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The dynamics of the JPC ¼ 0−þ, 0þþ, and 2þþ resonance contributions to the decay J=ψ → γXðJPCÞ →
γϕϕ is analysed using the data obtained by BESIII collaboration. The effective coupling constants
parameterising invariant amplitudes of the transitions J=ψ → γXðJPCÞ and XðJPCÞ → ϕϕ and masses of
XðJPCÞ resonances are found from the fits. They are used for evaluation of the branching fractionsBXðJPCÞ→ϕϕ,

relative branching fractions BJ=ψ→γXðJPCÞ→γϕϕ, and for obtaining the photon angular distributions.
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I. INTRODUCTION

The interest in the decay J=ψ → γϕϕ [1–4] is related
with the possible existence of the exotic glueball state
decaying into the ϕϕ pair [5–8]. The spin-parity quantum
numbers of the resonance states decaying into ϕϕ are
reported to be JP ¼ 0þ, 0−, and 2þ [3,4,9].
The partial wave analysis of the ϕϕ system was

performed in Ref. [4] based on the model with the coherent
sum of the Breit-Wigner amplitudes with the constant
widths,

MX ∝
1

m2
X − s − imXΓX

: ð1:1Þ

As is pointed out in Ref. [4], the process J=ψ →
f1ð1285Þϕ → γϕϕ can be neglected because of its small
branching fraction, hence the diagram for the decay J=ψ →
γϕϕ shown in Fig. 1 is assumed to be dominant.
However, the dynamics of the decay chain J=ψ →

γXðJPÞ, XðJPÞ → ϕϕ is relatively simple only in case of
the pseudoscalar resonance admitting the single contribu-
tion with the unit orbital momentum in both above vertices.
In general, one should include the different spin-orbital
momentum structures for different spin-parities of the
XðJPÞ resonances in the ϕϕ system, especially in case
of the tensor contribution JPC ¼ 2þþ where a number of
independent spin structures enter the amplitudes of tran-
sitions J=ψ → γXð2þÞ and Xð2þÞ → ϕϕ. So it is reason-
able to reanalyze the data of Ref. [4] in the model with the
energy-dependent partial ϕϕ width in order to extract the
magnitudes of the effective coupling constants parametriz-
ing the effective invariant amplitudes of the above tran-
sitions. This is the goal of the present work. The data [4]
will be described here by taking, as the starting point, the

effective amplitudes in the invariant form parametrized by
some unknown constants. Then their three-dimensional
counterparts will be written which take into account the
condition of the three-dimensional transverse character of
the final photon polarization vector. The three-dimensional
form simplifies considerably the derivation of expressions
for the ϕϕ mass spectrum and angular distributions.
The kinematic notations are the following. The four-

momenta assignment is J=ψðQÞ → γðkÞXðqÞ → γðkÞϕðk1Þ
ϕðk2Þ; ϵμ, ϵ1μ, ϵ2μ (ξ, ξ1, ξ2) are, respectively, the polari-
zation four-vectors of the J=ψ meson and ϕ mesons
(their 3-dimensional counterparts in their respective rest
frame); eμ ¼ ð0; eÞ stands for the polarization four-vector
of the photon, ϵμνλσ is the Levy-Civita tensor. The energy-
momentum 4-vector of the ϕϕ state in the J=ψ rest frame is
q ¼ ðq0; qÞ,

q0 ¼
m2

J=ψ þm2
12

2mJ=ψ
;

q ¼ −k ¼ −n
m2

J=ψ −m2
12

2mJ=ψ
; ð1:2Þ

FIG. 1. The dominant diagram of the decay J=ψ → γϕϕ.*kozhev@math.nsc.ru
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where n stands for the unit vector in the direction of
the photon, and m12 is the invariant mass of the ϕϕ pair.
In turn, the energy-momentum of one of the ϕ mesons,
k1μ ¼ ðk�10; k�1Þ, in the center-of-mass system of the ϕϕ
pair, is

k�10 ¼
1

2
m12;

k�1 ¼
n1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

12 − 4m2
ϕ

q
; ð1:3Þ

with n1 being the unit vector in the direction of the motion
of the ϕ meson.
The subsequent material is organized as follows. In

Sec. II, the parametrizations of invariant amplitudes and
their three-dimensional counterparts are given, together
with the expressions for partial widths. Section III is
devoted to presenting the results of fitting of the different
partial wave contributions to the ϕϕ mass spectrum. The
discussion presented in Sec. IV concerns the consistency of
the fits, together with the concluding remarks. The J=ψ →
γXðJPÞ → γϕϕ amplitudes in terms of the independent
helicity amplitudes in the J=ψ → γXðJPÞ vertex are given
in the Appendix.

