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Using a continuum approach to the hadron bound-state problem, we calculate γ�γ → η; η0 transition form
factors on the entire domain of spacelike momenta, for comparison with existing experiments and in
anticipation of new precision data from next-generation eþe− colliders. One novel feature is a model for the
contribution to the Bethe-Salpeter kernel deriving from the non-Abelian anomaly, an element which is
crucial for any computation of η; η0 properties. The study also delivers predictions for the amplitudes that
describe the light- and strange-quark distributions within the η; η0. Our results compare favorably with
available data. Important to this at largeQ2 is a sound understanding of QCD evolution, which has a visible
impact on the η0 in particular. Our analysis also provides some insights into the properties of η; η0 mesons
and associated observable manifestations of the non-Abelian anomaly.
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I. INTRODUCTION

Quantum chromodynamics (QCD) describes the strong
interaction sector of the Standard Model and its influence
on hadron electroweak properties. Despite having emerged
more than 40 years ago, from an array of distinct ideas and
discoveries [1,2], there are few predictions for processes
that involve strong-QCD dynamics, such as hadron elastic
and transition form factors. The cleanest relate to γ�γð�Þ →
M transition form factors, GMðQ2Þ, where M is a pseu-
doscalar meson.
Focusing on γ�γ → M and considering any qq̄ compo-

nent of M, then ∃Q0 > ΛQCD such that [3]

Q2Gq
MðQ2Þ ≈

Q2>Q2
0
4π2fqMe

2
qw̃

q
MðQ2Þ; ð1Þ

where ΛQCD ∼ 0.2 GeV is the empirical mass scale of
QCD; fqM is the qq̄-component contribution to the pseu-
dovector projection of the meson’s wave function onto the
origin in configuration space, i.e., a leptonic decay con-
stant; eq is the electric charge of quark q; and

w̃q
MðQ2Þ ¼

Z
1

0

dx
1

x
φq
Mðx;Q2Þ; ð2Þ

where φq
Mðx;Q2Þ is the dressed-valence q-parton contri-

bution to the meson’s distribution amplitude (DA). The DA
in Eq. (2) is determined by the meson’s light-front wave
function and relates to the probability that, with constitu-
ents collinear up to the scale ζ ¼ ffiffiffiffi

Q
p

2, the dressed-valence
q parton carries light-front fraction x of the bound state’s
total momentum. The complete transition form factor is
obtained as a sum over the various qq̄ subcomponent
contributions:

GM ¼
X
q∈M

ψq
MG

q
M; ð3Þ

where ψq
M is a flavor weighting factor originating in the

meson’s wave function.
Notably [3–5] (τ2 ≔ Λ2

QCD=Q
2),

φMðx;Q2Þ ≈τ≃0φ∞ðxÞ ¼ 6xð1 − xÞ; ð4Þ

i.e., the DA acquires its asymptotic profile and hence

Q2Gq
MðQ2Þ ≈τ≃012π2fqMe2q: ð5Þ

Consequently, on τ ≃ 0 the γ�γ → M transition form factor
exhibits simple scaling; and the anomalous dimension,
characteristic of gauge field theories quantized in four
dimensions, is “hidden” in the manner of approach to the
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τ ¼ 0 limit. [N.B. As will become clear, owing to the non-
Abelian axial anomaly in QCD, Eq. (5) is amended when
M ¼ η, η0 [6,7].]
An array of experiments have been performed with a

view to testing Eqs. (1) and (5) for the neutral pion [8–11].
Such measurements are difficult, typically involving the
study of eþe− collisions, in which one of the outgoing
fermions is detected after a large-angle scattering while the
other is scattered through a small angle and, hence,
undetected. The detected fermion is assumed to have
emitted a highly virtual photon, the undetected fermion,
a soft photon; and these photons are supposed to fuse and
produce the final-state pseudoscalar meson. There are many
possible background processes and loss mechanisms in this
passage of events and thus ample room for systematic error,
especially as Q2 increases [12].
The potential for such errors probably plays a large part

in the controversy surrounding the most recent measure-
ments of γ�γ → π0 [10,11], which exhibit incompatible
trends in their evolution with photon virtuality [13] and
have drawn much attention, e.g., Refs. [14–23]. In this
connection, a theoretical framework that provides a unified
treatment of the charged-pion elastic electromagnetic form
factor, its valence-quark distribution function and ampli-
tude, and numerous other qualities, was found [24] to deliver
a prediction for GπðQ2Þ that agrees with all available data,
except that in Ref. [10], and is fully consistent with Eq. (1).
Moreover, it revealed that Eq. (1) provides an accurate
representation of the neutral-pion transition form factor
on Q2 ≳ 15 GeV2.
Experimental data on the γ�γ → ηc transition are also

available [25]. In this case, the computational framework
used for Gπ produces a result for GηcðQ2Þ which matches
the data and is broadly consistent with Eq. (1) on Q2 ≳
30 GeV2 so long as the DA used to describe the ηc is that
appropriate to the experimental scale, not the asymptotic
limit [26,27]. The predictions in Refs. [26,27] are con-
firmed by a recent next-to-next-to-leading-order (NNLO)
analysis using nonrelativistic QCD (nrQCD) [28].
There is no empirical information on the γ�γ → ηb

transition, but the predictions in Refs. [26,27] agree with
a NNLO nrQCD analysis [29]. They also reveal that, at
realistically accessible momentum transfers, owing to the
size of the ηb mass, Eq. (1) overestimates the direct
calculation by a factor of approximately 2, even when
an ηb DA appropriate to the experimental scale is used.
These remarks show that a unified description of the

transitions γ�γ → M, M ¼ π0; ηc; ηb, is now available
along with an understanding of the applicability of
Eq. (1) in each case [24,26,27]. Wanting, however, are
equivalent explanations of γ�γ → η; η0. Importantly, given
that relevant data exist on the domain Q2 ∈ ½0; 112� GeV2

[9,30,31], then requiring a theoretical framework to unify
the description of these transitions with those reviewed
above, on the entire domain Q2 ≥ 0, is a severe test of the

approach. The challenge is compounded by the fact that the
flavor structure of the η, η0 mesons is a measure of the
strength of the non-Abelian anomaly and topological
effects within hadrons [32,33]. Hence, those truncations
of the continuum two-valence-body bound-state problem
which are typically employed cannot provide a realistic
description of the η, η0 mesons.
Herein, we extend the approach of Refs. [24,26], intro-

ducing contributions to the meson Bethe-Salpeter kernels
which express effects arising from the non-Abelian
anomaly, and deliver predictions for the γ�γ → η; η0 tran-
sition form factors on Q2 ≥ 0. In doing so, we complete a
unified description of the two-photon transition form factors
of all charge-neutral ground-state pseudoscalar mesons,
including a discussion of the relevance of Eq. (1) to under-
standing each case. Section II introduces the η; η0 mesons as
a continuum bound-state problem, reviewing the issue of
flavor mixing, describing the matter-sector equations rel-
evant to mesons, and detailing the kernels used in solving
them. The solutions are discussed in Sec. III, along with
predictions for the η; η0 masses and widths and calculations
of the dressed-valence-quark DAs that represent the η; η0
mesons. [A discussion of the topological charge contained
within these systems and detailed descriptions of the
perturbation theory integral representations (PTIRs) [34]
used to interpolate the numerical solution arrays are pro-
vided in two separate Appendices.] The γ�γ → η; η0 tran-
sition form factors are reported and analysed in Sec. IV, with
particular attention being paid to the impact of QCD
evolution on the Bethe-Salpeter wave functions and, con-
sequently, the transition form factors. Section V provides a
summary and perspective.

