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With the QCD sum rules approach, we study the newly discovered doubly heavy baryon Ej:.
We analytically calculate the next-to-leading-order (NLO) contribution to the perturbative part of the

JP = %* baryon current with two identical heavy quarks, and then reanalyze the mass of ZJ;" at the

NLO level. We find that the NLO correction significantly improves both scheme dependence and
scale dependence, whereas it is hard to control these theoretical uncertainties at leading order. With the

NLO contribution, the baryon mass is estimated to be mgi+ = 3.66f8"?§ GeV, which is consistent with the

LHCb measurement.
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I. INTRODUCTION

The quark model predicts rich structures of hadronic states
with various flavors. Numerous predicted states have been
observed experimentally, indicating the validity of the quark
model classification for hadrons. However, a class of states,
which contain more than one heavy quark, have not been
discovered for decades. Recently, the LHCb Collaboration
observed a highly significant structure in the A7 K~z tz™
mass spectrum, which is interpreted as the doubly charmed
baryon E/" [1] with mass 3621 +0.724+0.27 +-0.14 MeV.
Early experimental studies of Z/. were performed by the
SELEX [2], BABAR [3], and Belle [4] collaborations.

The understanding of E/* demands more rigorous
theoretical studies. Plenty of methods have been used in
the literature [5—13]. Among them, the QCD sum rules,
which are based on the first principle of QCD, are powerful
tools to study various properties of hadronic states [14,15].
Many works have been devoted to the study of doubly
heavy baryons within QCD sum rules [16-22], and some
impressive predictions have been obtained. But in all of
these works, only the leading order (LO) in the «;
expansion of perturbative contributions and Wilson coef-
ficients of vacuum condensates were considered. Without
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higher-order contributions, it is hard to control theoretical
uncertainties in QCD sum rules, which limits its predictive
power. For instance, at LO the value of the charm-quark
mass cannot be well determined, which can cause large
errors. In fact, it was known a long time ago that the next-
to-leading-order (NLO) correction has sizable contribu-
tions to meson and nucleon sum rules [23-25]. Therefore,
the study of NLO effects for doubly heavy baryons in QCD
sum rules is badly needed.

Higher-order calculations in QCD sum rules become
harder and harder when more particles or more massive
particles are involved. For mesons, the state-of-the-art
calculation has been developed to O(af) with the help
of mass expansion [26-31], while for baryons, the O(a;)
correction is available in the literature only for nucleons
and singly heavy baryons [24,25,32].

In this paper, we calculate the NLO correction to the per-
turbative contribution for the doubly heavy J© = %’L baryon,
and show its important effects in QCD sum rules. With the help
of the integration-by-parts [33,34] and differential equation
[35,36] methods, we get a fully analytical expression. We
reproduce the massless result in the literature when we set all
quark masses to zero. Based on this calculation, we reanalyze
the newly discovered ;" in QCD sum rules.

II. QCD SUM RULES

The central object in QCD sum rules is the following
two-point correlation function [14,37]:

M(g) = i / dxe® (QIT {(0)7(0)}]Q)

=11, (¢*) ¢4 + Iy (¢?). (1)
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where Q denotes the QCD vacuum and # is the baryon
current (to be defined later).

On the one hand, one can calculate II(g) using the
operator product expansion (OPE), which gives

M(q) = Ci(q) + D _Ci(9)(00). (2)

where C; is the perturbative contribution and C; is the
Wilson coefficient of a gauge-invariant Lorentz scalar
operator O;. Both C; and C; are perturbatively calculable.
(0;) is a shorthand for the vacuum condensates (Q|0;|Q),
which is a nonperturbative but universal quantity. It means
that the value of (O;) determined from other processes
should be the same as its value in the process considered in
this paper.

On the other hand, I1(g) satisfies the dispersion relation

M(g) 1 /00 ds QI (s + ie) g + ST, (s + ie)

0

- 2

n s—q
_ /oo dspl(s—i—ze)ﬁ—kzpz(s—i—ze)’ 3)
0 §—4q

where p; and p, are the spectrum densities. Based on
the optical theorem, one assumes the spectrum density

p(q) = p1(q*)d + p2(g?) to be [37]
p(q) = Ay (g + my)d(q* — my) + pe(q)0(q* = sp).  (4)

where sy, is the threshold of the continuum spectrum
and Ay is defined by Ayu(p,s) = (0|n(0)|H(p, s)), where
u(p,s) is the Dirac spinor of the hadron.