II. AMPLITUDES AND PARTIAL WIDTHS

First, let us write the amplitude of the decay J=ψ →
γX → γϕϕ assuming, for a while, the single intermediate
resonance X. Schematically, the method of evaluation of
the amplitudes adopted in the present work is as follows. In
the case of the X resonance with spin zero and two one has,
respectively

MJX¼0ðJ=ψ → γX → γϕϕÞ

¼ ½MðJ=ψ → γXÞ�½MðX → ϕϕÞ�
DX

;

MJX¼2ðJ=ψ → γX → γϕϕÞ

¼
X
λX

½MμνðJ=ψ → γXÞTðλXÞ
μν �½MαβðX → ϕϕÞTðλXÞ

αβ �
DX

;

ð2:1Þ
where DX stands for the inverse propagator of the X
resonance. See Eq. (3.3) below. The polarization tensor

Tμν ≡ TðλXÞ
μν of the spin two resonance is represented in the

form

T00 ¼
tijqiqj
m2

12

;

T0i ¼
qj
m12

�
tij þ

tjkqiqk
m12ðq0 þm12Þ

�
;

Tij ¼ tij þ
ðtikqj þ tjkqiÞqk
m12ðq0 þm12Þ

þ tklqiqjqkql
m2

12ðq0 þm12Þ2
; ð2:2Þ

where tij ≡ tðλXÞij is the polarization tensor in the rest frame,
so that all the amplitudes can be expressed through the
polarization structures in the X rest frame. Since each of the
amplitudes in square brackets in Eq. (2.1) is Lorentz-
invariant one can evaluate it in the respective rest frame,
J=ψ or X.

A. JPC = 0− +

The effective amplitudes for the processes J=ψ →
γXð0−Þ and Xð0−Þ → ϕϕ and their three-dimensional form
in the respective rest frame systems are chosen as follows:

MJ=ψ→γXð0−Þ ¼ gJ=ψγXð0−ÞϵμνλσQμϵνkλeσ

¼ gJ=ψγXð0−ÞmJ=ψ jkjðn · ½ξ × e�Þ; ð2:3Þ

and

MXð0−Þ→ϕϕ ¼ gXð0−Þ→ϕϕϵμνλσk1μϵ1νk2λϵ2σ

¼ gXð0−Þϕϕm12jk�1jðn1 · ½ξ1 × ξ2�Þ: ð2:4Þ

The calculated partial widths read, respectively,

ΓJ=ψ→γXð0−Þðm12Þ ¼
g2J=ψγXð0−Þ

12π
jkj3 ð2:5Þ

and

ΓXð0−Þ→ϕϕðm12Þ ¼
g2Xð0−Þϕϕ

8π
jk�1j3: ð2:6Þ

The amplitude MJ=ψ→γXð0−Þ→γϕϕ ≡M is written in the
form

M ¼ Að0−ÞmJ=ψm12jkjjk�1jðξ½n × e�Þðn1½ξ1 × ξ2�Þ: ð2:7Þ

The dynamics of process is included through the factor
Að0−Þ to be specified below. The modulus squared summed
over polarizations of final particles but keeping the J=ψ
polarization fixed reads

X
λγλ1λ2

jMj2 ¼ 2m2
J=ψm

2
12k

2k�21 jAð0−Þj2½ξ × n�2: ð2:8Þ

Since
R ½ξ × n�2dΩn=4π ¼ 2ξ2=3, the decay rate integrated

over photon direction is the same for all J=ψ projections.

B. JPC = 0+ +

Since the photon polarization four-vector is eμ ¼ ð0; eÞ,
the D-wave structure in the J=ψ → γXð0þÞ amplitude
vanishes, hence

MJ=ψ→γXð0þÞ ¼ −g1ðϵeÞ ¼ g1ðξeÞ: ð2:9Þ
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Correspondingly, the invariant amplitude of the decay
Xð0þÞ → ϕϕ and its three-dimensional form in the X rest
frame look as follows:

MXð0þÞ→ϕϕ ¼ −f1ðϵ1ϵ2Þ − f2ðϵ1k2Þðϵ2k1Þ
¼ fð0

þÞ
00 ðξ1ξ2Þ þ fð0

þÞ
22 ðξ1n1Þðξ2n1Þ; ð2:10Þ

where

fð0
þÞ

00 ¼ f1;

fð0
þÞ

22 ¼ ð2f1 þ f2m2
12Þ

k�21
m2

ϕ

: ð2:11Þ

As is evident from these expressions, fð0
þÞ

00 and fð0
þÞ

22

correspond to the assignment ðS; LÞ ¼ ð0; 0Þ and (2, 2),
respectively, of the spin S and orbital angular momentum L
of the ϕϕ state. The energy-dependent partial widths look
like

ΓJ=ψ→γXð0þÞ ¼
g21jkj

12πm2
J=ψ

;

ΓXð0þÞ→ϕϕ ¼ jk�1j
16πm2

12

× ð2jfð0þÞ00 j2 þ jfð0þÞ00 þ fð0
þÞ

22 j2Þ: ð2:12Þ

The dynamical content of the J=ψ → γXð0þÞ → γϕϕ
component of the ϕϕ spectrum will be specified below
in subsection III B.

C. JPC = 2+ +

The invariant amplitude of the transition J=ψ → γXð2þÞ
and its three-dimensional form are the following:

MJ=ψ→γXð2þÞ ¼ ½c1ðϵeÞQμQνþc2ðϵkÞeμkνþc3ϵμeν�
Tμν≡ ½g02ðξ ·eÞninjþg12ðξ ·nÞeinjþg20ξiej�tij;

ð2:13Þ

where c1;2;3 are, in principle, the functions of the invariant
mass m12. For nothing better, we assume them to be some,
in general, complex constants;

g02 ¼ −c1
m2

J=ψk
2

m2
12

;

g12 ¼ −
k2

m12

�
c2q0 þ

c3
q0 þm12

�
;

g20 ¼ −c3; ð2:14Þ

where k ¼ −q. See (q0, q) in Eq. (1.2).

