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We investigate the thermoelectric effect for baryon rich plasma produced in heavy ion collision
experiments. We estimate the associated Seebeck coefficient for the hadronic matter. Using kinetic theory
within relaxation time approximation we calculate the Seebeck coefficient of a hadronic medium with a
temperature gradient. The calculation is performed for hadronic matter modeled by the hadron resonance
gas model with hadrons and resonance states up to a cutoff in the mass as 2.25 GeV. We argue that the
thermoelectric current produced by such effect can produce a magnetic field in heavy ion collision
experiments.
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I. INTRODUCTION

Transport coefficients of strongly interacting matter
under extreme conditions of temperature, density, and/or
magnetic fields have been one of the most challenging
interests in the field of strong interaction physics. In the
context of relativistic heavy ion collision experiments
(RHIC), these are important input parameters that enter
in the dissipative relativistic hydrodynamics as well as
transport simulations, that are being used to describe the
evolution of the matter subsequent to a heavy ion collision.
Indeed, a small shear viscosity to entropy ratio (η=s) was
necessary to explain the flow data [1–3]. The smallness of
η=s is significant in connection with the conjectured lower
bound of η=s ¼ 1=4π which initiated a flurry of activity in
understanding this from microscopic theory [3]. The other
viscosity coefficient, the bulk viscosity ζ, was later realized
to be also important in the dissipative hydrodynamics
describing the Quark Gluon Plasma (QGP) evolution
[4–10]. The bulk viscosity scales as the conformal measure
ðϵ − 3PÞ=T4, and becomes very large near the quark
hadron phase transition as inferred from lattice QCD
simulations. The effect of large bulk viscosity has been
investigated for particle spectra and flow coefficients.
Effects of bulk viscosity and shear viscosity on the elliptic
flow have also been investigated. Both η=s and ζ=s as a

function of temperature show nonmonotonic behavior near
the critical temperature Tc [4–10]. In case of noncentral
heavy ion collision, a large magnetic field is also expected
to be produced. The strong magnetic field so produced has
exciting possibilities of observing different CP violating
effects like chiral magnetic effect and chiral vortical
effect [11]. The effect of such strong magnetic field on
enhancing the elliptic flow coefficient has been investi-
gated. Such phenomenologically interesting manifestation
of strong magnetic fields also requires that a strong
magnetic field survives for at least few Fermi proper time.
The crucial parameter that enters in the time dependence
of the magnetic field in the medium is the electrical
conductivity, σel [12–30]. These transport coefficients for
quark matter can be estimated using different approaches
like perturbative QCD, and different effective models (see
[31–56]). The other transport coefficient that has been
important for heavy ion collisions involving high baryon
densities, is the thermal conductivity. The effects of thermal
conductivity on relativistic hydrodynamics have only
recently been studied [57,58].
In the present work, we investigate another related

coefficient relevant for high density heavy ion collision,
namely, the thermoelectric behavior of the strongly inter-
acting matter in heavy-ion collisions. The phenomenon in
which a temperature gradient in a conducting material is
converted to electrical current and vice versa is known as
thermoelectric effect, which is also known as the Seebeck
effect. The Seebeck effect in a conductor is a manifestation
of the fact that when there exists a temperature gradient, the
charge carriers would diffuse toward the region of lower
temperature. This diffusion continues till the electric field
generated by the motion of charge carriers becomes strong
enough to stop this motion. The Seebeck coefficient is
defined as the electric field produced in a conducting
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medium due to a temperature gradient when the electrical
current is set to zero [59,60]. Such properties have been
investigated in various condensed matter systems quite
extensively. This includes the study of the Seebeck effect in
superconductors [61,62], the Seebeck effect in the gra-
phene-superconductor junction [63], thermoelectric signa-
tures of a Majorana bound state coupled to a quantum
dots [64], thermoelectric properties of high temperature
cuprates [65], thermoelectric properties of superconductor-
ferromagnetic tunnel junctions [66], Seebeck coefficient in
low dimensional organic metals [67], etc.
In the present investigation, we study the Seebeck effect

