
 

In-medium properties of the low-lying strange, charm, and bottom baryons
in the quark-meson coupling model

K. Tsushima*

Laboratório de Física Teórica e Computacional-LFTC, Universidade Cruzeiro do Sul,
01506-000, São Paulo, SP, Brazil

(Received 23 October 2018; published 17 January 2019)

In-medium properties of the low-lying strange, charm, and bottom baryons in symmetric nuclear matter
are studied in the quark-meson coupling (QMC) model. Results for the Lorentz-scalar effective masses,
mean field potentials felt by the light quarks in the baryons, in-medium bag radii, and the lowest mode bag
eigenvalues are presented for those calculated using the updated data. This study completes the in-medium
properties of the low-lying baryons in symmetric nuclear matter in the QMC model, for the strange, charm,
and bottom baryons which contain one or two strange, one charm, or one bottom quark, as well as at least
one light quark. The highlight is the prediction of the bottom baryon Lorentz-scalar effective masses;
namely, the Lorentz-scalar effective mass of Σb becomes smaller than that of Ξb at moderate nuclear matter
density,m�

Σb
< m�

Ξb
, although in vacuum mΣb

> mΞb
. We study further the effects of the repulsive Lorentz-

vector potentials on the excitation (total) energies of these bottom baryons.

DOI: 10.1103/PhysRevD.99.014026

I. INTRODUCTION

The study of baryon properties in a nuclear medium,
especially for the baryons which contain charm and/or
bottom quarks, is very interesting [1–8], due to the emer-
gence of heavy-quark symmetry also in the baryon sector
[9–11]. The existence of heavy quarks in hadrons makes it
simpler to treat them in many cases; e.g., one can treat them
in a nonrelativistic framework with effective potentials such
as nonrelativistic QCD [12,13]. In particular, in-medium
properties of heavy baryons which contain at least one light
u or d quark, can provide us with important information
on the dynamical chiral symmetry breaking and the roles
of light quarks in partial restoration of chiral symmetry
[14–16]. Despite their importance, only a few theoretical
studies for the in-medium properties of heavy baryons seem
to exist [16–18], probably because of the lack of models
and/or methods which are simple enough to handle easily.
To study the in-medium properties of heavy baryons, we

rely here on the quark-meson coupling (QMC) model, a
quark-based model of nuclear matter, finite nuclei, and
hadron properties in a nuclear medium. The model was
invented by Guichon [19]. (For other variants of the QMC
model, see Ref. [14].) The QMC model has successfully

been applied for various studies of the properties of
finite (hyper)nuclei [20–30], hadron properties in a nuclear
medium [31–36], reactions involving nuclear targets
[37–45], and neutron star structure [46,47]. Self-consistent
exchange of the Lorentz-scalar-isoscalar σ-, Lorentz-vector-
isoscalar ω-, and Lorentz-vector-isovector ρ-mean fields,
directly coupling to the light quarks u and d, is the key
feature of the model to be able to achieve the novel saturation
properties of nuclear matter with a simple and systematic
treatment. All the relevant coupling constants of the σ light
quark, ω light quark, and ρ light quark in any hadron are the
same as those in the nucleon, those fixed by the nuclear
matter saturation properties. The physics behind this
simple picture may be supported by the fact that the
light-quark condensates reduce or change faster than those
of the strange and heavier quarks in finite density as the
nuclear density increases [48,49]. Or, partial restoration of
chiral symmetry in a nuclear medium is mainly driven by the
decrease in the magnitude of the light-quark condensates.
This is modeled in the QMC model by the fact that the
scalar-isoscalar σ-, vector-isoscalar ω-, and vector-isovector
ρ-mean fields couple directly only to the light quarks, but not
to the strange or heavier quarks.
The present article completes the studies for the low-

lying baryon properties in symmetric nuclear matter in the
QMC model with some updates. In particular, the highlight
is on the bottom baryon Lorentz-scalar effective masses in a
nuclear medium. Detailed results are presented explicitly,
and many of them have not been presented before [14,15].
We predict that the Lorentz-scalar effective mass of Σb

becomes smaller than that of Ξb at moderate nuclear matter

*kazuo.tsushima@gmail.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 99, 014026 (2019)

2470-0010=2019=99(1)=014026(11) 014026-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.99.014026&domain=pdf&date_stamp=2019-01-17
https://doi.org/10.1103/PhysRevD.99.014026
https://doi.org/10.1103/PhysRevD.99.014026
https://doi.org/10.1103/PhysRevD.99.014026
https://doi.org/10.1103/PhysRevD.99.014026
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


density, namely, m�
Σb

< m�
Ξb
, although mΣb

> mΞb
in

vacuum. We study further the effects of the repulsive
Lorentz-vector potentials on the excitation (total) energies
of these bottom baryons, by considering two different
possibilities for the vector potentials: one is extracted by the
Λ and Σ hypernuclear experimental observation, the one
which includes effective Pauli potentials based on the Pauli
principle at the quark level, and the other is the vector
potentials that are predicted by the QMCmodel without the
effective Pauli potentials.

