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The dynamics of the J°© = 0~F, 07+, and 2** resonance contributions to the decay J/y — yX(JF¢) —
y¢¢ is analysed using the data obtained by BESIII collaboration. The effective coupling constants
parameterising invariant amplitudes of the transitions J/y — yX(J?¢) and X(J*) — ¢¢ and masses of

X (JPC) resonances are found from the fits. They are used for evaluation of the branching fractions B X(JPC) = gpp>

relative branching fractions B, x (7). 4¢» @nd for obtaining the photon angular distributions.
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I. INTRODUCTION

The interest in the decay J/w — yp¢ [1-4] is related
with the possible existence of the exotic glueball state
decaying into the ¢¢ pair [5-8]. The spin-parity quantum
numbers of the resonance states decaying into ¢¢ are
reported to be J¥ = 0%, 07, and 2" [3.4,9].

The partial wave analysis of the ¢¢ system was
performed in Ref. [4] based on the model with the coherent
sum of the Breit-Wigner amplitudes with the constant
widths,
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(1.1)
As is pointed out in Ref. [4], the process J/y —
f1(1285)¢p — yp¢ can be neglected because of its small
branching fraction, hence the diagram for the decay J/y —
y¢p¢ shown in Fig. 1 is assumed to be dominant.
However, the dynamics of the decay chain J/y —
ryX(JP), X(J') - ¢ is relatively simple only in case of
the pseudoscalar resonance admitting the single contribu-
tion with the unit orbital momentum in both above vertices.
In general, one should include the different spin-orbital
momentum structures for different spin-parities of the
X(J?) resonances in the ¢¢ system, especially in case
of the tensor contribution J*¢ = 2*+ where a number of
independent spin structures enter the amplitudes of tran-
sitions J/y — yX(21) and X(27) — ¢¢. So it is reason-
able to reanalyze the data of Ref. [4] in the model with the
energy-dependent partial ¢¢ width in order to extract the
magnitudes of the effective coupling constants parametriz-
ing the effective invariant amplitudes of the above tran-
sitions. This is the goal of the present work. The data [4]
will be described here by taking, as the starting point, the
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effective amplitudes in the invariant form parametrized by
some unknown constants. Then their three-dimensional
counterparts will be written which take into account the
condition of the three-dimensional transverse character of
the final photon polarization vector. The three-dimensional
form simplifies considerably the derivation of expressions
for the ¢p¢p mass spectrum and angular distributions.

The kinematic notations are the following. The four-
momenta assignment is J/w(Q) = y(k)X(q) = y(k)p(k;)
(k) €, €14 €2, (€, &, &) are, respectively, the polari-
zation four-vectors of the J/y meson and ¢ mesons
(their 3-dimensional counterparts in their respective rest
frame); e, = (0, e) stands for the polarization four-vector
of the photon, ¢,,,, is the Levy-Civita tensor. The energy-
momentum 4-vector of the ¢¢ state in the J/y rest frame is

q = (490.9).
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FIG. 1. The dominant diagram of the decay J/y — y¢pe.
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where n stands for the unit vector in the direction of
the photon, and m, is the invariant mass of the ¢¢ pair.
In turn, the energy-momentum of one of the ¢ mesons,
ki, = (kig.k7), in the center-of-mass system of the ¢¢
pair, is

1

*
kiy = Emlz,

n
Kk :711 [m?, —4m3, (1.3)

with n; being the unit vector in the direction of the motion
of the ¢ meson.

The subsequent material is organized as follows. In
Sec. II, the parametrizations of invariant amplitudes and
their three-dimensional counterparts are given, together
with the expressions for partial widths. Section III is
devoted to presenting the results of fitting of the different
partial wave contributions to the ¢¢ mass spectrum. The
discussion presented in Sec. IV concerns the consistency of
the fits, together with the concluding remarks. The J/y —
yX(JP) = y¢¢ amplitudes in terms of the independent
helicity amplitudes in the J/y — yX(J?) vertex are given
in the Appendix.