By defining

YD _ () + o) ®)
YD _ () + il ©

and employing the quark-hadron duality and Borel
transformation, we obtain a sum rule corresponding to

I, (4%) [37],

K

m2

L ra -

B = [ dspy ()
Sth

+Z<0,-> /oo dspyi(s)e ", (7)

St

where s is the threshold parameter and mp is the Borel
parameter, which are introduced in the quark-hadron
duality and Borel transformation, respectively. One can
also obtain a similar sum rule corresponding to IT,(g?), but
we will not discuss it in this paper.

To obtain the baryon mass, we differentiate both sides
of Eq. (7) with respect to —mjz> and solve for m?%, which
results in

2 +Zi<0i> f:{: dS,Ol.i(s)se "
mH = . .
+

>0 [ dspl,,-(s)e_g
(8)

In this paper, as a good approximation we only keep
vacuum condensates up to dimension four,

(0:) € {(a47). (5:GL.G™)}. ©)

and evaluate p; (5, up to O(m,). Contributions of higher-
dimensional operators are power suppressed and thus can
be neglected. (See Appendix B for more discussions on
higher-dimensional operators.)

ITII. BARYON CURRENTS

The most general baryon current containing two iden-
tical heavy quarks is

€ (QCT 1 Q")INq°, (10)

where Q is the heavy quark with mass m and ¢ is the light
quark with mass m,. €?b¢ is the antisymmetric matrix in
color space, C is the charge-conjugation matrix, and I'; and
I, are Dirac matrices with possible Lorentz indices sup-
pressed. Spinor indices are contracted within the bracket,
and therefore transposing the bracket part should keep the
current intact. Noting that CT = —C, one can see that '}
can only be y, or o, [37]. Fora J* = %* baryon, there are
only two possible currents:

m = e (QCr,0")r'r’ g, (11)
N, = eabc(QaCleQb)o./wl'YSQC’ (12)

where 5, corresponds to the loffe current [37] if we take O
as a u quark and g as a d quark. It is well known that z; and
n, are renormalization covariant [38],

d 0
2<’71> :<}’1 ><’11>‘ (13)
dIng= \ n, 0 n Upl
Thus, it is advantageous to work with these currents when
calculating the NLO correction. There exist other choices

for the current [16,39,40], which can be expressed by 7,
and 7, with the help of the Fierz identity,

Mmix = €7°[(Q°Cri¢") Q¢ + b(Q“Cq")y* 07

b-1 b+1
2, (14)

=y Mmtig

where b is a complex mixing parameter.
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FIG. 1. NLO Feynman diagrams for C;. External legs are
amputated.

IV. NLO CORRECTION TO C,

It is known that C; and C; can be calculated perturba-
tively, and results at LO are available in Refs. [16,41].
Among them, the most important one is C;, because all
other coefficients will be multiplied by higher-dimensional
operators which are power suppressed. Thus the main
theoretical uncertainty is due to the NLO correction to C.

In order to perform the NLO calculation for C;, we use
FEYNARTS [42,43] to generate all Feynman diagrams (see
Fig. 1) and FEYNCALC [44,45] to manipulate the resulting
amplitude. After these steps, we are left with some three-
loop-like scalar integrals. These integrals can be further
simplified using the integration-by-parts (IBP) method
[33,34]. FIRE [46] and LITERED [47] are used to reduce
the full amplitude to a linear combination of a complete set
of 29 master integrals (see Fig. 2),

CYO(e, g, mg) = ch(qu’mQ)Ik(gv v), (15)
X

where & is defined by the dimension D =4 —2e,

[, 4m? . . .
v=4/1—- %, and all coefficients c;, are purely imaginary.

Note that here /; is defined to be dimensionless.

Since we are only interested in the imaginary part of the
two-point function I1(p?), we just need to evaluate the
corresponding cut diagrams of 7. But evaluating these
four-body phase-space integrals in the presence of two
massive particles is still a formidable task.

FIG. 2. Topologies of master integrals, where solid and dashed
lines denote massive and massless propagators, respectively.
External legs are amputated.

To proceed, we employ the differential equation method
[35,36] by first differentiating I, with respect to v, then
reducing the resulting integrals by using IBP, and obtaining
a system of differential equations,

) =Al(e,v)l(e,v), (16)

where I represents the vector of master integrals /; and A is
a 29 x 29 matrix. To solve this differential equation, we
implement the algorithm proposed in Ref. [48] to transform
the equation into the so-called ¢ form [35],

dr'(e,v) B;
dv ZSZHI/(S, 1)), (17)

where v; € {0, 1, i\/gi}, B; are constant matrices, and I’
is related to I by an invertible linear transformation. The
virtue of this & form is that the right-hand side of Eq. (17) is
proportional to &, which can be easily solved iteratively in
terms of Goncharov polylogarithms [49]. The boundary
values of I(e,v) at v = 1, i.e., mgy = 0, are nothing but
massless four-body phase-space integrals, which are very
easy to work out. By evaluating the boundary value I (e, 1)
and solving the equation iteratively, we finally obtain /; and
finish our calculation.