II. η, η0 AS TWO-BODY BOUND STATES

A. Flavor basis

We consider the limit of perfect isospin symmetry, in
which case the π0 does not mix with η, η0. As discussed
elsewhere [33], this is a good approximation: the ss̄
component of the physical π0 Bethe-Salpeter amplitude
is roughly 1%, corresponding to a π0 − η mixing angle of
≲1°. These features were exploited in explaining the γ�γ →
π0 transition [24].
In discussing η − η0 mixing, it is often convenient to

work with the UðNf ¼ 3Þ quark flavor basis [35,36], in
which case the associated Bethe-Salpeter wave functions
can be written ðl ¼ u ¼ dÞ

χη;η0 ðk;PÞ ¼ F lχlη;η0 ðk;PÞ þ F sχsη;η0 ðk;PÞ; ð6aÞ

F l ¼

0
B@

1 0 0

0 1 0

0 0 0

1
CA; F s ¼

0
B@

0 0 0

0 0 0

0 0
ffiffiffi
2

p

1
CA: ð6bÞ
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The coefficients χl;sη;η0 ðk;PÞ in Eq. (6a) are Bethe-Salpeter
wave functions which, respectively, describe the momen-
tum-space ll̄ or ss̄ correlations in the η, η0: k is the relative
momentum between the valence quarks and P is the bound
state’s total momentum.
Meson Bethe-Salpeter amplitudes, Γ, are obtained from

the wave functions by amputating the quark legs:

χl;sη;η0 ðk;PÞ ¼ Sl;sðkþÞΓl;s
η;η0 ðk;PÞSl;sðk−Þ; ð7Þ

where k� ¼ k� P=2 and Sl;s are dressed-quark propaga-
tors. Defining S ¼ diag½Sl; Sl; Ss�, then

χη;η0 ðk;pÞ ¼ SðkþÞΓη;η0 ðk;PÞSðk−Þ; ð8aÞ

Γη;η0 ðk;PÞ ¼ F lΓl
η;η0 ðk;PÞ þ F sΓs

η;η0 ðk;PÞ: ð8bÞ

For any pseudoscalar meson, or flavor-separated sub-
component, the amplitudes in Eq. (8b) have the form

Γðk;PÞ ¼
X4
i¼1

giðk;PÞDiðk;PÞ; ð9aÞ

D1ðk;PÞ ¼ iγ5; D2ðk;PÞ ¼ γ5γ · P;

D3ðk;PÞ ¼ γ5γ · k; D4ðk;PÞ ¼ γ5σμνkμPν; ð9bÞ

where fgiðk;PÞji ¼ 1;…; 4g are scalar functions.

B. Gap equations

The natural first step in a continuum analysis of the
valence-quark+valence-antiquark bound-state problem is
computation of the one-body propagators for the fermions
involved: in this case, l ¼ u ¼ d and s quarks. These
propagators can be obtained from the associated gap
equations:

S−1l;s ðkÞ ¼ Z2ðiγ · kþmbm
l;s Þ þ Σl;sðkÞ; ð10aÞ

½Σl;sðkÞ�ι1ι2 ¼
Z

Λ

dq
l;sJ

ι0
1
ι0
2

ι1ι2
ðk; qÞ½Sl;sðqÞ�ι0

1
ι0
2
; ð10bÞ

where Z2 is the quark wave function renormalization
constant and mbm

l;s are the quark bare masses;
RΛ
dq represents

a symmetry-preserving regularization of the four-dimen-
sional integral; and l;sJ

ι0
1
ι0
2

ι1ι2
is the gap equation’s kernel, with

the indices describing spinor structure (and color and
flavor, when required). We employ a mass-independent
momentum-subtraction renormalization scheme through-
out, implemented by using the scalar Ward-Green-
Takahashi identity [37–39] and fixing all renormalization
constants in the chiral limit [40], with renormalization
scale ζ ¼ 2 GeV≕ ζ2.

The solutions of Eq. (10) take the following form:

Sl;sðkÞ ¼ −iγ · kσl;sV ðk2Þ þ σl;sS ðk2Þ ð11aÞ

¼ Zl;sðk2Þ=½iγ · kþMl;sðk2Þ�; ð11bÞ

where Ml;sðk2Þ ¼ σl;sS ðk2Þ=σl;sV ðk2Þ is the running mass for
the indicated quark.

C. Bethe-Salpeter equation

With the propagators in hand, one can obtain the bound-
state amplitudes from theBethe-Salpeter equation ðM¼η;η0Þ:

½ΓMðk;PÞ�ι1ι2 ¼
Z

Λ

dq
K

ι0
1
ι0
2

ι1ι2ðk; q;PÞ½χMðq;PÞ�ι0
1
ι0
2
; ð12Þ

where K
ι0
1
ι0
2

ι1ι2ðk; q;PÞ is the renormalized, fully amputated
quark-antiquark scattering kernel, which is two-particle
irreducible with respect to the external quark-antiquark lines
and does not contain quark-antiquark to single gauge boson
annihilation diagrams.
Bound-state solutions of Eq. (12) lie at isolated values of

P2 < 0. In order to locate them, it is useful to insert an
“eigenvalue,” λðP2Þ, as a multiplicative factor on the right-
hand side. The resulting equation has a solution at all values
of P2; and the true bound-state solution is obtained at that
P2 ¼ −m2

M for which λð−m2
MÞ ¼ 1.

This procedure also has another use. Namely, in the
computation of observables, the canonically normalized
Bethe-Salpeter amplitude must be used [34,41]. For the
flavor-mixed systems we consider, this means that the
Bethe-Salpeter amplitudes should be rescaled to ensure

�
d ln λðP2Þ

dP2

�−1
P2¼−m2

M

¼ 2tr
Z
dk
½Γ̄l

Mðk;−PÞχlMðk;PÞ

þ Γ̄s
Mðk;−PÞχsMðk;PÞ�; ð13Þ

where the trace is over color and spinor indices.
Using the canonically normalized Bethe-Salpeter ampli-

tudes, the leptonic decay constants in Eq. (1) can be
computed:

fl;sMPμ ¼ Z2tr
Z

Λ

dk
γ5γμχ

l;s
M ðk;PÞ: ð14Þ

These decay constants have been used to define a flavor-
mixing angle via [35,36]

� flη fsη

flη0 fsη0

�
¼

�
fl cosϕ −fs sinϕ
fl sinϕ fs cosϕ

�
; ð15Þ

where fl and fs are some “ideal” decay constants, which
exist in the absence of flavor mixing. These quantities are
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not known a priori but will be determined as part of our
analysis. We expect fl ≈ fπ , fs ≈ ð2fK − fπÞ, with the
latter estimate based on an equal spacing rule [42,43].
It is also possible to describe η-η0 mixing via matrix

elements of the Uð3Þ flavor-octet and -singlet axial-vector
currents [44]:

� f8η f0η

f8η0 f0η0

�
¼

�
f8 cos θ8 −f0 sin θ0
f8 sin θ8 f0 cos θ0

�
: ð16Þ

The octet axial-vector current satisfies a standard Ward-
Green-Takahashi identity so f8 in Eq. (16) is independent
of the renormalization scale, ζ. On the other hand, the
flavor-singlet axial-vector current is anomalous in QCD.
Consequently, the singlet decay constant f0 and thus f

l;s
η;η0 in

Eq. (14) depend on ζ. Their decrease with ζ is not too rapid,
however, because the leading contribution to the anomalous
dimension is Oðα2SÞ, where αS is the QCD running coupling
[6,7,36,44]. Additionally, evolution of the η, η0 DAs is more
complicated than usual: operator mixing plays a role even
at leading order. As will become apparent, these effects
impact strongly upon the η0 because θ0 ≃ 0.

D. Kernels for the bound-state equations

1. General observations

A tractable system of bound-state equations is only
obtained once a truncation scheme is specified. A sym-
metry-preserving approach is described elsewhere [45–47].
The leading-order term is the rainbow-ladder (RL) trunca-
tion. It is known to be accurate for ground-state light-quark
vector and isospin-nonzero-pseudoscalar mesons and
related ground-state octet and decouplet baryons [48–56]
because corrections largely cancel in these channels owing
to the preservation of the normal Ward-Green-Takahashi
identities ensured by the scheme [45–47]. As noted above,
however, the RL truncation and most known improvements
thereof [47,57–59] fail for the η and η0 mesons because they
do not produce vertices that satisfy the anomalous axial-
vector Ward-Green-Takahashi identities described in
Ref. [33]. Consequently, they lead to ideal mixing in the
η-η0 sector, represented by ϕ ¼ 0 in Eq. (15), in which case
one has the unphysical results η ∼ uūþ dd̄ and η0 ∼ ss̄.
Considering the structure of the non-Abelian anomaly, it

readily becomes apparent that no related contribution to the
Bethe-Salpeter kernel can contain external quark or anti-
quark lines which are simply connected to the internal
lines: purely gluonic configurations must mediate, as
illustrated in Fig. 1. Moreover, no finite sum of diagrams
can be sufficient. To understand this remark, focus on any
one such single contribution in the chiral limit. It is
necessarily proportional to the total momentum and hence
vanishes for P ¼ 0, thus violating the anomalous Ward-
Green-Takahashi identity. Some coherent effect is required

to produce a nonzero contribution. (As described elsewhere
[32,33], variants of the Kogut-Susskind mechanism will
suffice [60].)
Following this discussion, it is evident that the Bethe-

Salpeter kernel may be decomposed into a sum:

K ¼ KN þKA; ð17Þ

where KN is that part which can readily be constructed
diagrammatically and involves all those contributions that
are accessible in perturbation theory and therefore contrib-
ute at ultraviolet momenta; and KA is the non-Abelian
anomaly contribution, depicted in Fig. 1, which is essen-
tially nonperturbative and hence possesses material support
only at infrared momenta.