II. AMPLITUDES AND PARTIAL WIDTHS

First, let us write the amplitude of the decay J/y —
yX — y¢¢ assuming, for a while, the single intermediate
resonance X. Schematically, the method of evaluation of
the amplitudes adopted in the present work is as follows. In
the case of the X resonance with spin zero and two one has,
respectively

My —o(J/w = yX = yd)

My = rXIMX = ¢9)]
Dy

My Ty = yX — yd)
5 Ml = XT3 | Mo (X — )T |
Ax

’

Dy ’
(2.1)

where Dy stands for the inverse propagator of the X
resonance. See Eq. (3.3) below. The polarization tensor

T, = Tf,’}f‘) of the spin two resonance is represented in the
form

t.:q:
TOO _ l]q2lqj 7

mip

q; 1ikqiqx
Toy=—|tij+———|:

mi; miy(qo + miy)

tq; + tixq; 1449 ;

Tij =1+ ( k4 j jkql)qk k19i9;j9x491 ’ (2.2)

mip(qo +mp)  miy(qo + mip)?

where 1;; = tEjX) is the polarization tensor in the rest frame,

so that all the amplitudes can be expressed through the
polarization structures in the X rest frame. Since each of the
amplitudes in square brackets in Eq. (2.1) is Lorentz-
invariant one can evaluate it in the respective rest frame,
J/y or X.

A. JPC=0—+

The effective amplitudes for the processes J/y —
yX(07) and X(07) — ¢p¢ and their three-dimensional form
in the respective rest frame systems are chosen as follows:

MJ/V/—WX(O’) = 97/wyx(07)€vic deykﬂeo-

= Gryrxorymypylkl(n - [Exel),  (2.3)
and
MX(O*)—»:}S(/; = gX(O’)—>¢¢€;41/Ao'k1/4€11/k2/1€20'
= gxo)ppmizlki|(my - (6 x &]).  (2.4)
The calculated partial widths read, respectively,
Cpom) = 50 s (a5)
Jw—rX(07)\TH12 127
and
O ey
Cx(0)=gg(m2) = e L3 (2.6)

The amplitude M/, ., x(0-) = M is written in the

form

—rdpd

M= A(Oi>mf/wm12|k||k’f|(§[" xe])(n[€ x &)). (2.7)

The dynamics of process is included through the factor
A7) to be specified below. The modulus squared summed
over polarizations of final particles but keeping the J/y
polarization fixed reads

D M =2m3, mb kAP E x n]?,
Ay

(2.8)

Since [ [€ x n]?dQ,, /4r = 2€*/3, the decay rate integrated
over photon direction is the same for all J/y projections.

B. JPC =0+*
Since the photon polarization four-vector is e, = (0, e),
the D-wave structure in the J/y — yX(0") amplitude
vanishes, hence

MJ/U/—?YX(O+) =—0 (66) =4 (ge) (29)
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Correspondingly, the invariant amplitude of the decay
X(0") = ¢p¢ and its three-dimensional form in the X rest
frame look as follows:

My (o+)—gp = —f1(€162) = fa(e1kz) (€2Kk1)
= fo0 (&&) + 1% Em) (E&n)),  (2.10)
where
o) =fi.
(") LN
I :(2f1+f2m12)W‘ (2.11)

¢

As is evident from these expressions, f(()%ﬂ and fg;)
correspond to the assignment (S,L) = (0,0) and (2, 2),
respectively, of the spin S and orbital angular momentum L
of the ¢¢ state. The energy-dependent partial widths look
like

Co o) = gilk|
e 2am?,)
/v

ki

FX(N)_"M) - 16ﬂm%2

(0ha 0t 0t
x 2l P+ 1f ) + 1SR, (2.12)

The dynamical content of the J/w — yX(01) — yo¢p
component of the ¢¢ spectrum will be specified below
in subsection III B.

C. JPC=2++

The invariant amplitude of the transition J/y — yX(2)
and its three-dimensional form are the following:

M )ymyxoh) = [c1(e€)Q,0, +ca(ek)e,k, + cze e,
Tyw=gn(E e)nn;+gin(E-n)en;+ goéie)lt;
(2.13)

where ¢, 3 are, in principle, the functions of the invariant
mass mj,. For nothing better, we assume them to be some,
in general, complex constants;

2
my;, k
G2 = —C€ /; )
my,
k2 C3
Jgop=—"—\|C9 +— |,
mpp qo + mypp

920 = —C3, (2.14)

where k = —q. See (g, q) in Eq. (1.2).

In turn, the invariant amplitude of the decay X — ¢¢
and its three-dimensional presentation in the ¢¢ center-of-
mass system look as follows:

My o)y = {g1€1€2 +Kikoy [92(€162) + g3 (€1ka) (€2k1)]
+ galer ko (€2k1) + €3k, (€1K2)]} T,
= [f20&1:&2; + for (&1 -&)miiny j+ f2[ (€1 -11) &y
+ (& -ny)Evilny + fou (& -my) (& -my)nyng ]t

(2.15)
Here,
Sf20 = a1
Soo = gszZ,
k*Z g1
f22 =-1 <+g4m12 ,
ki + mg
k*4 91 nmip
f24_4[ + 29> + gym+29s ———|.
my [(kio +my)? . 10 T My
(2.16)

Again, the indices at the quantities in the left-hand side of
these equations refer to the possible spin-orbital momentum
assignments (S,L) = (2,0), (0, 2), (2, 2), and (2, 4) of the
¢ state.