We find that the Coulombic singularity, which may
appear as v — 0, does not present at NLO. Then, by
combining all of the terms the infrared divergences are
canceled out, so we only need to deal with ultraviolet
divergences. After performing wave-function and mass
renormalization of quarks (m, is renormalized in either
the MS scheme or on-shell scheme), the remaining ultra-
violet divergences can be removed by operator renormal-
ization of 5, and 7,. We renormalize them in the MS
scheme, of which the anomalous dimensions are

A

= (18)

Y1 =72—=

which confirms the results in Refs. [25,50].

We then get a finite result at NLO. Our NLO result
confirms the massless result [24,25] in the limit my — 0.
Our analytical result is listed in Appendix A.

V. PHENOMENOLOGY

In our analysis we use

n=nm +0n, (19)

where 6 is a complex mixing parameter. We choose the
following parameters [16,51-54]:

m,(2 GeV) = 2.36 +0.24 MeV, (20)
my(2 GeV) = 5.03 +0.26 MeV, (1)
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FIG. 3. Prediction of mz++ as a function of m% and sy. Shadows
correspond to the windows defined by Eq. (28).
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FIG. 4. Contributions of various terms on the right-hand side
of Eq. (7).

mMS(m,) = 1.28 + 0.03 GeV, (22)
mon-shell — 1 46 4+ 0.07 GeV, (23)
(39)(2 GeV) = —(0.280 £ 0.017 GeV)3,  (24)
(FGG) = 472(0.037 £ 0.015) GeV*,  (25)

and a,(m;=91.1876GeV)=0.1181. The m™"!l comes
from the QCD sum rules analysis of the J/y spectrum, in
which the mass renormalization scheme and the truncation
order of a, of C; are the same as ours. Thus, it is consistent
to use this on-shell quark mass in our analysis. According
to Eq. (8), the evolution of the current # is irrelevant to the
estimation of the hadron mass, and thus we do not include
it in our analysis. We use the two-loop running for the
coupling constant a, and heavy quark mass mg. The
vacuum condensates are evolved according to their one-
loop anomalous dimensions: yz,) = ~Ym, and y (266, =0

[55]. In the following, unless otherwise stated, we choose
central values for all parameters, set the renormalization
scale u = mp [14,56], and choose the MS scheme for the
heavy quark mass renormalization.

InEq. (8), the baryon mass my depends on two parameters:
mpg and 5. In order to obtain a reliable result, we should keep
myp inside the so-called Borel window to ensure the validity of
the OPE, and the choice of s, should ensure that the ground-
state pole contribution is dominant. Since my; is a property of
the hadron, it does not depend on my and s, and thus within
the valid parameter space (we shall call it the “window”
hereafter) we should find the region in which my depends
weakly on mp and s(. my in this region is considered to be
the estimated hadron mass in QCD sum rules.

We define the relative contributions of the condensates
and continuum spectrum as

K

0;) |&ds ,-se_@
{0 b (e -

o dspyy(s)e "

S
-2
[e] m
5 dspyi(s)e "
Teont = =

o dspyi(s)e s

(27)

and impose the following constraints on our sum rule:
7| <30%. ) ril <30%.  [reon| <30%.  (28)

We find that with a mixing parameter € = 0.018i, we can
obtain very stable plateaux for mp and sq, as shown in

TABLE 1. Parameters for plateaux and predictions for mz++ in different mixing and mass renormalization schemes.

0 mg scheme  Order  m} (GeV?) sy (GeV?)  mz:+ (GeV)  Error from m}  Error from s, Error from my

0.018i MS LO 20£03 17£2 3.57f8:?f —0.00 + 0.01 —0.09 + 0.07 —0.05 +0.05
NLO 1.7£0.3 17+2 3-66f8'?§ —-0.01 +0.01 —0.08 + 0.05 —0.05 + 0.05

0.018i on-shell LO 1.7£0.3 17+2 3.837013 —-0.03 + 0.00 —-0.09 + 0.07 -0.10 +0.10
NLO 14£03 17+2 3~65f8‘11i —0.07 4 0.05 —0.08 + 0.05 —-0.10 + 0.09

—% MS LO 44403 23+2 3.81j8:11? —0.04 + 0.04 —0.10 + 0.08 —-0.03 4 0.03
NLO 40+03 23+2 3.86f8'11? —0.05 + 0.04 —-0.09 4 0.08 —-0.03 4 0.03
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FIG. 5. Prediction of mg-+ as a function of p.