for hot and dense hadronic matter. It may be noted that in
the usual condensed matter systems, the thermoelectric
effect requires only a temperature gradient, as the ions in
the lattice are stationary. On the other hand, e.g., in an
electron-positron plasma, just having a temperature gra-
dient is not enough to lead to any thermoelectric current.
This will be similar in quark gluon plasma (QGP) with zero
baryon density. However, the situation is different at finite
baryon chemical potential, when the number of baryons
and antibaryons are different. In the presence of a temper-
ature gradient, there will be net thermoelectric current
driven by the temperature gradient as there will be unequal
number of positive and negative charge carriers. For the
heavy-ion collisions at Facility for Antiproton and Ion
Research (FAIR) at Darmstadt [68] and in Nuclotron-based
Ion Collider fAcility (NICA) at Dubna [69] one expects a
baryon-rich strongly interacting medium to be created. In
these cases, the thermalization of the strongly interacting
medium is expected, which is not electrically charge
neutral. The strongly interacting matter created in heavy-
ion collisions can have large temperature gradient between
the central and the peripheral regions of the collision. Thus,
by allowing the possibility of a temperature gradient, one
can argue that the electric current in the medium will not
only depend on the given electric field, but also on the
temperature gradient. Keeping the above motivation in
mind, we calculate the Seebeck coefficient of hadron
resonance gas within the kinetic theory framework in the
relaxation time approximation. As the mesons carry no
baryonic chemical potential, one might naively expect that
the mesons (dominantly pions) will not contribute to the
Seebeck coefficient. However, as we shall see, mesons also
become relevant for the total Seeback coefficient of such
hot and dense hadronic matter.
The hadronic phase of the strongly interacting medium

created in heavy ion collisions are well described in terms
of the hadron resonance gas (HRG) model, at chemical
freeze-out [70,71]. If one assumes strange and nonstrange
particles freeze out in the same manner then HRG model
has only two parameters T and μ in its simplest form, where
T and μ are temperature and baryon chemical potential
respectively. HRG model has been very successful in
explaining the experimental result of the thermal

abundance of different particle ratios in the heavy ion
collisions, for a given temperature and baryon chemical
potential [72]. Naively one expects that a system of hadrons
will be an interacting system and in general, thermody-
namics of interacting hadrons can be nontrivial. However, it
has been shown that in the presence of narrow resonances,
the thermodynamics of interacting gas of hadrons can be
approximated by the non-interacting gas of hadrons and
resonances [73,74]. Due to its simple structure and minimal
parameters, HRG model has been well explored regarding
thermodynamics [75,76], conserved charge fluctuations
[77–81] as well as transport coefficients for hadronic
matter [15,17,18,32–36,36–56]. One can improve upon
the ideal HRG model, e.g., including excluded volume
HRG model [56,82]. In present investigation, we will only
discuss within the ideal hadron resonance gas model at
finite temperature (T) and baryon chemical potential (μ) to
estimate the Seebeck coefficient. We would like to mention
here that, although, thermoelectric effect has been studied
extensively in the condensed matter systems, it has not been
studied in the context of heavy ion collisions. The present
work is a first step in that direction limited to hot and dense
hadronic matter.
This paper is organized as follows, in Sec. II we introduce

the formalism of the Seebeck coefficient from kinetic theory
within relaxation time approximation. We also generalize it
to a multicomponent system. In Sec. III we briefly discuss
the HRG model and estimate the relaxation time within the
same model. In Sec. IV we present and discuss the results
for the Seebeck coefficient. Finally we summarize our work
with an outlook in the conclusion section.

II. BOLTZMANN EQUATION IN RELAXATION
TIME APPROXIMATION AND SEEBECK
COEFFICIENT FOR MULTICOMPONENT

SYSTEM

We consider here the linearized Boltzmann equation in
relaxation time approximation. For a linear problem or
weak external fields, the Boltzmann equation can be
interpreted as a linear expansion of the distribution function
around the equilibrium distribution function, hence fðk⃗Þ
which denotes out of equilibrium distribution function, is
not very far from equilibrium. Due to strong interaction
equilibrium is achieved locally and electromagnetic force
will take the system out of equilibrium. Using the linear
response approximation we write the Boltzmann equation
as [83],

v⃗:∇⃗r⃗f0þ F⃗:∇⃗k⃗f0¼−
fðr⃗; k⃗Þ−f0ðr⃗; k⃗Þ

τðk⃗Þ
≡−

fð1Þðr⃗; k⃗Þ
τðk⃗Þ

; ð1Þ

where, f0 denotes equilibrium distribution function, f
denotes out of equilibrium distribution function, and τ
denotes the relaxation time of the system. The local
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equilibrium distribution function is considered to be of the
following form [83]:

f0ðr⃗; k⃗Þ ¼
1

1þ expðEðk⃗Þ−μðr⃗ÞTðr⃗Þ Þ
; ð2Þ

where E, T, and μ denote energy, temperature, and
chemical potential respectively, and they are functions of
position vector r⃗. Relaxation time encodes interaction
processes of the microscopic theory and these interaction
does not depend on the coordinate position. It is further
assumed that cross section of the local interaction is
independent of spatial coordinates. Using Eq. (2) spatial
gradient of distribution function can be written as,

