ i

g2

f4
Ab6

pμpν

p2 −m2

�
2m2Lþ 2m2

16π2
log

�
m
μ

��

× εμðp2Þε�νðp4Þ; ðA19Þ

Mð2Þ
ðb7Þ ¼ i

g2

f2
Ab7

pμpν

p2 −m2

�
2

3f2

�
2m2Lþ 2m2

16π2
log

�
m
μ

���

× εμðp2Þε�νðp4Þ; ðA20Þ

Mð2Þ
ðb8Þ ¼ 0; Mð2Þ

ðb9Þ ¼ 0; ðA21Þ

Mð2Þ
ðb10þb11Þ ¼ −i

g4

f4
Ab10b11

pμpν

p2 −m2

×

�
3

8
∂ωJb22ðm;ω1Þ þ

3

4
∂ωJb22ðm;ω2Þ

�

× εμðp2Þε�νðp4Þ
with ω1 ¼ v · p2 −M; ω2 ¼ v · p2 −M − δ; and with

ω1 ¼ v · p4 −M; ω2 ¼ v · p4 −M − δ; ðA22Þ

Mð2Þ
ðb12Þ ¼ −i

g4

f4
Ab12

pμpν

p2 −m2

�
9

8
∂ωJb22ðm;ω1Þ

�

× εμðp2Þε�νðp4Þ
with ω1 ¼ v · p1 −M − δ; and with

ω1 ¼ v · p3 −M − δ: ðA23Þ

For the TPE potentials in Fig. 5, the Feynman amplitudes
are

Mð2Þ
ðc1Þ ¼

i
4f4

½4Ac1aðq20JF21 þ JF22Þ þ 4Ac1bq20J
F
11 þ Ac1cJF0 �

× εðp2Þ · ε�ðp4Þ; ðA24Þ

Mð2Þ
ðc2Þ ¼

−i
4

g2

f4
Ac2½ð2Ac2cq0JS31 þ 2Ac2cJS34 þAc2dq0JS21Þ

× εðp2Þ · ε�ðp4Þ þ ð2Ac2cq0JS32 þ 2Ac2cJS33

þ ðAc2d þ 2Ac2cÞq0JS22 þ 2Ac2cJS24 þAc2dq0JS11Þ
× q · εðp2Þq · ε�ðp4Þ�

with ω¼ v ·p2 −M; ðA25Þ

Mð2Þ
ðc3Þ ¼

i
4

g2

f4
Ac3½ð2Ac3dq0JS21 − ð2Ac3c þ Ac3dÞq0q⃗2JS22

− 2Ac3cq⃗2JS24 þ 4Ac3cq0JS31 − 2Ac3cq0q⃗2JS32

− 2Ac3cq⃗2JS33 þ 4Ac3cJ34 − Ac3dq0q⃗2JS11Þεðp2Þ
· ε�ðp4Þ þ ð−Ac3dq0JS11

− ð2Ac3c þ Ac3dÞq0JS22 − 2Ac3cJS24 − 2Ac3cq0JS32

− 2Ac3cJS33Þq · εðp2Þq · ε�ðp4Þ�
with ω ¼ v · p2 −M − δ; ðA26Þ

Mð2Þ
ðc4Þ ¼

i
4

g2

f4
½Ac4dq0 ⃗q2JT11 − 3Ac4dq0JT21

þ ð2Ac4c þ Ac4dÞq0 ⃗q2JT22 þ 2Ac4c ⃗q2JT24

− 6Ac4cq0JT31 þ 2Ac4cq0 ⃗q2JT32 þ 2Ac4c ⃗q2JT33

− 6Ac4cJT34�εðp2Þ · ε�ðp4Þ
with ω ¼ v · p1 −M − δ; ðA27Þ

Mð2Þ
ðc5Þ ¼

i
4

g4

f4
Ac5½ð−q⃗2JB31 þ 5JB41 − ⃗q2JB42Þεðp2Þ

· ε�ðp4Þ þ ðJB21 − q⃗2JB22 þ 7JB31

− 2⃗q2JB32 þ 7JB42 − ⃗q2JB43Þ
× q · εðp2Þq · ε�ðp4Þ�

with ω1 ¼ v · p1 −M − δ; ω2 ¼ v · p2 −M; ðA28Þ

Mð2Þ