Fig. 3. Note, however, that QCD sum rules alone cannot tell
which mixing current is the most suitable for a QCD sum
rules analysis. For example, there is a family of mixing
parameters that can yield similar good plateaux for mp and
5o, and a similar estimation of my. We also provide another
set of results by choosing 6 = — % which corresponds to the
mixing used in Ref. [16].

The relative importance of each term in the OPE is
shown in Fig. 4, where m% and s are set to their central
values shown in Table I. We find that the NLO correction

has an important contribution. In the mQ scheme the ratio
of the NLO correction to LO is about 29% (19%) for
0 = 0.018i (0 = — 1), while in the m~"!! scheme this ratio
reaches 233% for 6 = 0.018i, signaling the bad conver-
gence of the perturbative expansion, which is the reason
why we chose the MS scheme by default. Nevertheless,
with the NLO correction, the difference between the
predicted mz++ in the MS scheme and that in the on-shell
scheme for my is substantially reduced. As shown in
Table I, the mass differences obtained from the LO and
LO 4 NLO results are 0.27 and 0.01 GeV, respectively.
Thus, the NLO correction largely reduces the scheme
dependence.

To study the renormalization scale u dependence, we fix
all other parameters to their default choices (or central
values) and freely vary u. The variation of mgi+ with
respect to u is shown in Fig. 5. We find that the scale
dependence is much weaker when the NLO correction is
included. More precisely, the error of mg:+ induced by

p=mp+02GeV is 0 GeV and = gf GeV for LO

and LO + NLO, respectively.

LO _
PIT= 20484 4

492 20(3 6
+ Tonaa 4 101 |20 Bv

3
p%?:Wq4mQ39[2v(vz+3)(3v2—5)+3(v —1)(v* + 20> +5) 1n<

1 —
— 11o* + 6902 — 45) + 3(0? — 1)2(v* — 202 —15)1n< ”)}

Our ﬁnal results for mg:+ are shown in Table 1. The
errors of m>3 % S0, and the parameters listed in Eqs. (20)—(25)
are used to determine the error of mg++. We find that our
NLO result is consistent with the LHCb measurement. As a
comparison, we also list the results from the mg" shell
renormalization scheme or with 6 = —3. We find that all
of the plots above are almost unchanged when changing m,

from m, to my, and thus our prediction of the mass of
Ef.(ccd) is almost the same as that of Zi" (ccu).

VI. SUMMARY

The NLO calculation for hadrons with massive
quarks in QCD sum rules is important but hard to
carry out. With the help of the recent development of
multiloop calculation techniques, we are able to ana-
lytically calculate the NLO perturbative correction to
the imaginary part of the two-point correlation func-
tion of the J© = %* baryon current with two identical
heavy quarks. We apply our result to the QCD sum
rules analysis of the newly discovered baryon Z/" by
the LHCDb Collaboration [1]. The QCD sum rules
estimation of mg:+ is 3.667008 GeV, which is consistent
with the LHCb measurement within uncertainties. By
comparing LO with LO 4+ NLO results, we find that
the NLO perturbative correction substantially reduces
the m, renormalization scheme dependence and renor-
malization scale p dependence, and thus brings the
theoretical uncertainties under better control.
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APPENDIX A: ANALYTICAL RESULT

We calculate various spectrum densities of the current
defined in Eq. (19). The corresponding LO spectrum
densities, defined in Eq. (5), are

1-—
4 [2v(9v(’ —9v* 4+ 3112 — 15) + 3(v2 — 1)3(31% + 5) ln<1 - ”)]
v

1 (A1)

) w
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3 1 v*—602-3 3 v =402 —1
Lo _ ~ 2
P = PmQ\sev ~ 322 M . ~ 8 m,|0| " . (A3)
o 1 3 3 30+ 1

—¢*v(v* =3) + = 529 2102v(v? = 1) - 4—ﬂ2QOq;st9

2.(q9) ~ g2 (A4)

v

1 5 s (1=v 1 5 5 5 o (1—v
pl< 266) = 51248 20(v + 1)+ (22 = 1) ln<1+v>} _256ﬂ4|6| [21}(1} +1)+ (v =1)"In o)l (AS)

1 20(3v% = 11) 1-v
LO — o 2
p2.<.(/%GG> - _647[4 QO99|: 1}2 _ 1 + (U + 11) ln 1 T . (A6)