II. FINITE (HYPER)NUCLEUS
IN THE QMC MODEL

In order to make this article self-contained, we briefly
review the QMC model following Refs. [14,15] with minor
improvements for better understanding.
Although the Hartree-Fock treatment is possible within

the QMC model [50], the main features of the results,

especially the density dependence of the total energy per
nucleon (nuclear matter energy density), is nearly identical
to that of the Hartree approximation. Then, it is sufficient
to rely on the Hartree approximation in this study. (See
Ref. [46] for a detailed study made for the neutron star
structure based on the QMC model with the Hartree-Fock
treatment.)
Before discussing the heavy baryon properties in

symmetric nuclear matter, we start with the case of a
finite (hyper)nucleus. Using the Born-Oppenheimer
approximation, a relativistic Lagrangian density which
gives the same mean-field equations of motion for a
nucleus or a hypernucleus, may be given in the QMC
model [14,15,25] by Eqs. (1)–(3) below, where the
quasiparticles moving in single-particle orbits are three-
quark clusters with the quantum numbers of a nucleon,
strange, charm, or bottom hyperon when expanded to the
same order in velocity [20,21,25,28,30,36]:

LQMC ¼ LN
QMC þ LY

QMC; ð1Þ

LN
QMC ≡ ψ̄Nðr⃗Þ

�
iγ · ∂ −m�

NðσÞ − ðgωωðr⃗Þ þ gρ
τN3
2
bðr⃗Þ þ e

2
ð1þ τN3 ÞAðr⃗ÞÞγ0

�
ψNðr⃗Þ

−
1

2
½ð∇σðr⃗ÞÞ2 þm2

σσðr⃗Þ2� þ
1

2
½ð∇ωðr⃗ÞÞ2 þm2

ωωðr⃗Þ2� þ
1

2
½ð∇bðr⃗ÞÞ2 þm2

ρbðr⃗Þ2� þ
1

2
ð∇Aðr⃗ÞÞ2; ð2Þ

LY
QMC ≡ ψ̄Yðr⃗Þ½iγ · ∂ −m�

YðσÞ − ðgYωωðr⃗Þ þ gYρ IY3bðr⃗Þ þ eQYAðr⃗ÞÞγ0�ψYðr⃗Þ;
ðY ¼ Λ;Σ0;�;Ξ0;−;Λþ

c ;Σ0;þ;þþ
c ;Ξ0;þ

c ;Λb;Σ0;�
b ;Ξ0;−

b Þ; ð3Þ

where, for a normal nucleus, LY
QMC in Eq. (1), namely

Eq. (3) is not needed, but for the following study we do
need this. In the above, ψNðr⃗Þ and ψYðr⃗Þ are, respectively,
the nucleon and hyperon (strange, charm, or bottom
baryon) fields. The mean-meson fields represented by,
σ, ω, and b, which directly couple to the light quarks
self-consistently, are the Lorentz-scalar-isoscalar, Lorentz-
vector-isoscalar, and third component of the Lorentz-
vector-isovector fields, respectively, while A stands for
the Coulomb field.
In an approximation where the σ-, ω-, and ρ-mean fields

couple only to the u and d light quarks, the coupling
constants for the hyperon appearing in Eq. (3) are obtained/
identified as gYω ¼ ðnq=3Þgω, and gYρ ≡ gρ ¼ gqρ , with nq
being the total number of valence light quarks in the
hyperon Y, where gω and gρ are the ω-N and ρ-N coupling
constants. IY3 and QY are the third component of the
hyperon isospin operator and its electric charge in units
of the proton charge, e, respectively.
As mentioned already, the approximation adopted in the

QMC model, that the meson fields couple only to the light

quarks, reflects the fact that the magnitudes of the light-
quark condensates decrease faster as increasing the nuclear
density than those of the strange and heavy flavor quarks.
This is associated with the partial restoration of chiral
symmetry in a nuclear medium (dynamical symmetry
breaking and its partial restoration). The dynamical sym-
metry breaking and its restoration can provide us with
important information on the origin of the (dynamical)
masses of the hadrons which we observe in our Universe.
The field dependent σ-N and σ-Y coupling strengths,

respectively, for the nucleon N and hyperon Y, gσðσÞ≡
gN
σ ðσÞ and gYσ ðσÞ appearing in Eqs. (2) and (3), are defined
by

m�
NðσÞ≡mN − gσðσÞσðr⃗Þ; ð4Þ

m�
YðσÞ≡mY − gYσ ðσÞσðr⃗Þ

ðY ¼ Λ;Σ;Ξ;Λc;Σc;Ξc;Λb;Σb;ΞbÞ; ð5Þ

where mN (mY) is the free nucleon (hyperon) mass. Note
that the dependence of these coupling strengths on the
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applied scalar field (σ) must be calculated self-consistently
within the quark model [19,20,25,28,29,36]. Hence, unlike
quantum hadrodynamics (QHD) [51,52], even though
gYσ ðσÞ=gσðσÞ may be 2=3 or 1=3 depending on the number
of light quarks nq in the hyperon in free space, σ ¼ 0 (even
this is true only when their bag radii in free space are
exactly the same in the standard QMC model with the MIT
bag), this will not necessarily be the case in a nuclear
medium.
The Lagrangian density Eq. (1) leads [or (2) and (3) lead]

to a set of equations of motion for the finite (hyper)nuclear
system:

�
iγ · ∂ −m�

NðσÞ − ðgωωðr⃗Þ þ gρ
τN3
2
bðr⃗Þ

þ e
2
ð1þ τN3 ÞAðr⃗ÞÞγ0

�
ψNðr⃗Þ ¼ 0; ð6Þ

½iγ · ∂ −m�
YðσÞ − ðgYωωðr⃗Þ þ gYρ IY3bðr⃗Þ

þ eQYAðr⃗ÞÞγ0�ψYðr⃗Þ ¼ 0; ð7Þ

ð−∇2
r þm2

σÞσðr⃗Þ ¼ −
�∂m�

NðσÞ
∂σ

�
ρsðr⃗Þ −

�∂m�
YðσÞ
∂σ

�
ρYs ðr⃗Þ;

≡ gσCNðσÞρsðr⃗Þ þ gYσCYðσÞρYs ðr⃗Þ; ð8Þ

ð−∇2
r þm2

ωÞωðr⃗Þ ¼ gωρBðr⃗Þ þ gYωρYBðr⃗Þ; ð9Þ

ð−∇2
r þm2

ρÞbðr⃗Þ ¼
gρ
2
ρ3ðr⃗Þ þ gYρ IY3ρ

Y
Bðr⃗Þ; ð10Þ

ð−∇2
rÞAðr⃗Þ ¼ eρpðr⃗Þ þ eQYρ

Y
Bðr⃗Þ; ð11Þ

where ρsðr⃗Þ [ρYs ðr⃗Þ], ρBðr⃗Þ ¼ ρpðr⃗Þ þ ρnðr⃗Þ [ρYBðr⃗Þ],
ρ3ðr⃗Þ ¼ ρpðr⃗Þ − ρnðr⃗Þ, ρpðr⃗Þ, and ρnðr⃗Þ are the nucleon
(hyperon) scalar; nucleon (hyperon) baryon; and third
component of the isovector, proton, and neutron densities
at the position r⃗ in the (hyper)nucleus, respectively. On
the right-hand side of Eq. (8), −½∂m�

NðσÞ=∂σ�≡ gσCNðσÞ
and −½∂m�

YðσÞ=∂σ�≡ gYσCYðσÞ, where gσ ≡ gσðσ ¼ 0Þ and
gYσ ≡ gYσ ðσ ¼ 0Þ hereafter in this article, are the key
ingredients of the QMC model. Note that, when there is
σ dependence, they will be explicitly written by gσðσÞ and
gYσ ðσÞ to avoid confusion. At the hadronic level, the entire
information of the quark dynamics is condensed in the
effective couplings CN;YðσÞ of Eq. (8), which characterize
the features of the QMC model, namely, scalar polar-
izability. Furthermore, when CN;YðσÞ ¼ 1, which corre-
sponds to a structureless nucleon or hyperon, the equations
of motion given by Eqs. (6)–(11) can be identified with
those derived from naive QHD [51,52].
We note that, for the Dirac equation Eq. (7) for the

hyperon Y, we include the effects due to the Pauli blocking
at the quark level by adding repulsive potentials based on

the study made for the strange hyperons Λ, Σ, and Ξ. The
net, repulsive “Pauli potentials,” which may be interpreted
as also including the ΛN − ΣN channel coupling effect,
were extracted by the fit to the Λ and Σ hypernuclei taking
into account the ΣN − ΛN channel coupling [25]. Of
course, the effects of the channel coupling are expected
to be smaller for the corresponding charm and bottom
baryons, since the corresponding mass differences for these
cases are larger than that for the Λ and Σ hyperons. Thus,
for the interesting case of the Σb − Ξb baryon system
focused on later, we study two possibilities of the vector
potentials, with and without including the effective Pauli
potentials. The modified Dirac equation for Y ¼ Λ;Σ;Ξ;
Λc;b;Σc;b, and Ξc;b is

½iγ · ∂ −MYðσÞ − ðλYρBðr⃗Þ þ gYωωðr⃗Þ þ gρIY3bðr⃗Þ
þ eQYAðr⃗ÞÞγ0�ψYðr⃗Þ ¼ 0; ð12Þ

where λYρBðr⃗Þ is the effective Pauli potential for the
hyperon Y, with ρBðr⃗Þ being the baryon density at the
position r⃗ in the corresponding hypernucleus. The values
of λY for Y ¼ ðΛ;Λc;bÞ and ðΣ;Σc;bÞ are, respectively,
60.25 MeV ðfmÞ3 and 110.6 MeV ðfmÞ3, while for Y ¼ Ξ
and Ξc;b, λY is ð1=2Þ × 60.25 MeV ðfmÞ3 based on the
valence light-quark number. For the details of the effective
Pauli potentials at the quark level, see Ref. [25].
The effective masses of the nucleon N (m�

N) and hyperon
Y (m�

Y) are calculated later by Eq. (25) (by replacing h → N
and h → Y, respectively, there). The explicit expressions
for CN;YðσÞ≡ SN;YðσÞ=SN;Yðσ ¼ 0Þ [SN;YðσÞ to be defined
next] and the effective masses m�

N;Y are related by

∂m�
N;YðσÞ
∂σ ¼ −nqg

q
σ

Z
bag

d3y ψ̄qðy⃗Þψqðy⃗Þ

≡ −nqg
q
σSN;YðσÞ ¼ −½nqgqσSN;Yðσ ¼ 0Þ�CN;YðσÞ

¼ −
∂
∂σ ½g

N;Y
σ ðσÞσ�; ð13Þ

where gqσ is the light-quark-σ coupling constant and ψq is
the light-quark ground state wave function in the nucleonN
or hyperon Y immersed in a nuclear medium. By the above
relation, we define the σ-N and σ-Y coupling constants,

gN;Y
σ ≡ nqg

q
σSN;Yðσ ¼ 0Þ; ð14Þ

where gNσ ≡ gσ ¼ gσðσ ¼ 0Þ appeared already. Note that,
as in the case of CN;YðσÞ, the values of SNðσ ¼ 0Þ and
SYðσ ¼ 0Þ are different, because the light-quark wave
functions in the nucleon N and hyperon Y are different
in vacuum as well as in medium; that is, the bag radii of the
N and Y are different in both vacuum and medium.
The parameters appearing at the nucleon, hyperon, and

meson Lagrangian level used for the study of infinite
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nuclear matter and finite nuclei [20,21] are mω¼783MeV,
mρ ¼ 770 MeV, mσ ¼550MeV, and e2=4π ¼ 1=137.036.
(See Ref. [21] for a discussion on the parameter fixing in
the QMC model, especially in treating finite nuclei.)

III. BARYON PROPERTIES IN SYMMETRIC
NUCLEAR MATTER

We consider the rest frame of infinitely large, symmetric
nuclear matter, a spin and isospin saturated system with
only strong interaction (the Coulomb force is dropped as
usual). One first keeps only LN

QMC in Eq. (1), or corre-
spondingly drops all the quantities with the superscripts
and subscripts Y, and sets the Coulomb field Aðr⃗Þ ¼ 0 in
Eqs. (6)–(11). Next one sets all the terms with any
derivatives of the fields to be zero. Then, within the
Hartree mean-field approximation, the nuclear (baryon)
ρB and scalar ρs densities are, respectively, given by

ρB ¼ 4

ð2πÞ3
Z

d3kθðkF − jk⃗jÞ ¼ 2k3F
3π2

; ð15Þ

ρs ¼
4

ð2πÞ3
Z

d3kθðkF − jk⃗jÞ m�
NðσÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�2
N ðσÞ þ k⃗2

q : ð16Þ

Here, m�
NðσÞ is the value (constant) of the Lorentz-scalar

effective nucleon mass at a given nuclear (baryon) density
[see also Eq. (4)] and kF the Fermi momentum. In the
standard QMC model [19], the MIT bag model is used
for describing nucleons and hyperons (hadrons). The use
of this quark model is an essential ingredient for the
QMC model, namely, the use of the relativistic, confined
quarks.
The Dirac equations for the quarks and antiquarks in

nuclear matter, in a bag of a hadron, h (q ¼ u or d and
Q ¼ s, c, or b hereafter), neglecting the Coulomb force, are
given by [x ¼ ðt; x⃗Þ and for jx⃗j ≤ bag radius] [32,34–37]
�
iγ · ∂x − ðmq − Vq

σÞ ∓ γ0
�
Vq
ω þ 1

2
Vq
ρ

���
ψuðxÞ
ψ ūðxÞ

�
¼ 0;

ð17Þ
�
iγ · ∂x − ðmq − Vq

σÞ ∓ γ0
�
Vq
ω −

1

2
Vq
ρ

���
ψdðxÞ
ψ d̄ðxÞ

�
¼ 0;

ð18Þ

½iγ · ∂x −mQ�ψQðxÞ ¼ 0; ½iγ · ∂x −mQ�ψ Q̄ðxÞ ¼ 0;

ð19Þ

where the (constant) mean fields for a bag in nuclear matter
are defined by Vq

σ ≡ gqσσ, Vq
ω ≡ gqωω, and Vq

ρ ≡ gqρb,
with gqσ , gqω, and gqρ being the corresponding quark-
meson coupling constants. We assume SU(2) symmetry,

mu;ū ¼ md;d̄ ≡mq;q̄. The corresponding Lorentz-scalar
effective quark masses are defined by m�

u;ū ¼ m�
d;d̄

¼
m�

q;q̄ ≡mq;q̄ − Vq
σ . Since the ρ-meson mean field becomes

zero, Vq
ρ ¼ 0 in Eqs. (17) and (18) in symmetric nuclear

matter in the Hartree approximation, we will ignore it. [This
is not true in a finite nucleus with equal and more than two
protons even with equal numbers of protons and neutrons,
since the Coulomb interactions among the protons induce
an asymmetry between the proton and neutron density
distributions to give ρ3ðr⃗Þ ¼ ρpðr⃗Þ − ρnðr⃗Þ ≠ 0.]
The same meson-mean fields σ and ω for the quarks in

Eqs. (17) and (18) satisfy self-consistently the following
equations at the nucleon level [together with the Lorentz-
scalar effective nucleon mass m�

NðσÞ of Eq. (4) to be
calculated by Eq. (25)]:

ω ¼ gω
m2

ω
ρB; ð20Þ

σ ¼ gσ
m2

σ
CNðσÞ

4

ð2πÞ3
Z

d3kθðkF − jk⃗jÞ m�
NðσÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�2
N ðσÞ þ k⃗2

q

¼ gσ
m2

σ
CNðσÞρs; ð21Þ

where

CNðσÞ≡ −1
gσðσ ¼ 0Þ ½∂m

�
NðσÞ=∂σ�: ð22Þ

Because of the underlying quark structure of the nucleon
used to calculate m�

NðσÞ in a nuclear medium, CNðσÞ
decreases as σ increases, whereas in the usual pointlike
nucleon-based models it is constant, CNðσÞ ¼ 1. As will be
discussed later, it can be parametrized in the QMC model
as CNðσÞ ¼ 1 − aN × ðgσσÞðaN > 0Þ. It is this variation
of CNðσÞ [or equivalently the dependence of the scalar
coupling on density, or σ, gσðσÞ] that yields a novel
saturation mechanism for nuclear matter in the QMC
model and contains the important dynamics which origi-
nates from the quark structure of the nucleons and hadrons.
It is the variation of this CNðσÞ, which yields three-body or
density dependent effective forces, that has been demon-
strated by constructing an equivalent energy density func-
tional [24,53]. As a consequence of the derived, nonlinear
couplings of the meson fields in the Lagrangian density
at the nucleon (hyperon) and meson level, the standard
QMC model yields the nuclear incompressibility of K ≃
280 MeV with mq ¼ 5 MeV. This is in contrast to a naive
version of QHD [51,52] (the pointlike nucleon model of
nuclear matter), which results in the much larger value,
K ≃ 500 MeV; the empirically extracted value falls in the
range K ¼ 200–300 MeV. (See Ref. [54] for an extensive
analysis of this issue.)
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Once the self-consistency equation for the σ field
Eq. (21) is solved, one can evaluate the total energy per
nucleon:

Etot=A ¼ 4

ð2πÞ3ρB

Z
d3kθðkF − jk⃗jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�2

N ðσÞ þ k⃗2
q

þm2
σσ

2

2ρB
þ g2ωρB

2m2
ω
: ð23Þ

We then determine the coupling constants gσ and gω at the
nucleon level [see also Eq. (14)], by the fit to the binding
energy of 15.7 MeV at the saturation density ρ0 ¼
0.15 fm−3 (k0F ¼ 1.305 fm−1) for symmetric nuclear mat-
ter, as well as gρ to the symmetry energy of 35 MeV. The
determined quark-meson coupling constants and the cur-
rent quark mass values are listed in Table I. The coupling
constants at the nucleon level are g2σ=4π ¼ 3.12, g2ω=4π ¼
5.31, and g2ρ=4π ¼ 6.93. [See Eq. (14) for gσ ¼ gNσ .]
We show in Fig. 1 the density dependence of the total

energy per nucleon Etot=A −mN (left panel) and the
Lorentz-scalar effective quark mass m�

q and the vector
(Vq

ω) and scalar (−Vq
σ) potentials felt by the light quarks

(right panel) calculated using the quark-meson coupling
constants determined.
In the following, let us consider the situation that a

hadron h (or a hyperon Y) is immersed in nuclear matter.
The normalized, static solution for the ground state quarks

or antiquarks with flavor f in the hadron h may be written
ψfðxÞ ¼ Nfexp−iϵft=R

�
hψfðr⃗Þ, where Nf and ψfðr⃗Þ are the

normalization factor and corresponding spin and spatial
part of the wave function. The bag radius in a medium for
the hadron h, denoted by R�

h, is determined through the
stability condition for the mass of the hadron against
the variation of the bag radius [19,26] [see Eq. (25)].
The eigenenergies in units of 1=R�

h are given by

�
ϵu

ϵū

�
¼ Ω�

q � R�
h

�
Vq
ω þ 1

2
Vq
ρ

�
;

�
ϵd

ϵd̄

�
¼ Ω�

q � R�
h

�
Vq
ω −

1

2
Vq
ρ

�
;

ϵQ ¼ ϵQ̄ ¼ ΩQ: ð24Þ

The hadron mass in a nuclear medium, m�
h (free mass is

denoted by mh), is calculated by

m�
h ¼

X
j¼q;q̄;Q;Q̄

njΩ�
j − zh
R�
h

þ 4

3
πR�3

h Bp;
∂m�

h

∂Rh

����
Rh¼R�

h

¼ 0;

ð25Þ

where Ω�
q¼Ω�̄

q¼½x2qþðR�
hm

�
qÞ2�1=2ðq¼u;dÞ, with m�

q ¼
mq − gqσσ ¼ mq − Vq

σ , Ω�
Q ¼ Ω�̄

Q ¼ ½x2Q þ ðR�
hmQÞ2�1=2

ðQ ¼ s; c; bÞ, and xq;Q are the lowest mode bag eigenval-
ues. Bp is the bag pressure (constant), nqðnq̄Þ and nQðnQ̄Þ
are the lowest mode valence quark (antiquark) numbers for
the quark flavors q and Q in the hadron h, respectively,
while zh parametrizes the sum of the center-of-mass
and gluon fluctuation effects, which are assumed to be
independent of density [20]. The bag pressure Bp ¼
ð170 MeVÞ4 (density independent) is determined by the
free nucleon mass mN ¼ 939 MeV with the bag radius in
vacuum RN ¼ 0.8 fm and mq ¼ 5 MeV as inputs, which
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FIG. 1. Total energy per nucleon Etot=A −mN (left panel), and the light-quark Lorentz-scalar effective massm�
q, vector potential (V

q
ω),

and scalar potential (−Vq
σ) felt by the light quarks.

