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We analyze the low-Q2 behavior of the axial form factor GAðQ2Þ, the induced pseudoscalar form factor
GPðQ2Þ, and the axial nucleon-to-delta transition form factors CA

5 ðQ2Þ and CA
6 ðQ2Þ. Building on the results

of chiral perturbation theory, we first discuss GAðQ2Þ in a chiral effective-Lagrangian model including the
a1 meson and determine the relevant coupling parameters from a fit to experimental data. With this
information, the form factor GPðQ2Þ can be predicted. For the determination of the transition form
factor CA

5 ðQ2Þ, we make use of an SU(6) spin-flavor quark-model relation to fix two coupling
constants such that only one free parameter is left. Finally, the transition form factor CA

6 ðQ2Þ can be
predicted in terms of GPðQ2Þ, the mean-square axial radius hr2Ai, and the mean-square axial nucleon-to-
delta transition radius hr2ANΔi.
DOI: 10.1103/PhysRevD.99.014012

I. INTRODUCTION

At the fundamental level, the electroweak form factors of
hadrons originate from the dynamics of the constituents of
quantum chromodynamics (QCD), namely, quarks and
gluons. While a wealth of precision data exists for the
electromagnetic form factors of the proton and, to a lesser
extent, of the neutron (see, e.g., Refs. [1,2] for a review),
the nucleon form factors of the isovector axial-vector
current, the axial form factor GA and, in particular, the
induced pseudoscalar form factor GP, are not as well
known (see, e.g., Refs. [3,4] for a review). A similar
situation occurs in the case of the nucleon-to-delta tran-
sition form factors. A considerable amount of data is
available for the electromagnetic transition form factors
(see, e.g., Refs. [5,6] for a review), whereas very little is
known about the axial nucleon-to-delta transition form
factors [7–11]. On the theoretical side, there have been
various approaches to determining the nucleon-to-delta
transition form factors. Calculations have been performed
in the framework of quark models [12–16], chiral effective
field theory [17–19], lattice QCD [20–22], and light-cone
QCD sum rules [23,24]. Moreover, a substantial amount
of work has been devoted to the question of how to

parametrize and extract the form factors from experimental
data [25–34].
In this article, based on the results of Ref. [35], we make

use of a semiphenomenological description of the nucleon
axial form factor GA and the induced pseudoscalar form
factor GP to predict, using certain model assumptions, two
of the four axial nucleon-to-delta transition form factors,
namely,CA

5 andC
A
6 . Wewill assume that the exchange of the

axial-vector meson a1ð1260Þ provides a dominant contri-
bution to the form factor CA

5 at low values of Q2. Such a
scenario was already envisaged decades ago in Ref. [36],
where the common use of a dipole form was questioned.

II. AXIAL-VECTOR CURRENT
OPERATOR IN QCD

In terms of the up-quark and down-quark fields,

qðxÞ ¼
�
uðxÞ
dðxÞ

�
;

the Cartesian components of the isovector axial-vector
current operator are defined as

Aμ
j ðxÞ ¼ q̄ðxÞγμγ5

τj
2
qðxÞ: ð1Þ

In the isospin-symmetric limit, mu ¼ md ¼ m̂, the diver-
gence of the isovector axial-vector current is given by

∂μA
μ
j ¼ im̂ q̄ γ5τjq≡ m̂Pj; ð2Þ
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where Pj is the jth component of the pseudoscalar quark
density.After coupling external c-number axial-vector fields
aμjðxÞ to the axial-vector current operators Aμ

j ðxÞ [37],

Lext ¼
X3
j¼1

aμjðxÞAμ
j ðxÞ; ð3Þ

the invariant amplitude for a transition from a hadronic state
jAðpiÞi to jBðpfÞi, inducedby a plane-wave external field of
the form aμjðxÞ ¼ ϵμjðqÞe−iq·x, is defined as (no summation
over j implied)

M ¼ iϵμjðqÞhBðpfÞjAμ
j ð0ÞjAðpiÞi; ð4Þ

where four-momentum conservation pf ¼ pi þ q due to
translational invariance is implied.

III. PARAMETRIZATION OF THE
NUCLEON-TO-NUCLEON AND

NUCLEON-TO-DELTA TRANSITIONS

The axial-vector current matrix element between nucleon
states can be parametrized as [35]

hNðpf;sfÞjAμ
j ð0ÞjNðpi;siÞi

¼ ūðpf;sfÞ
�
γμγ5GAðQ2Þþ qμ

2mN
γ5GPðQ2Þ

�
τj
2
uðpi;siÞ;

ð5Þ

where q ¼ pf − pi,Q2 ¼ −q2, andmN is the nucleonmass.
The Pauli matrix τj has to be evaluated between nucleon
isospinors. At Q2 ¼ 0, the axial form factor reduces to the
axial-vector coupling constant gA ¼ 1.2723� 0.0023 [38].
At Q2 ¼ m2