With the help of Eq. (14), our result confirms previous calculations [16,41].
The NLO spectrum densities of the perturbative contribution in the MS scheme, with m, also renormalized in the MS

scheme, are
NLO a [, oy (H mo 1 (K ]
P |m=2— 2911ln — | +2pa" In{ = | +p.|, (A7)
"o 4 q q _
NL0|f—ﬁ 2L01 v +2p,°1In v o (A8)
P I\Q/IS o i P? q Pp q2 Pb_ s
where p, ¢ and p,? come from m renormalization,
0 0
Mo LO
Pa” = Mg ——p17, Py’ = =Mmgo—— Pz 1 (A9)

The analytical expressions of p, and p;, will be presented later. The differences between the mg" shell scheme and mQ
scheme are

PNLO — pNLo| _ 9 _§+ 21n i _me (A10)
1 1 mz)n_sheu 1 1 mlgs 27[ -3 sz | a
.
NLO _ NLO % § ()| e All
P21 m(én-shell = P21 m? 2” _3 + mQ Pp - ( )

Note that in the m‘é“'She“ scheme, the logarithms coming from m, renormalization are completely canceled out; only the

logarithms proportional to p© remain, which come from the quark wave-function renormalization and baryon operator
renormalization. Equations (A10) and (A11) are just the consequences of changing the renormalization scheme. To show

this explicitly, we first replace all mg="! by mpS in p'© and pN-© in the my =" scheme,
eyt — i (125 [8 o (2 V] o) (A12)
© ¢ 27 |3 (35’ 5) )

Then, we expand p"© and pN-© up to O(a,). We take p; ; as an example. For ptQ we have
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VT g 8 2 "
PO (meshell) — pLO(MS) 1 812 4 o1 () | e (mdS) + O(a?), (A13)
27 |3 (mbS)?
and for pYi© we have
pI]\HrO mon-shell (mon—bhell> /)II\HTO mon-she]l (ml\éls> + O(ag)' (A14)
0
Combining them, we obtain
on-shell NLO on-shell LO NLO vsy % (8 5 mg NS
PA(mF ) + 0| L (mE ) = piQm®) + oY L (mgS) 45 3 T 2| 5 | |pa® (mg”)
mQ v/ (mQ )
+ O(a (1) (A15)

Since the renormalized amplitude should not depend on the
renormalization scheme, we thus obtain Eq. (A10). For p2 1
the result is similar: all we need to do is substitute p}9,

I

where A is another scale that differs from p. Then we
expand p'© and pN"© up to O(a, (1)), and the u dependence
of m should cancel out up to O(a,(u)). We take p; ; as an

pll‘”fo, and p;? in the above expressions by p5<, pY©, and  example. For p}§ we have
pb , respectively. ) 5
ag(u), (H
As a check, we can Venfy that in the mQ scheme the y ﬂ%ﬁ)(mg(ﬂ)) — ﬂ%ﬁ)(mg(ﬂ)) In </12>,0a (mgo(2))
dependence of m in pO is canceled by the corresponding n
logarithms in pNMO to O(a,). To show this explicitly, we + O(a2(w)). (A17)
first replace all my(u) by my(4) in p© and pN-© in the
ml\Q/IS scheme, and for p)i® we have
> P (s arg(n). mo () = YO (u. s (). mo (2))
mo) = mo() (1= Wi (%) 1 0w
¢ ¢ n o\ * ’ + O(as (). (A18)
(A16) Combining them, we obtain
|
LO NLO LO a(1) [, 1o ©
pii(mo(p)) +pii” (s as(u). mo(u)) = pii(mo(4)) + = = 12p1i (mo(4)) In o + pa(mg(4))
as\H m /12
2 ot gl (%) | + Ot (A19)
r q’
For p, ; the result is similar: all we need to do is substitute p%(l), ,0]1\]% , Pa» and p,? in the above expressions by ,0]2‘(1), p?% > Pbs
and p, ¢, respectively. Thus, we have shown that the u dependence of my is indeed canceled out.
Now we list p, and pp,
11 11
=q' (Zgl,iGi + |6|2Zg2,iGi>’ (A20)
i=1 i=1
1
Py = q'mp0 Z 9.iGi» (A21)

where G; are defined as

01

i=1

4018-7



WANG, MENG, MA, and CHAO PHYS. REV. D 99, 014018 (2019)

Gl = 18G0,0.1(1 — 1)) - 27G0.0’2(1 - ’U) + 3G0.2’0(1 - 1}) - 18G0’2.1(1 - 7)) + 24G0’2,2(1 - U) - 24G2.0,0(1 — ’U)
+ 18G2’0,1(] - ’U) - 3G2.0’2(] - ’U) + 27G2,2’0(1 - 1}) - ]8G272.1(1 - ’U) + 12G1—i\/§,0,0(] - ’U)