∇⃗r⃗f0ðr⃗; k⃗Þ ¼ −
f0ðr⃗; k⃗Þðf0ðr⃗; k⃗Þ − 1Þ

T

× ð∇⃗r⃗μðr⃗Þ þ ðEðk⃗Þ − μðr⃗ÞÞ∇⃗r⃗ lnTðr⃗ÞÞ: ð3Þ

To get the above equation we have used,

∂f0ðr⃗; k⃗Þ
∂Eðk⃗Þ ¼ f0ðr⃗; k⃗Þðf0ðr⃗; k⃗Þ − 1Þ

T
ð4Þ

Similarly for the second term in the left-hand side (L.H.S.)
of Eq. (1), momentum derivative of distribution function is
given by,

∇⃗k⃗f0ðr⃗; k⃗Þ¼
∂f0ðr⃗; k⃗Þ
∂Eðk⃗Þ ∇⃗k⃗Eðk⃗Þ¼

f0ðr⃗; k⃗Þðf0ðr⃗; k⃗Þ−1Þ
T

v⃗;

ð5Þ

where we have written, ∇⃗k⃗Eðk⃗Þ ¼ v⃗.
Using Eqs. (3) and (5) the Boltzmann equation [Eq. (1)]

can be recast as, with the force F⃗ ¼ eE⃗,

fð1Þðr⃗; k⃗Þ
τðk⃗Þ

¼ −
f0ðr⃗; k⃗Þðf0ðr⃗; k⃗Þ − 1Þ

T
v⃗:

�
eE⃗ − Tðr⃗Þ∇⃗r⃗

�
μðr⃗Þ
Tðr⃗Þ

�
−
Eðk⃗Þ
Tðr⃗Þ ∇⃗r⃗Tðr⃗Þ

�
: ð6Þ

From now on we omit the explicit functional dependence of distribution function (f0), chemical potential (μ), temperature
(T) and relaxation time (τ) unless otherwise stated.
Electric current density is defined as,

j⃗ ¼ eg
ð2πÞ3

Z
∞

−∞
v⃗fd3k⃗ ¼ eg

ð2πÞ3
Z

∞

−∞
v⃗fð1Þd3k⃗; ð7Þ

here g is the degeneracy factor. In writing the second step we have used the fact that the equilibrium distribution function,
being isotropic does not leads to a current. Similarly the heat current is defined as for example see Eq. (2.42) of [84],

j⃗Q ¼ g
ð2πÞ3

Z
∞

−∞
ðE − μÞv⃗fð1Þd3k⃗: ð8Þ

Note that heat current here is denoted as j⃗Q (“Q” stands for heat) and j⃗ denotes the electric current throughout this paper.
Using Eq. (6) in Eqs. (7) and (8) for fð1Þ electric and the heat current respectively given as,

j⃗ ¼ −
eg

ð2πÞ3
Z

∞

−∞

f0ðf0 − 1Þ
T

τv⃗

�
v⃗:

�
eE⃗ − T∇⃗

�
μ

T

�
−
E
T
∇⃗T

��
d3k⃗: ð9Þ

j⃗Q ¼ −
g

ð2πÞ3
Z

∞

−∞
ðE − μÞ f0ðf0 − 1Þ

T
τv⃗

�
v⃗:

�
eE⃗ − T∇⃗

�
μ

T

�
−
E
T
∇⃗T

��
d3k⃗: ð10Þ

For an isotropic medium j⃗, j⃗Q reduced to,

j⃗ ¼ −
eg

ð2πÞ3
Z

∞

−∞

f0ðf0 − 1Þ
T

τ
v2

3

��
eE⃗ − T∇⃗

�
μ

T

�
−
E
T
∇⃗T

��
d3k⃗; ð11Þ

j⃗Q ¼ −
g

ð2πÞ3
Z

∞

−∞
ðE − μÞ f0ðf0 − 1Þ

T
τ
v2

3

��
eE⃗ − T∇⃗

�
μ

T

�
−
E
T
∇⃗T

��
d3k⃗: ð12Þ
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Note that due to the presence of the external force, the
velocity will not be isotropic in general. But since the
external force is considered to be small, the change in
the velocity can be ignored. For later calculations, it is
convenient to rewrite themomentum integration in Eqs. (11)
and (12) in terms of integration over energies so that,

j⃗ ¼ −
2e
3m

Z
∞

0

f0ðf0 − 1Þ
T

τEDðEÞ

×

��
eE⃗ − T∇⃗

�
μ

T

�
−
E
T
∇⃗T

��
dE; ð13Þ

j⃗Q ¼ −
2

3m

Z
∞

0

ðE − μÞ f0ðf0 − 1Þ
T

τEDðEÞ

×

��
eE⃗ − T∇⃗

�
μ

T

�
−
E
T
∇⃗T

��
dE; ð14Þ

where density of states is defined as, DðEÞdE≡ d3k
4π3

and for particles in nonrelativistic limit v2 ¼ 2E
m . The

expressions for j⃗ and j⃗Q can bewritten in a compactmanner,
by defining the integral Lij as, if we define the following
integral,