2. Rainbow-ladder kernel

The analyses that provided a unified description of
γ�γ → π0; ηc; ηb [24,26] used RL truncation for the gap
and Bethe-Salpeter equations, i.e.,

l;sJ
ι0
1
ι0
2

ι1ι2
ðk; qÞ ¼ −½KNðk; q;PÞ�ι

0
1
ι0
2

ι1ι2 ; ð18aÞ

½KNðk; q;PÞ�ι
0
1
ι0
2

ι1ι2 ¼
4

3
GμνðtÞ½iγμ�ι1ι01 ½iγν�ι02ι2 ; ð18bÞ

Gμνðt ¼ k − qÞ ¼ G̃ðt2ÞTμνðtÞ; ð18cÞ

where t2Tμν ¼ t2δμν − tμtν. In this case, Eqs. (10) and (12),
as appropriate to π0, ηc, ηb, could then be solved once
G̃ was specified. Capitalizing on two decades of study,
Refs. [24,26] used the following form [61,62] (s ¼ t2):

FIG. 1. Any contribution to the Bethe-Salpeter kernel deriving
from the non-Abelian anomaly must have the “hairpin” structure
depicted here; and any intermediate state (IS) must involve
infinitely many lines. (Straight lines denote quarks, with f1
and f2 independent, and springs denote gluons.)
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1

Z2
2

G̃ðsÞ ¼ 8π2

ω4
De−s=ω

2 þ 8π2γmEðsÞ
ln½tþ ð1þ s=Λ2

QCDÞ2�
; ð19Þ

where γm ¼ 4=β0 ¼ 12=ð33 − 2NfÞ, Nf ¼ 4; ΛQCD ¼
0.234 GeV; t¼e2−1; and EðsÞ¼f1−expð−s=½4m2

t �Þg=s,
mt ¼ 0.5 GeV. (At scales ζ > ζ2, all such truncations
receive corrections, which typically serve to alter the
anomalous dimensions of scale-dependent quantities [3].)
The development of Eqs. (18) and (19) is summarized in

Ref. [61]. Their connection with QCD is described in
Ref. [63], but it is worth reiterating some points.
The interaction in Eqs. (18) and (19) is deliberately

consistent with that determined in studies of QCD’s gauge
sector, which indicate that the gluon propagator is a
bounded, regular function of spacelike momenta that
achieves its maximum value on this domain at k2 ¼ 0
[63–72], and the dressed-quark-gluon vertex does not
possess any structure which can qualitatively alter these
features [73–79]. It is specified in Landau gauge because,
e.g., this gauge is a fixed point of the renormalization group
and ensures that sensitivity to differences between Ansätze
for the gluon-quark vertex are least noticeable, thus provid-
ing the conditions for which rainbow-ladder truncation is
most accurate. The interaction also preserves the one-loop
renormalization group behavior of QCD so that, e.g., the
quark mass functions produced are independent of the
renormalization point. On the other hand, in the infrared,
i.e., k2 ≲ ð4ΛQCDÞ2, Eq. (19) defines a two-parameter
model, the details of which determine whether confinement
and/or dynamical chiral symmetry breaking (DCSB) are
realized in solutions of the dressed-quark gap equations.
Computations [61,62] reveal that observable properties

of light-quark ground-state vector and isospin-nonzero
pseudoscalar mesons are practically insensitive to varia-
tions of ω ∈ ½0.4; 0.6� GeV, so long as

ς3 ≔ Dω ¼ const: ð20Þ

This feature also extends to numerous properties of the
nucleon and Δ baryon [55,56]. The value of ς is chosen so
as to obtain the measured value of the pion’s leptonic decay
constant fπ; and in RL truncation this requires

ς ¼ 0.80 GeV: ð21Þ

References [24,26] employed ω ¼ 0.5 GeV, the midpoint
of the domain of insensitivity.
Given the success of Refs. [24,26] and many other

studies that have used the RL truncation to predict hadron
observables [48–54], we use Eqs. (18) and (19) to define
KN in Eq. (17). Implicit in this step is an assumption (made
by every practitioner) that all contributions from the non-
Abelian anomaly to the dressed-quark gap equation can be
—and are—absorbed into the value of ς and, hence, thatKA
in Eq. (17) describes only those interactions which are

essentially four-body in character and therefore cannot be
recast as regular corrections to the gluon propagator or
gluon-quark vertex.

3. Kernel representing the non-Abelian anomaly

While the RL kernel is constrained by a large body of
successful phenomenology, the form ofKA is unknown. On
general grounds, given Eq. (9), its contribution to the
Bethe-Salpeter equation for pseudoscalar mesons must take
the following form:

½KAðk; q;PÞ�ι
0
1
ι0
2

ι1ι2 ¼
X4
i¼1

X
f¼l;s

af
iðk; q;PÞ

× ½F fDiðq;PÞ�ι0
2
ι0
1
½F fDiðk;PÞ�ι1ι2 ; ð22Þ

where faf
iðk; q;PÞji ¼ 1;…; 4; f ¼ l; sg are scalar func-

tions, which a detailed analysis of the non-Abelian anomaly
could reveal. That, however, is an independent project.
Required here is just a reasonable model for KA, one that
produces realistic masses and decay constants for the η, η0,
because such quantities are the primary impacts of KA to
which the spacelike behavior of the γ�γ → η; η0 transition
form factors are sensitive.
Following Ref. [33], we proceed by writing

X
f

af
1½F fD1�½F fD1� ¼ ξðsÞcos2θξ½zD1�ι0

2
ι0
1
½zD1�ι1ι2 ; ð23aÞ

X
f

af
2½F fD2�½F fD2� ¼

1

x2
ξðsÞsin2θξ½zD2�ι0

2
ι0
1
½zD2�ι1ι2 ;

ð23bÞ

al;s
3;4 ¼ 0, where x ¼ Mlðk2 ¼ 0Þ is a computed renorm-

alization-group-invariant mass scale, characteristic of
DCSB; the parameter θξ controls the relative strength of
the chosen tensor structures; z ¼ diag½1; 1;rA�, with rA a
parameter, introduces a dependence on Uð3Þ flavor-sym-
metry breaking which models that arising from the dressed-
quark lines which complete a “U turn” in the hairpin
diagram in Fig. 1; and

ξðsÞ ¼ 8π2

ω4
ξ

Dξe
−s=ω2

ξ ; ð24Þ

with parameters Dξ, ωξ, provides a momentum-dependent
interaction strength for the anomaly contribution whose
support is localized in the infrared.

III. η, η0 COMPUTED STRUCTURAL PROPERTIES

A. Masses and widths

Using the RL truncation parameters described in con-
nection with Eq. (21) to define KN in Eq. (17), and with

γ�γ → η; η0 TRANSITION … PHYS. REV. D 99, 014014 (2019)

014014-5



m̂l ¼ 7 MeV; m̂s ¼ 170 MeV; ð25Þ

which correspond to evolved current-quark masses

mζ2
l ¼ 5.1 MeV; mζ2

s ¼ 125 MeV; ð26Þ

the solution of the relevant coupled gap and Bethe-Salpeter
equations yields (in GeV)

mπ ¼ 0.134; fπ ¼ 0.093; mK ¼ 0.496; fK ¼ 0.11;

ð27Þ
in good agreement with experiment [80] and the value ofxl
listed in Table I.
We choose the KA parameters, appearing in Eqs. (23)

and (24), by requiring a fair description of mη;η0 and fl;sη;η0 :
greatest weight is given to the masses in this procedure
because they are subject to little uncertainty. The values
listed in Table I deliver the results in Table II. For future
reference, we highlight that fsη shows the greatest variation
among the various estimates; viz. it is the least well
determined by phenomenology.
Figure 2 depicts the evolution ofmη;η0 with

ffiffiffiffi
D

p
ξ when all

other entries in Table I are held fixed. The meson masses
evolve smoothly with the anomaly-strength parameter in
Eq. (24): in the absence of an anomaly contribution one has
ideal mixing, with mη ¼ mπ , mη0 ¼ mss̄ ¼ 0.7 GeV; and
both masses grow uniformly with the mixing strength until
the empirical values are reached.
We now return to Eq. (15) and address the question: is

there a single mixing angle and pair of ideal decay constants

that fairly describe the results in Table II? In answer we
report that the values

ϕ ¼ 42.8°; ð28aÞ

fl ¼ 0.101 GeV ¼ 1.08fπ; ð28bÞ

fs ¼ 0.138 GeV ¼ 1.49fπ ð28cÞ
yield row 2 in Table II, reproducing our computed results
with a root-mean-square difference of 2.4%. Notably, the
computed values of the ideal decay constants match expect-
ations: fl ≈ fπ and fs ≈ ð2fK − fπÞ ≈ 1.4fπ .
The results in Table II can readily be translated into

values associated with the octet-singlet basis, Eq. (16):

f8 ¼ 1.34fπ; θ8 ¼ −21°;

f0 ¼ 1.26fπ; θ0 ¼ −2.8°: ð29Þ
The small value of θ0 entails that the η is largely a flavor-
octet state whereas the η0 is primarily flavor-singlet [83].
(We discuss the topological charge content of these systems
in Appendix A.) To provide a comparison, we report
estimates based on a sample of phenomenological analyses
[36,81,82]: f8¼1.34ð8Þfπ , f0¼1.25ð10Þfπ; θ8¼−18ð6Þ°,
θ0¼−6ð6Þ°; which are consistent with a more recent
analysis [84]: f8¼1.27ð2Þfπ ,f0¼1.14ð5Þfπ; θ8¼−21ð2Þ°,
θ0 ¼ −6.9ð2.4Þ°.
Adapting current algebra to the present case, one can

derive expressions for the η; η0 → γγ decay widths [6]:

Γη→γγ ¼
9α2em
64π3

m3
η

�
cl

flη
ðflÞ2 þ cs

fsη
ðfsÞ2

�
2

; ð30aÞ

Γη0→γγ ¼
9α2em
64π3

m3
η0

�
cl

flη0

ðflÞ2 þ cs
fsη0

ðfsÞ2
�2
; ð30bÞ

TABLE I. Parameters appearing in Eqs. (23) and (24),
which specify the non-Abelian anomaly contribution to our
Bethe-Salpeter kernel for η, η0 mesons. (Dimensioned quantities
listed in GeV.)

xl
ffiffiffiffi
D

p
ξ ωξ cos2 θξ rA

0.51 0.32 0.30 0.80 0.57

TABLE II. Solving the coupled gap and Bethe-Salpeter equa-
tions for the η, η0 mesons using the parameters described in
connection with Table I, we find mη ¼ 0.56, mη0 ¼ 0.96; cf. ex-
periment [80]: 0.55 and 0.96, respectively; and the decay
constants listed in row 1. Row 2: Single mixing-angle fit to
the results in row 1, discussed in connection with Eq. (28). Row
3: Estimates based on a sample of phenomenological analyses.
(All quantities are in GeV.)

flη fsη flη0 fsη0

Herein—direct 0.072 −0.092 0.070 0.104
Herein—Eq. (28) 0.074 −0.094 0.068 0.101
Phen. [36,81,82] 0.090(13) −0.093ð28Þ 0.073(14) 0.094(8)

FIG. 2. Growth of mη (solid blue curve) and mη0 (dashed green
curve) with the anomaly-strength parameter in Eq. (24). The
vertical dotted line marks

ffiffiffiffi
D

p
ξ ¼ 0.32 GeV, the value which

generates the best description of mη;η0 .
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where cl ¼ 5=9, cs ¼
ffiffiffi
2

p
=9, and αem ≈ 1=137 is the QED

coupling. These formulas are valid at the resolving
scale that defines the computation (in our case, ζ2); but
owing to the scale dependence of f0, as one evolves to a
new, larger scale, they receive corrections which ensure that
the observable widths are scale independent [44,85,86].
Using Eqs. (28) and the values in Table II, Eqs. (30) yield

Γη→γγ ¼ 0.42 keV; Γη0→γγ ¼ 4.66 keV; ð31Þ

predictions which are commensurate with the empirical
values, respectively [80], 0.516(22) and 4.35(36) keV.

B. Integral representations

We now wish to calculate the η, η0 leading-twist dressed-
valence-quark DAs and the integrals which define our
approximation to the γ�γ → η; η0 transition form factors,
Eq. (38) below. In computing the quantities discussed in
Sec. III A, we worked directly with the matrix-valued
solutions of the gap and Bethe-Salpeter equations stored
simply as large arrays of numbers. Experience has shown
that such input is inadequate for the calculation of DAs and
form factors on Q2 ≳ 4 GeV2. We therefore adopt the
methods introduced in Refs. [87,88] and exploited in
Refs. [24,26]. Namely, we employ algebraic parametriza-
tions of each array to serve as interpolations. They are
detailed in Appendix B.

C. Distribution amplitudes

The DA that describes the light-front longitudinal-
momentum distribution for the dressed quark or antiquark
in a given meson can be obtained by projecting that
system’s Bethe-Salpeter amplitude onto the light front,
with an appropriate flavor projection. Herein, therefore, we
focus on the following expressions:

ffMφ
f
MðxÞ ¼ Z2tr

Z
Λ

dk
δxnðkþÞγ5γ · nχfMðk;PÞ; ð32Þ

where δxnðkþÞ ¼ δðn · kþ − xn · PÞ, n2 ¼ 0, n · P ¼ −mM,
and ffM is the relevant decay constant from Table II, row 1.
Beginning with Eq. (32), it is straightforward to use the

method introduced in Ref. [87] and determine the η, η0 DAs
by reconstruction from their Mellin moments. Namely, for
each φl;s

η;η0 ðxÞ, we compute ðy ¼ 2x − 1Þ

hymifM ¼
Z

1

0

dxymφf
MðxÞ ð33aÞ

¼ 1

ffM
trZ2

Z
Λ

dk

ð2n · kÞm
ðn · PÞmþ1

γ5γ · nχfMðk;PÞ: ð33bÞ

Using the interpolations detailed in Appendix B, one can
readily obtain any finite number of Mellin moments. We

typically use mmax ¼ 50. Now, since Gegenbauer poly-
nomials of order αþ ¼ αþ 1=2, fCαþ

n ðyÞjn ¼ 0;…;∞g,
are a complete orthonormal set on y ∈ ½−1; 1� with respect
to the measure ½ð1 − y2Þ=4�α, they enable reconstruction of
any function that vanishes at y ¼ −1, 1. (N.B. The DAs we
consider are even under y → −y and vanish at the end
points.) Hence, we write

ϕGsðxÞ ¼ nα½ð1 − y2Þ=4�α
Xjs

j¼0;2;…

aαjC
αþ
j ðyÞ; ð34Þ

nα ¼ Γð2þ 2αÞ=Γð1þ αÞ2, aα0 ¼ 1, and minimize

εs ¼
X

m¼1;…;mmax

jhymiGs=hymi − 1j: ð35Þ

In all cases, a value of js ¼ 4 ensures

meanfjhymiGs=hymiGs−2 − 1j;m ¼ 1;…; mmaxg < 1%:

ð36Þ

In each instance, this level of accuracy is achieved
with small values of the coefficients aα2;4. We therefore
take an additional step, setting aαj≥2 ≡ 0 in Eq. (34) and
reconstructing pointwise approximations to the DAs
solely by fitting α. The results obtained in this way
are not realistically distinguishable from those deter-
mined with the more general procedure. Hence, in our
subsequent analysis we used these simpler forms
(depicted in Fig. 3):

φf
MðxÞ ¼ nαfM

½xð1 − xÞ�αfM ; ð37aÞ

αlη αsη αlη0 αsη0

0.70 0.77 1.05 1.10
: ð37bÞ

It is worth reiterating that the DAs in Fig. 3 are
predictions, deriving from Bethe-Salpeter wave functions
computed using the same truncation scheme for the
continuum bound-state problem that successfully unified
the pion’s elastic and transition form factors with those of
heavier pseudoscalar mesons [24,26,88,89]. Evidently,
within each bound state, the light- and s-quark component
DAs have very similar profiles; but there are significant
differences between the mesons: the η-meson DAs are
both broader than the asymptotic distribution, whereas the
η0 distributions are narrower. Notwithstanding this, all
DAs are measurably narrower than that associated with
the pion’s valence dressed-quark distribution. These
features are consistent with the analysis in Ref. [90]
and Appendix A. They reflect structural differences
between these systems, owing to an interplay between
emergent and explicit mass generation in the Standard
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Model, which are expressed in their Bethe-Salpeter
amplitudes and hence affect the transition form factors
on the entire domain of accessible Q2 because QCD
evolution is logarithmic [3–5].
To implement such evolution, one simply projects a

given DA in Eqs. (37) onto the eigenfunctions of the QCD
evolution operator, evolves the associated coefficients,
and then reconstructs the concave evolved DA. Using
one-loop evolution, this can be accomplished with roughly
ten lines of computer code. An illustration is provided,
e.g., in Ref. [91].