—18G,_; 50, (1 =) + 115G _; 50,(1 = 0) = 15G_; 5, 0(1 = v) +18G_; 5, (1 = v)

— 126G 55,(1 =) + 112G 500(1 =) = 18G50, (1 = 0) +15G | ; 50,(1 =)

- 15G1+i\/§,2,0(1 —v)+ 18G1+i\/§’2’1(1 —v)— 12G1+i\/§,2,2(1 —v)— 3111(2)G0,2(1 —-v)+ 241n(2)G2,0(1 - )
—271n(2)Gys(1 = v) = 120(2)G,_, 50(1 = 1) + 1510(2)G,_, 5,(1 = 1) = 12I0(2)G,; 54(1 = v)

+15In(2)G, ., ;5,(1 = v) +4(x* = 31n(2)*)G,(1 — v) = 2(x* = 31n(2)*)G,_, 5(1 — v)
—2(z* =3In(2)*)G,,; 51 —v) +9(3), (A22)

Gy = 4Gy, (1 = v) =6Go (1 —v) —=4Go0(1 = v) +4Go12(1 = v) +6Gga0(1 —v) = 4Gy, (1 —v)
+4Gr0,1(1 = v) =6Gr0,(1 = v) =4Gy19(1 = v) +4Gy12(1 = v) +6Gy50(1 —v) —=4Gy5,(1 —v)
+41In(2)Go (1 —v) —6In(2)Gy,(1 —v) +41In(2)Gy (1 — v) — 61In(2)G,,(1 — v) + 3¢(3), (A23)

G3 = 2Ggo(1 = v) —=2G,,(1 = v) —21In(2)Gy(1 — v) + In(2)?, (A24)

G4 = —6G0’0(1 - ’U) + 6G02(1 - 1}) + 6G2’0(1 - ’U) - 6G2’2(1 - ’U) + 6ln(2)G0(1 - ’U)

—6In(2)G,(1 = v) + 7% = 31In(2)?, (A25)
Gs = 6G5(1 = v) — 6G, (1 — v) + 61n(2)G,(1 — v) + 72, (A26)
Ge = Gio(1 =v) = Gia(l = v) =In(2)G, (1 = v), (A27)
G; =4Gy,(1 —v) —4G,,(1 = v) + 72, (A28)
Gs = Go(1 —v) + G,(1 = v) —In(2), (A29)
Gy = Gy(1 —v) = G5(1 —v) —In(2), (A30)
G = G(1 =), (A31)
Gy = 1. (A32)
The g, ; are

gy = - EGEEE) (A%)
912 =0, (A34)

1010'2 + 37800 — 114948 — 53000° + 1883v* — 10202 + 93
913 == 61447*(v* + 3)? ’ (A35)
s = v(92° — 911):5—12—;1v2 —15) ’ (A36)
- 257v'% + 129000 + 11192 — 5000° — 14890* 4 839402 — 879 (A37)

184327 (v + 3)? '
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v8(v? = 3)
- _ . A38
916 247 (A38)
10722 4 4820'0 4+ 15308 — 53200 + 2690v* + 251402 — 945
gl,7 = - W) 2 ) (A39)
30727 (v? + 3)
v(3908 4+ 160° + 1300* + 888v? — 81
g18 = ( W) ) s (A40)
7687 (v* + 3)
4793910 4+ 285508 — 391740° — 8018v* + 639702 — 14469
919 = W) s (A41)
368647* (v + 3)
v(32108 + 3740° — 448v* + 28740% — 945
9110 = — ( W) ) > (A42)
115272%(v* + 3)
v(73610° — 122890* + 1819942 — 9863
g1 = ( ) ) (A43)
184327
The g, ; are
(v=1)* v+ 1)*(v* = 5)(v* + 3)
=— Ad4
9.1 256,77 ) ( )
v—1)2%(v+1)2
922 = (L#’ (A45)
T
1100 4 13308 — 448200 — 20540* + 391102 — 591
D3 == ) P (A46)
30727%(v* + 3)
v(308 — 11v* + 690% — 45)
= A47
924 1927% > ( )
34700 — 41998 — 26100° + 154v* 4 212870v% — 12615
95 = W) 5 (A48)
92167 (v* + 3)
02 (v? 4+ 2)(v* — 60% +3)
=— , A49
926 124 ( )
137019 — 1730 — 89400 + 782v* 4 560502 — 3921
927 = — ) s (ASO)
1536z*(v* + 3)
~ 0(420° — 2350% + 10900% — 501) (AS1)
928 = 1927° ’
482318 — 1953200 — 40278v* + 2693202 — 9961
929 = ) > (A52)
18432x
v(4110° — 18310* + 706902 — 3921)
— , AS3
92,10 5767° ( )
v(81110° — 29663v* + 10447302 — 72697
P11 = ( ) . (A54)