Lij ¼ −
2

3m

Z
f0ðf0 − 1Þ

T
EiτjDðEÞdE; ð15Þ

where i, j are not tensor indices, rather they denote the
number of timesE and τ appear in the expression. In terms of
Lij one writes expressions for the currents as,

j⃗ ¼ eL11

�
eE⃗ − T∇⃗

�
μ

T

��
− eL21

∇⃗T
T

; ð16Þ

j⃗Q ¼ ðL21 − μL11Þ
�
eE⃗ − T∇⃗

�
μ

T

��
− ðL31 − μL21Þ

∇⃗T
T

:

ð17Þ

One can further assume that chemical potential has no
spatial dependence. In this approximation j⃗ and j⃗Q
becomes,

j⃗ ¼ e2L11E⃗ − ðe2L11Þ
ðL21 − μL11Þ

eL11T
∇⃗T; ð18Þ

j⃗Q ¼ ðL21 − μL11ÞeE⃗ − ðL31 − μL21 þ μ2L11Þ
∇⃗T
T

: ð19Þ

The Seebeck coefficient S is determined by setting
j⃗ ¼ 0, so that the electric field gets related with the
temperature gradient as [84],

E⃗ ¼
�
L21 − μL11

eL11T

�
∇⃗T ≡ S∇⃗T: ð20Þ

From Eq. (18) electrical conductivity can be
identified as,

σel ¼ e2L11: ð21Þ

Hence the electric current can be expressed in terms of σel
and S as [60],

j⃗ ¼ σelE⃗ − σelS∇⃗T: ð22Þ

In a similar way, when ∇⃗μ ¼ 0, the heat current can be
expressed as [60],

j⃗Q ¼ TσelSE⃗ − k0∇⃗T; ð23Þ

where,

k0 ¼
1

T
ðL31 − 2μL21 þ μ2L11Þ: ð24Þ

Using Eqs. (22) and (23), heat current j⃗Q can be expressed

in terms of electric current j⃗,

j⃗Q ¼ TSj⃗ − ðk0 − TσelS2Þ∇⃗T: ð25Þ

From Eq. (25) we can identify the Peltier coefficient and
thermal conductivity, respectively,

Π ¼ TS; ð26Þ

k ¼ k0 − TσelS2: ð27Þ

Seebeck coefficient as given in Eq. (20) is a standard
result for condensed matter systems [84] and it is
obtained by considering a single species of charged
particle. However for the case of heavy-ion collisions
there can be multiple charged particle species and we
need to generalize above result. The total Seebeck
coefficient of the system can not be given by Eq. (20).
For multiple species case, the total electric current is a
vector sum of the currents due to different species and
thus one writes:

j⃗ ¼ j⃗ð1Þ þ j⃗ð2Þ þ j⃗ð3Þ þ…… ¼
X
i

j⃗ðiÞ; ð28Þ

with j⃗ðiÞ being electrical current for the ith species,

j⃗ðiÞ ¼ e2ðiÞL
ðiÞ
11 E⃗ −

eðiÞ
T

ðLðiÞ
21 − μLðiÞ

11Þ: ð29Þ
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Hence,

j⃗¼ ðe2ð1ÞLð1Þ
11 þ e2ð2ÞL

ð2Þ
11 þ……ÞE⃗

−
�
eð1Þ
T

ðLð1Þ
21 − μLð1Þ

11 Þ þ
eð2Þ
T

ðLð2Þ
21 − μLð2Þ

11 Þ þ…:

�
∇⃗T:

ð30Þ
The Seebeck coefficient of the multispecies system can
now be defined as,

S ¼
P

i
eðiÞ
T ðLðiÞ

21 − μLðiÞ
11ÞP

ie
2
ðiÞL

ðiÞ
11

≡
P

iS
ðiÞe2ðiÞL

ðiÞ
11P

ie
2
ðiÞL

ðiÞ
11

; ð31Þ

where, we have defined the Seebeck coefficient of each
species as

SðiÞ ¼ ðLðiÞ
21 − μLðiÞ

11Þ=eðiÞLðiÞ
11T: ð32Þ

Thus the total Seebeck coefficient S of the medium is a
weighted average of the Seebeck coefficients of the
individual species.
In this context, it may be relevant to note that, similar to