ðc6Þ ¼

−i
4

g4

f4
Ac6½ð−q⃗2JB21 þ ð⃗q2Þ2JB22 − 9⃗q2JB31

þ 2ð⃗q2Þ2JB32 þ 10JB41 − 9⃗q2JB42

þ ð⃗q2Þ2JB43Þεðp2Þ · ε�ðp4Þ þ ð−JB21
þ ⃗q2JB22 − 7JB31 þ 2⃗q2JB32 − 7JB42 þ ⃗q2JB43Þ
× q · εðp2Þq · ε�ðp4Þ�

with ω1 ¼ v · p1 −M − δ; ω2 ¼ v · p2 −M − δ;

ðA29Þ
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Mð2Þ
ðc7Þ ¼

−i
4

g4

f4
Ac7½p⃗2JB21εðp2Þ · ε�ðp4Þ

þ JB21p · εðp2Þp · ε�ðp4Þ�
with ω1 ¼ v · p1 −M − δ; ω2 ¼ v · p2 −M − δ;

ðA30Þ

Mð2Þ
ðc8Þ ¼

i
4

g4

f4
Ac8½ð−q⃗2JR31 þ 5JR41 − ⃗q2JR42Þεðp2Þ

· ε�ðp4Þ þ ðJR21 − ⃗q2JR22 þ 7JR31 − 2⃗q2JR32

þ 7JR42 − ⃗q2JR43Þ × q · εðp2Þq · ε�ðp4Þ�
with ω1 ¼ v · p1 −M − δ; ω2 ¼ v · p2; ðA31Þ

Mð2Þ
ðc9Þ ¼

−i
4

g4

f4
Ac9½ð−q⃗2JR21 þ ð⃗q2Þ2JR22 − 9⃗q2JR31

þ 2ð⃗q2Þ2JR32 þ 10JR41 − 9⃗q2JR42

þ ð⃗q2Þ2JR43Þεðp2Þ · ε�ðp4Þ þ ð−JR21 þ ⃗q2JR22

− 7JR31 þ 2⃗q2JR32 − 7JR42 þ ⃗q2JR43Þ
× q · εðp2Þq · ε�ðp4Þ�

with ω1 ¼ v · p1 −M − δ; ω2 ¼ v · p2 −M − δ:

ðA32Þ

Mð2Þ
ðc10Þ ¼

i
4

g4

f4
Ac10½p⃗2JR21εðp2Þ · ε�ðp4Þ

þ JR21p · εðp2Þp · ε�ðp4Þ�
with ω1 ¼ v · p1 −M − δ; ω2 ¼ v · p2 −M − δ:

ðA33Þ

In the above expressions, JFij is shorthand notation for
JFijðm1; m2; qÞ, and JSij and JTij are JSijðm1; m2;ω; qÞ and

JTijðm1; m2;ω; qÞ, respectively. JBij and JRij are JBijðm1; m2;
ω1;ω2; qÞ and JRijðm1; m2;ω1;ω2; qÞ, respectively. These
loop functions (like Jg) are defined in Appendix C.
In Eqs. (A1)–(A33), the constants A are different for

different isospins. We list them in Tables I–III. The
remaining constants are

Ac1b ¼ 1; Ac1c ¼ q20; Ac2c ¼ −1; Ac2d ¼ −1;

Ac3c ¼ −1; Ac3d ¼ −1; Ac4c ¼ 1; Ac4d ¼ 1

ðA34Þ

for I ¼ 1, and

Ac1b ¼ −3; Ac1c ¼ −3q20; Ac2c ¼ 3; Ac2d ¼ 3;

Ac3c ¼ 3; Ac3d ¼ 3; Ac4c ¼ −3; Ac4d ¼ −3

ðA35Þ

for I ¼ 0.