The sum over polarizations of the intermediate tensor
resonance is fulfilled with the help of relation

1
Zt fkl == (6ubji + 6ubj) — §5ij5k1 =11 -

NI>—‘

(2.17)

The modulus squared of the amplitude M =
M)y —yx(2+)—ypp SUmmed over polarizations of final par-
ticles can be represented in the following form suitable for
subsequent integrations over final states:

Z|M|2 Iuclf’j’c’( _ncnc’)
P
Il
W warFop s (2.18)

where Dy+) = Dx(+)(m},) is given by Eq. (3.3),

Lij e = gooninj&e + [g12(En)n; + g20& 165
Fri.ab = F200ka01p + f020apm1111; + f22 (114856 + 11150ka ) 1114
+ foan gy gy p. (2.19)

The ¢¢ mass spectrum in the decay J/y — yX(21) —
y¢¢ can be written as
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ar _ _ |k[ki] /1.~ Iy 8oy = nony) oom
dle 327[3m3/y/ L,eni'jh et \ree Ne ir

” dSd, | T Xy jr ey
X {/ Fk[»llek’l’.ub 477"1:| |2 .

Note that the polarization state of the J/w meson is kept
fixed for a while. Since in terms of quantities designated
by square brackets in Eq. (2.20) the partial widths of the
decays J/y — yX(21), X(2T) — ¢¢ look, respectively,
like

dQ,,]

2.20
|Dx(2+) (2:20)

dQ,

K| .
Ly pymrxat) :W Iij,cli/jqcf (6c —ncner) dx I;j iy
W

k 3 1
=3 | |z /{<|902|2+§|920|2_§|902+920|2>
mmy,

<lExal ol (En? | S, 221

(polarization of J/y is still fixed)

Tyvins — ﬂ /F F* & IL, v
X(2H)—>¢d 802, kab® yrap g (VLK
k7|
=——L(10|f20 + f2l* + 3[f20/* + 2|20

240mm?,

+ foul* +2|fo2 + faal* + 4 f o2 + 2ol

+4[f2 + faul* —4|f 0l = 6|f24]?). (222)
then the ¢h¢p mass spectrum in the decay J/y — yX(27) -

y¢¢ in case of the single intermediate resonance can be
written in the standard form:

dr  2mTyy—xen Dxe) - g0
dm12

(2.23)
7T|Dx(2+)|2

Taking into account of a number of interfering resonances
with given spin-parity demands the modifications analo-
gous to those discussed in subsections III A and III B.

III. RESULTS

When fitting the data Ref. [4], the coupling constants
characterizing invariant amplitudes Egs. (2.3), (2.4), (2.9),
(2.10), (2.13), and (2.15) are assumed to be real. Nonzero
imaginary parts would point to the dynamical effects
related with the re-scattering of the final ¢ mesons [10].
The quantitative inclusion of these effects would require
the introduction of multiple additional parameters such as
coupling constants of the exchanged particles with ¢
mesons, the slope parameters characterizing the above
exchange etc. This seems to be premature with the present
accuracy of the data.

A. Pseudoscalar resonance contribution

The expression for the J© = 0~ resonance component

of the spectrum averaged over 4;,, = +1 with the help of
Eq. (2.8) is

dN©) N .
= (277 x 6 A Pmd, |k |k

5, (3.1
dm12 ( )

where A is unknown overall normalization factor. Three
intermediate resonances were included in the partial wave
analysis of Ref. [4] to describe the partial wave with J¥ = 0~.
We designate them as X; = n(2225), X, = #(2100), and
X3 = X(2500). Since the case of pseudoscalar resonance X
is kinematically simple, we consider two models for the
amplitude.