μ, where mμ is the muon mass, the induced
pseudoscalar coupling constant is defined as

gp ¼ mμ

2mN
GPðm2

μÞ: ð6Þ

Recently, the MuCap Collaboration obtained gp ¼ 8.06�
0.55 [39], which is in very good agreement with the result of
chiral perturbation theory [40,41], gp ¼ 8.26� 0.23 [3].1

Introducing the spherical tensor notation [42],

Aμð1Þ
�1 ¼∓ 1ffiffiffi

2
p ðAμ

1 � iAμ
2Þ; Aμð1Þ

0 ¼ Aμ
3;

and using isospin symmetry, we express the matrix element
of the spherical isospin components (α ¼ þ1; 0;−1)
between a nucleon state and a Δ state as

h3=2; τΔjAμð1Þ
α j1=2; τi

¼ ð1=2; τ; 1; αj3=2; τΔÞh3=2jjAμð1Þjj1=2i; ð7Þ

where h3=2jjAμð1Þjj1=2i denotes the reducedmatrix element
and ð1=2; τ; 1; αj3=2; τΔÞ is the relevant Clebsch-Gordan
coefficient. For example, using h1=2; 1=2; 1; 0j3=2; 1=2i ¼ffiffiffiffiffiffiffiffi
2=3

p
, we obtain the reduced matrix element in terms of the

p to Δþ transition as

h3=2jjAμð1Þjj1=2i ¼
ffiffiffi
3

2

r
hΔþjAμð1Þ

0 jpi: ð8Þ

Because of its very short lifetime of the order of 10−23 s,
the Δ is not a stable one-particle state. It shows up as a pole
of the S-matrix in the complex-energy plane and a model-
independent definition of its properties should take place at
a complex squared four-momentum s ¼ p2 ¼ z2Δ with a
complex pole position zΔ ¼ mΔ − iΓΔ=2 [43]. From the
experimental side, this means that one needs to look for a
process which involves the transition to an intermediate Δ
comprising, as a building block, the “matrix element” one
is interested in. For example, weak single-pion production
in the Δ-resonance region [25], νN → lNπ, contains
information on both the vector and axial-vector nucleon-
to-delta transitions. While experiments are performed for
real values of the squared center-of-mass energy s, an
analytic continuation of the three-point function to complex
values allows for an extraction of the delta properties from
the theoretical side. In Ref. [43], a method applicable for
spin-1=2 resonances was proposed to extract from the
general vertex only that piece surviving as the residue at the
pole. In the vicinity of the pole, the renormalized dressed
propagator of the resonance is written as2

SðpÞ ¼ 1

=p − z
þ n:p: ¼ =pþ z

p2 − z2
þ n:p:

¼
X2
i¼1

wiðpÞw̄iðpÞ
p2 − z2

þ n:p:;

where n.p. refers to nonpole, i.e., regular terms and wi, w̄i

are Dirac spinors with complex masses z. An external leg of
the Green function is multiplied by p2 − z2 and the result is
then evaluated between the corresponding Dirac spinors.
The generalization to the case of Rarita-Schwinger vector-
spinors w̄λðp; sÞ [44,45] with a complex mass zΔ and p2 ¼
z2Δ was described in Ref. [46].
Even though a description in terms of stable states does

not exist, we use Dirac’s bra-ket notation, with the under-
standing that the relevant amplitude is extracted at the
complex pole. The Lorentz structure of the reduced matrix
element may be written as1The result of older experiments has been somewhat under

debate (see Table II of Ref. [4]) with a world average of gp ¼
10.5� 1.8 of all ordinary muon capture experiments. 2Note that =pþ z ¼ P

2
i¼1 w

iðpÞw̄iðpÞ þOðp2 − z2Þ.
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hΔðpf; sfÞjjAμð1Þð0ÞjjNðpi; siÞi ¼ w̄λðpf; sfÞΓλμ
A uðpi; siÞ:

ð9Þ

Here, the initial nucleon is described by the Dirac spinor
uðpi; siÞ with real mass mN and p2

i ¼ m2
N , the final

Δð1232Þ is described via the Rarita-Schwinger vector-
spinor w̄λðpf; sfÞ [44,45] with a complex mass zΔ and
p2
f ¼ z2Δ. The explicit form of w̄λ can be found in Ref. [46]

but we will only need the properties of Eq. (11) below.
In the following, it is always understood that the “tensor”

Γλμ
A is evaluated between on-shell spinors u and w̄λ,

satisfying

=piuðpi; siÞ ¼ mNuðpi; siÞ; ð10Þ

w̄λðpf; sfÞ=pf ¼ zΔw̄λðpf; sfÞ;
w̄λðpf; sfÞγλ ¼ 0; w̄λðpf; sfÞpλ

f ¼ 0: ð11Þ

The last two equations are responsible for identifying
the spin-3=2 component of the Rarita-Schwinger vector-
spinor. We tacitly assume that this is also true for the
analytic continuation. The “tensor” Γλμ

A contains a super-
position of four Lorentz tensors [25,26], which we choose
to be [19,21]

Γλμ
A ¼ CA

3 ðQ2Þ
mN

ðgλμ=q − qλγμÞ þ CA
4 ðQ2Þ
m2

N
ðgλμpf · q − qλpμ

fÞ

þ CA
5 ðQ2Þgλμ þ CA

6 ðQ2Þ
m2

N
qλqμ: ð12Þ

In particular, CA
5 and CA

6 correspond to the axial nucleon
form factor GA and the induced pseudoscalar form factor
GP, respectively.
Equations (9)–(12) provide the general framework for an

unstable Δ resonance. However, in the present work, we do
not calculate any loop corrections to Δ-resonance proper-
ties. We therefore also neglect the width ΓΔ such that our
results for the form factors turn out to be real.