92167*
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WANG, MENG, MA, and CHAO PHYS. REV. D 99, 014018 (2019)

And finally, the g5 ; are

v(137v* — 9v? — 314)

g311 = A65
(v —1)(v + 1)(v* + 202 + 5) M 247 (A65)
921 = - 2 o (ass)
In our result, the Goncharov polylogarithm is defined as
3(v—-1)(v+1
932 = —%, (AS6) : dr
Gul(2) = / , (A66)
0o l—a
801043508 42000 4 1140* + 55607 — 221
953 = 327 (17 + 3)2 ’ Cw
G = G 1), A67
(AST) o = [ G (6T
2 2 _ "
Gra = v(v +23;(i” 5) , (A58)  and Gy o(z) = ™\ if for all a; = 0.
T As another check, we can verify that our result reduces to
20010 & 15508 + 50005 + 6660* — 70402 — 1661 the massless result in the limit my — 0. This limit is easy to
935 = YY) 3 ) obtain since the coefficients of Goncharov polylogarithms
967" (v* + 3) . -
have no singularities at v = 1, and Goncharov polylogar-
(A59) ithms with nonzero a; themselves vanish trivially when
- 5 z — 0. In the massless limit, p, and p, are
v (v =30v° 46
P
4 NLO NLO
/)] 1 mm‘mg_) _pl 1 mon-shellAle_)O
2004+ 1408 43500 +290* — 570% — 87 ¢ .
g37="- 4 (21 3)2 ., (A6l) a1 121n(”—2) (14 600P). (AG)
305+ vt 24— 120 =220 I ’
v(30° + 130v* — 2407 — 120
938 = 4 (07 +3) . (A62)
pg”i’o MS 0 = plz\lvli‘O on-shell 0 = O‘ (A69)
890% + 17705 — 390* + 85907 + 450 e e
= (A63)

939 = )
0 487* (v* 4 3) These results confirm the massless results obtained pre-
. . ) viously [24,25]. Another interesting limit is the threshold
v(120° 4 430" = 330% - 174) (A64) ~ limit q* — 4mp. After straightforward integration and

32t (v* +3) expansion in v, the leading power terms of v are
|

93,10 = —

NLO

L1 mon %hell 2_>4’n

2

2(1161+ 702> —945In2 —630Inv) +3151n(%5)

Qs 2Q 4 2\,,7 8 7

27‘[

—(4m Q)2 (1+4|€|2)1f’+

N

| 4(2(1161 + 7072 — 9451n2 — 6301n v) + 315In(£3))

(4mQ) mo0 —Wvé - 36757 £ 0"+ 00|,

NLO
P21

On-; she]] 2

my —>4m 27‘[

(A71)

P11

2
_ NLO ag (8 H 2
?ﬂz—"‘mé =P11 monshell g2 42 +E |:§+21n(m2Q>:|( ) |: (1+4|(9| )1} —140 4(5+28|9| )U +O( )

(A72)
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NLO NLO a (8 W 22 ~pl O >4 o7 8
P2l i N mg,"she“q’_»z;m)—'—ﬂ §+21n m_zQ (4my)?mpS0| — =7 s t357 +O0%)]. (A73)

The v° terms in the above expressions correspond to the Coulombic singularities generated by the gluon exchange
between two heavy quarks. The »° terms in Egs. (A71) and (A72) come from the renormalization-scheme difference of mo,
i.e., Egs. (A10) and (A11).

We also present our NLO result before renormalization in terms of the coefficients of master integrals,

2\ 3¢
it =in (%) Z((Zkﬂ + Bi)Ix, (A74)

k

where a; and f;, are real. Thus, by the definition (5) we have

’u2 3¢
= <—2> Zakfﬁlk, (A75)
q 3
/"2 3¢
= (;) Zﬂkml k> (A76)
k

where the master integrals /; are defined to be dimensionless, which are the same as those in Eq. (15). Note that the 29
master integrals in Eq. (15) contain some symmetries, that is, some of them can be related to each other by shifting loop
momenta. After using these symmetries, we are only left with 14 master integrals, which are defined as

_ qz)ss—sn / (2111 dﬂ—m (A77)