(i) The model A. It allows for inclusion of the mixing of
the above three resonances via their common decay mode
¢¢ in the form used earlier in Ref. [11,12]:

A = (Girx, Gitrxs 9ipurxy)
Dy Iy -3 9x, ¢
x| =II;, D, —Ilxn IX,p¢p (3.2)
-3 -l Ds IX3¢¢

Let us specify the elements of the matrix of inverse
propagators in Eq. (3.2). The main goal here is to analyze
the ¢p¢p decay mode of the X resonances. However, another
decay modes are feasible. We will assume that ¢¢ is the
only common decay mode and take its energy dependence
in D;, II;; explicitly (i, j =1, 2, 3), while other decay
modes will be effectively taken into account in the fixed
width approximation, Iy = const. Specifically, the inverse
propagator of the resonance X; is assumed to be

Dy, (yry(miy) = m3 ey = miy = impplx ey g (mi2)

- imxi(JP)F/Xi. (33)
The polarization operator I1;; responsible for the mixing
looks as follows:

* |3
1
8z
Here, ImlI1;; is fixed by the unitarity relation while Rell;;,
in principle, can be evaluated through the dispersion
relation. However, taken literally, the dispersion integral
is divergent due to the fast growth with energy of the
X(07) — ¢¢ partial width, and one should introduce the
phenomenological suppression factor parametrized by
some unknown constant, in order to make the integral
finite. We take here the practical attitude and assume that
Rell;; are some constants, a;, = Rell},, a;3 = Rell3, and
a3 = Rell,; to be determined from the fit.

(i1) The model B corresponds to the vanishing mixing, by
taking IT;; = 0, that is, A7) is given by the coherent sum of
the energy dependent Breit—Wigner terms.

; |
I = I1;;(m7,) = Rell;; + im129x, 49,4 (3.4)
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Results of fitting the pseudoscalar resonance

TABLE L
07) = r¢¢.

contribution in the reaction ete” - J/y — yX(
The quantity N©©) is given by Eq. (3.7).

Parameter Model A Model B
-) [GeV] 22312 +£0.0015 2.252 +0.002
I X, (0-) [GeV] 0.227 4+ 0.002 0.189 4 0.002
\/_gj/wx ) [GeV™ 3/2) 2450 £ 15 439 + 3
X, 07V [GeV 1 0.881 4 0.005 3.49 +0.03
By, (0-)= g0 (1.554£0.02) x 1072 0.218 £+ 0.003
NT 1B jy—yx, (0 )=y 659 + 14 300+ 6
my, o~y [GeV] 2.0757 +0.0025 2.077 4+ 0.002
oy [GeV] 0.136 4 0.0050 0.118 £ 0.005
\/Ngj/wxz(o-) [GeV—3/2] 3010 +£ 110 2580 £ 80
9%, (019 [GeVT'] 0.160 £ 0.011 0.29 £ 0.01
By, (07)= g0 (294 +0.43) x 10 (1.03 £0.08) x 1073
NF!/WBJ/WWX:(O’)HVM 22+4 9£6
my, -y [GeV] 2.6590 +0.0028 2.705 £+ 0.003
1";(z oy [GeV] 0.51 +£0.01 0.34 +0.01
\/_gj/ll/}’x‘s % 3/2) 802+ 6 591+6
9X,(07)pp [GeV | 481 +0.15 4.99 +0.08
By, (07 )~ g (9.72 £ 0.26) x 1072 0.126 4 0.003
NT 1B jy=rxs (07 =1 291 +26 198 £5
aj, [GeV?] 0.128 4+ 0.003
as [GeV?| —0.087 £ 0.004
ay3 [GeV?] —0.005 £ 0.004 e
N©O) 710 £ 13 708 £ 16
72/ ndos. 244/18~ 1.4 258/21~1.2

The fitted parameters are the following: my,, rg(l_,
gj/l,,yxi\/ﬁ, Ix,4¢» 1 = 1, 2, 3, in both models A and B,
and three additional parameters a,, a;3, and a,; in the
model A. The results are presented in the Table I, together
with some branching fractions evaluated with the found
parameters. To be specific, evaluated are the X; — ¢¢
branching fractions:

2 /mmax m%2FX’_,¢¢(m12) d
2

BX-—) =
i~PP ju |DX,~|2

mp.  (3.5)
ﬂ’l(/)
The answer depends on upper integration limit m1,,,,. Since
the data of Ref. [4] refer to the interval 2m, <
myy < 2.7 GeV, we take here my, = 2.7 GeV. The
branching fraction By, _,x,_ 44, In general, cannot be
represented in the form By, _,x,~p6 = Brjy—yx, ¥
By._. 44, due to the large widths of the resonance X and
(or) to the strong energy dependence of the partial width.
The general expression is

2 /ml/w
ﬂFJ/I/I 2my

m%ZFJ/y/—WX, (myp) xTy, —>y(/)(/)(m12)dm12
|DX (m12)|2

BJ/!//—WX;—WM

(3.6)

It reduces to the mentioned factorization in the narrow
width approximation. Furthermore, because the overall
normalization factor N is unknown, only the quantities

NF//WBJ/II/—’}’Xi—’}’WP’ i = 1, 2, 3, and
N = NFJ/WBJ/W—’J’(XI+X2+X3)—’7¢¢
_ /m,/w dnN©7) J
2my dle
are presented, not the absolute branching fractions. One can
evaluate the role of interference,

(3.7)

mp;

I=NTy, [Bf/w~y<xl<o>+xz<0)+x3 (07)) =1

- Z BJ/x//—»yX

i=1273

_’7(/"/’:| , (3.8)

to obtain / = —262 + 33 (model A) and I =151 £19
(model B).