IV. AXIAL-VECTOR COUPLING CONSTANTS
IN THE STATIC QUARK MODEL

Here, we recall an SU(6) spin-flavor quark-model rela-
tion, whichwill be applied in the subsequent calculations. In
the static quark model, the operator Az;3 is given by

Az;3 ¼
1

2

X3
i¼1

τ3ðiÞσzðiÞ:

The axial-vector coupling constant is obtained as

hp; Sz ¼ 1=2jAz;3jp; Sz ¼ 1=2i ¼ 1

2
gA: ð13Þ

Inserting the appropriate quark-model wave function,

jp;Sz¼ 1=2i¼ 1ffiffiffiffiffi
18

p ½2ðu↑u↑d↓þu↑d↓u↑þd↓u↑u↑Þ

− ðu↑u↓d↑þu↓u↑d↑þu↑d↑u↓

þd↑u↑u↓þu↓d↑u↑þd↑u↓u↑Þ�; ð14Þ

one obtains

gA ¼ 2hp; Sz ¼ 1=2jAz;3jp; Sz ¼ 1=2i

¼ 3hp; Sz ¼ 1=2jτ3ð3Þσzð3Þjp; Sz ¼ 1=2i ¼ 5

3
: ð15Þ

On the other hand, evaluating Eq. (5) for p⃗i ¼ p⃗f ¼ 0⃗ and
Szi ¼ Szf ¼ 1=2 yields

ūð1Þð0⃗Þγ3γ5gAuð1Þð0⃗Þ ×
1

2

¼ 2mN
gA
2
ð 1 0 0 0 Þ

0
BBB@

0 0 1 0

0 0 0 −1
−1 0 0 0

0 1 0 0

1
CCCA

×

0
BBB@

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1
CCCA

0
BBB@

1

0

0

0

1
CCCA ¼ 2mN

gA
2
: ð16Þ

The factor 2mN originates from our normalization of the
Dirac spinors (see Appendix A). When comparing the
expression of Eq. (16) to the quark-model result of
Eq. (13), we have to discard this factor.
Using

jΔþ;Sz¼1=2i¼1

3
ðu↑u↑d↓þu↑d↓u↑þd↓u↑u↑

þu↑u↓d↑þu↓u↑d↑þu↑d↑u↓

þd↑u↑u↓þu↓d↑u↑þd↑u↓u↑Þ ð17Þ

together with Eq. (14), one obtains for the nucleon-to-delta
axial-vector transition

hΔþ; Sz ¼ 1=2jAz;3jp; Sz ¼ 1=2i

¼ 3

2
hΔþ; Sz ¼ 1=2jτ3ð3Þσzð3Þjp; Sz ¼ 1=2i

¼ 2

3

ffiffiffi
2

p
¼ 5

3

2

5

ffiffiffi
2

p
¼ 2

5

ffiffiffi
2

p
gA: ð18Þ
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V. CONNECTION TO CHIRAL EFFECTIVE
FIELD THEORY

At lowest order in the quark-mass and momentum
expansion, the relevant interaction Lagrangian for nucleons
reads [47]

Lint ¼
gA
2
Ψ̄γμγ5uμΨ; ð19Þ

where gA is the chiral limit of the axial-vector coupling
constant and

Ψ ¼
�
p

n

�
ð20Þ

denotes the nucleon field with two four-component Dirac
fields for the proton and the neutron. The so-called chiral
vielbein uμ (see Chap. 4 of Ref. [48] for a detailed
discussion) is a traceless, Hermitian, (2 × 2) matrix,

uμ ¼ i½u†ð∂μ − irμÞu − uð∂μ − ilμÞu†� ¼
X3
j¼1

τjuμ;j;

which involves the external fields rμ ¼ vμ þ aμ and lμ ¼
vμ − lμ as well as pions. The latter are contained in the
unimodular, unitary, (2 × 2) matrix u:

uðxÞ ¼ exp

�
i
ΦðxÞ
2F

�
;

ΦðxÞ ¼
X3
j¼1

τjϕjðxÞ ¼
�

π0ðxÞ ffiffiffi
2

p
πþðxÞffiffiffi

2
p

π−ðxÞ −π0ðxÞ

�
; ð21Þ

where F denotes the pion-decay constant in the chiral
limit: Fπ ¼ F½1þOðm̂Þ� ¼ 92.2 MeV.
The expansion of the chiral vielbein in the pion fields

yields

uμ ¼ 2aμ −
∂μΦ
F

þOðvμΦ; aμΦ2; ∂μΦΦ2Þ;

where

aμ ¼
X3
j¼1

τj
2
aμj:

Keeping only the first term of the expansion, i.e., the
replacement uμ → 2aμ, gives rise to the interaction
Lagrangian3

Lint ¼
X3
j¼1

aμj
gA
2
Ψ̄γμγ5τjΨ: ð22Þ

The invariant amplitude for aμjðxÞ ¼ ϵμjðqÞe−iq·x, with j
fixed, reads

M ¼ iϵμjðqÞgAūðpfÞγμγ5
τj
2
uðpiÞ:

A comparison with Eqs. (4) and (5) yields

GAðQ2Þ ¼ gA: ð23Þ

At lowest order, there is no Q2 dependence and GAðQ2Þ
reduces to the axial-vector coupling constant in the chi-
ral limit.
For the nucleon-to-delta transition the lowest-order

Lagrangian is given by [see Eq. (4.200) of Ref. [48] with
z̃ ¼ −1]

Lð1Þ
πNΔ ¼ g

X3
i;j¼1

Ψ̄λ;iξ
3
2

ijðgλμ − γλγμÞuμ;jΨþ H:c:

→ g
X3
i;j¼1

Ψ̄λ;iξ
3
2

ijðgλμ − γλγμÞaμjΨþ H:c:; ð24Þ

where Ψλ;i denotes a vector-spinor isovector-isospinor
field. The isovector-isospinor transforms under the 1 ⊗
1
2
¼ 3

2
⊕ 1

2
representation and, thus, contains both isospin

3=2 and isospin 1=2 components. In order to describe the
Δ, it is necessary to project onto the isospin-3=2 subspace.
The corresponding matrix representation of the projection
operator is denoted by ξ

3
2 and the entries are given by [48]

ξ
3
2

ij ¼ δij −
1

3
τiτj:

Furthermore, in order to identify the coupling to the
external axial-vector field aμj, we made, as in the nucleon
case, the replacement uμ;j → aμj. Considering j ¼ 3 and
making use of Eq. (4.184) of Ref. [48],

Ψ̄λ;iξ
3
2

i3 ¼
ffiffiffi
2

3

r �
Δ̄þ

λ Δ̄0
λ

�
;

we obtain

Lint ¼
ffiffiffi
2

3

r
g
�
Δ̄þ

λ Δ̄0
λ

�
ðgλμ − γλγμÞaμ3

�
p

n

�
þ H:c:

Using Eq. (11), the invariant amplitude of p → Δþ reads

3On the other hand, the second term results in the pseudovector
pion-nucleon interaction,

LπNN ¼ −
gA
2F

Ψ̄γμγ5∂μΦΨ:
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M ¼ i

ffiffiffi
2

3

r
gw̄λðpf; sfÞgλμuðpi; siÞϵμ3ðqÞ:

The reduced matrix element [see Eq. (8)] is obtained by
multiplying by

ffiffiffiffiffiffiffiffi
3=2

p
and crossing out the factors i and

ϵμ3ðqÞ:

w̄λðpf; sfÞΓλμ
A uðpi; siÞ ¼ gw̄λðpf; sfÞgλμuðpi; siÞ: ð25Þ

A comparison with Eq. (12) then yields the analogue of
Eq. (23), namely,

CA
5 ðQ2Þ ¼ g: ð26Þ

Finally, how is this related to the static quark model? For
this purpose, we consider

hΔþð0⃗Þ; Sz ¼ 1=2jAz;3ð0Þjpð0⃗Þ; Sz ¼ 1=2i

¼ −
ffiffiffi
2

3

r
gw̄3ð0⃗; Sz ¼ 1=2Þuð0⃗; Sz ¼ 1=2Þ;

where we made use of g33 ¼ −1. Since ϵ3;3 ¼ −1 and
ϵ1;3 þ iϵ2;3 ¼ 0, we obtain in terms of the appropriate
Clebsch-Gordan coefficients,

w3ð0⃗;Sz¼1=2Þ¼
ffiffiffi
2

3

r
ϵ3;3uð0⃗;Sz¼1=2Þ

þ 1ffiffiffi
3

p
�
−

1ffiffiffi
2

p ðϵ1;3þiϵ2;3Þ
�
uð0⃗;Sz¼−1=2Þ

¼−
ffiffiffi
2

3

r
uð0⃗;Sz¼1=2Þ:

Putting the pieces together, the matrix element is given by

hΔþð0⃗Þ;Sz¼ 1=2jAz;3ð0Þjpð0⃗Þ;Sz¼ 1=2i

¼−
ffiffiffi
2

3

r
gð−1Þ

ffiffiffi
2

3

r
ūð0⃗;Sz ¼ 1=2Þuð0⃗;Sz¼ 1=2Þ

¼g
2

3

ffiffiffiffiffiffiffiffiffi
2mΔ

p ffiffiffiffiffiffiffiffiffi
2mN

p
: ð27Þ

Again, when we compare this to Eq. (18) for the
static quark model, we have to cross out the normalization
factors

ffiffiffiffiffiffiffiffiffi
2mΔ

p
and

ffiffiffiffiffiffiffiffiffi
2mN

p
. In combination with Eq. (23),

we obtain

2

3
g ¼ 2

5

ffiffiffi
2

p
gA;

or

g ¼ 3

5

ffiffiffi
2

p
gA: ð28Þ

In Table I, we collect the numerical values of the masses
and coupling constants which are taken as fixed in the
subsequent calculations.