TABLE I. Current quark mass values (inputs), quark-meson
coupling constants, and the bag pressure Bp. Note that the mc
value is updated from Refs. [14,15] based on the data [55].

mu;d 5 MeV gqσ 5.69
ms 250 MeV gqω 2.72
mc 1270 MeV gqρ 9.33
mb 4200 MeV B1=4

p 170 MeV
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are considered to be standard values in the QMC model
[14]. (See also Table I.) Concerning the Lorentz-scalar
effective mass m�

q in a nuclear medium, it reflects nothing
but the strength of the attractive scalar potential as in
Eqs. (17) and (18), and thus the naive interpretation of
the mass for a (physical) particle, which is positive, should
not be applied. The model parameters are determined to
reproduce the corresponding masses in free space. The
quark-meson coupling constants, gqσ , gqω, and gqρ , have
already been determined by the nuclear matter saturation
properties. Exactly the same coupling constants, gqσ , g

q
ω, and

gqρ , will be used for the light quarks in all the hadrons as in
the nucleon. These values are fixed and will not be changed
depending on the hadrons.
In Table II we present the inputs; vacuum masses of

baryons B, mB; the parameters zB; the calculated lowest
mode bag eigenvalues (x1, x2, x3) of the corresponding
valence quarks (q1, q2, q3) in the baryon B; and the bag
radii calculated in vacuum RB, as well as the corresponding
quantities at ρ0 ¼ 0.15 fm−3, namely, the Lorentz-scalar
effective masses m�

B, in-medium bag radii R�
B, and the

lowest mode bag eigenvalues, (x�1; x
�
2; x

�
3). Note that in the

QMC model, the ΩðsssÞ;ΩcðsscÞ, and ΩbðssbÞ properties
are not modified in the medium.
One can notice a few things easily in Table II: (i) the

parameter zB decreases as the vacuum mass of the baryon
increases; (ii) the in-medium bag radius R�

B of the baryon B
at ρ0 decreases and becomes smaller than the correspond-
ing vacuum value, RB, and the decreasing ratio becomes
smaller as the vacuum baryon mass value increases; and
(iii) the lowest mode bag eigenvalues decrease at ρ0, and

the decreasing magnitude is larger for the light quarks, but
tiny for the heavier quarks. Note that the bag radius is not
the physical observable, and one must calculate the baryon
radius using the corresponding quark wave function. In
fact, this calculation shows a slight increase of the in-
medium radius. (See Table II in Ref. [21].)
In Figs. 2–4 we show, respectively, the density depend-

ence of the Lorentz-scalar effective baryon masses, in-
medium bag radii, and the lowest mode bag eigenvalues. In
Figs. 2 and 4, we respectively, show the density dependence
of the Lorentz-scalar baryon effective masses and the
lowest mode bag eigenvalues, and each panel of the
corresponding figures is, for nucleon and strange baryons
(top panel), for charm baryons (bottom left panel), and for
bottom baryons (bottom right panel).
For the Lorentz-scalar effective masses shown in Fig. 2,

one can notice a very interesting feature for the bottom
baryons (bottom right panel). The Lorentz-scalar effective
mass of Σb becomes smaller than that of Ξb, namely,m�

Σb
<

m�
Ξb

at a baryon density range larger than about 0.3ρ0,
although vacuum masses satisfy mΣb

> mΞb
[55] (see

Table II). This is indeed interesting and can be understood
as follows. The Σb baryon contains two light quarks, while
the Ξb baryon contains one. Because the light-quark
condensates are much more sensitive to the nuclear density
change than those of the strange, charm, and bottom
quark ones, one can expect the partial restoration of chiral
symmetry to take place faster for Σb than Ξb as the nuclear
density increases. Or in the QMC model picture, since the
scalar potential is roughly proportional to the number of
valence light quarks [14,25,36], the Lorentz-scalar effective

TABLE II. The parameters related with the zero-point energy zB; baryon masses and the bag radii in free space [at normal nuclear
matter density, ρ0 ¼ 0.15 fm−3] mBðMeVÞ, RBðfmÞ [m�

B; R
�
B]; and the lowest mode bag eigenvalues x1, x2, x3 [x�1; x

�
2; x

�
3] of baryon

Bðq1; q2; q3Þ with the corresponding valence quarks q1, q2, q3 in the baryon B, where zB’s are kept the same as those in vacuum, i.e.,
density independent. Free space mass valuesmB for the heavy baryons from Ref. [55], those for the strange hyperons from Ref. [14], and
the nucleon bag radius RN ¼ 0.8 fm (and mq ¼ 5 MeV) are inputs. The light quarks are indicated by q ¼ u or d. Note that the baryons
containing at least one light quark q are modified in the medium in the QMC model, but Ω;Ωc, and Ωb are not modified in the QMC
model. We recall that some inputs are updated from those in Refs. [14,15] based on the data [55]. For the recent data for Σb, see Ref. [56],
which gives the averaged mass of mΣb

¼ 5813.1 MeV, to be consistent with the value extracted from Ref. [55].

