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A unique feature of quantum chromodynamics (QCD), the theory of strong interactions, is the possibility
for gluonic degrees of freedom to participate in the construction of physical hadrons, which are color
singlets, in an analogous manner to valence quarks. Hadrons with no valence quarks are called glueballs,
while hadrons where both gluons and valence quarks combine to form a color singlet are called hybrids.
The unambiguous identification of such states among the experimental hadron spectrum has been thus far
not possible. Glueballs are particularly difficult to establish experimentally since the lowest lying ones are
expected to strongly mix with conventional mesons. On the other hand, hybrids should be easier to single
out because the set of quantum numbers available to their lowest excitations may be exotic, i.e., not realized
in conventional quark-antiquark systems. Particularly promising for discovery appear to be heavy hybrids,
which are made of gluons and a heavy-quark-antiquark pair (charm or bottom). In the heavy-quark sector
systematic tools can be used that are not available in the light-quark sector. In this paper we use a
nonrelativistic effective field theory to uncover for the first time the full spin structure of heavy-quark
hybrids up to 1=m2-terms in the heavy-quark-mass expansion. We show that such terms display novel
characteristics at variance with our consolidated experience on the fine and hyperfine splittings in atomic,
molecular and nuclear physics. We determine the nonperturbative contributions to the matching
coefficients of the effective field theory by fitting our results to lattice-QCD determinations of the
charmonium hybrid spectrum and extrapolate the results to the bottomonium hybrid sector where lattice-
QCD determinations are still challenging.

DOI: 10.1103/PhysRevD.99.014017

I. INTRODUCTION

Quantum chromodynamics (QCD), the strong-interac-
tion part of the standard model of particle physics, presents
a unique problem: the elementary degrees of freedom
(d.o.f.) of the theory, quarks and gluons, are not the
d.o.f. accessible via the experiments. These elementary
d.o.f. are confined inside color-singlet states generically
named hadrons, which form the spectrum of the theory.
A very successful classification scheme for hadrons was
independently proposed by Murray Gell-Mann [1] and
George Zweig [2] in 1964. It is called the quark model and
classifies hadrons according to their (valence) quark con-
tent. Two main families were identified: mesons, made of a

quark and an antiquark, and baryons, which contain three
quarks. Nevertheless, QCD also allows for the existence of
states formed by more than three valence quarks or by
solely gluonic excitations (glueballs) or by gluonic exci-
tations bound with quarks and antiquarks (hybrids).
The quark model received experimental verification in

the late 1960s and, despite extensive searches, a hadron
not fitting the quark-model classification scheme was not
unambiguously identified until the last decade, the first
being the Xð3872Þ discovered by the Belle Collaboration in
2003 [3]. Nowadays, more than two dozen nontraditional
charmonium- and bottomoniumlike states, the so-called
XYZ mesons, have been observed at experiments at
B-factories (BABAR, Belle and CLEO), τ-charm facilities
(CLEO-c and BESIII) and also proton-(anti)proton col-
liders (CDF, D0, LHCb, ATLAS and CMS). There is
growing evidence that at least some of the new states are
nonconventional hadrons such as glueballs, hybrids or
multiquark systems (see, e.g., reviews [4–7] for more
details on the experimental and theoretical status of the
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subject). While multiquark states may, under some circum-
stances, have an electromagnetic analogue in molecular
states, the discovery of a hadron containing a gluonic
excitation would confirm one of the most unique features of
QCD and ultimately open a new window on how matter
is made.
In addition to the experiments mentioned above, many

of which will remain active in the next two decades, a
new experiment, PANDA@FAIR, has been designed to
produce at the primary collision point a rich environment
of gluons in order to promote the formation of glueballs and
heavy hybrids [8].1

To support the experimental effort different theoretical
tools have been developed for studying this kind of bound
state. In the early days of hadron phenomenology several
models were proposed for glueballs and hybrids [10–15],
and more sophisticated versions have been developed in the
last years [16–21]. QCD sum rules have also been applied
to the study of heavy hybrids [22–27]. The interested reader
is referred to [28,29] for reviews on hybrids.
Approaches fully rooted in QCD are lattice simulations

and effective field theories (EFTs). The implementation of
these two techniques is, however, not devoid of difficulties.
For lattice calculations it is challenging to address excited
states, which require a large operator basis leaving never-
theless sometimes ambiguities in the ultimate identification
of the states. Studies of hybrids in lattice QCD have tradi-
tionally focused on the charmonium sector. Calculations in
the bottomonium sector require smaller lattice spacings,
making them computationally more demanding. A pioneer-
ing quenched calculation of the excited charmonium spec-
trum was presented in Ref. [30]. This study was extended by
theRQCDcollaboration [31,32] andby theHadron Spectrum
Collaboration [33,34]. The common result in all these studies
has been the identification of the lowest hybrid charmonium
spin multiplet at about 4.3 GeV containing a state with exotic
quantum numbers JPC ¼ 1−þ.
On the other hand, EFTs require clear separations