the expression for electrical conductivity, the Seebeck
coefficient in Drude picture has been estimated in
Ref. [85]. The Seebeck coefficient for a single species in
the Drude picture can bewritten as S ¼ 2 ln 2

d ð1=qnÞϵFkB N 0

V ,
where q is the charge of the particle, d, being the spatial
dimensionality of the system, n is the number density, ϵF is
the Fermi energy, kB is the Boltzmann constant, N 0 is the
density of the states at ϵF and V is the volume. The kinetic
theory expression for single species on the other hand is
given by Eq. (32). Let us further note that while the
individual Seebeck coefficient is independent of the average
relaxation time, which cancels from the numerator and
denominator of Eq. (32), the Seebeck coefficient of the
multicomponent system is dependent on the relaxation time
for each species as may be clear from Eq. (31). Thus
estimating the Seebeck coefficient of a system of charged
particles reduces to calculating the Seebeck coefficient of
each species using Eq. (32) and the different Lij given in
Eq. (15). In the following section we estimate the Seebeck
coefficient of the multicomponent hadronic system within
the HRG model.

III. HADRON RESONANCE GAS MODEL

The central quantity in hadron resonance gas model is
the thermodynamic potential which is given by [47],

logZðβ; μ; VÞ ¼
Z

dmðρMðmÞ logZbðm;V; β; μÞ

þ ρBðmÞ logZfðm;V; β; μÞÞ; ð33Þ

where, the gas of noninteracting pointlike hadrons and their
resonances is contained in the volume V at a temperature
T ¼ 1=β and baryon chemical potential μ. Zb and Zf

corresponds to the partition functions of free bosons
(mesons) and fermions (baryons) respectively with mass
m. Further, ρB and ρm are the spectral functions of free
bosons (mesons) and fermions (baryons), respectively. The
spectral densities encode the hadron properties. Various
thermodynamic quantities can be calculated from the
logarithm of the partition function as given in Eq. (33)
by taking derivatives with respect to the thermodynamic
parameters T, μ and the volume V, once the spectral density
is specified. One common approach in HRG models is in
taking all the hadrons and their resonances below a certain
mass cutoff Λ to estimate the thermodynamic potential.
This is achieved by taking the spectral density ρB=MðmÞ as,

ρB=MðmÞ ¼
XMi<Λ

i

giδðm −MiÞ; ð34Þ

where the sum is taken over all the hadron and resonance
states up to a mass that are less than the cutoff Λ. In
Eq. (34),Mi are the masses of the known hadrons and their
resonances and gi is the corresponding degeneracy, which
includes spin and isospin quantum numbers. Although in
this work we have used the discrete spectrum, it is
important to mention that HRG model including discrete
particle spectrum can explain lattice QCD data for trace
anomaly up to temperature ∼130 MeV [86]. Including
Hagedron spectrum along with the discrete spectrum for the
spectral function can explain lattice QCD data for QCD
trace anomaly up to T ∼ 160 MeV [86]. Once the partition
function of the HRG model is known from Eq. (33),
thermodynamic quantities like pressure, energy density,
number density etc. can be calculated using standard
thermodynamic relations. For details of thermodynamics
of HRG model, see e.g., Ref. [70]. In terms of discrete
spectral function Eq. (34), the integrals L11 and L21 for
each species as in Eq. (15) in Boltzmann approximation can
be expressed as,

Li
11 ¼

τigi
6π2T

Z
∞

0

k4

k2 þm2
i
exp

�
−
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

p
− μBiÞ

T

�
dk;

ð35Þ
and,

Li
21¼

τigi
6π2T

Z
∞

0

k4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

i

p exp

�
−
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

i

p
−μBiÞ

T

�
dk;

ð36Þ
where Bi is the baryon number of the ith species. Let us
note that the Boltzmann approximation for baryons is a
reasonable approximation as long as mnucleon − μ ≥ T [75].
In the present work, we have taken all the hadrons and their
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resonances with masses up to the cutoff Λ ∼ 2.25 GeV.
Specifically, we for baryons, the maximum mass is up to
2.252 GeV, while for mesons the maximum mass is up to
2.011 GeV. We considered hadrons and resonances for
which mi ≤ Λ ≃ 2.25 GeV.
Let us note that, while the individual Seebeck coefficient

is independent of the relaxation time, the Seebeck coefficient
of the medium is not. In the following we therefore estimate
the same. The relaxation time is defined as [34,87],