TABLE I. The coefficients for the contact amplitudes in the processes DD� → DD�.

I ¼ 1 I ¼ 0

Aa1 −32Da − 32Ea −48Da − 48Ea
Aa2 8Db − 24Da þ 8Ea þ 40Eb 24Db − 24Da − 24Ea þ 24Eb
Aa3 −32Db − 32Eb 48Db þ 48Eb
Aa4 16Db − 80Da − 16Ea þ 80Eb 48Db − 96Da − 96Ea þ 48Eb
Aa5 −32Db − 32Eb 48Db þ 48Eb
Aa6 8Da − 8Db þ 8Ea − 8Eb 24Da þ 24Db − 72Ea − 72Eb
Aa7 8Da − 8Db þ 8Ea − 8Eb 24Da þ 24Db − 72Ea − 72Eb
Aa8 0 −48Db þ 144Eb
Aa9 0 −48Db þ 144Eb
Aa10 16Db − 48Eb 0
Aa11 16Db − 48Eb 0
Aa12a13 −8Da þ 8Db − 8Ea þ 8Eb −8Da − 8Db þ 24Ea þ 24Eb
Aa14 −8Da þ 8Db − 8Ea þ 8Eb −8Da − 8Db þ 24Ea þ 24Eb

TABLE II. The coefficients for the OPE amplitudes in the
processes DD� → DD�.

Ab1 Ab2 Ab3 Ab4 Ab5 Ab6 Ab7 Af Ab10b11 Ab12

I ¼ 1 −1 1 −1 1 1=3 1=3 −1 −1 −1 −1
I ¼ 0 −3 3 −3 3 1 1 −3 −3 −3 −3

TABLE III. The coefficients for the TPE amplitudes in the
processes DD� → DD�.

Ac1a Ac2 Ac3 Ac4 Ac5 Ac6 Ac7 Ac8 Ac9 Ac10

I ¼ 1 1 −2 2 −2 1 −1 −1 5 −5 −5
I ¼ 0 −3 −2 2 −2 9 −9 9 −3 3 −3
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In Eqs. (A1)–(A33), M is the D meson mass, δ is
the mass difference between D� and D, m;m1, and m2

are all pion masses, p ¼ p1 − p4, q ¼ p1 − p3, μ is
the renormalization scale in the dimensional regulari-
zation, and

L ¼ 1

16π2

�
1

d − 4
þ 1

2
ðγE − 1 − log 4πÞ

�
: ðA36Þ

APPENDIX B: RENORMALIZED AND
BARE COUPLINGS

The relation between the experimental renormalized
coupling gð2Þ and the bare coupling g in the Lagrangian is

gð2Þ ¼ g

�
1 −

g2

2f2
Jg22ð0;−δÞ þ

g2

4f2
Jg22ð−δ; δÞ

−
9g2

8f2
∂Jb22ð−δÞ − 3g2

8f2
∂Jb22ðδÞ − 3g2

4f2
∂Jb22ð0Þ

�
:

ðB1Þ

The expression relating the renormalized fð2Þ and the
bare f is well known:

1

f2ð2Þ
¼ 1

f2

�
1þ m2

4πf2
log

�
m
μ

��
: ðB2Þ

We use fð2Þ ¼ fπ ¼ 0.092 GeV.