IV. η, η0 TRANSITION FORM FACTORS

A. Triangle diagram

As outlined in Sec. I, the γ�γ → η; η0 transitions are each
described by a single form factor, GMðQ2Þ, M ¼ η; η0. In
RL truncation, GMðQ2Þ is obtained from the following
expression:

e2

8π2
ϵμναβk1αk2βGMðk21; k1 · k2; k22Þ

¼ e2

8π2
ϵμναβk1αk2β½Gl

MðQ2Þ þ Gs
MðQ2Þ� ð38aÞ

¼ trD

Z
dl
½cliχlμðl;l1ÞΓl

Mðl1;l2ÞSlðl2ÞiΓl
νðl2;lÞ

þ csiχsμðl;l1ÞΓs
Mðl1;l2ÞSsðl2ÞiΓs

νðl2;lÞ�; ð38bÞ

where the trace is over spinor indices; l1 ¼ lþ k1,
l2 ¼ l − k2; the kinematic conditions are k21 ¼ Q2,
k22 ¼ 0, ðk1 þ k2Þ2 ¼ −m2

M; and Γf
ν and χfμ are, respectively,

the flavor-dependent amputated and unamputated dressed-
photon-quark vertices.
The photon-quark vertices in Eq. (38) may each be

obtained by solving a RL truncation of the associated
inhomogeneous Bethe-Salpeter equation [48,92]; but we
adopt a simpler approach, which has hitherto proven
effective. Namely, emulating Refs. [24,26,88], we use
the following Ansätze for the unamputated vertices,
expressed completely in terms of the functions which
characterize the dressed-quark propagators, Eq. (11a):

χfμðko;kiÞ¼ γμΔk2σfV
þ½sfγ ·koγμγ ·kiþ s̄fγ ·kiγμγ ·ko�ΔσfV

þ½sfðγ ·koγμþ γμγ ·kiÞ
þ s̄fðγ ·kiγμþ γμγ ·koÞ�iΔσfS

; ð39Þ

where ΔF¼½Fðk2oÞ−Fðk2i Þ�=½k2o−k2i �, s̄f¼ 1−sf. Likewise,
our Ansätze for Γf

ν, based on Eq. (3.84) in Ref. [93], are
analogues for the amputated vertex.
Owing to the Abelian anomaly [94–96], it is impossible

to simultaneously conserve the vector and axial-vector
currents associated with the triangle-diagram integral in
Eq. (38).1 This has a measurable effect in the neighborhood
of Q2 ¼ 0 and that is why we have included a momentum
redistribution factor in Eq. (39) [24]:

sf ¼ 1þ sf0 expð−Ef=ME
f Þ; ð40aÞ

Ef ¼ ½Q2=4þ ðME
f Þ2�1=2 −ME

f ; ð40bÞ

where Ef is a Breit-frame kinetic energy and ME
f ¼

fpjp2 ¼ M2
f ðp2Þ; p > 0g is our calculated value of the

Euclidean constituent mass associated with the valence f
quark in the pseudoscalar meson [90,101],

ME
l ¼ 0.41 GeV; ME

s ¼ 0.57 GeV: ð41Þ

FIG. 3. Computed light-quark (solid blue curve) and s-quark
(dashed green curve) componentDAs of the ηmeson (upper panel)
and η0 meson (lower panel), determined at ζ ¼ 2 GeV≕ ζ2, listed
in Eqs. (37). For comparison: upper panel, dot-dashed (purple)
curve—pion’s dressed-valence-quark distribution amplitude
[88,89]; and both panels, dotted black curve—asymptotic profile,
Eq. (4).

1The manner by which the chiral-limit version of Eq. (38)
provides for a parameter-free realization of the Abelian anomaly
constraint is detailed in Refs. [97–100].

MINGHUI DING et al. PHYS. REV. D 99, 014014 (2019)

014014-8



Up to transverse pieces associated with sf, χfμðko; kiÞ and
SfðkoÞΓf

μðko; kiÞSfðkiÞ are equivalent. All differences are
power-law suppressed in the ultraviolet; and while Fig. 4
reveals that making them identical might lead to modest
improvements in the description of γ�γ → η; η0 transitions
at infrared momenta, the computational effort would
increase substantially. Since the cost outweighs the gain,
we omit this step herein.
Each element in Eq. (38) is now expressed via a PTIR:

Sec. III B and Eqs. (39)–(41). Hence, the computation of
GMðQ2Þ reduces to the task of summing a series of terms,
all of which involve a single four-momentum integral.
The integrand denominator in every term is a product of
l-quadratic forms, each raised to some power. Within each
term, one uses a Feynman parametrization in order to
combine the denominators into a single quadratic form,
raised to the appropriate power. A suitably chosen change
of variables then enables routine evaluation of the

four-momentum integration using algebraic methods.
After calculation of the four-momentum integration, evalu-
ation of the individual term is complete after one computes a
finite number of simple integrals, namely, the integrations
over Feynman parameters and the spectral integral. The
complete result for GMðQ2Þ follows after summing the
series. Following this procedure, one may fix the redistrib-
ution factors in Eq. (40). Using

ΓM→γγ ¼
1

4
πα2emm3

MjGMðQ2 ¼ 0Þj2 ð42Þ

and requiring reproduction of the results in Eq. (31), then
sl0 ¼ 1.21, ss0 ¼ 0.48.

B. Evolution and asymptotic limits

Before displaying our complete results forGη;η0 ðQ2Þ, it is
sensible to discuss their asymptotic limits and the imple-
mentation and impact of QCD evolution [3–5]. Absent the
non-Abelian anomaly, the asymptotic limits of Gη;η0 would
simply be obtained from Eq. (5). However, as described in
Sec. II C, owing to the anomaly, the singlet decay constant
f0 and thus fl;sη;η0 in Eq. (5) depend on ζ. Writing, for
notational convenience,

Fη;η0 ðQ2Þ ¼ 1

2π2
Gη;η0 ðQ2Þ; ð43Þ

the impact of f0 → f0ðζÞ can be exhibited as follows
(again, τ2 ¼ Λ2

QCD=Q
2):

Q2FMðQ2Þ ≈τ≃06½clflMðQ2Þ þ csfsMðQ2Þ�jτ¼0 ð44aÞ

¼ 2½c8f8M þ 2c0f0MðQ2Þ�jτ¼0; ð44bÞ

c8 ¼ 1=
ffiffiffi
3

p
, c0 ¼

ffiffiffiffiffiffiffiffi
2=3

p
, where [7]

f0Mðζ2Þ ¼ f0Mðζ22Þ
�
1þ 2Nf

πβ0
½αSðζ2Þ − αSðζ20Þ�

�
; ð45Þ

with ζ0 the scale at which the calculation is normalized.
Using our computed values for the leptonic decay

constants at ζ2, Eqs. (16) and (29), and a one-loop running
coupling defined consistent with Eq. (19),

Q2FηðQ2Þ ≈τ≃00.15 GeV; ð46aÞ

Q2Fη0 ðQ2Þ ≈τ≃00.30 GeV: ð46bÞ

The evolution of f0M in Eq. (45) reduces the η-meson
limit by 1% and that of the η0 by 10%. (This does not alter
their ordering with respect to the neutral pion, for which the
result is 2fπ ≈ 0.186 GeV.) Notably, our starting scale is

FIG. 4. γ�γ → η; η0 transition form factors, normalized accord-
ing to Eq. (43): upper panel, η; lower panel, η0. Solid (black)
curves—our predictions, with the bracketing (gray) bands in-
dicating an estimate of uncertainty associated with the photon-
quark vertex Ansätze in Eq. (38). Dotted (green) curve—for
comparison, π0 result computed in Ref. [24]; and associated
experimental data (green asterisks) from “CELLO” [8] and
“CLEO” [9]. The η; η0 data are diamonds (blue) CLEO [9]
and circles (red) “BABAR” [30].
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fixed: we know the point at which the propagators, vertices
and amplitudes are renormalized i.e., ζ0 ¼ ζ2. This is not
the case with estimates based on Ansätze for the DAs, in
which the scale ζ0 is a model parameter. Were one to use
our computed DAs, but associate them with a scale
ζ0 ¼ 1 GeV, then the suppressions would naturally be
greater: 1.5% for the η and 15% for the η0. Existing data
cannot distinguish between effects on this scale. On the
other hand, as we shall see, they are sensitive to the ζ ¼ ζ0
values of the decay constants and mixing angles. Our
computed values, Eqs. (28) and (29), control the Q2

dependence of the results for Fη;η0 because they are encoded
in the Bethe-Salpeter wave functions for these bound states.
The evolution of a flavor nonsinglet DA with the

resolving scale ζ is explained in Refs. [3–5]. It is loga-
rithmic; and while Poincaré covariant computations using a
renormalization-group-improved RL truncation produce
the same matrix-element power laws as perturbative QCD,
they fail to reproduce the full anomalous dimensions [3].
Typically [87,88,98], the RL approximation to a form factor,
such as that defined byEq. (38), underestimates the rate of its
logarithmic flow with the active momentum scale because
the approximation omits gluon-splitting diagrams.
As explained elsewhere [24], this defect of RL truncation

can be corrected by recognizing that, owing to Eq. (32), a
given meson’s Poincaré covariant wave function must
evolve with ζ in the same way as its DA. Such evolution
enables the dressed-quark and -antiquark degrees of free-
dom, in terms of which the wave function is expressed at a
given scale ζ2 ¼ Q2, to split into less well-dressed partons
via the addition of gluons and sea quarks in the manner
prescribed by QCD dynamics. These effects are incorpo-
rated naturally in bound-state problems when the complete
quark-antiquark scattering kernel is used; but aspects are
lost when that kernel is truncated, and so it is with the
truncation used herein.
Similar to the decay constants, the non-Abelian anomaly

complicates evolution of the DAs and Bethe-Salpeter wave
functions of the η and η0 mesons. This is most readily
explained by shifting to the octet-singlet basis at ζ2:

f8Mφ
8
M ¼ c8flMφ

l
M − c0fsMφ

s
M; ð47aÞ

f0Mφ
0
M ¼ c0flMφ

l
M þ c8fsMφ

s
M: ð47bÞ

Defined in this way, φ8
MðxÞ evolves without mixing at

leading order. However, φ0
MðxÞ mixes with a two-gluon

DA, φg
M, under leading-order evolution [7]. To implement

the effect, one would need either to compute φg
M or employ

a reliable model. No calculations are currently available
and few constraints exist that can be used to aid in
developing a good Ansatz. Hence, we set φg