In turn, the invariant amplitude of the decay X → ϕϕ
and its three-dimensional presentation in the ϕϕ center-of-
mass system look as follows:

MXð2þÞ→ϕϕ¼fg1ϵ1μϵ2νþk1μk2ν½g2ðϵ1ϵ2Þþg3ðϵ1k2Þðϵ2k1Þ�
þg4½ϵ1μk2νðϵ2k1Þþϵ2μk1νðϵ1k2Þ�gTμν

≡ ½f20ξ1iξ2jþf02ðξ1 ·ξ2Þn1in1jþf22½ðξ1 ·n1Þξ2i
þðξ2 ·n1Þξ1i�n1jþf24ðξ1 ·n1Þðξ2 ·n1Þn1in1j�tij:

ð2:15Þ

Here,

f20 ¼ g1;

f02 ¼ g2k�21 ;

f22 ¼
k�21
mϕ

�
g1

k�10 þmϕ
þ g4m12

�
;

f24 ¼
k�41
m2

ϕ

�
g1

ðk�10 þmϕÞ2
þ 2g2 þ g3m2

12þ2g4
m12

k�10 þmϕ

�
:

ð2:16Þ

Again, the indices at the quantities in the left-hand side of
these equations refer to the possible spin-orbital momentum
assignments ðS; LÞ ¼ ð2; 0Þ, (0, 2), (2, 2), and (2, 4) of the
ϕϕ state.
The sum over polarizations of the intermediate tensor

resonance is fulfilled with the help of relation

X
λX

tðλXÞij tðλXÞkl ¼ 1

2
ðδikδjl þ δilδjkÞ −

1

3
δijδkl ≡ Πij;kl:

ð2:17Þ

The modulus squared of the amplitude M≡
MJ=ψ→γXð2þÞ→γϕϕ summed over polarizations of final par-
ticles can be represented in the following form suitable for
subsequent integrations over final states:

X
λγλ1λ2

jMj2 ¼ Iij;cI�i0j0;c0 ðδcc0 − ncnc0 Þ

×
Πij;klΠi0j0;k0l0

jDXð2þÞj2
Fkl;abF�

k0l0;ab; ð2:18Þ

where DXð2þÞ ≡DXð2þÞðm2
12Þ is given by Eq. (3.3),

Iij;c ¼ g02ninjξcþ½g12ðξnÞnjþg20ξj�δic;
Fkl;ab ¼ f20δkaδlbþf02δabn1kn1lþf22ðn1aδkbþn1bδkaÞn1l

þf24n1kn1ln1an1b: ð2:19Þ

The ϕϕ mass spectrum in the decay J=ψ → γXð2þÞ →
γϕϕ can be written as
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dΓ
dm12

¼ jkjjk�1j
32π3m2

J=ψ

�Z
Iij;cI�i0j0;c0 ðδcc0 − ncnc0 Þ

dΩn

4π

�

×

�Z
Fkl;abF�

k0l0;ab
dΩn1

4π

�
Πij;klΠi0j0;k0l0

jDXð2þÞj2
: ð2:20Þ

Note that the polarization state of the J=ψ meson is kept
fixed for a while. Since in terms of quantities designated
by square brackets in Eq. (2.20) the partial widths of the
decays J=ψ → γXð2þÞ, Xð2þÞ → ϕϕ look, respectively,
like

ΓJ=ψ→γXð2þÞ ¼
jkj

8πm2
J=ψ

�Z
Iij;cI�i0j0;c0 ðδcc0 −ncnc0 Þ

dΩn

4π

�
Πij;i0j0

¼ jkj
8πm2

J=ψ

Z ��
jg02j2þ

3

2
jg20j2−

1

3
jg02þg20j2

�

× ½ξ×n�2þjg12þg20j2ðξnÞ2
�
dΩn

4π
; ð2:21Þ

(polarization of J=ψ is still fixed)

ΓXð2þÞ→ϕϕ ¼ jk�1j
80πm2

12

�Z
Fkl;abF�

k0l0;ab
dΩn1

4π

�
Πkl;k0l0

¼ jk�1j
240πm2

12

ð10jf20 þ f22j2 þ 3jf20j2 þ 2jf20
þ f24j2 þ 2jf02 þ f24j2 þ 4jf02 þ f22j2
þ 4jf22 þ f24j2 − 4jf22j2 − 6jf24j2Þ; ð2:22Þ

then the ϕϕ mass spectrum in the decay J=ψ → γXð2þÞ →
γϕϕ in case of the single intermediate resonance can be
written in the standard form:

dΓ
dm12

¼ 2m2
12ΓJ=ψ→γXð2þÞΓXð2þÞ→ϕϕ

πjDXð2þÞj2
: ð2:23Þ

Taking into account of a number of interfering resonances
with given spin-parity demands the modifications analo-
gous to those discussed in subsections III A and III B.

III. RESULTS

When fitting the data Ref. [4], the coupling constants
characterizing invariant amplitudes Eqs. (2.3), (2.4), (2.9),
(2.10), (2.13), and (2.15) are assumed to be real. Nonzero
imaginary parts would point to the dynamical effects
related with the re-scattering of the final ϕ mesons [10].
The quantitative inclusion of these effects would require
the introduction of multiple additional parameters such as
coupling constants of the exchanged particles with ϕ
mesons, the slope parameters characterizing the above
exchange etc. This seems to be premature with the present
accuracy of the data.