Bðq1; q2; q3Þ zB mB RB x1 x2 x3 m�
B R�

B x�1 x�2 x�3
NðqqqÞ 3.295 939.0 0.800 2.052 2.052 2.052 754.5 0.786 1.724 1.724 1.724
ΛðudsÞ 3.131 1115.7 0.806 2.053 2.053 2.402 992.7 0.803 1.716 1.716 2.401
ΣðqqsÞ 2.810 1193.1 0.827 2.053 2.053 2.409 1070.4 0.824 1.705 1.705 2.408
ΞðqssÞ 2.860 1318.1 0.820 2.053 2.406 2.406 1256.7 0.818 1.708 2.406 2.406
ΩðsssÞ 1.930 1672.5 0.869 2.422 2.422 2.422 not applicable not applicable not applicable not applicable not applicable

ΛcðudcÞ 1.642 2286.5 0.854 2.053 2.053 2.879 2164.2 0.851 1.691 1.691 2.878
ΣcðqqcÞ 0.903 2453.5 0.892 2.054 2.054 2.889 2331.8 0.889 1.671 1.671 2.888
ΞcðqscÞ 1.445 2469.4 0.860 2.053 2.419 2.880 2408.3 0.859 1.687 2.418 2.880
ΩcðsscÞ 1.057 2695.2 0.876 2.424 2.424 2.884 not applicable not applicable not applicable not applicable not applicable

ΛbðudbÞ −0.622 5619.6 0.930 2.054 2.054 3.063 5498.5 0.927 1.651 1.651 3.063
ΣbðqqbÞ −1.554 5813.4 0.968 2.054 2.054 3.066 5692.8 0.966 1.630 1.630 3.066
ΞbðqsbÞ −0.785 5793.2 0.933 2.054 2.441 3.063 5732.7 0.931 1.649 2.440 3.063
ΩbðssbÞ −1.327 6046.1 0.951 2.446 2.446 3.065 not applicable not applicable not applicable not applicable not applicable
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mass of Σb decreases faster than that of Ξb as the nuclear
matter density increases.
The result of the reverse in the Lorentz-scalar effective

masses of Σb and Ξb is one of the main predictions of this
article. We must seek how this interesting prediction can
possibly be connected with experimental observables. This
would give very important information on the dynamical
symmetry breaking and the partial restoration of chiral
(dynamical) symmetry. However, the story is not that
straightforward and simple as discussed above since the
baryons (light quarks) also feel repulsive Lorentz-vector
potentials in addition to the attractive Lorentz-scalar poten-
tials. Thus, we must take into account the effects of the
repulsive vector potentials for considering more realistic/
practical experimental situations, and wewill study this later.
Concerning the in-medium bag radii shown in Fig. 3, one

can notice that all the in-medium bag radii decrease as the
nuclear matter density increases. In particular, the decrease
for the nucleon case is the largest.
As for the lowest mode bag eigenvalues shown in Fig. 4,

they also decrease as the nuclear matter density increases,
particularly for the light quarks, while the heavier quarks
have smaller decreases.
In connection with the Lorentz-scalar effective baryon

masses shown in Fig. 2, it has been found that the function

CBðσÞðB¼N;Λ;Σ;Ξ;Λc;Σc;Ξc;Λb;Σb;ΞbÞ [see Eq. (13)
and above] can be parametrized as a linear form in the σ
field, gσσ, for a practical use [20,21,25]:

CBðσÞ ¼ 1 − aB × ðgσσÞ;
ðB ¼ N;Λ;Σ;Ξ;Λc;Σc;Ξc;Λb;Σb;ΞbÞ: ð26Þ
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The values obtained for aB are listed in Table III. This
parametrization works very well up to about three times the
normal nuclear matter density 3ρ0. Then, the effective mass
of baryons B in nuclear matter is well approximated by

m�
B ≃mB −

nq
3
gσ

�
1 −

aB
2
ðgσσÞ

�
σ;

ðB ¼ N;Λ;Σ;Ξ;Λc;Σc;Ξc;Λb;Σb;ΞbÞ; ð27Þ

withnq being thevalence light-quark number in the baryonB.
See Eqs. (4) and (5) to compare with gN;YðσÞ and the above
expression. For the Σb and Ξb baryons, nq are, respectively,

two and one in Eq. (27) with aΣb
≃ aΞb

from Table III. Then,
one can confirm that the decrease in the Lorentz-scalar
effective mass for Σb is larger than that for Ξb as the nuclear
matter density or the σ mean field magnitude increases.
To analyze more carefully the interesting findings for

the Σb and Ξb baryon Lorentz-scalar effective masses, that
their magnitudes reverse as, m�

Ξb
< m�

Σb
, in medium, we

next discuss the “excitation energies” of baryons, to study
the total energies (potentials) in a nonrelativistic sense, the
Lorentz-scalar plus Lorentz-vector potentials focusing on
the Σb and Ξb baryons. First, results for the attractive scalar
and repulsive vector potentials are shown separately in
Fig. 5, for nucleon and strange baryons (top panel), charm
baryons (bottom left panel), and bottom baryons (bottom
right panel). For the repulsive vector potentials, we show
here only one case, the one including the effective “Pauli
potentials” introduced in Eq. (12), denoted by “vector
(+Pauli).” One can see the similarity in the amounts of the
scalar and vector(+Pauli) potentials among the correspond-
ing strange, charm, and bottom sector baryons, namely,
among those three baryons in each bracket, (Λ;Λc;Λb),
(Σ;Σc;Σb), and (Ξ;Ξc;Ξb).
Now we show in Fig. 6 the Lorentz-scalar effective

masses and excitation energies (total energies) and the
Lorentz-scalar effective masses plus vector potentials for
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FIG. 4. Density dependence of the lowest mode bag eigenvalues in symmetric nuclear matter.