between the relevant scales of the system in order to be
useful, and necessitate the knowledge of matching coef-
ficients often of nonperturbative nature. In QCD, ΛQCD is
the scale of a few hundred MeV at which nonperturbative
effects dominate and a weak-coupling treatment is no
longer valid. For heavy-quark or quarkonium hybrids,
there is however at least one scale, the heavy-quark mass
m, which is much larger than any other scale of the s
ystem and, in particular, larger than ΛQCD. The existence
of this hierarchy of scales justifies the use of nonrela-
tivistic effective field theories to factorize high-energy
effects happening at the scale m from low-energy ones.

Moreover, the former may be computed in perturbation
theory. Another hierarchy of scales is due to the existence
of an energy gap between the gluonic excitations and the
excitations of the heavy-quark-antiquark pair as observed
in lattice data [35–38]. The gluon dynamics is nonpertur-
bative and, therefore, it occurs at the scale ΛQCD, while the
nonrelativistic heavy-quark-antiquark pair binds in the
background potential created by the gluonic excitations
at an energy scale of order mv2, where v is the relative
velocity between the heavy quark and antiquark [39].
The observed energy gap requires the hierarchy of scales
ΛQCD ≫ mv2 to be fulfilled. This energy gap, not present in
light-quark hybrids, has led to the observation that quar-
konium hybrids can be treated in the framework of the
Born-Oppenheimer approximation [35,40–43]. In recent
papers, the Born-Oppenheimer approximation has been
incorporated into an effective field theory formulation,
which is both rigorous and systematic, and it has been used
to compute the quarkonium hybrid spectrum [44–46]. The
mixing of standard and hybrid quarkonia has also been
studied in this framework in Ref. [45].
A complete picture of the quarkonium hybrid spectrum

cannot be obtained until, at least, the leading nonvanishing
spin-dependent contributions are calculated. These terms
break the degeneracy within the spin multiplets. The pattern
and values of the spin splittings distinguishes different
theoretical pictures for XYZ mesons; therefore their deter-
mination in the chamonium and bottomonium hybrid
sectors will be an important step forward in the under-
standing of exotic quarkonium.
In this paper, combining the EFT suited for hybrids with

information gained from lattice QCD, we derive for the first
time the full set of spin-dependent hybrid potentials up to
order 1=m2.2 These include the well-known spin-orbit,
spin-spin and tensor potentials that govern the fine and
hyperfine splittings in a broad span of problems from
atomic to nuclear and molecular physics, and a new set of
interactions unique to heavy hybrids.
The spin-dependent potentials contain perturbativeweakly

coupled contributions and nonperturbative ones. The for-
mer can be computed analytically and are known up to
some order in the strong coupling. The latter can be fitted
on data or, in the absence of data, on the spectrum obtained
from lattice QCD. Owing to the factorization of the EFTs,
the whole heavy-quark flavor dependence of the spin-
dependent potentials is encoded in the perturbative con-
tributions, while nonperturbative contributions are flavor
independent. Hence, we can use lattice data for charmo-
nium hybrids to fit the nonperturbative contributions and
predict the fine and hyperfine splittings of bottomonium
hybrids, where precise lattice-QCD calculations have
proved difficult.1The experimental search of hybrid mesons in the light-quark

sector has instead a long history mostly developed by the BNL-
E852 and COMPASS collaborations and will continue with the
new experiment GlueX@JLab12 [9].

2In Ref. [47], relations between the spin splittings of different
hybrid states were presented up to 1=m-suppressed terms.
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II. FORMALISM

Following [44] we classify quarkonium hybrids accord-
ing to their short-distance behavior in the static limit, i.e.,
at small heavy-quark-antiquark distances, r ≪ 1=ΛQCD.
There, quarkonium hybrids reduce to gluelumps, which
are bound states made of a color-octet heavy-quark-
antiquark pair and some gluonic fields in a color-octet
configuration localized at the center of mass of the heavy-
quark-antiquark pair [44,48,49]. A basis of gluelump states
can be written as

jκ; λi ¼ Pi
κλO

a†ðr;RÞGia
κ ðRÞj0i; ð1Þ

where R and r are the center-of-mass coordinate and the
relative distance of the heavy-quark-antiquark pair, respec-
tively; Pi

κλ is an operator that projects the gluelump to an
eigenstate of K · r̂with eigenvalue λ, where K is the angular
momentum operator of the gluons and r̂ the unit vector
along the heavy-quark-antiquark axis; Oa is a color-octet
heavy-quark-antiquark field and Gia