APPENDIX C: DEFINITIONS OF SOME LOOP FUNCTIONS

We define the loop functions following Ref. [82]:

i
Z

dDlμ4−D

ð2πÞD
f1; lα; lαlβ; lαlβlγg

½ðþ=−Þv · lþ ωþ iε�ðl2 −m2 þ iεÞ≡ fJa=b0 ; vαJa=b11 ; vαvβJa=b21 þ gαβJa=b22 ; ðg ∨ vÞJa=b31 þ vαvβvγJa=b32 gðm;ωÞ;

ðC1Þ

i
Z

dDlμ4−D

ð2πÞD
f1; lα; lαlβ; lαlβlγg

ðv · lþ ω1 þ iεÞ½ðþ=−Þv · lþ ω2 þ iε�ðl2 −m2 þ iεÞ
≡ fJg=h0 ; vαJg=h11 ; vαvβJg=h21 þ gαβJg=h22 ; ðg ∨ vÞJg=h31 þ vαvβvγJg=h32 gðm;ω1;ω2Þ; ðC2Þ

i
Z

dDlμ4−D

ð2πÞD
f1; lα; lαlβ; lαlβlγg

ðl2 −m2
1 þ iεÞ½ðqþ lÞ2 −m2

2 þ iε�≡ fJF0 ; qαJF11; qαqβJF21 þ gαβJF22; ðg ∨ qÞJF31 þ qαqβqγJF32gðm1; m2; qÞ;

ðC3Þ

i
Z

dDlμ4−D

ð2πÞD
f1; lα; lαlβ; lαlβlγ; lαlβlγlδg

½ðþ=−Þv · lþωþ iε�ðl2−m2
1þ iεÞ½ðqþ lÞ2 −m2

2þ iε�
≡ fJT=S0 ;qαJT=S11 þvαJT=S12 ; gαβJT=S21 þqαqβJT=S22 þvαvβJT=S23 þðq∨ vÞJT=S24 ;ðg∨ qÞJT=S31 þqαqβqγJT=S32 þðq2 ∨ vÞJT=S33

þðg∨ vÞJT=S34 þðq∨ v2ÞJT=S35 þvαvβvγJT36;ðg∨ gÞJT=S41 þðg∨ q2ÞJT=S42 þqαqβqγqδJT=S43 þðg∨ v2ÞJT=S44 þvαvβvγvδJT=S45

þðq3 ∨ vÞJT=S46 þðq2 ∨ v2ÞJT=S47 þðq∨ v3ÞJT=S48 þðg∨ q∨ vÞJT=S49 gðm1;m2;ω;qÞ; ðC4Þ

i
Z

dDlμ4−D

ð2πÞD
f1; lα; lαlβ; lαlβlγ; lαlβlγlδg

ðv · lþω1þ iεÞ½ðþ=−Þv · lþω2þ iε�ðl2−m2
1þ iεÞ½ðqþ lÞ2−m2

2þ iε�
≡fJR=B0 ;qαJR=B11 þvαJR=B12 ;gαβJR=B21 þqαqβJR=B22 þvαvβJR=B23 þðq∨vÞJR=B24 ;ðg∨qÞJR=B31 þqαqβqγJR=B32 þðq2∨ vÞJR=B33

þðg∨ vÞJR=B34 þðq∨v2ÞJR=B35 þvαvβvγJR=B36 ;ðg∨ gÞJR=B41 þðg∨q2ÞJR=B42 þqαqβqγqδJR=B43 þðg∨v2ÞJR=B44 þvαvβvγvδJR=B45

þðq3∨ vÞJR=B46 þðq2∨ v2ÞJR=B47 þðq∨ v3ÞJR=B48 þðg∨q∨ vÞJR=B49 gðm1;m2;ω1;ω2;qÞ; ðC5Þ

with
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q ∨ v≡ qαvβ þ qβvα; g ∨ q≡ gαβqγ þ gαγqβ þ gγβqα; g ∨ v≡ gαβvγ þ gαγvβ þ gγβvα;

q2 ∨ v≡ qβqγvα þ qαqγvβ þ qαqβvγ; q ∨ v2 ≡ qγvαvβ þ qβvαvγ þ qαvβvγ;