A. Pseudoscalar resonance contribution

The expression for the JPC ¼ 0−þ resonance component
of the spectrum averaged over λJ=ψ ¼ �1 with the help of
Eq. (2.8) is

dNð0−Þ

dm12

¼ N
ð2πÞ3 × 6

jAð0−Þj2m2
12jkj3jk�1j3; ð3:1Þ

where N is unknown overall normalization factor. Three
intermediate resonances were included in the partial wave
analysis ofRef. [4] to describe the partialwavewithJP ¼ 0−.
We designate them as X1 ¼ ηð2225Þ, X2 ¼ ηð2100Þ, and
X3 ¼ Xð2500Þ. Since the case of pseudoscalar resonance X
is kinematically simple, we consider two models for the
amplitude.
(i) The model A. It allows for inclusion of the mixing of

the above three resonances via their common decay mode
ϕϕ in the form used earlier in Ref. [11,12]:

Að0−Þ ¼ ð gJ=ψγX1
gJ=ψγX2

gJ=ψγX3
Þ

×

0
B@

D1 −Π12 −Π13

−Π12 D2 −Π23

−Π13 −Π23 D3

1
CA

−1
0
B@

gX1ϕϕ

gX2ϕϕ

gX3ϕϕ

1
CA: ð3:2Þ

Let us specify the elements of the matrix of inverse
propagators in Eq. (3.2). The main goal here is to analyze
the ϕϕ decay mode of the X resonances. However, another
decay modes are feasible. We will assume that ϕϕ is the
only common decay mode and take its energy dependence
in Di, Πij explicitly (i, j ¼ 1, 2, 3), while other decay
modes will be effectively taken into account in the fixed
width approximation, Γ0

Xi
¼ const. Specifically, the inverse

propagator of the resonance Xi is assumed to be

DXiðJPÞðm2
12Þ ¼ m2

XiðJPÞ −m2
12 − im12ΓXiðJPÞ→ϕϕðm12Þ

− imXiðJPÞΓ
0
Xi
: ð3:3Þ

The polarization operator Πij responsible for the mixing
looks as follows:

Πij ≡ Πijðm2
12Þ ¼ ReΠij þ im12gXiϕϕgXjϕϕ

jk�1j3
8π

: ð3:4Þ

Here, ImΠij is fixed by the unitarity relation while ReΠij,
in principle, can be evaluated through the dispersion
relation. However, taken literally, the dispersion integral
is divergent due to the fast growth with energy of the
Xð0−Þ → ϕϕ partial width, and one should introduce the
phenomenological suppression factor parametrized by
some unknown constant, in order to make the integral
finite. We take here the practical attitude and assume that
ReΠij are some constants, a12 ≡ ReΠ12, a13 ≡ ReΠ13, and
a23 ≡ ReΠ23 to be determined from the fit.
(ii) The model B corresponds to the vanishing mixing, by

takingΠij ≡ 0, that is, Að0−Þ is given by the coherent sum of
the energy dependent Breit—Wigner terms.
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The fitted parameters are the following: mXi
, Γ0

Xi
,

gJ=ψγXi

ffiffiffiffiffi
N

p
, gXiϕϕ, i ¼ 1, 2, 3, in both models A and B,

and three additional parameters a12, a13, and a23 in the
model A. The results are presented in the Table I, together
with some branching fractions evaluated with the found
parameters. To be specific, evaluated are the Xi → ϕϕ
branching fractions:

BXi→ϕϕ ¼ 2

π

Z
mmax

2mϕ

m2
12ΓXi→ϕϕðm12Þ

jDXi
j2 dm12: ð3:5Þ

The answer depends on upper integration limit mmax. Since
the data of Ref. [4] refer to the interval 2mϕ <
m12 < 2.7 GeV, we take here mmax ¼ 2.7 GeV. The
branching fraction BJ=ψ→γXi→γϕϕ, in general, cannot be
represented in the form BJ=ψ→γXi→γϕϕ ¼ BJ=ψ→γXi

×
BXi→ϕϕ, due to the large widths of the resonance X and
(or) to the strong energy dependence of the partial width.
The general expression is

BJ=ψ→γXi→γϕϕ ¼
2

πΓJ=ψ

Z
mJ=ψ

2mϕ

×
m2

12ΓJ=ψ→γXi
ðm12Þ×ΓXi→γϕϕðm12Þdm12

jDXi
ðm2

12Þj2
:

ð3:6Þ

It reduces to the mentioned factorization in the narrow
width approximation. Furthermore, because the overall
normalization factor N is unknown, only the quantities
NΓJ=ψBJ=ψ→γXi→γϕϕ, i ¼ 1, 2, 3, and

Nð0−Þ ≡NΓJ=ψBJ=ψ→γðX1þX2þX3Þ→γϕϕ

¼
Z

mJ=ψ

2mϕ

dNð0−Þ

dm12

dm12 ð3:7Þ

are presented, not the absolute branching fractions. One can
evaluate the role of interference,

I ¼ NΓJ=ψ

�
BJ=ψ→γðX1ð0−ÞþX2ð0−ÞþX3ð0−ÞÞ→γϕϕ

−
X

i¼1;2;3

BJ=ψ→γXið0−Þ→γϕϕ

�
; ð3:8Þ

to obtain I ¼ −262� 33 (model A) and I ¼ 151� 19
(model B).
The results of analysis of the JP ¼ 0− partial wave

contributions in the models A and B are plotted in Figs. 2
and 3, respectively. One can see that the total contribution
looks the same in both models, but the components
corresponding to the resonances ηð2225Þ, ηð2100Þ,
Xð2500Þ and their interference are different. A comparable
values of χ2=nd:o:f: in the models A and B show that these
models cannot be distinguished with the present accuracy
of the data. Taking into account the present feature of the fit
we will make further treatment in subsection III B in the
model B neglecting the mixing in situation when more that
one resonance is required for the description of the data.