VI. INCLUSION OF THE a1
AXIAL-VECTOR MESON

The vector mesons ρ and ω play an important role
in the description of the electromagnetic form factors of the
nucleon in chiral effective field theory [49–51]. Similarly,
the a1 axial-vector meson leads to an improved description
of the axial form factorGA [35]. Moreover, in the γ�N → Δ
transition, the contribution of the ρ meson is needed to
obtain a good description of the experimental data [52].
Even though we have rather little experimental data for the
axial NΔ transition [7–11], we expect that the a1 meson
plays a similar role as in the nucleon case. For that reason,
we discuss the relevant Lagrangians and calculate their
contribution to the form factors.

A. Nucleon

The Lagrangian for the interaction of the a1 meson
with the building block f−μν is given by [see Eq. (52) of
Ref. [53]]

−
1

4
fAhAμνf−μνi; ð29Þ

where h…i denotes Trð…Þ and

Aμν ¼ ∇μAν −∇νAμ;

∇μAν ¼ ∂μAν þ ½Γμ; Aν�;

Γμ ¼ 1

2
½u†ð∂μ − irμÞuþ uð∂μ − ilμÞu†�;

f−μν ¼ ufLμνu† − u†fRμνu;

fLμν ¼ ∂μlν − ∂νlμ − i½lμ; lν�;
fRμν ¼ ∂μrν − ∂νrμ − i½rμ; rν�:

In comparison with Ref. [53], we omit the roof sign; i.e., we
write Aμ instead of Âμ. Moreover, we introduce an addi-
tional factor 1=

ffiffiffi
2

p
, because our normalization of the field

matrix is

TABLE I. Masses and coupling constants.

Pion mass Mπ ¼ 139.57 MeV
Nucleon mass mN ¼ 938.92 MeV
a1 mass Ma1 ¼ 1260 MeV
Pion-decay constant Fπ ¼ 92.2 MeV
Axial-vector coupling constant gA ¼ 1.2723
Pion-nucleon coupling constant g2πN=ð4πÞ ¼ 13.69
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Aμ ¼
X3
i¼1

Aμiτi;

whereas Ecker et al. use [see Eq. (3.4) of Ref. [54]]

Aμ ¼
1ffiffiffi
2

p
X3
i¼1

Aμiτi:

The replacement

rμ → aμ; lμ →−aμ; fμν− →−2ð∂μaν−∂νaμÞ;

results in the interaction Lagrangian

1

2
fAhAμνð∂μaν − ∂νaμÞi

¼ fA
2
ð∂μAν

i − ∂νAμ
i Þð∂μaνi − ∂νaμiÞ:

The invariant amplitude for the coupling of an incoming
external axial source with four-momentum q, polarization
vector ϵ, and isospin component 3 to an outgoing a1 meson
with four-momentum q, polarization vector ϵA, and isospin
component 3 reads

M ¼ i
fA
2
ðiqμϵν�A − iqνϵμ�A Þð−iqμϵν þ iqνϵμÞ

¼ ifAϵ�Aνðq2gνμ − qνqμÞϵμ: ð30Þ

The lowest-order Lagrangian for the interaction of the
a1 meson with the nucleon is given by [see Eq. (20) of
Ref. [35]]

La1N ¼ ga1N
2

Ψ̄γμγ5AμΨ: ð31Þ

The corresponding Feynman rule for the absorption of an
a1 meson with isospin index i reads

i
ga1N
2

γμγ5τi:

The contribution to the invariant amplitude for the axial-
vector transition induced by aμjðxÞ ¼ ϵμjðqÞe−iq·x is then
given by (see Fig. 1)

M ¼ i
ga1N
2

ūðpf; sfÞγργ5τjuðpi; siÞ
�
−gρν þ

qρqν
M2

a1

�

×
i

q2 −M2
a1

ifAðq2gνμ − qνqμÞϵμjðqÞ:

Note that

qνðq2gνμ − qνqμÞ ¼ qμq2 − q2qμ ¼ 0:

We thus obtain

M ¼ i
fAga1N

2

1

q2 −M2
a1

½q2ūðpf; sfÞγμγ5τjuðpi; siÞ

− qμūðpf; sfÞ=qγ5τjuðpi; siÞ�ϵμjðqÞ:

Making use of ūðpf; sfÞ=qγ5uðpi; siÞ ¼ 2mNūðpf; sfÞγ5 ×
uðpi; siÞ, we can then read off the contributions to
GA and GP

4:

GA∶ fAga1N
Q2

M2
a1 þQ2

; ð32Þ

GP∶ fAga1N
4m2

N

M2
a1 þQ2

: ð33Þ

In essence, the loop diagrams play no role in the one-
loop calculation of the axial form factor GA. In terms of
the low-energy constants (LECs) of the Lagrangian of
Ref. [55], one obtains

GAðQ2Þ ¼ gA þ 4d16M2
π − d22Q2; ð34Þ

where d16 provides a quark-mass correction to the axial-
vector coupling constant, gA ¼ gA þ 4d16M2

π , and d22 is
related to the mean-square axial radius. In other words, the
low-Q2 behavior is encoded in two constants gA and hr2Ai
which chiral symmetry does not predict:

Glinear
A ðQ2Þ ¼ gA

�
1 −

1

6
hr2AiQ2

�
: ð35Þ

Experimental data are commonly analyzed in terms of the
dipole parametrization,

FIG. 1. a1 contribution to the axial-vector current matrix
element between nucleon states.

4Note that, due to a typo, Eqs. (46) and (47) of Ref. [35]
contain an overall opposite sign.
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Gdipole
A ðQ2Þ ¼ gA

ð1þ Q2

M2
A
Þ2
; ð36Þ

where the parameter MA is referred to as the axial mass.
The weighted average extracted from (quasi)elastic neu-
trino and antineutrino scattering experiments is MA ¼
ð1.026� 0.021Þ GeV [3] corresponding to a mean-square
axial radius hr2Ai ¼ ð0.444� 0.018Þ fm2. A subsequent re-
analysis of quasielastic data on deuterium has reported
MA ¼ð1.016�0.026ÞGeV [hr2Ai ¼ ð0.453� 0.023Þ fm2]
[56]. Table II shows the results for MA reported by more
recent experiments on neutrino-nucleus cross sections.
The extraction of the single-nucleon form factors from data
on nuclei is a challenging endeavor. Therefore, these
numbers have to be treated with some caution, because
they heavily rely on the theoretical input/model used in the
extraction. In particular, some important ingredients were
previously missing such as the n particle n hole excitation
mechanism proposed in Ref. [57]. Moreover, in contrast
to electron-scattering experiments, the extraction is made
more complex by the fact that one has to deal with a
spectrum of incident neutrinos rather than a monochromatic
neutrino beam. For a detailed review on both the exper-
imental and theoretical sides of this topic, seeRef. [58]. For a
discussion of theoretical studies abandoning the dipole form
in their analyses, see, e.g., Refs. [59–63]. The weighted
average extracted from charged pion electroproduction
experiments is MA ¼ ð1.069� 0.016Þ GeV [3] resulting
in hr2Ai ¼ ð0.409� 0.012Þ fm2.
Including the a1 meson, the axial form factor may be

written as

GAðQ2Þ ¼ gA þ c1Q2 þ c2
Q2

M2
a1 þQ2

ð37Þ

¼ gA

�
1þ c̃1Q2 − c̃2

ðQ2Þ2
M2

a1ðM2
a1 þQ2Þ

�
; ð38Þ

where gAc̃1 ¼ c1 þ c2=M2
a1 and gAc̃2 ¼ c2 ¼ fAga1N . The

structure of the first two terms on the right-hand side of
Eq. (37) is the same as that of Eq. (34) but one has to keep
in mind that the LEC d22 will have a different value in the
theory including the a1 meson. Introducing the normalized
axial form factor as

FAðQ2Þ ¼ GAðQ2Þ
GAð0Þ

; ð39Þ

the parametrization of FAðQ2Þ contains two parameters,
namely, c̃1 and c̃2, which can be determined from a fit to
experimental data. Expanding the normalized axial form
factor as

FAðQ2Þ ¼ 1 −
1

6
hr2AiQ2 þ 1

120
hr4AiðQ2Þ2 þ � � � ; ð40Þ

for the parametrization including the a1 meson, Eq. (38),
we can identify the mean-square and mean-quartic axial
radii as

hr2Ai ¼ −6c̃1; hr4Ai ¼ −120
c̃2
M4

a1

; ð41Þ

respectively. On the other hand, for the dipole parametri-
zation, Eq. (36), one obtains

hr2Ai ¼
12

M2
A
; hr4Ai ¼

360

M4
A
: ð42Þ

Figure 2 shows the results of fitting the dipole para-
metrization to experimental data extracted from pion
electroproduction experiments [3].5 The fits are performed
for different values of the maximal squared momentum
transfer, Q2

max, and the corresponding axial masses, mean-
square axial radii, and mean-quartic axial radii are

TABLE II. Axial masses reported by recent (quasi)elastic
neutrino and antineutrino scattering experiments.