τ−1a ðEaÞ¼
X
bcd

Z
d3pb

ð2πÞ3
d3pc

ð2πÞ3
d3pd

ð2πÞ3Wða;b→c;dÞf0b ð37Þ

where the transition rate Wða; b → c; dÞ is,

Wða;b→ c;dÞ¼ ð2πÞ4δðpaþpb−pc−pdÞ
2Ea2Eb2Ec2Ed

jMj2; ð38Þ

M is the transition amplitude. Then the relaxation time
in the center of mass frame can be simplified as,

τ−1a ðEaÞ ¼
X
b

Z
d3pb

ð2πÞ3 σabvabf
0
b; ð39Þ

here σab is the total scattering cross section for the process,
aðpaÞ þ bðpbÞ → aðpcÞ þ bðpdÞ and vab is the relativistic
relative velocity.

vab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpa:pbÞ2 −m2

am2
b

q
EaEb

ð40Þ

Thus the thermal average relaxation time can be
expressed by averaging the relaxation time over f0a,

τ−1a ¼
R
f0aτ−1a ðEaÞdEaR

f0adEa
ð41Þ

The energy averaged relaxation time ðτaÞ, assuming hard
sphere scattering can be estimated as [56],

τ−1a ¼
X
b

nbhσabvabi; ð42Þ

where na and hσabvabi represents number density and
thermal averaged cross section, respectively. The thermal
averaged cross section for the scattering process aðpaÞ þ
bðpbÞ → aðpcÞ þ bðpdÞ is given as, assuming hard sphere
scattering [88],

hσabvabi ¼
σ

8Tm2
am2

bK2ðma=TÞK2ðmb=TÞ
Z

∞

ðmaþmbÞ2
ds ×

½s − ðma −mbÞ2�ffiffiffi
s

p × ½s − ðma þmbÞ2�K1ð
ffiffiffi
s

p
=TÞ; ð43Þ

where σ ¼ 4πr2h is the total scattering cross section for the
hard sphere.

IV. RESULTS AND DISCUSSIONS

As mentioned earlier for the hadron resonance gas model
we shall include all the hadrons and resonances up to a
mass cutoff Λ ¼ 2.25 GeV and include all the mesons and
baryons listed in Ref. [89] (also see Appendix A of
Ref. [90] for detailed list of particles). The other parameter
is the radii of the hard spheres. We have chosen an uniform
radius of rh ¼ 0.3 fm for all the mesons and baryons
[56,91]. We have estimated the Seebeck coefficient of each
species using Eqs. (20), (35), and (36) for baryon chemical
potential μ ¼ 60 MeV, 80 MeV, 100 MeV, and 150 MeV.

For each value of chemical potential we have varied
temperature from 80 MeV to 160 MeV. Knowing the
Seebeck coefficient, L11 and L21 of each species, the
Seebeck coefficient of the entire system can be found from
Eq. (31). Before doing so, to get a feeling forL11, let us note
that L11 is related to the electrical conductivity as
σel ¼ e2L11. In Fig. 1 we have plotted σel for πþ as a
function of temperature. The behavior is similar to as
obtained in Ref. [15]. In fact in the limit of vanishing pion
mass σel ≃ 1

3T e
2nπτπ as in Ref. [15].

Next we discuss the Seebeck coefficient for a single
species as given by Eq. (20) which can be written as,

Si ¼ 1

e
I21
I11

−
μBi

eT
; ð44Þ

0.0

0.01

0.02

0.03

0.04

0.05
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0.07

80 90 100 110 120 130 140 150 160
Temperature (MeV)

FIG. 1. Variation of the electrical conductivity of πþ with
temperature at μ ¼ 60 MeV. Order of magnitude estimation of
electrical conductivity of πþ is similar to that obtained in
Ref. [15].
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where the integral I21 and I11 are given by,

I11 ¼
Z

∞

0

k̂4

k̂2 þ m̂2
expð−ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂2 þ m̂2

p
− μ̂BiÞÞdk̂; ð45Þ

and,

I21 ¼
Z

∞

0

k̂4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂2 þ m̂2

p expð−ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k̂2 þ m̂2

p
− μ̂BiÞÞdk̂; ð46Þ

where, k̂ ¼ k=T, m̂ ¼ m=T, and μ̂ ¼ μ=T.
It is important to mention that the Seebeck coefficient of

single species is independent of the relaxation time. We
might mention here that the Seebeck coefficient has been
estimated in condensed matter systems in the Drude limit.
In this limit the Seebeck coefficient is also independent of
relaxation time as is shown explicitly in Ref. [85]. It is also
straightforward to see from the definition that the Seebeck
coefficient is dimensionless. The Seebeck coefficient is a
measure of the fact that how efficiently any material can
convert the temperature gradient to an electric current.
Material with higher Seebeck coefficient can more effi-
ciently convert the temperature gradient into electrical
current. For low energy condensed matter system like
metal e.g., copper (Cu), value of the Seebeck coefficient
is S ¼ 1.05 μeV=K ¼ 10−2, on the other hand for
Semiconductors S ¼ 0.4 meV=K ¼ 4. For the details
about the Seebeck coefficient for conductors as well as
semiconductors, see Ref. [84]. To get a feeling for the
numerical values, in the present context, let us consider a
single massless species and ignore the quantum statistics.
In that case, from Eq. (44), setting m ¼ 0, we have S ¼
ð3=e − μ=ðeTÞÞ which for μ ¼ 0 become S ∼ 9.