TABLE I. Results of fitting the pseudoscalar resonance
contribution in the reaction eþe− → J=ψ → γXð0−Þ → γϕϕ.
The quantity Nð0−Þ is given by Eq. (3.7).

Parameter Model A Model B

mX1ð0−Þ [GeV] 2.2312� 0.0015 2.252� 0.002
Γ0
X1ð0−Þ [GeV] 0.227� 0.002 0.189� 0.002ffiffiffiffiffi
N

p
gJ=ψγX1ð0−Þ ½GeV−3=2� 2450� 15 439� 3

gX1ð0−Þϕϕ ½GeV−1� 0.881� 0.005 3.49� 0.03

BX1ð0−Þ→ϕϕ ð1.55� 0.02Þ × 10−2 0.218� 0.003
NΓJ=ψBJ=ψ→γX1ð0−Þ→γϕϕ 659� 14 300� 6

mX2ð0−Þ [GeV] 2.0757� 0.0025 2.077� 0.002
Γ0
X2ð0−Þ [GeV] 0.136� 0.0050 0.118� 0.005ffiffiffiffiffi
N

p
gJ=ψγX2ð0−Þ ½GeV−3=2� 3010� 110 2580� 80

gX2ð0−Þϕϕ ½GeV−1� 0.160� 0.011 0.29� 0.01

BX2ð0−Þ→ϕϕ ð2.94� 0.43Þ × 10−4 ð1.03� 0.08Þ × 10−3

NΓJ=ψBJ=ψ→γX2ð0−Þ→γϕϕ 22� 4 59� 6

mX3ð0−Þ [GeV] 2.6590� 0.0028 2.705� 0.003
Γ0
X3ð0−Þ [GeV] 0.51� 0.01 0.34� 0.01ffiffiffiffiffi
N

p
gJ=ψγX3ð0−Þ ½GeV−3=2� 802� 6 591� 6

gX3ð0−Þϕϕ ½GeV−1� 4.81� 0.15 4.99� 0.08

BX3ð0−Þ→ϕϕ ð9.72� 0.26Þ × 10−2 0.126� 0.003
NΓJ=ψBJ=ψ→γX3ð0−Þ→γϕϕ 291� 26 198� 5

a12 ½GeV2� 0.128� 0.003 � � �
a13 ½GeV2� −0.087� 0.004 � � �
a23 ½GeV2� −0.005� 0.004 � � �
Nð0−Þ 710� 13 708� 16

χ2=nd:o:f: 24.4=18 ≈ 1.4 25.8=21 ≈ 1.2

FIG. 2. The JP ¼ 0− resonance contributions in the decay
J=ψ → γϕϕ calculated in the model A which takes into account
the mixing between the resonances ðX1; X2; X3Þ≡ ½ηð2225Þ;
ηð2100Þ; Xð2500Þ�.
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B. Scalar resonance contribution

The first attempt to describe the JPC ¼ 0þþ resonance
component of the spectrum uses the single resonance
contribution given by the expression

dNð0þÞ

dm12

¼ N
2m2

12ΓJ=ψ→γXð0þÞΓXð0þÞ→ϕϕ

πjDXð0þÞj2
; ð3:9Þ

where the m12 dependencies of ΓJ=ψ→γXð0þÞ and ΓXð0þÞ→ϕϕ

are given by Eq. (2.12), while DXð0þÞ is given by Eq. (3.3).
The parameters extracted from the fit are

mXð0þÞ ¼ 2.381� 0.018 GeV;

Γ0
Xð0þÞ ¼ 0.001� 0.025 GeV;ffiffiffiffiffi
N

p
g1 ¼ 361� 9 GeV1=2;

f1 ¼ 11.9� 0.4 GeV;

f2 ¼ 0.9� 0.6 GeV−1;

BXð0þÞ→ϕϕ ¼ 0.25� 0.18;

χ2=nd:o:f: ¼ 37.8=28 ≈ 1.4: ð3:10Þ

Using Eq. (3.9) one obtains that

Nð0þÞ ≡NΓJ=ψBJ=ψ→γXð0þÞ→γϕϕ

¼
Z

mJ=ψ

2mϕ

dNð0þÞ

dm12

dm12 ¼ 65� 6:

One can see that the fit with the single scalar resonance is
poor. A better fit is obtained when adding the second 0þ

resonance. To be specific, we neglect the mixing of the
X1ð0þÞ and X2ð0þÞ analogously to the model B of the
pseudoscalar contribution considered in subsection III A.
The expression for the JPC ¼ 0þþ resonance component of
the spectrum averaged over λJ=ψ ¼ �1 to be fitted is taken
in the form

dNð0þÞ

dm12

¼ N
ð2πÞ3 × 12m2

J=ψ

jkjjk�1jð2jA0j2þjA0 þ A2j2Þ;

ð3:11Þ
whereN is the same unknown overall normalization factor
as in Eq. (3.1). The amplitudes A0 and A2 are constructed
using Eqs. (2.11), (2.12), and (3.9) and look as follows:

A0 ¼
g11f001
DX1ð0þÞ

þ g12f002
DX2ð0þÞ

;