Experiment MA [GeV]

K2K [64] 1.20� 0.12
NOMAD [65] 1.05� 0.06
MiniBooNE [66] 1.35� 0.17
MINERvA [67] 0.99
MINOS [68] 1.23þ0.13

−0.09 ðfitÞþ0.12
−0.15 ðsystÞ

FIG. 2. FAðQ2Þ ¼ GAðQ2Þ=GAð0Þ fitted to different ranges of
momentum transfer Q2 using the dipole parametrization of
Eq. (36). The (black) solid line corresponds to a fit up to and
including Q2

max ¼ 0.24 GeV2, the (red) long-dashed line up to
and including Q2

max ¼ 0.6 GeV2, and the (green) short-dashed
line up to and including Q2

max ¼ 1 GeV2, respectively. The
corresponding parameters are given in Table III.

5We would like to thank U.-G. Meißner for providing the data
in the form of a table.
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summarized in Table III.6 In their common domain, the
curves associated with Q2

max ¼ 0.6 GeV2 and Q2
max ¼

1 GeV2 are hardly distinguishable in Fig. 2, because the
difference between the fitted axial masses is very small.
Figure 3 shows the corresponding fits using the para-

metrization of Eq. (38) including the a1 meson (a1 fits for
short). The respective parameters c̃1 and c̃2, mean-square
axial radii, and mean-quartic axial radii are summarized in
Table IV. When comparing the a1 fit to the dipole fit, one
should keep in mind that Eq. (38) represents a model for the
low-Q2 behavior of the axial form factor with a restricted
domain of validity. The fits of Fig. 3 share the common
feature that FA, when extrapolated beyond Q2

max, very soon
starts to rise again and diverges as Q2 → ∞. This is, of
course, an unphysical feature, originating from the linear
term proportional to c1 in Eq. (37). Moreover, the a1
contribution asymptotically does not fall off as 1=ðQ2Þ2 as
predicted by perturbative QCD [70].7 Motivated by the
observation that the dipole fit and the a1 fit produce similar
results forQ2

max ¼ 0.6 GeV2, we will, somewhat arbitrarily,
assume that this value provides a reasonable upper limit for
the range of applicability of the a1 model. According to
Eqs. (37) and (41), the mean-square axial radius obtains a
contribution from both the low-energy constant (LEC) c1
and the a1-pole diagram (see Fig. 1). For the values of c̃1 and
c̃2 of Table IV, the a1 contribution to hr2Ai is larger than
the total result, implying a negative contribution from the
LEC c1. To be specific, for Q2

max¼0.6GeV2 we obtain
hr2AiLEC þ hr2Aia1 ¼ ð−0.366þ 0.781Þ fm2 ¼ 0.415 fm2.
At order Oðp3Þ in chiral perturbation theory, the low-Q2

behavior of the induced pseudoscalar form factor GPðQ2Þ
can entirely be written in terms of known physical
quantities [35,40],

GPðQ2Þ ¼ 4
mNFπgπN
M2

π þQ2
−
2

3
m2

NgAhr2Ai; ð43Þ

where gπN denotes the pion-nucleon coupling constant with
g2πN=ð4πÞ ¼ 13.69� 0.19 [71]. Using Eq. (33), the relevant
expression including the a1 meson reads

GPðQ2Þ ¼ 4
mNFπgπN
M2

π þQ2
−
2

3
m2

NgAhr2Ai

− 4m2
NgAc̃2

Q2

M2
a1ðM2

a1 þQ2Þ ; ð44Þ

where the mean-square axial radius is given in Eq. (41). In
Fig. 4, we compare the results for GPðQ2Þ including the a1
contribution (solid line) and without the a1 contribution
(dashed line). Clearly, at low Q2, the form factor is
dominated by the pion-pole contribution and a deviation
due to the a1 meson is only seen for larger values of Q2,
where the form factor is small.

B. Nucleon-to-delta transition

In order to discuss the a1-meson contribution to CA
5 ðQ2Þ

and CA
6 ðQ2Þ, we need the coupling of the a1 meson to the

NΔ system. We model this interaction in analogy to the
coupling of the external axial-vector field aμjðxÞ [see
Eqs. (22) and (24)]. For the neutral a1 meson we obtain

TABLE III. Comparison of the axial masses, mean-square axial radii, and mean-quartic axial radii obtained from
the dipole expression of the form factor FA fitted to different ranges of momentum transfer.

Q2
max [GeV2] MA [GeV] hr2Ai [fm2] hr4Ai [fm4] χ2red

0.24 1.057� 0.027 0.418� 0.021 0.437� 0.045 2.87
0.6 1.084� 0.020 0.398� 0.015 0.395� 0.029 3.21
1.0 1.082� 0.019 0.399� 0.014 0.398� 0.028 2.97

FIG. 3. FAðQ2Þ ¼ GAðQ2Þ=GAð0Þ fitted to different ranges of
momentum transfer Q2 using the parametrization of Eq. (38)
including the a1 meson. The (black) solid line corresponds to a fit
up to and including Q2

max ¼ 0.24 GeV2, the long-dashed (red)
line up to and including Q2

max ¼ 0.6 GeV2, and the short-dashed
(green) line up to and including Q2

max ¼ 1 GeV2, respectively.
The corresponding parameters are given in Table IV.