The results of analysis of the J” = 0~ partial wave
contributions in the models A and B are plotted in Figs. 2
and 3, respectively. One can see that the total contribution
looks the same in both models, but the components
corresponding to the resonances #(2225), 7(2100),
X(2500) and their interference are different. A comparable
values of y?/ngy . in the models A and B show that these
models cannot be distinguished with the present accuracy
of the data. Taking into account the present feature of the fit
we will make further treatment in subsection III B in the
model B neglecting the mixing in situation when more that
one resonance is required for the description of the data.

2600 |

2400 | [N
L \ = BESIIJ™®=0""

2200 r 1(2100)+n(2225)+1(2500)

2000 |+

1800 |-

g L

g 1600 [
1400 [
1200 [
1000 [
800 [

600 [

400 |

200 F

NJ/w >/¢>¢

22 23 24 25 26 27 28 29 30 3.1
M[GeV]

0
20 21

FIG. 2. The J” =0~ resonance contributions in the decay
J/w = y¢¢ calculated in the model A which takes into account
the mixing between the resonances (X,X,,X3) = [7(2225),
7(2100), X(2500)].
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2200 —T 11t r-r1r°-r°-r1r 1117

2000 - = BESIIJ™=0" ]

1800 |- n(2100)+n(2225)+X(2500)| |

----n(2225)

600+ [ % | n(2100)

--—-=- X(2500)

1400 | e
£ 1200 | -
2

¥ 1000 - .
i L
Z 800 4
© L

600 |- .

400 e

200 | e

_____________ .

20 21 22 23 24 25 26 27 28 29 30 3.1

m,, [GeV]
FIG. 3. The same as in Fig. 2, but calculated in the model B
which neglects the mixing of the 7(2225), 1#(2100), X(2500)

resonances.

B. Scalar resonance contribution

The first attempt to describe the JP¢ = 07* resonance
component of the spectrum uses the single resonance

contribution given by the expression

dN©)
dm,

2m3,Cy ), Cx(0%)= g
— N2 J/w—=rX(0") ZX(0+) /J’ (3.9)
7|Dx(o+)]

where the m,, dependencies of I';,,,_,xo+) and I'xg+)= 40
are given by Eq. (2.12), while Dy g+ is given by Eq. (3.3).
The parameters extracted from the fit are

my+) = 2.381 £0.018 GeV,

[y = 0.001 £0.025 GeV,

VNg =361 +9 GeV'/2,
f1=11.9+04 GeV,
f,=09+0.6 GeV!,

Bx(o')ogp = 0.25 £ 0.18,

1/ naos = 37.8/28 ~ 1.4. (3.10)

Using Eq. (3.9) one obtains that

N = NFJ/!//BJ/WﬁVX(O*)—*MH/)

myjy dN©")
_/ . dmy, = 65 + 6.
om,  dmyp

One can see that the fit with the single scalar resonance is
poor. A better fit is obtained when adding the second 0"

resonance. To be specific, we neglect the mixing of the
X;(0") and X,(0") analogously to the model B of the
pseudoscalar contribution considered in subsection IIT A.
The expression for the J*© = 0"+ resonance component of
the spectrum averaged over 4, = +1 to be fitted is taken
in the form

dN©) N
- (27)* x 12m3/

k||l (2|Ao)?+|Ag + Ay %),
i ki (2440 P+Ao + Ao1?)