η;η0 ≡ 0 and
thereby suppress mixing. While this may seem a drastic
step, considering the impact of analogous effects on the
decay constants and the analysis in Ref. [7], we expect it to

have little impact on Fη and to introduce an uncertainty of
only �10% in Fη0 on the empirically accessible domain.
This uncertainty also absorbs any contribution from a cc̄
component in the η, η0-meson Bethe-Salpeter wave func-
tions. In any event, we expect this type of intrinsic charm
contribution to be small, owing to the quark-line hairpin
structure of the anomaly kernel (Fig. 1), which suppresses
such mixing [33], and the absence of any need for an
intrinsic light-quark component in describing the γ�γ → ηc
transition [26]. Since mb ≫ mc ≫ ms, any contribution to
Fη;η0 from a bb̄ component is implausible.
Following these observations, we implement evolution

of the Bethe-Salpeter amplitudes (and transition form
factors) as follows. (i) Write

χ8M ¼ c8χlM − c0χsM; χ0M ¼ c0χlM þ c8χsM; ð48Þ

and hence, equally,

F8
MðQ2Þ ¼ c8Fl

MðQ2Þ − c0Fs
MðQ2Þ; ð49aÞ

F0
MðQ2Þ ¼ c0Fl

MðQ2Þ þ c8Fs
MðQ2Þ; ð49bÞ

(ii) on Q2 > ζ22,

F8
MðQ2Þ → F8

MðQ2Þ½κ8MðQ2Þ=κ8Mðζ22Þ�; ð50aÞ

F0
MðQ2Þ → F0

MðQ2Þ½f0MðQ2Þκ0MðQ2Þ=f0Mðζ22Þκ0Mðζ22Þ�;
ð50bÞ

where

κ8;0M ðQ2Þ ¼ 1

2

Z
1

0

dxφ8;0
M ðx;Q2Þ½1=xþ ð2x − 1Þ2�; ð51Þ

and (iii) rebuild the transition form factors in the quark
flavor basis, viz.

Fl
MðQ2Þ ¼ c8F8

MðQ2Þ þ c0F0
MðQ2Þ; ð52aÞ

Fs
MðQ2Þ ¼ −c0F8

MðQ2Þ þ c8F0
MðQ2Þ; ð52bÞ

and therefrom, using Eqs. (38), the final results for FMðQ2Þ.
In this way, we generalize the procedure introduced and
explained in Refs. [24,26].

C. Calculated transition form factors

1. Low Q2

We have computed Fη;η0 ðQ2Þ using the inputs and
method described above; and in Fig. 4 we depict their
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behavior on a low-Q2 domain: our predictions are indicated
by the solid (black) curves in each panel.2

In these calculations we used Ansätze for χfμ and Γf
ν in

Eq. (38) instead of solutions of the relevant inhomogeneous
Bethe-Salpeter equations. While they are efficacious, with
longitudinal parts constrained completely by Ward-Green-
Takahashi identities, they are not perfect: as noted above,
there are model uncertainties in the transverse pieces which
may affect the Q2 dependence of the results on Q2 ≲m2

V ,
where mV is the appropriate vector meson mass
(mρ ≈ 2ME

l , mϕ ≈ 2ME
s ). Notably, however, such uncer-

tainties had a visible impact neither on the γ�γ → π0; ηc; ηb
transition form factors [24,26] nor on the charged-pion and
-kaon elastic form factors [88,102]. Relative to these
systems, a difference herein is the non-Abelian anomaly,
which affects η; η0 structure and conceivably, therefore,
generates corrections to Eq. (38) at infrared momenta. This
will be explored elsewhere. Here, we simply estimate the
sensitivity of our results to neglected infrared effects by
supposing that any such uncertainty is maximal on Q2 ≃
ðME

l þME
s Þ2=4 (as much as 30% in total) and vanishes

smoothly either side of this domain because (i) the η; η0 →
γγ widths constrain Fη;η0 ðQ2 ¼ 0Þ and (ii) our form factor
predictions match data on Q2 ≳ 2 GeV2. This procedure
produces the (gray) bands in the panels of Fig. 4.
Globally, the sensitivity to potential infrared corrections

is negligible; but it is apparent in our estimates of the
interaction radii:

r2M ≔
−6

FMð0Þ
d

dQ2
FMðQ2Þj

Q2¼0

; ð53Þ

rη ¼ 0.83þ0.40
−0.22 fm; rη0 ¼ 0.73þ0.34

−0.19 fm: ð54Þ
Empirically, extracted from measurements of the Dalitz
decays η;η0→γeþe−: rη¼ 0.67ð3Þ fm [103], r0η¼0.61ð3Þ fm
[104]; and [84] rη ¼ 0.667ð5Þ fm, r0η ¼ 0.578ð7Þ fm. Our
calculated value for the ratio

rη=rη0 ¼ 1.14ð1Þ; ð55Þ
which matches experiment: 1.13(7), has little uncertainty
because any change in the computed value of one radius is
compensated by that in the other.
The calculated η; η0 interaction radii are plotted in

Fig. 5. We also include another set, viz. those of different
neutral pseudoscalar mesons for which the transition
form factors have been computed (π0, ηc, ηb) [24,26] and

the electric-charge radii of pionlike mesons with masses
m0−=GeV ¼ 0.47, 0.69, 0.83 [89]: where comparisons are
possible, the charge radii agree with those computed using
lattice QCD [105,106]. The dashed curve in Fig. 5 is the
following interpolation of these additional results:

rMðmMÞ ¼
r0

1þ ðmM=mÞ ln½1þmM=m� ; ð56Þ

where r0 ¼ 0.67 fm and m ¼ 1.01 GeV ≈mϕ. The kaon
point [102] ðmass ¼ 0.49 GeV; charge radius ¼ 0.58 fmÞ
also sits on this curve. Evidently, for systems not affected by
the non-Abelian anomaly, a standard pattern of damping
with Higgs-generated current-quark mass is established
once mM exceeds that of the (fictitious) ss̄ bound state
[90]. On the other hand, the η; η0 interaction radii do not fit
this pattern: they are larger by 24% and 48%. This effect is
greater in the η0, which is predominantly a Uð3Þ flavor-
singlet state and, hence, that system most affected by the
non-Abelian anomaly. (See Appendix A.)

2. Large Q2

Our predictions for the large-Q2 behavior of the tran-
sition form factors are depicted in Figs. 6 and 7: with the
normalization in Eq. (43), the asymptotic value of the π0

form factor is 2fπ ¼ 0.186 GeV, drawn as the dotted (red)
curve in all panels.
Consider first FηðQ2Þ in Fig. 6. There are marked

similarities with the π0 transition form factor (see
Ref. [24], Fig. 2.). Namely, the asymptotic limit,
Eq. (46a), is only slightly exceeded on Q2 ≳ 13 GeV2;
and, including necessary evolution of the meson wave

FIG. 5. Interaction radii of neutral pseudoscalar mesons,
Eq. (53), plotted versus meson mass. For clarity, the η; η0 values
are labeled and offset slightly from their true masses: our results
(blue asterisks) are compared with empirical estimates (red
circles), drawn from Refs. [84,103,104]. The π0, ηc, ηb values
(green asterisks) are taken from Refs. [24,26]. Five-point stars
(olive): computed charge radii of pionlike mesons with masses
m0−=GeV ¼ 0.47, 0.69, 0.83 [89]. Notably, all radii are well
described by Eq. (56) (dashed black curve) except those of η; η0.