g ∨ g≡ gαβgγδ þ gαδgβγ þ gαγgβδ; g ∨ q2 ≡ qαqβgγδ þ qαqδgβγ þ qαqγgβδ þ qγqδgαβ þ qβqδgαγ þ qβqγgαδ;

g ∨ v2 ≡ vαvβgγδ þ vαvδgβγ þ vαvγgβδ þ vγvδgαβ þ vβvδgαγ þ vβvγgαδ;

q3 ∨ v≡ qβqγqδvα þ qαqγqδvβ þ qαqβqδvγ þ qαqβqγvδ; q ∨ v3 ≡ qδvαvβvγ þ qγvαvβvδ þ qβvαvγvδ þ qαvβvγvδ;

q2 ∨ v2 ≡ qγqδvαvβ þ qβqδvαvγ þ qαqδvβvγ þ qβqγvαvδ þ qαqγvβvδ þ qαqβvγvδ;

g ∨ q ∨ v≡ qβvαgγδ þ qαvβgγδ þ qδvαgβγ þ qγvαgβδ þ qαvδgβγ þ qαvγgβδ þ qδvγgαβ þ qδvβgαγ þ qγvδgαβ

þ qγvβgαδ þ qβvδgαγ þ qβvγgαδ: ðC6Þ

Jb is related to Ja as

Jb0 ¼ Ja0; Jb11 ¼ −Ja11; Jb21 ¼ Ja21; Jb22 ¼ Ja22;

Jb31 ¼ −Ja31; Jb32 ¼ −Ja32: ðC7Þ
Jg and Jh can be reduced to

Jgðω1;ω2Þ ¼
1

ω2 − ω1

½Jaðω1Þ − Jaðω2Þ�; ðC8Þ

Jhðω1;ω2Þ ¼
1

ω2 þ ω1

½Jaðω1Þ þ Jbðω2Þ�: ðC9Þ

JS is related to JT as

JS0ðv · qÞ ¼ JT0 ð−v · qÞ; JS11ðv · qÞ ¼ JT11ð−v · qÞ;
JS12ðv · qÞ ¼ −JT12ð−v · qÞ; JS21 ¼ JT21ð−v · qÞ;
JS22ðv · qÞ ¼ JT22ð−v · qÞ; JS23ðv · qÞ ¼ JT23ð−v · qÞ:
JS24ðv · qÞ ¼ −JT24ð−v · qÞ; JS31ðv · qÞ ¼ JT31ð−v · qÞ:
JS32ðv · qÞ ¼ JT32ð−v · qÞ; JS33ðv · qÞ ¼ −JT33ð−v · qÞ:
JS34ðv · qÞ ¼ −JT34ð−v · qÞ; JS35ðv · qÞ ¼ JT35ð−v · qÞ:
JS36ðv · qÞ ¼ −JT34ð−v · qÞ; JS41ðv · qÞ ¼ JT41ð−v · qÞ:
JS42ðv · qÞ ¼ JT42ð−v · qÞ; JS43ðv · qÞ ¼ JT43ð−v · qÞ:
JS44ðv · qÞ ¼ JT44ð−v · qÞ; JS45ðv · qÞ ¼ JT45ð−v · qÞ:
JS46ðv · qÞ ¼ −JT46ð−v · qÞ; JS47ðv · qÞ ¼ JT47ð−v · qÞ:
JS48ðv · qÞ ¼ −JT48ð−v · qÞ; JS49ðv · qÞ ¼ −JT49ð−v · qÞ:

ðC10Þ
JR and JB can be reduced to

JRðω1;ω2Þ ¼
1

ω2 − ω1

½JTðω1Þ − JTðω2Þ�; ðC11Þ

JBðω1;ω2Þ ¼
1

ω2 þ ω1

½JTðω1Þ þ JSðω2Þ�: ðC12Þ

All of the integrals in Eqs. (C1)–(C5) can be reduced to
one- or two-dimensional Feynman parameter integrals
without difficulty. For example,