κ are gluonic fields in a
color-octet configuration; κ ¼ KPC with P and C parity and
charge conjugation of the gluonic fields, and i and a are
spin and color indices, respectively. Summations over
the indices i and a are implied. The states jκ; λi live in
representations, characterized by λ, of the cylindrical-
symmetry group D∞h (with P replaced by CP), which is
the same symmetry group of diatomic molecules. The
fields Ψκλðt; r;RÞ associated to the states jκ; λi are the
natural d.o.f. of the low-energy EFT for hybrids [44,46].
We use the same notation of [46] and refer to this EFT as
the Born-Oppenheimer EFT (BOEFT).
The BOEFT describes the low-energy excitations

(E ∼mv2) of the hybrids. It is obtained by sequentially
integrating out the modes at the higher energy scales m,
mv and ΛQCD. Here we extend the BOEFT of [44,46] to
include spin-dependent terms of order 1=m and 1=m2. The
Lagrangian describing the fields Ψκλðt; r;RÞ reads

LBOEFT ¼
Z

d3Rd3r
X
λλ0

Ψ†
κλðt; r;RÞ

�
i∂t − Vκλλ0 ðrÞ

þ Pi†
κλ

∇2
r

m
Pi
κλ0

�
Ψκλ0 ðt; r;RÞ þ…; ð2Þ

where the ellipsis stands for possible terms mixing hybrids
with different quantum numbers κ, and hybrids with
quarkonia. It also stands for hybrids coupling with light
hadrons. The hybrids that we examine in this work are the
lowest-lying excitations of κ ¼ 1þ−, which are separated
by a gap of order ΛQCD from excitations of different κ and
ordinary quarkonia. Hence, in our case, the contributions
coming from other hybrid states and quarkonia are inte-
grated out and included in the potential. They do not show
up as explicit d.o.f. in the Lagrangian (2), and the ellipsis

stands only for hybrids coupling with light hadrons, which
may be neglected. The potential Vκλλ0 can be organized into
an expansion in 1=m and a sum of spin-dependent (SD) and
spin-independent (SI) parts,

Vκλλ0 ðrÞ ¼ Vð0Þ
κλ ðrÞδλλ0 þ

Vð1Þ
κλλ0 ðrÞ
m

þ Vð2Þ
κλλ0 ðrÞ
m2

þ � � � ; ð3Þ

Vð1Þ
κλλ0 ðrÞ ¼ Vð1Þ

κλλ0SDðrÞ þ Vð1Þ
κλλ0SIðrÞ; ð4Þ

Vð2Þ
κλλ0 ðrÞ ¼ Vð2Þ

κλλ0SDðrÞ þ Vð2Þ
κλλ0SIðrÞ: ð5Þ

Besides the static potential, Vð0Þ
κλ ðrÞ, the other potentials

have not been computed in lattice QCD. We gain some
information by looking at them at short distances:
rΛQCD ≪ 1. At short distances the potentials may be
organized as a sum of a perturbative part, which is typically
nonanalytic in r, and a nonperturbative part, which is a
series in powers of r. The perturbative part comes from
integrating out modes scaling with the inverse quark-
antiquark distance 1=r, which at short distances is much
larger than ΛQCD. The nonperturbative part comes from
integrating out modes scaling with ΛQCD. The short-
distance expansion is consistent with our quantum number
attribution to the states. It is limited, however, to the lowest-
lying, most compact, hybrid states, the ones most likely to
be described in terms of gluelumps.
For the lowest-lying hybrid excitations of κ ¼ 1þ−,3 the

spin-dependent potentials take the form

Vð1Þ
1þ−λλ0SDðrÞ ¼ VSKðrÞðPi†

1λK
ijPj

1λ0 Þ · S
þ VSKbðrÞ½ðr · P†

1λÞðriKijPj
1λ0 Þ · S

þ ðriKijPj†
1λÞ · Sðr · P1λ0 Þ� þ � � � ; ð6Þ

Vð2Þ
1þ−λλ0SDðrÞ ¼ VSLaðrÞðPi†

1λLQQ̄P
i
1λ0 Þ · S

þ VSLbðrÞPi†
1λðLi

QQ̄S
j þ SiLj

QQ̄ÞP
j
1λ0

þ VS2ðrÞS2δλλ0 þ VS12aðrÞS12δλλ0
þ VS12bðrÞPi†

1λP
j
1λ0 ðSi1Sj2 þ Si2S

j
1Þ þ � � � ;

ð7Þ

where LQQ̄ is the orbital angular momentum of the heavy-
quark-antiquark pair, S1 and S2 are the spin vectors of the
heavy quark and heavy antiquark, respectively, S ¼ S1 þ
S2 and S12 ¼ 12ðS1 · r̂ÞðS2 · r̂Þ − 4S1 · S2. ðKijÞk ¼ iϵikj is
the angular momentum operator for the spin-1 gluons. The
projectors Pi