(3.11)
where N\ is the same unknown overall normalization factor

as in Eq. (3.1). The amplitudes A, and A, are constructed
using Egs. (2.11), (2.12), and (3.9) and look as follows:

Ay = gifoor + 912 002 ’
Dy, 0v)  Dx,0%)

A, :gllf221 912f222' (3.12)
Dy,0+)  Dx,(0)

Here, the third index i = 1, 2 in f and foy;, i = 1, 2, is
introduced to designate the X;(0") contribution and are
looking the same as in Eq. (2.11). In total, there are 10 fitted
parameters: my,, r;(l_, 91i» f1i> and fo;; i = 1, 2. Recall that
Iy takes into other possible decay modes besides the ¢¢

one. One obtains the following set of parameters accom-
panied by the relevant branching fractions:

my, o+) = 2.190 £ 0.009 GeV,

F;(l(m) =0.00 £ 0.01 GeV,

VNg =191 +5 GeV'/2,
f11 =85+03 GeV,
fa = =69+ 12 GeV~!,
By, (0)=gp = 0.70 £ 0.04,
my, o+ = 2.409 £ 0.010 GeV,

[y o) = 0.003 +0.021 GeV,

V N912 =-60+£10 GGVI/Z,
f12 =-37+03 GCV,
f22 =14+0.7 GCV_I,

BX2(0+)—>¢¢ - 086 :IZ 019,

22/ nes = 19.7/23 %09. (3.13)

For quantities characterizing the decay chain J/y — y¢¢p
one obtains

.
) = NT 1By pyrsy (3,07 12,0 )y = 63 £ 5,
(3.14)
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250 = BESIIJ=0"" -
—-—-model with single X(0")
model with X,(0°}+X,(0)
- = -X,(0") contribution
200 |- - - X,(0%) contribution 7
g
S
T
% 150 - i
A
N S
Zz
S 100 -
50 |- -

2.0 2.2 2.4 2.6 2.8 3.0

m,, [GeV]

FIG. 4. The JP =0T resonance contributions in the decay

J/w = rd.
and

NFJ/WBJ/V/—’J’XI (09)=ypp = D2 £ 4,
NFJ/V/BJ/VHJ/Xz(O‘)—*MH/) =5%2,

and the interference is I = 6 = 7. The results of both fits
described in this subsection are presented in Fig. 4.

C. Tensor resonance contribution

In this case, one finds from Eq. (2.21) that

k|
(Crpyrx@n);, S Py [495, + 7930 — 4902920
Iy

+3(g912 + 920)%- (3.15)

Note that the fitted parameters of the single 2% contribution
are my(r+), le(zﬂ’ €123, and gy 534, in total nine free
parameters. Taking into account three 2" contributions, as
is made in Ref. [4], requires 27 free parameters. So, having
in mind a limited statistics of the data, we try to describe the
2% component with the single tensor resonance with the
help of parametrization

dN®")

dmlz

2mi(Crpympxah)),,, —
w=rX(25)/ 2y, =41 (3.16)

F )= )
77"|DX(2+)|2 X(2")—po

where all necessary expressions are given by Egs. (2.22),
(3.3), and (3.15). Surprisingly, but a rather good fit is
obtained with the following set of parameters:

T T T T T T T T T T T
600 E
= BESII J°=2"
single J7°=2" resonance
500 -
£° 400 | .
RS
£ 300 | -
Z
©
200 + E
100 + E
0 | L I [T AT T T ST AT ST N
20 21 22 23 24 25 26 27 28 29 3.0 3.1
m,, [GeV]
FIG. 5. The J” = 2% resonance contributions in the decay
J/w = yd.

My = 2.621 £0.012 GeV,
[yp+) = 0.005 +0.018 GeV,

VNe; =110+ 50 GeV—3/2,
VNe, = 2560 £ 60 GeV—3/2,

VN ey = —480 + 15 GeV'/2,
g = —11.0+ 0.6 GeV,
gy =250+ 1.6 GeV~!,
gy = =320+ 1.5 GeV3,
g5 =27.0+0.5 GeV!,
By(a)gg = 0.21 £ 001,

2/ nges = 19.7/24%0.8. (3.17)

For quantities characterizing the decay chain J/y —
yX(2%) = y¢¢ one obtains

N = NT,Bjjyeyxaympge = 172 £ 12, (3.18)

The contribution of the 2% resonance to the J/y — yp¢p
spectrum evaluated with these parameters is shown in
Fig. 5. One should emphasize that the convergence to
the minimal y? with the above parameters is very slow. In
all appearance, this is due to the complicated dynamics of
the 2%+ partial wave contribution demanding nine free
parameters entered in the nontrivial combinations corre-
sponding to the given spin and orbital angular momentum
of the yX(2%) and ¢¢ systems. [See Egs. (2.14) and
(2.16)]. So, in view of a limited accuracy of the present
data, it seems to be prematurely to take into account three
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3. 1200 .
£ 1000 - ]
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FIG. 6. The fitted pseudoscalar, scalar, and tensor resonance
contributions in the ¢¢ spectrum of the decay J/y — ypa.

tensor resonances in the full dynamical form to describe the
above contribution.