JT36 ¼ 2L
Z

1

0

dx1ð4b2 − cÞ þ 3

16π2

Z
1

0

dx1b2

þ 1

16π2

Z
1

0

dx1 × ð4b2 − cÞ½− logμ2 þ logð−b2 þ cÞ�

−
3

16π

Z
1

0

dx1b× ð−b2 þ cÞ12

þ 1

16π

Z
1

0

dx1b3ð−b2 þ cÞ−1
2 −

1

8π2

Z
1

0

dx1D;

ðC13Þ

JT45 ¼ 8L
Z

1

0

dx1bð2b2− cÞþ 1

4π2

Z
1

0

dx1b3

þ 1

4π2

Z
1

0

dx1×bð2b2− cÞ½− logμ2þ logð−b2þ cÞ�

þ 1

16π

Z
1

0

dx1× ð−b2þ cÞ32 − 3

8π

Z
1

0

dx1b2ð−b2þ cÞ12

þ 1

16π

Z
1

0

dx1×b4ð−b2þ cÞ−1
2 þ 1

8π2

Z
1

0

dx1E;

ðC14Þ
where

b ¼ ð1 − x1Þv · q − ω;

c ¼ ð1 − x1Þ2q2 − ð1 − x1Þq2 þ x1ðm2
1 −m2

2Þ þm2
2 − iϵ;

D ¼
	 ffiffiffiffiffiffiffiffiffiffiffiffiffi

c − b2
p �

ð4b2 − cÞ log
�
1 −

b2

c

�
þ 5b2

�

þ ð8b3 − 6bcÞ×tan−1
�

bffiffiffiffiffiffiffiffiffiffiffiffiffi
c − b2

p
�


ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c − b2

p
Þ−1;

E ¼
	
b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c − b2

p
½6ð2b2 − cÞðlogðcÞ − log ½c − b2�Þ − 16b2

þ 3c� − 3ð8b4 − 8b2cþ c2Þtan−1
�

bffiffiffiffiffiffiffiffiffiffiffiffiffi
c − b2

p
�


× ð3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c − b2

p
Þ−1; ðC15Þ

and L is defined in Eq. (A36).
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One should notice that in Eqs. (C1)–(C5), if the form of the integral (16) is encountered, the 2PR part must be subtracted
using Eq. (17).
However, the evaluations of the above loop integrals are not complete since the kinetic energy terms in the propagators

are not included. Here, we further illustrate the calculations considering the kinetic energy terms q⃗2

2M. We choose Jb0 as an
example,

i
Z

dDlμ4−D

ð2πÞD
1

½−v · l− ðp⃗−l⃗Þ2
2M þωþ iε�½l2−m2þ iε�

: ðC16Þ

We first apply the Feynman parametrization to Eq. (C16):

1

½−v · l − ðp⃗−⃗lÞ2
2M þ ωþ iε�½l2 −m2 þ iε�

¼ 2

Z
∞

0

dy
1

½l2 −m2 þ 2yð−v · l − ðp⃗−⃗lÞ2
2M þ ωÞ þ iε�2

¼ 2

Z
∞

0

dy
1

½l2 − 2yv · lþ y2v2 − y2v2 − y
M ðp⃗ − ⃗ lÞ2 þ 2yω −m2 þ iε�2

¼ 2

Z
∞

0

dy
1

½ðl − yvÞ2 − y2 − y
M ðp⃗ − ⃗ lÞ2 þ 2yω −m2 þ iε�2

: ðC17Þ

With the substitution l → lþ yv we obtain

2

Z
∞

0

dy
1

½l2 − y2 − y
M ðp⃗ − ⃗ lÞ2 þ 2yω −m2 þ iε�2

:

ðC18Þ
Next, we analyze the pole structure of the expression and

perform the l0 integral. We first rewrite the polynomial of l0
in the denominator:

l2 − y2 −
y
M

ðp⃗ − ⃗ lÞ2 þ 2yω −m2 þ iε

¼ l20 − ⃗ l2 − y2 −
y
M

ðp⃗ − ⃗ lÞ2 þ 2yω −m2 þ iε

¼ l20 −
�⃗
l2 þ y

M
ðp⃗ − ⃗ lÞ2 þ y2 − 2yωþm2

�
þ iε

¼ ½l0 þ El�½l0 − El�; ðC19Þ

where El ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⃗ l2 þ y

M ð⃗p − ⃗ lÞ2 þ y2 − 2yω þ m2

q
− iε.