1λ read

3According to lattice QCD the hybrid static potentials Vð0Þ
1þ−λðrÞ

are the lowest lying at short distances [35,37].
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Pi
10 ¼ r̂i0 ¼ r̂i; ð8Þ

Pi
1�1 ¼ r̂i� ¼∓ ðθ̂i � iϕ̂iÞ=

ffiffiffi
2

p
; ð9Þ

where r̂ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ, θ̂ ¼ ðcos θ cosϕ,
cos θ sinϕ;− sin θÞ and ϕ̂ ¼ ð− sinϕ; cosϕ; 0Þ. The ellip-
ses in Eqs. (6) and (7) stand for terms suppressed by powers
of rΛQCD.
The matching coefficients of the spin-dependent poten-

tials read

VSK ¼ Vnp
SK; ð10Þ

VSKb ¼ Vnp
SKb; ð11Þ

VSLa ¼ Vo SL þ Vnp
SLa; ð12Þ

VSLb ¼ Vnp
SLb; ð13Þ

VS2 ¼ Vo S2 þ Vnp
S2
; ð14Þ

VS12a ¼ Vo S12 ; ð15Þ

VS12b ¼ Vnp
S12b

; ð16Þ

where we have separated the perturbative parts, Vo SL, Vo S2

and VoS12 , from the nonperturbative ones, labeled with np.
The perturbative parts are the spin-dependent parts of the
color-octet quark-antiquark potential, computed at leading
order in [50]. The nonperturbative parts can be written as an
expansion in r2: Vnp ¼ Vnp ð0Þ þ Vnp ð1Þr2 þ � � �. The coef-
ficients Vnp ðiÞ do not depend on r and can be expressed in
terms of gluonic correlators. They are made out of the
gluon fields in the gluelump and in the interaction vertices
of the weakly coupled potential nonrelativistic QCD
(pNRQCD) Lagrangian that can be read off from
Ref. [51]. Eventually, gluonic correlators may be computed
on the lattice. For the purpose of this paper we consider
them just as constants independent of each other that
respect, however, the power counting of the EFT.
We aim to include terms up to order Λ3

QCD=m
2 and mv4

to the spin splittings. The perturbative spin-dependent
potentials VoSL, VoS2 and VoS12 scale like m3v4 if we
count the Coulomb potential as mv2. For the nonperturba-

tive potential Vnp
SK we need to include Vnp ð0Þ

SK , which scales

like Λ2
QCD, and Vnp ð1Þ

SK , which scales like Λ4
QCD. Higher

order terms in the expansion of Vnp
SK may or may not be

relevant in dependence of the relative size of ΛQCD=m
with respect to v. In the present analysis we neglect
them. The term proportional to VSKb contributes only
to off-diagonal terms (λ ≠ λ0) and turns out to be
therefore negligible for the present computation. The size
of the other potentials follows from dimensional analysis:

Vnp ð0Þ
SLa ; Vnp ð0Þ

SLb ; Vnp ð0Þ
S2 ; Vnp ð0Þ

S12b
∼ Λ3

QCD. Spin-independent
potentials are irrelevant at our accuracy. Only the r-
dependent part of the spin-independent 1=m potential
could, in principle, contribute to the spin splittings in
second order perturbation theory if it is of order Λ2

QCD=m
or larger. However, the nonperturbative contribution is
necessarily r2Λ4

QCD=m∼Λ2
QCD=m×ðΛQCDrÞ2≪Λ2

QCD=m
and the perturbative one shows up only at one loop and
is therefore of order mv4 as in the quarkonium case [52].
The flavor dependence of the BOEFT Lagrangian is in

the mass m and, at the order we are working here, in the
one-loop expression of the quark chromomagnetic match-

ing coefficient cF that enters Vnp ð0Þ
SK ; see the Feynman

diagram in Fig. 1. The expression of cF at OðαsÞ has been
derived in Ref. [53].
In Ref. [44] the coupled Schrödinger equations resulting

from the Lagrangian (2) with the mixing of the static

potentials Vð0Þ
1þ−λðrÞ, λ ¼ 0;�1 have been solved and the

hybrid spectrum has been calculated. The mixing with
other static states is suppressed by a large energy gap. The

static potentials Vð0Þ
1þ−λðrÞ have been obtained from match-

ing it to the static energies computed on the lattice in
Refs. [37,38]. There are two types of solution correspond-

ing to states with opposite parity, ΨNjmjls
þ and ΨNjmjls

− ,4

ΨNjmjls
þ ðrÞ ¼

X
mlms

C
jmj

lmlsms

0
BBB@

ψ ðNÞ
0 ðrÞv0lml

ðθ;ϕÞ
1ffiffi
2

p ψ ðNÞ
þ ðrÞvþ1

lml
ðθ;ϕÞ

1ffiffi
2

p ψ ðNÞ
þ ðrÞv−1lml

ðθ;ϕÞ

1
CCCAχsms

;