TABLE III. Slope parameters, aBðB ¼ N;Λ;Σ;Ξ;Λc;Σc;Ξc;
Λb;Σb;ΞbÞ. Note that the tiny differences in values of aB from
those in Refs. [14,15] are due to the differences in the number of
data points for calculating aB, but such differences in aB give
negligible effects.

aB ×10−4 MeV−1 aB ×10−4 MeV−1 aB ×10−4 MeV−1

aN 9.1 — — — —
aΛ 9.3 aΛc

9.9 aΛb
10.8

aΣ 9.6 aΣc
10.3 aΣb

11.2
aΞ 9.5 aΞc

10.0 aΞb
10.8
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the two cases of the vector potentials focusing on Σb and
Ξb. The left panel is the case with the Pauli potentials, while
the right panel is the case without the Pauli potentials.
Recall that, because the mass difference between the
Λb − Σb system is much larger than that for the Λ − Σ
and Λc − Σc systems, it is expected that the effective Pauli
potentials should be smaller for the Λb, Σb, and Ξb baryons
than the corresponding strange and charm sector baryons.
Thus, one can regard the more realistic case when we
consider it without the Pauli potentials, as shown in the
right panel of Fig. 6.
We discuss separately the two cases of the vector

potentials. First, for the case with the Pauli potentials
shown in the left panel of Fig. 6, the excitation energies
(total potentials) for the Σb and Ξb never reverse in
magnitudes, and the excitation energy of Σb is always
larger than that for Ξb. The smallest excitation energy
difference is about a few tens of MeV, and it is larger for Σb.
For the nuclear matter density larger than around ρ0, the
difference in the excitation energies increases.
Next, the case without the Pauli potentials, which

may be expected to be more realistic, is shown in the

right panel of Fig. 6. Interestingly, in the nuclear matter
density range 0.5ρ0 < ρB < 1.5ρ0, the two excitation
energies for Σb and Ξb are nearly degenerate. This
means that Σb and Ξb can be produced at rest with the
nearly same energy costs. This may imply the emer-
gence of many interesting phenomena, for example, in
heavy ion reactions and reactions in the systems of a
dense nuclear medium, such as in the deep core of a
neutron (compact) star.
The results shown in Fig. 6 suggest that the two different

types of vector potentials may possibly be distinguished
and give important information on the dynamical symmetry
breaking and partial restoration of chiral symmetry, by
studying the heavy bottom baryon properties in a medium.
For proving these suggestions, we have to seek what kind
of experiments can be made to get a clue, in particular, for
the Lorentz-scalar effective masses of Σb and Ξb. It might
be very interesting to measure the valence quark (parton)
distributions of Σb and Ξb in a medium, since the supports
of the parton distributions of these baryons reflect their
excitation energies. Another possibility may be to mea-
sure the strangeness-changing semileptonic weak decay of
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Ξb → Σb in a medium, which again reflects their excitation
energy difference in a medium.

IV. SUMMARY AND DISCUSSION

In this article we have completed the study of baryon
properties in symmetric nuclear matter in the quark-meson
coupling model, for the low-lying strange, charm, and
bottom baryons which contain at least one light quark. We
have presented the density dependence of the Lorentz-
scalar effective masses, bag radii, the lowest mode bag
eigenvalues, and vector potentials for the baryons.
We predict that the Lorentz-scalar effective mass of Σb

becomes smaller than that of Ξb in the nuclear matter
density range larger than ≃0.3ρ0 (ρ0 ¼ 0.15 fm−3), while
in vacuum the mass of Σb is larger than that of Ξb. We also
give a parametrization for the Lorentz-scalar effective
masses of the baryons treated in this article as a function
of the scalar mean field for convenient use.
We have further studied the effects of the two different

repulsive Lorentz-vector potentials to estimate the excita-
tion (total) energies focusing on Σb and Ξb baryons. In
the case without the effective Pauli potentials, which is
expected to be more realistic, the excitation energies for the
Σb and Ξb baryons are predicted to be nearly degenerate in
the nuclear matter density range of about [0.3ρ0; 1.5ρ0].
Thus, the production of Σb and Ξb baryons costs nearly the
same energy at rest in this nuclear matter density range, and
this may imply many interesting phenomena in heavy ion

collisions and reactions involving them in the deep core of a
neutron (compact) star.
To make possible connections of the findings for the

Lorentz-scalar effective masses and/or excitation energies
of Σb and Ξb baryons with experimental observables, we
need to seek relevant experimental methods and situations.
It might be very interesting to measure the valence quark
(parton) distributions of Σb and Ξb in a medium, since
the supports of the parton distributions of these baryons
reflect their excitation energies. Another possibility may be
to measure the strangeness-changing semileptonic weak
decay of Ξb → Σb in a medium, which again reflects their
excitation energy difference in a medium.
In conclusion, studies of heavy baryon properties, in

particular Σb and Ξb baryons in a nuclear medium, can
provide us with very interesting and important information
on the dynamical symmetry breaking and partial restoration
of chiral symmetry, as well as the roles of the light quarks in
a medium.
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