A2 ¼
g11f221
DX1ð0þÞ

þ g12f222
DX2ð0þÞ

: ð3:12Þ

Here, the third index i ¼ 1, 2 in f00i and f22i, i ¼ 1, 2, is
introduced to designate the Xið0þÞ contribution and are
looking the same as in Eq. (2.11). In total, there are 10 fitted
parameters: mXi

, Γ0
Xi
, g1i, f1i, and f2i; i ¼ 1, 2. Recall that

Γ0
Xi

takes into other possible decay modes besides the ϕϕ
one. One obtains the following set of parameters accom-
panied by the relevant branching fractions:

mX1ð0þÞ ¼ 2.190� 0.009 GeV;

Γ0
X1ð0þÞ ¼ 0.00� 0.01 GeV;ffiffiffiffiffi
N

p
g11 ¼ 191� 5 GeV1=2;

f11 ¼ 8.5� 0.3 GeV;

f21 ¼ −6.9� 1.2 GeV−1;

BX1ð0þÞ→ϕϕ ¼ 0.70� 0.04;

mX2ð0þÞ ¼ 2.409� 0.010 GeV;

Γ0
X2ð0þÞ ¼ 0.003� 0.021 GeV;ffiffiffiffiffi
N

p
g12 ¼ −60� 10 GeV1=2;

f12 ¼ −3.7� 0.3 GeV;

f22 ¼ 1.4� 0.7 GeV−1;

BX2ð0þÞ→ϕϕ ¼ 0.86� 0.19;

χ2=nd:o:f: ¼ 19.7=23 ≈ 0.9: ð3:13Þ
For quantities characterizing the decay chain J=ψ → γϕϕ
one obtains

Nð0þÞ ≡NΓJ=ψBJ=ψ→γðX1ð0þÞþX2ð0þÞÞ→γϕϕ ¼ 63� 5;

ð3:14Þ

FIG. 3. The same as in Fig. 2, but calculated in the model B
which neglects the mixing of the ηð2225Þ, ηð2100Þ, Xð2500Þ
resonances.
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and

NΓJ=ψBJ=ψ→γX1ð0þÞ→γϕϕ ¼ 52� 4;

NΓJ=ψBJ=ψ→γX2ð0þÞ→γϕϕ ¼ 5� 2;

and the interference is I ¼ 6� 7. The results of both fits
described in this subsection are presented in Fig. 4.

C. Tensor resonance contribution

In this case, one finds from Eq. (2.21) that

hΓJ=ψ→γXð2þÞiλJ=ψ¼�1
¼ jkj

72πm2
J=ψ

½4g202 þ 7g220 − 4g02g20

þ 3ðg12 þ g20Þ2�: ð3:15Þ

Note that the fitted parameters of the single 2þ contribution
are mXð2þÞ, Γ0

Xð2þÞ, c1;2;3, and g1;2;3;4, in total nine free

parameters. Taking into account three 2þ contributions, as
is made in Ref. [4], requires 27 free parameters. So, having
in mind a limited statistics of the data, we try to describe the
2þ component with the single tensor resonance with the
help of parametrization

dNð2þÞ

dm12

¼ N
2m2

12hΓJ=ψ→γXð2þÞiλJ=ψ¼�1

πjDXð2þÞj2
ΓXð2þÞ→ϕϕ; ð3:16Þ

where all necessary expressions are given by Eqs. (2.22),
(3.3), and (3.15). Surprisingly, but a rather good fit is
obtained with the following set of parameters:

mXð2þÞ ¼ 2.621� 0.012 GeV;

Γ0
Xð2þÞ ¼ 0.005� 0.018 GeV;ffiffiffiffiffi
N

p
c1 ¼ 110� 50 GeV−3=2;ffiffiffiffiffi

N
p

c2 ¼ 2560� 60 GeV−3=2;ffiffiffiffiffi
N

p
c3 ¼ −480� 15 GeV1=2;

g1 ¼ −11.0� 0.6 GeV;

g2 ¼ 25.0� 1.6 GeV−1;

g3 ¼ −32.0� 1.5 GeV−3;

g4 ¼ 27.0� 0.5 GeV−1;

BXð2þÞ→ϕϕ ¼ 0.21� 0.01;

χ2=nd:o:f: ¼ 19.7=24 ≈ 0.8: ð3:17Þ

For quantities characterizing the decay chain J=ψ →
γXð2þÞ → γϕϕ one obtains

Nð2þÞ ≡NΓJ=ψBJ=ψ→γXð2þÞ→γϕϕ ¼ 172� 12: ð3:18Þ

The contribution of the 2þþ resonance to the J=ψ → γϕϕ
spectrum evaluated with these parameters is shown in
Fig. 5. One should emphasize that the convergence to
the minimal χ2 with the above parameters is very slow. In
all appearance, this is due to the complicated dynamics of
the 2þþ partial wave contribution demanding nine free
parameters entered in the nontrivial combinations corre-
sponding to the given spin and orbital angular momentum
of the γXð2þÞ and ϕϕ systems. [See Eqs. (2.14) and
(2.16)]. So, in view of a limited accuracy of the present
data, it seems to be prematurely to take into account three

FIG. 4. The JP ¼ 0þ resonance contributions in the decay
J=ψ → γϕϕ.

FIG. 5. The JP ¼ 2þ resonance contributions in the decay
J=ψ → γϕϕ.
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tensor resonances in the full dynamical form to describe the
above contribution.
The results of the fits of the considered resonance

contributions to the ϕϕmass spectrum of the decay J=ψ →
γϕϕ are summarized in Fig. 6.