ð17Þ

ΨNjmjls
− ðrÞ ¼

X
mlms

C
jmj

lmlsms

0
BB@

0
1ffiffi
2

p ψ ðNÞ
− ðrÞvþ1

lml
ðθ;ϕÞ

− 1ffiffi
2

p ψ ðNÞ
− ðrÞv−1lml

ðθ;ϕÞ

1
CCAχsms

;

ð18Þ

FIG. 1. Feynman diagram contributing to Vnp ð0Þ
SK . The double

and curly lines represent the heavy-quark-antiquark octet and the
gluon field, respectively. The black dot stands for a cFSi · B=m
induced vertex from the weakly coupled pNRQCD Lagrangian,
the circles with a cross for the gluelump operators and the shaded
circle represents nonperturbative gluon exchanges.

4The P and C of Ψ� are P ¼ �ð−1Þl and C ¼ �ð−1Þlþs.
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where lðlþ 1Þ is the eigenvalue of L2, with L ¼
ðLQQ̄ þ KÞ; jðjþ 1Þ and mj are the eigenvalues of J2

and J3, respectively, with J ¼ Lþ S; sðsþ 1Þ is the

eigenvalue of S2; the C
jmj

lmlsms
are Clebsch-Gordan coeffi-

cients. The eigenfunctions vλl ml
are generalizations of the

associated Legendre polynomials for systems with cylin-
drical symmetry. Their derivation can be found in textbooks
such as Ref. [54]. The χsms

are the spin wave functions.

The radial wave functions ψ ðNÞ
0 ;ψ ðNÞ

þ ;ψ ðNÞ
− are obtained

numerically by solving the coupled Schrödinger equations,
with N labeling the radially excited states.

III. RESULTS

We use standard time-independent perturbation theory to
compute the mass shifts in the heavy hybrid spectrum
produced by the spin-dependent operators in Eqs. (6) and
(7) for the states with wave functions given in Eqs. (17)
and (18). We carry out perturbation theory to second order

for the 1=m-suppressed operator proportional to Vnp ð0Þ
SK in

Eq. (6), and to first order for the other operators in Eqs. (6)
and (7). Since the orbital wave functions vλl ml

ðθ;ϕÞ are
eigenfunctions of L2 ¼ ðLQQ̄ þ KÞ2 instead of L2

QQ̄, the

computation of the expectation values of operators con-
taining LQQ̄ requires some care. The details on the
computation of these matrix elements can be found in
Appendix.
Finally, we note that the expectation values of Vo S2ðrÞ

vanish for all our hybrid states. This follows from Vo S2ðrÞ ∼
δ3ðrÞ and from the hybrid wave functions being 0 at the
origin owing to the spin of the gluons in the gluelumps [44].
We present results for the four lowest-lying spin multiplets

shown in Table I. The six nonperturbative parameters Vnp ð0Þ
SK ,

Vnp ð1Þ
SK , Vnp ð0Þ

SLa , Vnp ð0Þ
SLb , Vnp ð0Þ

S2 , Vnp ð0Þ
S12b

that appear in the spin-
dependent potentials in Eqs. (10)–(16) are obtained by fitting
the spin splittings resulting from our calculation to lattice
data of the charmonium hybrid spectrum.
Two sets of lattice data from the Hadron Spectrum

Collaboration are available, one set from Ref. [33] with
a pion mass of mπ ≈ 400 MeV and a more recent set
from Ref. [34] with a pion mass of mπ ≈ 240 MeV.

Uncertainties associated to discretization effects were
estimated in Ref. [33] to be ∼40 MeV. No analogous
study was carried out in Ref. [34], but similar associated
uncertainties are expected. Adopting the same theoretical
setting as in [44], we define the heavy-quark masses in the
RS0 scheme [55], which has the advantage to not affect
the quark chromomagnetic matching coefficient, cF, at
the order we are working. For the charm mass we take
mRS

c ð1 GeVÞ ¼ 1.477 GeV and for αs at four loops with
three massless flavors, αsð2.6 GeVÞ ¼ 0.26. In the fit the
lattice data are weighted by ðΔ2

lattice þ Δ2
high−orderÞ1=2, where

Δlattice is the uncertainty of the lattice data and Δhigh−order ¼
ðmlattice −mlattice spin-averageÞ × ΛQCD=m is the estimated
size of the theoretical uncertainty due to higher order
terms in the potential, with ΛQCD taken to be 0.5 GeV.
The size of the Vnp ðiÞ’s is introduced to the fit through a
prior. The outcome of the fit is consistent with the non-
perturbative potentials scaling naturally, i.e., Vnp ðiÞ ∼
ðfew hundredsMeVÞd, where d is the mass dimension
of Vnp ðiÞ.
The results of the fit to the lattice data of Ref. [34] are