Wenext show thevariation of the total Seebeck coefficient
for the hadronic medium of Eq. (31) with temperature (T)
and baryon chemical potential (μ) in Fig. 2. Let us note that
the individual Seebeck coefficient SðiÞ as defined in Eq. (31)
is independent of the corresponding relaxation time as it
cancels out from the numerator and denominator. On the
other hand the total Seebeck coefficient of the system is
dependent on the relaxation time of individual hadrons

through the LðiÞ
11 s as in may be observed in Eq. (31). The

behavior of the Seebeck coefficient as a function of baryon
chemical potential can be understood from Eqs. (31) and
(20). Seebeck coefficient of the particle and the associated
antiparticle is same but opposite in sign due to the explicit
presence of the electric charge in SðiÞ. Thus in the numerator
of the Eq. (31) mesons do not contribute. Hence only the
baryons contribute to the in the numerator of the Eq. (31).
The mesons contributes in the denominator of the Eq. (31).
This is because in the denominator particles and antiparticles
do not cancels out. In the denominator of the Eq. (31)
mesons also take part because in this case contribution from
the particle and anti particle does not cancel out.
To understand the behavior of the Seebeck coefficient

with baryon chemical potential, let us first note that for
the temperature (T), baryon chemical potential (μ) range
considered here the dominant contribution to the Seebeck
coefficient arises from protons. The contribution from other
higher mass baryons are thermally suppressed. Behavior of
proton Seebeck (SðpÞ) shown in Fig. 4, which decreases
linearly with chemical potential (μ) as may be obvious from

Eq. (44). However the quantity LðpÞ
11 for proton increases

with chemical potential (μ) (Fig. 3). This increasing

behavior of LðpÞ
11 with μ is rather fast enough to make

0.0
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FIG. 2. Behavior of Seebeck coefficient (S) of hadron resonance gas as a function of temperature and baryon chemical potential. We
have used temperature range 80 to 160 MeV, because degrees of freedom of HRGmodel are hadrons and resonances. We have also taken
the range of baryon chemical potential from 60 to 250 MeV. In the left plot we have shown the variation of Seebeck coefficient of hadron
resonance gas with temperature for different values of chemical potential. In the right plot we have shown the variation of Seebeck
coefficient with baryon chemical potential for various temperature. In this calculation we have taken into account all the hadrons and
resonances having mass up to 2.25 GeV.
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the product SðpÞLðpÞ
11 increasing with μ. This make the

numerator for the total Seebeck coefficient in Eq. (31)
increases with chemical potential. This apart, for the
denominator in Eq. (31) the dominant contribution arises

for the pions. LðpionÞ
11 decreases with chemical potential as

may be seen in right panel of Fig. 3. This decrease is due to
the decrease of relaxation time for pions with increase in
baryon chemical potential, through the hard sphere scatter-
ing. Taken together this explains the behavior of the total
Seebeck coefficient with baryon chemical potential (μ), as
be seen in Fig. 2.
In a similar way one can understand the temperature

dependence of Seebeck coefficient for the system of hadron
resonance gas from the behavior of proton Seeback

coefficient which is dominant in the sum given in
Eq. (31) for the total Seebeck coefficient. Note that as
mentioned earlier in the sum Eq. (31) the mesons Seebeck
coefficients do not contribute when the sum over the
charged mesons are taken. With increasing temperature
for a fixed chemical potentialLðpÞ

11 of proton increases faster
than the slow decreases of its Seebeck coefficient as may be
seen in Figs. 3 and 4, making the numerator of Eq. (31)

increases with T for fixed μ. This apart LðpionÞ
11 of pion also

decreases with temperature for fixed baryon chemical
potential as seen in the left panel of Fig. 3. This leads
to the increasing behavior of Seebeck coefficient as a
function of temperature for a given baryon chemical
potential, as seen in Fig. 2.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

80 90 100 110 120 130 140 150 160
Temperature (MeV)

0.0

0.05

0.1

0.15

0.2

0.25

0.3

60 70 80 90 100 110 120 130 140 150
Baryon Chemical Potential (MeV)