2The PTIRs detailed in Appendix B enable a direct evaluation
of the integral in Eq. (38) on P2 > −ð0.85 GeVÞ2. For the η0, we
therefore evaluate this integral on P2=GeV2 ∈ ð−0.852;−0.752Þ
and extrapolate to P2 ¼ −ð0.96 GeVÞ2 using ½n; n� Padé approx-
imants, n ¼ 1, 2, 3, 4, with the difference between the extrapo-
lated values being used to estimate the error in the procedure.
That error is small, lying within the linewidth of all η0 curves.
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function, that limit is approached uniformly from above
with increasing momentum transfer.
Further, our full FηðQ2Þ result (solid, black curve) agrees

well with existing data [9,30,31]. Looking at details, it
might appear that there is a mismatch between our curve
and the largest-Q2 CLEO and BABAR results. Pursuing
this, a review of the results in Table II and Eqs. (28) may
suggest that our prediction for the magnitude of fsη is ∼15%
too high. To explore the impact of such an overestimate, we
changed fsη → 0.85fsη and recomputed both the width in
Eq. (30a) and asymptotic limit in Eq. (46a), with the results
0.42 → 0.46 keV and 0.15 → 0.17 GeV, respectively.
Such a 10% increase in Γη→γγ would bring our result into
better agreement with experiment. Hence, the increase in

Eq. (46a) might also be realistic. It could be achieved by
fine-tuning the parameters that specify KA in Eq. (17),
listed in Table I. Instead of doing that, however, in the lower
panel of Fig. 6 we choose to place an uncertainty on our
prediction for FηðQ2Þ, namely, the shaded (green) band.
Evidently, this does not materially affect the comparison
with data; so we remain confident of our prediction. A
plausible conclusion is that the largest-Q2 BABAR datum
[31] is too large by∼50%. This would resolve the mismatch
with our prediction and solve the puzzle of its near

FIG. 6. γ�γ → η transition form factor, normalized according to
Eq. (43). Upper panel—Curves: solid (black), our prediction with
complete evolution, described in Sec. IV B; dot-dashed (purple),
results without evolution; long-dashed (cyan), one-loop evolution
only; and dashed (blue), asymptotic limit from Eqs. (45) and (46).
The gray bands bracketing our full prediction indicate the
uncertainty owing to omission of φ0

M − φg
M mixing: in this case,

it is negligible. Lower panel—The shaded (green) band indicates
an uncertainty in our prediction for Fη owing to variations in the
value of fsη (see text). In both panels, the dotted (red) curve is the
π0 asymptotic limit, 2fπ; and the data are diamonds (blue) CLEO
[9] and circles (red) BABAR [30,31], where the timelike datum
from the latter is plotted at Q2 ¼ −q2.

FIG. 7. γ�γ → η0 transition form factors, normalized according
to Eq. (43). Upper panel—Curves: solid (black), our prediction
with complete evolution, described in Sec. IV B; dot-dashed
(purple), results without evolution; long-dashed (cyan), one-loop
evolution only; and dashed (blue), asymptotic limit from Eqs. (45)
and (46). The gray bands bracketing our full prediction indicate
an uncertainty owing to omission of φ0

M − φg
M mixing. Lower

panel—The shaded (green) band indicates an uncertainty in
our prediction for Fη0 owing to variations in the value of fsη
(see text). The broader, shaded (gray) band combines this
with the uncertainty owing to omission of φ0

M − φg
M mixing.

The (blue) banded shading indicates the impact of uncertainty
in fsη on the asymptotic behavior of Fη0 , Eq. (46b). In both
panels, the dotted (red) curve is the π0 asymptotic limit 2fπ; and
the data are diamonds (blue) CLEO [9] and circles (red) BABAR
[30,31], where the timelike datum from the latter is plotted at
Q2 ¼ −q2.
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equality in magnitude with the analogous η0 datum, which
is otherwise difficult to explain.
Turning now to Fig. 7, upper panel, the behavior of

Fη0 ðQ2Þ also matches expectations based upon studies
of γ�γ → π0; ηc; ηb; e.g., as with γ�γ → ηc; ηb, here the
asymptotic limit is approached uniformly from below.
The new feature is the impact of the scale dependence
of f0η0 . It generates a suppression of the transition form
factor, which serves to improve the agreement between our
result and available experimental data. At asymptotically
large momentum transfers, i.e., on τ ≃ 0, our full result
(solid black curve) meets the asymptotic trajectory (dashed
blue curve).
Any overestimate of the size of fsη also has an impact

on Fη0 through its effect on f0, θ0 in Eq. (16). This is
illustrated in the lower panel of Fig. 7. For fsη→0.85fsη,
the asymptotic limit in Eq. (46b) is reduced: 0.30→
0.28GeV, indicated by the (blue) banded shading extending
below the dashed (blue) curve. Likewise, our prediction
for Fη0 ðQ2Þ is suppressed, as shown by the (green) shading
extending below the solid (green) curve. Our estimate for the
combined effect of ≤ 15% uncertainty in fsη and omitting
φ0
M-φ

g
M mixing is represented by the broad gray band.

Within errors, there is agreement between our prediction
and all data on the γ�γ → η0 transition.

V. EPILOGUE

Conscious of their importance in validating QCD hard
scattering formulas, a need to unify their analysis with the
transition form factors of other neutral pseudoscalar mes-
ons and thereby identify remaining challenges to achieving
a sound global understanding, and the possibility of much
more data from new-generation eþe− colliders [107–109],
we employed a continuum approach to the hadron bound-
state problem to calculate the γ�γ → η; η0 transition form
factors.
Our starting point was the Bethe-Salpeter kernel used

successfully to explain the γ�γ → π0; ηc; ηb transitions.
(The same kernel was used with equal success in many
other applications, e.g., charged-pion and -kaon elastic
form factors [88,102] and nucleon observables [110].) We
augmented this with a four-parameter model for the
contribution to this kernel deriving from the non-Abelian
anomaly, an improvement necessary for any computation
of η; η0 properties: the parameters were fixed by requiring
that the solutions of the coupled-channels bound-state
problems reproduce the empirical η; η0 masses and the four
phenomenologically determined values of the light- and
strange-quark η, η0 decay constants.
With the bound-state kernel thus defined, we delivered

predictions for the η; η0 → γγ decay widths—Sec. III A;
the four amplitudes that characterize the light-front longi-
tudinal momentum distributions of the light and strange
quarks within the η; η0—Sec. III C; the γ�γ → η; η0

transition form factors, the associated electromagnetic
interaction radii and, at the other extreme, their large-Q2

limits—Sec. IV. Where available, our results compare
favorably with existing data. Important to this at large
Q2 is a sound understanding and implementation of
QCD evolution, which has a visible impact on the η0.
Furthermore, our analysis provides some novel insights
into the properties of η; η0 mesons and associated observ-
able manifestations of the non-Abelian anomaly.
This completes a unified description of a large array of

pseudoscalar meson properties, ranging from low-energy
ππ scattering [111] to the large-Q2 behavior of the
transition form factors of heavy-heavy systems [26], and
visiting many stations in between, e.g., Refs. [53,102]. The
related body of analysis delivers an understanding of
the distribution of valence quarks within mesons that
smoothly joins Goldstone modes, constituted from the
lightest quarks in nature, with systems that are markedly
affected by the non-Abelian anomaly and hence topological
features of QCD, and also mesons containing the heaviest
valence quarks that can today be studied experimentally.
The positive comparison with data in all sectors confirms
that the dressed-valence-quark DAs of light-quark mesons
are dilated with respect to the asymptotic profile,
φ∞ðxÞ ¼ 6xð1 − xÞ; those of systems affected by the
anomaly may usefully be approximated by φ∞; and those
for heavy-heavy systems are compressed, becoming nar-
rower as the current mass of the valence quarks increases at
any given resolving scale.
This particular study can nevertheless be improved.

Most immediately, by developing better Ansätze for the
photon-quark vertices used in computing the transition
form factors, e.g., by implementing features of solutions of
the associated inhomogeneous Bethe-Salpeter equations or
by using such solutions directly, possibly after building
their perturbation theory integral representations; and also
by analyzing the impact of corrections induced by the non-
Abelian anomaly to our approximation for the γ�γ → η; η0
transition current. These steps would enable reliable
predictions to be made for the timelike behavior of those
transition form factors that are accessible via the related
Dalitz decays, for which contemporary data exist
[103,104,112].
The scope of the analysis herein could also be extended

to include the doubly off-shell γ�ðk1Þγ�ðk2Þ → M transition
form factors, where M is any neutral pseudoscalar meson.
This process, too, is described by only one form factor,
Fγ�Mðk21; k22Þ. However, whereas vector meson dominance
(VMD) models and QCD-connected analyses both describe
the same large-Q2 behavior for the singly off-shell form
factor, viz. Fγ�MðQ2; 0Þ ∼ 1=Q2 ∼ FMðQ2Þ, albeit with
different normalizations, the large-Q2 predictions of
VMD [113] and QCD [114–116] for the doubly off-shell
form factor are distinctively different:
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FVMD
γ�M ðk21; k22Þ ∼ 1=ðk21k22Þ; ð57aÞ

FQCD
γ�M ðk21; k22Þ ∼ 1=ðk21 þ k22Þ: ð57bÞ

The first data that can distinguish between these predictions
now exist for γ�ðk1Þγ�ðk2Þ → η0 [117]. They favor the QCD
result, with behavior qualitatively similar to that obtained
with our method for γ�ðk1Þγ�ðk2Þ → π0 [99,100]. However,
there are currently no such discriminating data for the π0

transition and no related computations for M ≠ π0.
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22117; CONACyT (México) Project “Foins 296—2016”
FC (Frontiers of Science); Center of Advanced Studies in
Physics, Mathematics and Computation (CEAFMC),
University of Huelva, Spain; the Chinese Government’s
Thousand Talents Plan for Young Professionals; the
Chinese Ministry of Education, under the International
Distinguished Professor program; and U.S. Department of
Energy, Office of Science, Office of Nuclear Physics, under
Contract No. DE-AC02-06CH11357.