IV. DISCUSSION AND CONCLUSION

Let us compare the resonance parameters such as masses
and widths found in the present work, with the values given
in Refs. [4,9]. To this end, one should have in mind the
following. The compatible with zero values of the widths
Γ0
XðJPCÞ given in (3.10), (3.13), and (3.17) refer to the

contributions of the final states other than the ϕϕ. The latter
is taken into account explicitly, with the energy dependence
of the contributions of various partial waves in the
J=ψγXðJPCÞ and XðJPCÞϕϕ vertices. In the meantime, the
parameters cited in Refs. [4,9] were obtained in the fixed
width approximation similar to Eq. (1.1). Hence the correct
comparison of the results of the present work with the above
references requires the evaluation of the effective resonance
peak positions and widths. A rough estimate can be obtained
upon neglecting the resonance peak distortion due to the
effects of thephase spacevolume.This can bemadewith help
of Figs. 2, 3, 4, and 5 by evaluating the width at the half of
height of the resonance peaks. In the case of the pseudoscalar
resonances (in both models A and B of subsection III A) one
finds the peak positions mX1ð0−Þ ≡mηð2250Þ ≈ 2260 MeV,
mX2ð0−Þ ≡mηð2100Þ ≈ 2120 MeV, and mX3ð0−Þ ≡mηð2500Þ ≈
2480 MeV while the effective widths are ΓX1ð0−Þ ≡
Γηð2250Þ ≈ 220 MeV, ΓX2ð0−Þ ≡ Γηð2100Þ ≈ 210 MeV, and
ΓX3ð0−Þ ≡ Γηð2500Þ ≈ 400 MeV. Within one or two magni-
tudes of the experimental uncertainty they agree with the
values given in Ref. [4]. When fitting the scalar resonance

contribution, the first one designated here asX1ð0þÞ, has the
effective peak characteristics which, within the experimental
accuracy, agree with those of the resonance f0ð2100Þ
observed in Ref. [4]. The second one, X2ð0þÞ, included
here to achieve the better description of the data, is new.
However, taking into account rather large experimental error
bars in this sector, see Fig. 4, the latter conclusion should be
treated as preliminary. The data with improved statistics
could resolve the issue. The effective characteristics of the
tensor resonance obtained here agree with those of f2ð2340Þ
cited in Ref. [9].
Let us check the consistency of the fits. First, one can

evaluate the sum

dN
dm12

¼ dNð0−Þ

dm12

þ dNð0þÞ

dm12

þ dNð2þÞ

dm12

ð4:1Þ

and plot the result to compare with the data [4]. The results
are shown in Fig. 7. For comparison, also shown are the
curves corresponding to the specific JPC contribution. One
can see that the contributions with different quantum
numbers JP add incoherently as they should. The formal
reason is briefly explained in Appendix.
Second, using expressions for the amplitudes, one can

obtain the expression for the angular distribution of final
photons in the decay J=ψ → γϕϕ. One has

dN
d cos θγ

¼ 3

8
ð1þ cos2θγÞ½Nð0−Þ þ Nð0þÞ� þ Nð2þÞ

1

þ Nð2þÞ
2 cos2θγ; ð4:2Þ

where the central values Nð0−Þ ¼ 708 and Nð0þÞ ¼ 63 are
given in the Table I and by Eq. (3.14), respectively, and

FIG. 6. The fitted pseudoscalar, scalar, and tensor resonance
contributions in the ϕϕ spectrum of the decay J=ψ → γϕϕ.

FIG. 7. Sum of fitted resonance contributions to the J=ψ →
γϕϕ decay spectrum, together with the specific JPC ones.
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Nð2þÞ
1;2 ¼ N

32πm2
J=ψ

Z
mJ=ψ

2mϕ

dm12

m2
12ΓXð2þÞ→ϕϕðm12Þ

πjDXð2þÞj2
jkj

�
jg02j2 þ

3

2
jg20j2 −

1

3
jg02 þ g20j2 � jg12 þ g20j2

�
:

ð4:3Þ

With the set of parameters (3.17) one finds that the central

values are Nð2þÞ
1 ¼ 89 and Nð2þÞ

2 ¼ −8. Multiplying
Eq. (4.2) by the normalization factor N−1 where

N ¼ Nð0−Þ þ Nð0þÞ þ 2Nð2þÞ
1 þ 2

3
Nð2þÞ

2 ;

one obtains the angular distribution normalized to unity.
Multiplying the obtained expression by the area under the
experimental histogram in Fig. 8 one gets the curve shown
with the solid line in Fig. 8. So, one can see that without
separate fitting of the total spectrum Eq. (4.1) and the
photon angular distribution Eq. (4.2), their evaluated
magnitudes agree with the data. The above evaluations
support the consistency of the fits of the separate resonance
contributions.
Some concluding remarks are in order. The dynamical

analysis of the resonance contributions to the J=ψ → γX →
γϕϕ decay amplitude is presented based on the effective
amplitudes of the transitions J=ψ → γX and X → ϕϕ. The
X-resonances with the quantum numbers JPC ¼ 0−þ, 0þþ,
and 2þþ are taken into account to describe the ϕϕ mass
spectrum in the decay J=ψ → γXðJPCÞ → γϕϕ studied by
BESIII collaboration [4]. Two models, with and without
mixing of three Xð0−þÞ resonances, are considered when
fitting the pseudoscalar component of the spectrum. It is