Therefore, there exist two poles located at −El and El.
With the expressions above, Eq. (C16) becomes

i
Z

dDlμ4−D

ð2πÞD
1h

−v · l − ðp⃗−⃗lÞ2
2M þ ωþ iε

i
½l2 −m2 þ iε�

¼ 2i
Z

∞

0

dy
Z

dDlμ4−D

ð2πÞD
1

½l0 þ El�2½l0 − El�2

¼ 2i
Z

∞

0

dy
Z

dD−1lμ4−D

ð2πÞD
Z

dl0
1

½l0 þ El�2½l0 − El�2
:

ðC20Þ

By closing the contour in the upper complex l0 plane, we
obtain the l0 integral

Z
dl0

1

½l0 þ El�2½l0 − El�2
¼ 2πiResðfð−ElÞÞ; ðC21Þ

where Resðfð−ElÞÞ is the residue at −El, which can be
evaluated by using

Resðfðz0ÞÞ ¼ lim
z→z0

1

ðm − 1Þ!
	
dm−1

dzm−1 ½ðz − z0ÞmfðzÞ�


;

ðC22Þ

i.e.,

Resðfð−ElÞÞ

¼ lim
l0→−El

	
d
dl0

�
ðl0−ð−ElÞÞ2

1

½l0þEl�2½l0−El�2
�


¼ lim
l0→−El

2

ðEl− l0Þ3

¼ 2

ð2ElÞ3

¼1

4

1

½l⃗ 2þ y
Mðp⃗− l⃗Þ2þy2−2yωþm2− iε�3=2

; ðC23Þ

where the expression ⃗l2 þ y
M ðp⃗− ⃗lÞ2 þ y2 − 2yωþm2 − iε

should be further simplified:
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�
1þ y