FIG. 3. Left plot: Variation of L11 of proton and pion with temperature for μ ¼ 60 MeV has been shown for comparison. It is
important to note that L11 of pion is very large with respect to the L11 of proton. Right plot: Variation of L11 of proton and pion with
baryon chemical potential μ has been shown for T ¼ 100 MeV. Dependence of Pion L11 on μ is due to the fact that relaxation time of
pion depends weakly on the baryon chemical potential.
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FIG. 4. Left Plot: Variation of proton Seebeck coefficient as a function of temperature at μ ¼ 60 MeV. This plot shows Seebeck coeff.
of proton decreases with temperature for a given chemical potential. Right Plot: Variation of proton Seebeck coefficient as function of
baryon chemical potential at temperature T ¼ 100 MeV. This plot shows Seebeck coeff. of proton decreases with baryon chemical
potential for a given temperature.

BHATT, DAS, and MISHRA PHYS. REV. D 99, 014015 (2019)

014015-8



It might be relevant here to note that the thermoelectric
current so produced due to the temperature gradient can
generate a magnetic field in the heavy ion collision
experiments. One can estimate an order of magnitude of
the magnetic field produced due to this thermoelectric
current. The magnitude of electric current density produced
by the temperature gradient can be expressed as,

j ¼ σelS∇T; ð47Þ

It may be seen in Fig. 2 the order of magnitude of the
total Seebeck coefficient of the hadron resonance gas can
be of Oð1Þ for temperature T ¼ 120 MeV. The electrical
conductivity of hot pion gas can be taken to be of the order
of σel=T ∼ 0.01 [15]. Therefore for the temperature of the
order of 100 MeV, electrical conductivity is of Oð1Þ MeV.
If we assume that the system size is about 20 fm and the
temperature difference between central and peripheral
region to be of the order of 100 MeV then the temperature
gradient is of the order of 103 MeV2. This leads to
electrical current density is of the order of 103 MeV3. If
we take the cross-sectional area to be ð20 fmÞ2, then the
electrical current is ∼10 MeV. Magnetic field generated by
the current I can be given as, B ¼ I

2πr. So, for r ∼ 20 fm, the
magnetic field is ∼16 MeV2 ∼ 10−3m2

π . However we must
note that this is a very crude approximation for the
magnitude of the field generated as the heavy ion collisions
are highly dynamic in nature. Therefore the magnetic field
generated can only be a transient one. Further a more
realistic estimation will require a full dynamical calculation
using possibly a transport simulation. Such a magnetic field
is not the remnant of the initial magnetic field produced in
heavy ion collisions, rather the source of this magnetic field
is the current produced due to the temperature gradient in a
baryon rich plasma.

V. CONCLUSION

In this work, we have attempted to study the thermo-
electric effect of a thermalized hadronic medium with
a temperature gradient. We have estimated the corres-
ponding Seebeck coefficient of hot hadronic matter within
hadron resonance gas model (HRG). Thermoelectric effect
necessarily requires a temperature gradient which is
achievable in heavy ion collision experiment due to the
temperature difference in the central and peripheral part of
the fireball produced in these collisions. One of the
important outcomes of this calculation is that, for a baryon

free plasma, contributions in total Seebeck coefficient due
to the mesonic degrees of freedom cancel out. This happens
because of the fact that each meson particle comes with its
antiparticle with opposite charge leading to cancellation of
the corresponding Seebeck coefficient for the charged
mesons. However, in a baryon rich plasma, the contribu-
tions to the total Seebeck coefficient due to the baryons
do not cancel out. The total Seebeck coefficient of
thermalized hadron resonance gas increases with increasing
temperature for fixed baryon chemical potential and
increases with baryon chemical potential for fixed temper-
ature. It is important to note that the formalism we are using
is a nonrelativistic one. It will be important to study the
thermoelectric effect in a relativistic formalism, particularly
for QGP medium. Electrical current produced due to the
temperature gradient can be a source of magnetic field.
According to our crude estimate the strength of the
transient magnetic field so generated can be ∼10−3m2

π .
However, the magnetic field so produced through thermo-
electric effect crucially depends upon the temperature
gradient, the thermal profile of electrical conductivity
and the Seebeck coefficient. In this work, we have dis-
cussed the formalism to calculate the thermoelectric coef-
ficient in the case of spatially uniform baryon chemical
potential. In a more general scenario, there can be a spatial
variation of baryon chemical potential. In that case there
can be current generation driven by the chemical potential
gradient. Although we cannot make any comment at
present on the current generation due to both the temper-
ature gradient and chemical potential gradient, it will
nevertheless be interesting to study these effects. In par-
ticular current generation due to a chemical potential
gradient might be interesting for high baryon density
matter.
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