shown that both above models give satisfactory description
of the data, hence one cannot distinguish between them
with the present accuracy of the data. The scalar component
of the ϕϕ spectrum is better described in the model with
two scalar resonances. Surprisingly, the tensor component
requires only one resonance, because the non-trivial
behaviour shown in Fig. 5 at the left shoulder of the
resonance peak is due to the dependence on the ϕϕ
invariant mass of the contributions with given spin and
orbital angular momentum in the Xð2þþÞ → ϕϕ vertex.
Masses and effective coupling constants parametrizing
invariant amplitudes are extracted from the fits and used
for evaluation of branching fractions. The consistency of
the fits is supported by the evaluation of the incoherent sum
of the 0−þ, 0þþ, and 2þþ resonance contributions to the ϕϕ
mass spectrum of the reaction J=ψ → γϕϕ and of the
angular distribution of the final photons. Their calculated
magnitudes are shown to agree with the data Ref. [4].
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APPENDIX

It is well known that the helicity selection rule λJ=ψ ¼
λγ − λX leaves only one independent helicity amplitude for
zero spin of X resonance and three helicity amplitudes in
case of the spin two resonance, in the J=ψ → γXðJPÞ
transition amplitude [13]. So let us give the expressions for
the spin structure of the amplitudes J=ψ → γXðJPÞ → γϕϕ

in terms of the helicity amplitudes MðJPÞ
λJ=ψ ;λγ ;λX

of the decay

J=ψ → γXðJPÞ. They are necessary for checking the fact
that the distinct JP contributions to the J=ψ → γϕϕ mass
spectrum do not interfere. For the sake of simplicity, the
single intermediate XðJPÞ resonance will be assumed. The
helicity amplitudes of the decay J=ψ → γXðJPÞ are calcu-
lated from Eqs. (2.3), (2.9), and (2.13). The expressions of

the above amplitudes MðJPÞ
λJ=ψ ;λγ ;λX

are the following:

Mð0−Þ
1;1;0 ¼ −igJ=ψγXð0−ÞmJ=ψ jkj;

Mð0þÞ
1;1;0 ¼ g1;

Mð2þÞ
1;1;0 ¼

1ffiffiffi
6

p ð2g02 − g20Þ;

Mð2þÞ
0;1;1 ¼ −

1ffiffiffi
2

p ðg12 þ g20Þ;

Mð2þÞ
−1;1;2 ¼ −g20; ðA1Þ

where g02, g20, and g12 are given by Eq. (2.14).

FIG. 8. Angular distribution of photons in the decay
J=ψ → γϕϕ. Histogram—BESIII data [4]. The solid curve—
evaluation with the resonance parameters found from the fits.
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Then one gets the following expressions for the J=ψ → γXðJPÞ → γϕϕ transition amplitudes:

MJ=ψ→γXð0−Þ→γϕϕ ¼ iMð0−Þ
1;1;0f

ð0−Þ
11

DXð0−Þðm2
12Þ

ðn · ½ξ × e�Þeabcn1cξ1aξ2b;

MJ=ψ→γXð0þÞ→γϕϕ ¼ Mð0þÞ
1;1;0

DXð0þÞðm2
12Þ

ðξ · eÞ½fð0þÞ00 δab þ fð0
þÞ

22 n1an1b�ξ1aξ2b;

MJ=ψ→γXð2þÞ→γϕϕ ¼
�
1

2
ð

ffiffiffi
6

p
Mð2þÞ

1;1;0 −Mð2þÞ
−1;1;2Þðξ · eÞninj −Mð2þÞ

−1;1;2ξ⊥iej −
ffiffiffi
2

p
Mð2þÞ

0;1;1ðξ · nÞeinj
�

× ½fð2þÞ20 δkaδlb þ fð2
þÞ

02 δabn1kn1l þ fð2
þÞ

22 ðn1aδkb þ n1bδkaÞn1l þ fð2
þÞ

24 n1an1bn1kn1l�

×
Πij;kl

DXð2þÞðm2
12Þ

× ξ1aξ2b: ðA2Þ

Here, the amplitudes fðJ
PÞ

SL with the spin orbital momentum
assignment (S, L) of the ϕϕ state are expressed through
the coupling constants characterizing the invariant ampli-
tudes of the decay XðJPÞ → ϕϕ. In the case of the 0− state
one has

fð0
−Þ

11 ¼ gXð0−Þϕϕm12jk�1j; ðA3Þ

while in the case of the 0þ state they are given by

Eq. (2.11), and in the case of the 2þ state fð2
þÞ

SL ≡ fSL
are given by Eq. (2.16).
The direct calculation of the final probability distribution

shows that, when summed over polarizations of the final ϕ
mesons but keeping fixed their direction of motion, the
vanishing are the interference terms of the contributions

with opposite parities. In turn, the ð0þ − 2þÞ interference
term being proportional to n1kn1l − δkl=3, vanishes after the
integration over phase space of the ϕ mesons because the
averaging over the ϕ meson direction of motion results in
the relation

hn1in1ji ¼
1

3
δij: ðA4Þ

Hence, all the considered JPC ¼ 0−þ, 0þþ, and 2þþ
contributions to the ϕϕ mass spectrum and to the photon
angular distribution in the decay J=ψ → γϕϕ do not
interfere and are added incoherently. This conclusion
agrees with the experimentally verified fact. See Table II
in Ref. [4].
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