M

��⃗
l −

y
M

1þ y
M

p⃗

�
2

þ
y
M

1þ y
M

p⃗2 þ ðy − ωÞ2 þm2 − ω2 ¼
�
1þ y

M

�⃗
l2 þ ðy − ωÞ2 þm2 − ω2

¼
�
1þ y

M

��⃗
l2 þ ðy − ωÞ2 þm2 − ω2

1þ y
M

�

¼
�
1þ y

M

�
½⃗l2 þ Δ� ðC24Þ

with

Δ ¼ ðy − ωÞ2 þm2 − ω2

1þ y
M

: ðC25Þ

Then, Eq. (C20) reduces to

2i
Z

∞

0

dy
Z

dD−1lμ4−D

ð2πÞD ð2πiÞ 1
4

1

½ð1þ y
MÞ½⃗l2 þ Δ��3=2

¼ −
1

2

Z
∞

0

dy
Z

dD−1lμ4−D

ð2πÞD−1
1

½ð1þ y
MÞ½⃗l2 þ Δ��3=2

¼ −
1

2

Z
∞

0

dy
μ4−D

ð2πÞD−1
2

Γ½2 − D
2
�

Γ½3
2
�

1

ð1þ y
MÞ3=2Δ2−D

2

: ðC26Þ

Using

y → yþ ω; Δ →
y2 þm2 − ω2

1þ yþω
M

; ðC27Þ

Eq. (C26) can be further simplified to

−
1

2

Z
∞

−ω
dy

μ4−D

ð2πÞD−1
2

Γ½2 − D
2
�

Γ½3
2
�

1

ð1þ yþω
M Þ3=2Δ2−D

2

¼ −
1

2

Z
∞

−ω
dy

μϵ

ð2πÞ3−ϵ2
Γ½ϵ

2
�

Γ½3
2
�

1

ð1þ yþω
M Þ3=2Δϵ

2

¼ −1
2

Z
∞

0

dy
μϵ

ð2πÞ3−ϵ2
Γ½ϵ

2
�

Γ½3
2
�

1

ð1þ yþω
M Þ3=2Δϵ

2

þ −1
2

Z
0

−ω
dy

μϵ

ð2πÞ3−ϵ2
Γ½ϵ

2
�

Γ½3
2
�

1

ð1þ yþω
M Þ3=2Δϵ

2

; ðC28Þ

where ϵ ¼ 4 −D.
We first discuss the

R∞
0 part,

−1
2

Z
∞

0

dy
μϵ

ð2πÞ3−ϵ2
Γ½ϵ

2
�

Γ½3
2
�

1

ð1þ yþω
M Þ3=2Δϵ

2

¼ −1
2

ð4πÞ12
Γ½3

2
�

μϵΓ½ϵ
2
�

ð4πÞ2−ϵ
2

Z
∞

0

dy
ð1þ yþω

M Þ−32�
y2−ω2þm2

1þyþω
M

�ϵ
2

¼ −1
2

ð4πÞ12
Γ½3

2
�

μϵΓ½ϵ
2
�

ð4πÞ2−ϵ
2

Z
∞

0

dy
ð1þ yþω

M Þϵ−32
ðy2 − ω2 þm2Þϵ2 : ðC29Þ

Notice that, if we assume M → ∞, the expression above becomes

−1
2

ð4πÞ12
Γ½3

2
�

μϵΓ½ϵ
2
�

ð4πÞ2−ϵ
2

Z
∞

0

dy
1

ðy2 − ω2 þm2Þϵ2 ¼ −2
μϵΓ½ϵ

2
�

ð4πÞ2−ϵ
2

Γ½1
2
�Γ½−1

2
�

2Γ½ϵ
2
� ð−ω2 þm2Þ12−ϵ

2

¼ 1

8π
ð−ω2 þm2Þ12: ðC30Þ

The result above reproduces part of Jb0 where ⃗q2=M in the propagator is not included.
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We now discuss the
R
0
−ω part:

−1
2

Z
0

−ω
dy

μϵ

ð2πÞ3−ϵ2
Γ½ϵ

2
�

Γ½3
2
�

1

ð1þ yþω
M Þ3=2Δϵ

2

¼ −1
2

ð4πÞ12
Γ½3

2
�

μϵΓ½ϵ
2
�

ð4πÞ2−ϵ
2

Z
0

−ω
dy

ð1þ yþω
M Þϵ−32

ðy2 −ω2 þm2Þϵ2

¼ −2
�
−2Lþ 1

8π2
logμ−

1

16π2

�Z
0

−ω
dy

�
1þ yþω

M

�−3
2

×
ð1þ yþω

M Þϵ2
ðy2 −ω2 þm2Þϵ2

¼ −2
�
−2Lþ 1

8π2
logμ−

1

16π2

�Z
0

−ω
dy

�
1þ yþω

M

�−3
2

×

�
1þ ϵ

2
log

1þ yþω
M

y2 −ω2 þm2

�

¼
�
4L−

1

4π2
logμþ 1

8π2

�Z
0

−ω
dy

�
1þ yþω

M

�−3
2

−
1

8π2

Z
0

−ω
dy

�
1þ yþω

M

�−3
2

log
1þ yþω

M

y2 −ω2 þm2
; ðC31Þ

where the term containing L [defined in Eq. (A36)] is a divergent part. The expression above will be further evaluated
numerically. If we assume M → ∞ again, the result can reproduce another part of Jb0 where ⃗q

2=M in the propagator is not
included at the beginning.
The evaluations of the other loop integrals in Eqs. (C1)–(C5) are similar.
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