The results of the fits of the considered resonance
contributions to the ¢¢) mass spectrum of the decay J/y —
y¢¢ are summarized in Fig. 6.

IV. DISCUSSION AND CONCLUSION

Let us compare the resonance parameters such as masses
and widths found in the present work, with the values given
in Refs. [4,9]. To this end, one should have in mind the
following. The compatible with zero values of the widths
F;WPC) given in (3.10), (3.13), and (3.17) refer to the

contributions of the final states other than the ¢¢b. The latter
is taken into account explicitly, with the energy dependence
of the contributions of various partial waves in the
J/wyX(JFC) and X(JFC)p¢ vertices. In the meantime, the
parameters cited in Refs. [4,9] were obtained in the fixed
width approximation similar to Eq. (1.1). Hence the correct
comparison of the results of the present work with the above
references requires the evaluation of the effective resonance
peak positions and widths. A rough estimate can be obtained
upon neglecting the resonance peak distortion due to the
effects of the phase space volume. This can be made with help
of Figs. 2, 3, 4, and 5 by evaluating the width at the half of
height of the resonance peaks. In the case of the pseudoscalar
resonances (in both models A and B of subsection III A) one
finds the peak positions my (o-) = my2230) & 2260 MeV,
My, (0-) = My2100) & 2120 MeV, and my, -y = myas00)
2480 MeV  while the effective widths are I'y (o-) =
['y2250) ® 220 MeV, Ty, 0-) = [y2100) # 210 MeV,  and
Ix,0-) = Ty2500) ~ 400 MeV. Within one or two magni-
tudes of the experimental uncertainty they agree with the
values given in Ref. [4]. When fitting the scalar resonance

2500

2000

(X

1500

dNy,...,/d

1000

500 -

m, [GeV]

FIG. 7. Sum of fitted resonance contributions to the J/y —
y¢¢ decay spectrum, together with the specific JPC ones.

contribution, the first one designated here as X (0"), has the
effective peak characteristics which, within the experimental
accuracy, agree with those of the resonance f,(2100)
observed in Ref. [4]. The second one, X,(0"), included
here to achieve the better description of the data, is new.
However, taking into account rather large experimental error
bars in this sector, see Fig. 4, the latter conclusion should be
treated as preliminary. The data with improved statistics
could resolve the issue. The effective characteristics of the
tensor resonance obtained here agree with those of f,(2340)
cited in Ref. [9].

Let us check the consistency of the fits. First, one can
evaluate the sum

dN©®")
dm12

dN©")
dm12

dN  dN©)
dm12 - dm12

(4.1)

and plot the result to compare with the data [4]. The results
are shown in Fig. 7. For comparison, also shown are the
curves corresponding to the specific JPC contribution. One
can see that the contributions with different quantum
numbers J” add incoherently as they should. The formal
reason is briefly explained in Appendix.

Second, using expressions for the amplitudes, one can
obtain the expression for the angular distribution of final
photons in the decay J/y — y¢¢. One has

dN 3 _ N ot
T =gt c0s26,) [N 4 NO| 4 N
v
+ N<22+)cos26’y, (4.2)
where the central values N©©) = 708 and N©©") = 63 are

given in the Table I and by Eq. (3.14), respectively, and
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-1.2 -0.8 -0.4 0.0 0.4 0.8 1.2
cosOy

FIG. 8. Angular distribution of photons in the decay
J/w — yp¢. Histogram—BESIII data [4]. The solid curve—
evaluation with the resonance parameters found from the fits.

My 2 -gp (M12)
”|Dx(2+) |2

2+ N myy
.

P— k
32ﬂm3/v/ 2m, 12 i

3 1
l902|* + = 1920 — 5 1902 + 920> £ 912 + 920]* |-
2 3
(4.3)

With the set of parameters (3.17) one finds that the central
values are N (12*) =89 and N<22+) = —8. Multiplying

Eq. (4.2) by the normalization factor N~! where

N =NO) 4 NO) 4 oNZ) 4 %zv;“,

one obtains the angular distribution normalized to unity.
Multiplying the obtained expression by the area under the
experimental histogram in Fig. 8 one gets the curve shown
with the solid line in Fig. 8. So, one can see that without
separate fitting of the total spectrum Eq. (4.1) and the
photon angular distribution Eq. (4.2), their evaluated
magnitudes agree with the data. The above evaluations
support the consistency of the fits of the separate resonance
contributions.