shown in Fig. 2. The values of the nonperturbative
matching coefficients obtained in the fit are shown in
Table II. Each panel in Fig. 2 corresponds to one of the
multiplets of Table I. The most right (purple) boxes for
each quantum number indicate the lattice results: the
middle line corresponds to the mass of the state obtained
from the lattice and the height of the box provides the
uncertainty. The (red) dashed line indicates the spin-
average mass of the lattice results. The most left (green)
boxes for each quantum number correspond to the
spin splittings from the perturbative contributions to
Eqs. (10)–(16). The height of these boxes (Δp) is an
estimate of the uncertainty, given by the parametric size
of the higher order corrections to the perturbative part
of the potential, which is Oðmα5s Þ. The central (blue)
boxes for each quantum number are the full results
including the nonperturbative contributions after fitting

TABLE I. Lowest-lying quarkonium hybrid multiplets. The
number labeling H reflects the order in which the state appears in
the spectrum from lower to higher masses. Note that the l ¼ 0
state is not the lowest mass state [44].

Multiplet l JPCðs ¼ 0Þ JPCðs ¼ 1Þ
H1 1 1−− ð0; 1; 2Þ−þ
H2 1 1þþ ð0; 1; 2Þþ−

H3 0 0þþ 1þ−

H4 2 2þþ ð1; 2; 3Þþ−

TABLE II. Nonperturbative matching coefficients determined by
fitting the charmonium hybrid spectrum obtained from the hybrid
EFT to the lattice spectrum from the Hadron Spectrum Collabo-
ration data of Ref. [34] with pion mass of mπ ≈ 240 MeV,
respectively. The matching coefficients are normalized to their
parametric natural size. We take the value ΛQCD ¼ 0.5 GeV.

Vnp ð0Þ
SK =Λ2

QCD 1.03

Vnp ð1Þ
SK =Λ2

QCD −0.51
Vnp ð0Þ
SLa =Λ3

QCD −1.32
Vnp ð0Þ
SLb =Λ3

QCD 2.44

Vnp ð0Þ
S2 =Λ3

QCD −0.33

Vnp ð0Þ
S12b

=Λ3
QCD

−0.39
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the six nonperturbative parameters to the lattice data.
The height of these boxes provides the uncertainty of the
full result. This uncertainty is given by Δfull ¼
ðΔ2

p þ Δ2
np þ Δ2

fitÞ1=2, where the uncertainty of the non-
perturbative contribution Δnp is estimated to be of the
same parametric size as the next order contribution to the
matching coefficients. Δfit is the statistical error of the fit.
The light-quark mass dependence of the spin splittings in

hybrid charmonium can be studied comparing the results of

Refs. [33,34], where only a mild light-quark mass depend-
ence is observed and the pattern and number of charmo-
nium states at the two pion masses are the same. Moreover
the leading light-quark mass dependence of the hybrid
spectrum cancels out in the case of the spin splittings. The
light-quark dependence of the nonperturbative matching
coefficients of our EFT can be estimated by fitting the
lattice data of Ref. [33] and comparing with the results
presented in Fig. 2. The precision of the determination of
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FIG. 2. Spectrum of the four lowest-lying charmonium hybrid multiplets. The lattice results from Ref. [34] with mπ ≈ 240 MeV are
the most right (purple) boxes for each quantum number. The perturbative contributions to the spin-dependent operators in Eq. (7) added
to the spin average of the lattice results (red dashed lines) are the most left (green) boxes. The central (blue) boxes for each quantum
number are the full results from the spin-dependent operators of Eqs. (6) and (7) including perturbative and nonperturbative
contributions. The unknown nonperturbative matching coefficients are fitted to reproduce the lattice data. The height of the boxes
indicates the uncertainty as detailed in the text.
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the nonperturbative parameters is limited to the size of the
neglected higher order contribution in our EFT counting;
we observe that the variation of the parameters is within or
close to this theoretical uncertainty; therefore no significant
light-quark dependence of the nonperturbative parameters
can be inferred.
The multiplets H1 and H2 correspond to states with

l ¼ 1, and negative and positive parity, respectively. The
mass splitting between H1 and H2 is a result of the mixing

between states of λ ¼ 0 and λ ¼ �1 induced by the kinetic-
energy operator [44], a phenomenon known in molecular
physics as Λ-doubling. The perturbative parts of the
matching coefficients produce a pattern of spin splittings
which is opposite to the one predicted by lattice-QCD
simulations and opposite to ordinary quarkonia due to
the repulsive nature of the octet potential. This discrepancy
can be reconciled thanks to the nonperturbative contribu-