2= (@) / (ﬁl . ) l1+lz+l%)212[;2 ml[l; = mp)’ A7)
=y | ( ) [0 B = A = = A7)
=@ @ ) a=h= i == A8

s= @ [ () gt A8
o=@ (H o) =t R A8

n= @ (ﬁ 50) = h =T =l i s A8
=7 [ (W) =i | o A
b= [ (11 o) =T =] T = (A8
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L= | (H ) G = R 4%
n=w [ (153 ey 7
=@ | (H <czlnl>) RN Ak= Wl — =) (A%8)

s =@ [ <H ) [T TR ETAE A e st (A59)
(H ) [T R SR (A%0)

Using the differential equation method, we obtain the
real part of the master integrals up to O(¢?) in terms of
Goncharov polylogarithms. The explicit expressions of «;,
Pi, and NI; are lengthy and will be presented in the
ancillary file of the arXiv preprint.

APPENDIX B: HIGHER-DIMENSIONAL
OPERATORS

In addition to (gg) and (g?GG) operators, we also
calculate the Wilson coefficients of the (g,ggG) operator
up to the leading contributions,

\39G
,0, {95q9G) — péq e +p<qq> (B1)
o5 <g‘qu> =P Eigxqu) + p;q@’ (B2)
where p#-449) and p (9:346) come directly from the {g,59G)
operator, while p?” and p'?”’ are contributions from the
expansion of the (ggq) operator [37]. Here p9196) and
(9,99G)
P are
a96) _ 1 Mo 50 +7
M =58 : B3
p 8 2 q2 v ( )
(9:24G) 1 v°+3 , v =1
== B4
Pi 32” » +— 2”2 6] p (B4)
and p<qq> and p§1314>
g 3 mg 5 v —1)(302 =1
7 ¢ v
G __1 34152 -3 3 0] (12 = 1)
Ty v 3272 PR
(B6)

Again, with the help of Eq. (14), our result confirms
previous calculations [16].

Note that p{7” and pf;m contain Coulombic-like singu-
larities, which will cause the integral over s in Eq. (7) to
diverge at the threshold. Thus, we cannot use the above
results in our sum rule analysis directly. To deal with these
singularities, we may consider resumming the leading
Coulombic interaction (%)" between two heavy quarks
Q. The amplitude of the (Q“CI"; Q") part of the baryon
current is multiplied by the Sommerfeld factor [17,57,58],

Cray

S(U) +’

1= exp( Cﬂ'(ls)

(B7)

where C is the color factor. In our case, Q“Q” forms a color

antitriplet, so C = 2. The resummed p9 and pflM are
<ql]>_ 3 mQ(\g(z_l)S 32_1
10 = 125230 2D s - )
+S)p(?+ 1) = S () - 1), (BS)

:@%[S(v)(vé+3v4+1502—3)
=S"(v)v*(v? = 1)2(v* =3)]

=S (w)v(v*=1)(v*+3)
22— 1)3
+il0p S ) - - 5002,

(B9)

where the prime denotes the derivative with respect to v.
After resummation, the Coulombic-like singularities are
regularized by the Sommerfeld factor, and the integral over
s in Eq. (7) converges.

Now we can include the (g;g¢gG) condensate in our sum
rule analysis, and investigate its contribution to the sum rule

014018-12
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and mg:+ estimation. The vacuum condensate parameter is
taken to be [16-21,41]

(9,G9G)(2 GeV) = (0.8 = 0.2 GeV?) x (gq)(2 GeV).
(B10)

The vacuum condensate can be evolved according to its
one-loop anomalous dimensions: y, z.6) = —y% [55].
The relative importance of each condensate term in the
OPE, including (g,G9G), is shown in Fig. 6.

By defining the condensate term of O; to be

s

ci=(0) [T dspuils)e . (B11)

the ratios between consecutive terms in the ml\Q/IS scheme at
central values of all parameters are

CR2GG

Caq

C9,a4G
CR2GG

= 24%, =8%. (BI2)

0.1
< 00 =TT
()
O o1
L qq
z -0.2 .. GG
Q
-03 — qqG

1.0 15 20 25 30
m3 (GeV?)

FIG. 6. Contributions of various terms on the right-hand side of
Eq. (7).

The ¢, 5,6 contribution to the right-hand side of Eq. (7) is
less than 0.6%, and the estimated mg:+ changes by less
than 0.3% in both the LO and LO 4 NLO cases. We see
that the OPE seems to show good convergence, and it might
be a good approximation to neglect the contributions of
operators with dimension larger than four in the sum rule
(7). Nevertheless, it is certainly helpful to have a systematic
study for the contributions of higher-dimensional operators
in the future.
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