APPENDIX A: TOPOLOGICAL CHARGE

Beginning with the axial-vector Ward-Green-Takahashi
identities, including that which is anomalous, general mass
formulas for the neutral pseudoscalar mesons were derived
in Ref. [33]. In the isospin-symmetry limit, those for M ¼
η; η0 are

m2
M

�
f8M
f0M

�
¼
�
0

nM

�
þ
2
4 1

3
m12

ffiffi
2

p
3
m1−1ffiffi

2
p
3
m1−1

1
3
m21

3
5�ρ8M

ρ0M

�
; ðA1Þ

where mM are the meson masses; f8;0M are the octet-singlet
leptonic decay constants discussed in Eqs. (16) and (29);
mαβ ¼ 2ðαml þ βmsÞ;

nM ¼
ffiffiffi
3

2

r
νM; νM ¼ h0jQ ¼ i

αS
16π

F̃a
μνFa

μνjMi; ðA2Þ

with Fa
μν being the gluon field-strength tensor and Q,

therefore, the topological charge density operator; and ρ8;0M

are kindred to f8;0M , viz. pseudoscalar projections of the

Bethe-Salpeter amplitudes onto the origin in configura-
tion space.
Since we favored the quark flavor basis (Sec. II A), then

to obtain ρ8;0M we first compute

iρl;sM ¼ Z4tr
Z

Λ

dk
γ5χ

l;s
M ðk;PÞ; ðA3Þ

where Z4 is the Lagrangian-mass renormalization constant
evaluated in the chiral limit, and obtain (in GeV2 at ζ2)

ρlη ρsη ρlη0 ρsη0

0.382 −0.452 0.442 0.552:
ðA4Þ

For comparison, ρζ2π ¼ ð0.41 GeVÞ2. Using an obvious
analogue of Eq. (47), these values translate to (again, GeV2)

ρ8η ρ0η ρ8η0 ρ0η0

0.502 0.0332 −0.372 0.572:
ðA5Þ

Subsequently, adapting Eq. (16) to the present case, one
finds

ρ8 ¼ 1.7ρπ; θρ8 ¼ −28°;

ρ0 ¼ 2.0ρπ; θρ0 ¼ −0.19°: ðA6Þ

It follows from the relevant axial-vector Ward-Green-
Takahashi identities that the mixing angles defined this
way do not need to match those in Eq. (29); but it is
supportive for the usual understanding of mixing that they
are qualitatively equivalent.
One can now compute the octet-singlet in-hadron con-

densates [118]:

κ8 ¼ f8ρ8 ¼ ð0.33 GeVÞ3 ¼ 2.3κπ; ðA7aÞ

κ0 ¼ f0ρ0 ¼ ð0.34 GeVÞ3 ¼ 2.5κπ; ðA7bÞ

κπ ¼ ð0.25 GeVÞ3. For any given system, the in-hadron
condensate measures the coherent sum of emergent and
Higgs mass generation, i.e., the nonperturbatively com-
bined influence of dynamical and explicit chiral symmetry
breaking. Notably, however, since the light-quark current
mass is very small, DCSB is overwhelmingly responsible
for the size of κπ , which may therefore be used to bench-
mark the scale of emergent mass generation. In this
connection, our computed value of κK ¼ 1.5κπ indicates
that while Higgs-mass effects are noticeable, emergent
mass is still dominant in the kaon, whose flavor content is
ls̄ or l̄s. On the other hand, if the non-Abelian anomaly is
suppressed so that the Bethe-Salpeter equations produce
ideally mixed pseudoscalar bound states, then one finds
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κss̄ ¼ 2.2κπ: ðA8Þ

Evidently, like the DAs in Fig. 3 and the radii in Fig. 5,
using the in-hadron condensate, one also finds that the s
quark defines a boundary: emergent mass generation
dominates for m̂ < m̂s, but the Higgs mass prevails
on m̂≳ m̂s.
At this point, using the current-quark masses in Eq. (26),

our results for mη;η0, f
8;0
M , and Eqs. (A1), we find

νη ¼ ð0.29 GeVÞ3; νη0 ¼ ð0.37 GeVÞ3; ðA9Þ

and hence the topological charge content of the η0 is 2.1
times that of the η. These results are commensurate
with those obtained using a variety of other methods, e.g.,
drawing from Table I in Ref. [119]: νη¼ð0.28ð2ÞGeVÞ3,
νη0 ¼ ð0.36ð3Þ GeVÞ3, and νη0=νη ¼ 2.1ð4Þ.

APPENDIX B: INTERPOLATING FUNCTIONS
FOR PROPAGATORS AND BETHE-SALPETER

AMPLITUDES

For the quark propagator, we write [120]

SfðkÞ ¼ −iγ · kσfVðk2Þ þ σfSðk2Þ ðB1aÞ

¼
Xjm
j¼1

�
zfj

iγ · kþmf
j

þ zf�j
iγ · kþmf�

j

�
; ðB1bÞ

with Immf
j ≠ 0 ∀ j; f. Hence, σV;S are meromorphic func-

tions with no poles on the real k2 axis, a feature consistent
with confinement [50–53]. Typically, jm ¼ 2 is sufficient to
provide a pointwise accurate interpolation of the numerical
solutions to Eq. (10) (see, e.g., Ref. [87], Fig. 1, and
Ref. [121], Fig. 1). That is also true herein and we list the
interpolation parameters in Table III.
Turning now to the Bethe-Salpeter amplitudes in

Eq. (9), there are four independent scalar functions.
However, in all cases, g4ðk;PÞ is uniformly small and is
therefore neglected, as is usual [24,26,87,88]. The same
statements hold for gl;s

3η0. We represent the remaining
functions F ¼ g1;2;3 as a sum of two terms:

F ðk;PÞ ¼ F iðk;PÞ þ F uðk;PÞ; ðB2Þ

where that describing the infrared behavior, labeled “i,” is
expressed via the following PTIR:

F iðk;PÞ¼ ciF

Z
1

−1
dzρνiF ðzÞ½aΔ̂

4
Λi
F
ðk2zÞþð1−aÞΔ̂5

Λi
F
ðk2zÞ�;

ðB3Þ

and the ultraviolet “u” term is expressed analogously:

F uðk;PÞ ¼ cuF

Z
1

−1
dzρ1ðzÞΔ̂luF

1 ðk2zÞ: ðB4Þ

Here,

ρνðzÞ ¼
Γð3

2
þ νÞffiffiffi

π
p

Γð1þ νÞ ð1 − z2Þν; ðB5Þ

Δ̂ΛðsÞ ¼ Λ2ΔΛðsÞ ¼ Λ2=½sþ Λ2�, kz ¼ k − ð1 − zÞP=2.
The interpolation parameters for these scalar functions,
listed in Table III, were obtained by fitting their low-order
Chebyshev moments:

F nðk2Þ ¼
2

π

Z
1

−1
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p
UnðxÞF ðk;PÞ; ðB6Þ

n ¼ 0, 2, and x ¼ k · P=
ffiffiffiffiffiffiffiffiffiffi
k2P2

p
, where Un is a Chebyshev

polynomial of the second kind.

TABLE III. Representation parameters. Upper panel:
Eq. (B1b)—the pair ðx; yÞ represents the complex number xþ iy.
Lower panel: Eqs. (B3)–(B5). In all cases, a ¼ 2.75; and
lu
g1;2 ¼ 1.1, lu

g3 ¼ 2.2. Also, g2 has dimension 1=GeV and g3,
1=GeV3. Consequently, the listed values of cg2 should each be
divided by the correlated value of Λi

g2 and each cg3 by ½Λi
g3 �3. Λi is

listed in GeV.

f z1 m1 z2 m2

l (0.37,0.32) (0.52,0.29) (0.12,0.11) ð−1.31;−0.90Þ
s (0.41,0.32) (0.74,0.39) (0.12,0.10) ð−1.57;−0.95Þ

ci cu νi Λi

gl1η 0.94 0.06 −0.60 1.35

gl2η 0.65 0.006 3.60 1.07

gl3η 0.48 0.04 0.10 1.10
gs1η −2.12 −0.12 −0.40 1.35
gs2η −0.94 −0.01 1.20 1.18
gs3η −0.48 −0.09 0.10 1.30
gl
1η0 0.93 0.07 −0.40 1.30

gl
2η0 0.72 0.008 0.40 1.12

gs
1η0 1.94 0.19 −0.22 1.53
gs
2η0 1.12 0.03 1.60 1.30
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