tions, in particular, due to the dominant one: Vnp ð0Þ
SK , which
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FIG. 3. Spectrum of the four lowest-lying bottomonium hybrids computed by adding the spin-dependent contributions from
Eqs. (10)–(16) to the spectrum obtained in Ref. [44]. The nonperturbative contribution to the matching coefficients is determined from
the fit of the charmonium hybrids spectrum of Ref. [34] shown in Fig. 2. The average mass for each multiplet is shown as a red line. The
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is of order Λ2
QCD=m, and, therefore, parametrically larger

than the perturbative contributions, which are of ordermv4.
A consequence of the countervail of the perturbative
contributions is a relatively large uncertainty on the full
result caused by the large nonperturbative contributions.
Due to this uncertainty the mass hierarchies among the
spin triplet states of some multiplets, in particular, for the
H4 charmonium hybrid multiplet, could not be firmly
established.
Having determined the values of the Vnp ðiÞ’s by fitting to

the charmonium hybrid spectrum computed on the lattice,
we can predict the spin contributions in the bottomonium
hybrid sector, for which lattice determinations are yet very
sparse. The only flavor dependence of the Vnp ðiÞ’s relevant
at the precision we aim for is in the mass and in the quark

chromomagnetic matching coefficient, cF, in Vnp ð0Þ
SK .

Both are known. We compute the bottomonium hybrid
spectrum by adding the spin-dependent contributions from
Eqs. (10)–(16) to the spectrum computed in Ref. [44]. We
show the results thus obtained in Fig. 3. For the bottom we
have used the RS0 mass mRS

b ð1 GeVÞ ¼ 4.863 GeV.

IV. CONCLUSIONS

Using a recently developed nonrelativistic effective field
theory [44–46] we have obtained for the first time the 1=m
and 1=m2 spin interactions characterizing the fine and
hyperfine splittings of heavy quarkonium hybrids, one type
of exotic hadron under intensive study at high-energy
experiments at the B-factory in Japan, the τ-charm factory
in China as well at the LHC at CERN and in perspective at
FAIR in Germany.
The spin interactions in quarkonium hybrids display

novel features. The most interesting one is the appearance
of operators already at order 1=m that couple the total spin
of the heavy-quark-antiquark pair with the spin of the
gluons [45]. At order 1=m2, we have the spin-orbit, spin-
spin and tensor operators familiar from the studies of
standard quarkonia. In addition, at order 1=m2, two new
relevant operators appear involving the projectors associ-
ated to the representations of D∞h.
The spin interactions depend on some matching coef-

ficients. Their contributions coming from integrating out
the heavy-quark mass and the heavy-quark-antiquark dis-
tance are of perturbative nature, and, therefore, can be
calculated in an expansion in the strong coupling. The
contributions coming from integrating out the scale ΛQCD

are nonperturbative. Due to the separation of scales under-
lying the construction of the EFT, the heavy quark-
antiquark flavor dependence of the matching coefficients
can be factorized from the gluon correlators encoding the
nonperturbative dynamics. Thus nonperturbative contribu-
tions to the matching coefficients can be determined in the
charm sector and then used in the bottom sector. Using the
latest lattice-QCD calculations of the charmonium hybrid

spectrum we have determined the nonperturbative contri-
butions and obtained new predictions for the bottomonium
hybrid spin splittings where lattice-QCD calculations are
still very challenging and incomplete.
We have found that the perturbative contributions, corre-

sponding to the spin-dependent color-octet quark-antiquark
potentials, generate a spin-splitting pattern opposite to the
one observed in lattice QCD. In our framework, this
deviation is compensated by the nonperturbative contribu-
tions, in particular, by the order 1=m operator that is peculiar
of hybrid states and has no perturbative counterpart.
Finally, we note that, since this EFT setup can be

generalized to describe states with light d.o.f. other than
gluons, such as heavy tetraquarks and pentaquarks [43,46],
a similar analysis could be done to describe spin multiplets
of exotic quarkonia other than hybrids, eventually provid-
ing an unified description of all heavy-quark-antiquark spin
multiplets.
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APPENDIX: MATRIX ELEMENTS OF
OPERATORS INVOLVING LQQ̄

The angular momentum operator in spherical coordi-
nates reads

LQQ̄ ¼ −iϕ̂∂θ þ
i

sin θ
θ̂∂ϕ: ðA1Þ

One can compute the following commutators of the
angular momentum operator and the unit vectors in
spherical coordinates