Some concluding remarks are in order. The dynamical
analysis of the resonance contributions to the J/y — yX —
y¢¢ decay amplitude is presented based on the effective
amplitudes of the transitions J/y — yX and X — ¢¢. The
X-resonances with the quantum numbers J*¢ = 0=+, 0*+,
and 27" are taken into account to describe the ¢¢p mass
spectrum in the decay J/y — yX(JP€) = y¢¢ studied by
BESIII collaboration [4]. Two models, with and without
mixing of three X(0~") resonances, are considered when
fitting the pseudoscalar component of the spectrum. It is

shown that both above models give satisfactory description
of the data, hence one cannot distinguish between them
with the present accuracy of the data. The scalar component
of the ¢p¢p spectrum is better described in the model with
two scalar resonances. Surprisingly, the tensor component
requires only one resonance, because the non-trivial
behaviour shown in Fig. 5 at the left shoulder of the
resonance peak is due to the dependence on the ¢¢
invariant mass of the contributions with given spin and
orbital angular momentum in the X(27") — ¢p¢p vertex.
Masses and effective coupling constants parametrizing
invariant amplitudes are extracted from the fits and used
for evaluation of branching fractions. The consistency of
the fits is supported by the evaluation of the incoherent sum
of the 0=, 0", and 2" resonance contributions to the ¢¢
mass spectrum of the reaction J/w — y¢p¢ and of the
angular distribution of the final photons. Their calculated
magnitudes are shown to agree with the data Ref. [4].
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APPENDIX

It is well known that the helicity selection rule 4,,, =
A, — Ax leaves only one independent helicity amplitude for
zero spin of X resonance and three helicity amplitudes in
case of the spin two resonance, in the J/y — yX(J?)
transition amplitude [13]. So let us give the expressions for
the spin structure of the amplitudes J/y — yX(J¥) — yo¢p

in terms of the helicity amplitudes Mﬁf:v) 4 Ax of the decay

J/w = yX(J?). They are necessary for checking the fact
that the distinct J” contributions to the J/y — y¢¢ mass
spectrum do not interfere. For the sake of simplicity, the
single intermediate X (J*) resonance will be assumed. The
helicity amplitudes of the decay J/y — yX(J¥) are calcu-
lated from Eqgs. (2.3), (2.9), and (2.13). The expressions of

the above amplitudes Mg/:/) 4,y AT€ the following:

(07)
1.1.0
0+
M<1,1,2) =01
o+ 1
M<1,1,2) = % (2902 - 920),

where ggy, 929, and g, are given by Eq. (2.14).
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Then one gets the following expressions for the J/y — yX(J¥) — y¢¢ transition amplitudes:

O+
Oap + f§2 >”1an1b]§1a§2b,

2 7(07) £(07)
My of
My yx 0 )srpp = DX(I I)O(ml—;) (n-[€xe])eqpcniciaéon
( +
Mo
My py—yx(0)~ygp = Dyior) () E-e)lfy

MJ/W->7X(2*)—>7¢¢ = { (\/_Ml 1,0 _M -1, %2)(5 e)n

" 2"
X [fzo Okalrp + foz

I 1
X ————5— X &,E0.
DX(Z*)(m%2) ¢

Here, the amplitudes f §1LP> with the spin orbital momentum
assignment (S, L) of the ¢¢ state are expressed through
the coupling constants characterizing the invariant ampli-
tudes of the decay X (J¥) — ¢¢. In the case of the 0~ state
one has

0~ *
f§1 )= Ix (0 )ppM 12|k ], (A3)

while in the case of the 0" state they are given by

Eq. (2.11), and in the case of the 2" state f(szg) = fg
are given by Eq. (2.16).

The direct calculation of the final probability distribution
shows that, when summed over polarizations of the final ¢
mesons but keeping fixed their direction of motion, the
vanishing are the interference terms of the contributions

inj — M(—zl,{.z‘fliej - \/EMé)zlA)l (& ")ei”j}

2+ 2+
5ab"1k”11 + féz )(n1a5kb + 11p0ka )11y +fg4 )nlanlbnlknll]

(A2)

[

with opposite parities. In turn, the (0" —2%) interference
term being proportional to ny;n;; — 8;;/3, vanishes after the
integration over phase space of the ¢ mesons because the
averaging over the ¢ meson direction of motion results in
the relation

1
=5

; (A4)

<n1in1j> = e

Hence, all the considered J¥¢ =0"1t, 0t*, and 2*+
contributions to the ¢¢ mass spectrum and to the photon
angular distribution in the decay J/w — y¢¢ do not
interfere and are added incoherently. This conclusion

agrees with the experimentally verified fact. See Table II
in Ref. [4].
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