½Li
QQ̄; r̂

j
0� ¼ r̂iþr̂j− − r̂i−r̂

j
þ; ðA2Þ

½Li
QQ̄; θ̂

j� ¼ iϕ̂ir̂j0 þ i cotðθÞθ̂iϕ̂j; ðA3Þ

½Li
QQ̄; ϕ̂

j� ¼ −iθ̂iðr̂j0 þ cotðθÞθ̂jÞ; ðA4Þ

from which we obtain the commutators with the projection
vectors
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½Li
QQ̄; r̂

j
�� ¼ �ðr̂ j0 r̂i� þ cotðθÞθ̂ir̂ j�Þ: ðA5Þ

For any λ, we have

h
Li
QQ̄; r̂

j
λ

i
¼ λ cotðθÞr̂jλθ̂i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

λðλ − 1Þ
2

r
r̂jλ−1r̂

iþ

−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

λðλþ 1Þ
2

r
r̂jλþ1r̂

i
−: ðA6Þ

To compute the matrix elements of VSLa we rewrite the
operator in the following way,

ðr̂i†λ LQQ̄r̂
i
λ0 Þ · S ¼ ðLQQ̄δλλ0 þ r̂i†λ ½LQQ̄; r̂

i
λ0 �Þ · S

¼

0
B@

LQQ̄ r̂†þ −r̂†−
r̂þ LQQ̄ þ cot θθ̂ 0

−r̂− 0 LQQ̄ − cot θθ̂

1
CA · S

¼ δλλ0 ½LQQ̄ þ λðcot θθ̂þ r̂0Þ� · Sþ iðr̂†λ × r̂λ0 Þ · S
¼ δλλ0L · S − ðr̂i†λ ðK1Þijr̂jλ0 Þ · S

¼ δλλ0

2
ðJ2 − L2 − S2Þ − ðr̂i†λ ðK1Þijr̂jλ0 Þ · S; ðA7Þ

where we have used that

½LQQ̄ þ λðcot θθ̂þ r̂0Þ�2

¼ L2
QQ̄ þ λ2

sin2θ
þ 2iλ

cos θ
sin2θ

∂θ ≡ L2; ðA8Þ

which is the operator whose eigenfunctions are our angular
wave functions,

�
L2
QQ̄ þ λ2

sin2θ
þ 2iλ

cos θ
sin2θ

∂θ

�
vλlmðθ;ϕÞ

¼ lðlþ 1Þvλlmðθ;ϕÞ: ðA9Þ

Next we show a detailed computation of the matrix
elements of the operator VSLb,

r̂†iλ0 ðLi
QQ̄S

l þ SiLl
QQ̄Þr̂lλ: ðA10Þ

The first term in Eq. (A10) can be manipulated as follows:

r̂†iλ0 S
iLl

QQ̄r̂
l
λ ¼ ðr̂†λ0 · SÞðr̂λ · LQQ̄ þ ½Ll

QQ̄; r̂
l
λ�Þ

¼ ðr̂†λ0 · SÞ
�
r̂λ · LQQ̄ − λ2

cotðθÞffiffiffi
2

p
�
: ðA11Þ

This expression vanishes for λ ¼ 0. In the case λ ¼ �1,

r̂†iλ0 S
iLl

QQ̄r̂
l
� ¼ ðr̂†λ0 · SÞ

�
r̂� · LQQ̄ −

cotðθÞffiffiffi
2

p
�

¼∓ ðr̂†λ0 · SÞffiffiffi
2

p
�
�∂θ −

i
sinðθÞ ∂ϕ þ λ cotðθÞ

�

¼∓ ðr̂†λ0 · SÞffiffiffi
2

p K∓: ðA12Þ

The operators K� act as the λ-raising and -lowering
operators for the angular wave functions vλlml

,

K�vλlml
ðθ;ϕÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ − λðλ� 1Þ

p
vλ�1
lml

ðθ;ϕÞ: ðA13Þ

The second piece of the operator in Eq. (A10) can be
written in a similar way,

r̂†iλ0L
i
QQ̄S

lr̂lλ ¼ ð½r̂†iλ0 ; Li� þ LQQ̄ · r̂†λ0 ÞS · r̂λ

¼
�
LQQ̄ · r̂†λ0 − ðλ0Þ2 cotðθÞffiffiffi

2
p

�
r̂λ · S: ðA14Þ

In this case the operator vanishes for λ0 ¼ 0. For λ0 ¼ �1
we have

r̂†i�L
i
QQ̄S

lr̂lλ ¼
�
ðr̂� · LQQ̄Þ† −

cotðθÞffiffiffi
2

p
�
r̂λ · S

¼∓
�
�∂θ −

i
sinðθÞ ∂ϕ þ λ0 cotðθÞ

�† r̂λ · Sffiffiffi
2

p

¼∓ K0†∓
ðr̂λ · SÞffiffiffi

2
p : ðA15Þ

The prime in K0∓ indicates that the operator depends on λ0

instead of λ. Adding up both contributions we arrive at

r̂†iλ ðLi
QQ̄S

l þ SiLl
QQ̄Þr̂lλ0

¼∓ K†∓
ðr̂λ0 · SÞffiffiffi

2
p δλ�1 ∓ ðr̂†λ · SÞffiffiffi

2
p K0∓δλ0�1: ðA16Þ
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