6Strictly speaking, because of a loop correction to the threshold
electric dipole amplitude E0þ, the mean-square axial radius
extracted from pion electroproduction has to be modified by an
amount

3

64F2
π

�
12

π2
− 1

�
¼ 0.0456 fm2;

such that the true axial radius is slightly larger [3,69]. This is
consistent with the observation that the average for MA extrac-
ted from charged pion electroproduction experiments is larger
than the value from (quasi)elastic neutrino and antineutrino
scattering experiments.

7Note that the dipole form shows this behavior.
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La1NΔ ¼ ga1NΔ

ffiffiffi
2

3

r �
Δ̄þ

λ Δ̄0
λ

�
ðgλμ− γλγμÞAμ3

�
p

n

�
þH:c:

ð45Þ
In particular, since the external axial-vector field aμjðxÞ and
the field AμjðxÞ carry the same quantum numbers, it is
natural to assume the same SU(6) relation for the coupling
constants ga1N and ga1NΔ as for gA and g [see Eq. (28)],

ga1NΔ ¼ 3

5

ffiffiffi
2

p
ga1N: ð46Þ

The contribution of the a1 meson to CA
5 ðQ2Þ is obtained

from Eq. (26) by the replacement

g → fAga1NΔ
Q2

M2
a1 þQ2

:

As in the nucleon case, the loop contributions to the low-
Q2 behavior of CA

5 ðQ2Þ are small [72] and we can write

CA
5 ðQ2Þ ¼ gANΔ þ c3Q2 þ c4

Q2

M2
a1 þQ2

; ð47Þ

where c4 ¼ fAga1NΔ. Extracting CA
5 ð0Þ ¼ gANΔ, we get

CA
5 ðQ2Þ ¼ gANΔ

�
1þ c̃3Q2 − c̃4

ðQ2Þ2
M2

a1ðM2
a1 þQ2Þ

�
; ð48Þ

where gANΔc̃3 ¼ c3þc4=M2
a1 and c̃4¼c4=gANΔ. By analogy

with Eq. (41), we find for themean-square andmean-quartic
axial transition radii

hr2ANΔi ¼ −6c̃3; hr4ANΔi ¼ −120
c̃4
M2

a1

: ð49Þ

At this point, we make use of the quark-model relation of
Eq. (46) between the coupling constants ga1NΔ and ga1N to
reexpress c̃4 as

c̃4 ¼
fAga1NΔ

gANΔ
¼ 3

5

ffiffiffi
2

p fAga1N
gANΔ

¼ 3

5

ffiffiffi
2

p gA
gANΔ

c̃2:

Applying, in addition, to gANΔ and gA the quark-model
relation of Eq. (28), we obtain the simple result

c̃4 ¼ c̃2: ð50Þ
With these assumptions, the form factor CA

5 ðQ2Þ contains
only one single free parameter c̃3 (or c3). In order to show
the dependence on this parameter, as a starting point we
make use of the assumption

CA
5 ðQ2Þ ¼ gANΔFAðQ2Þ ¼ 3

5

ffiffiffi
2

p
GAðQ2Þ; ð51Þ

i.e., c̃3 ¼ c̃1, and then vary the LEC c̃3. Figure 5 shows a
comparison between GAðQ2Þ and CA

5 ðQ2Þ. The parameters
forGAðQ2Þ [(black) long-dashed line] are taken from the fit
with Q2

max ¼ 0.6 GeV2 (second row of Table IV). The
(black) solid line corresponds to Eq. (51) for CA

5 ðQ2Þ, the
(blue) short-dashed line and the (red) dashed line corre-
spond to a decrease and an increase of the mean-square
axial transition radius by 5%, respectively.
By analogywith Eq. (43), the low-Q2 behavior ofCA

6 ðQ2Þ
without the a1 meson can be written as (see Appendix B)

CA
6 ðQ2Þ ¼ mNFπgπNΔ

M2
π þQ2

þm2
NC

A
5
0ð0Þ; ð52Þ

where gπNΔ ¼ GπNΔð−M2
πÞ is the pion-nucleon-Δ coupling

constant. Including the a1 meson, we obtain

CA
6 ðQ2Þ ¼ mNFπgπNΔ

M2
π þQ2

þm2
NC

A
5
0ð0Þ

−m2
NgANΔc̃4

Q2

M2
a1ðM2

a1 þQ2Þ : ð53Þ

TABLE IV. Comparison of the parameters c̃1 and c̃2, mean-square axial radii, and mean-quartic axial radii
obtained from the expression Eq. (37) of the form factor FA fitted to different ranges of momentum transfer.

Q2
max [GeV2] c̃1 [GeV−2] c̃2 hr2Ai [fm2] hr4Ai [fm4] χ2red

0.24 −2.44� 0.32 −14.8� 4.4 0.570� 0.075 1.068� 0.318 2.08
0.6 −1.78� 0.09 −5.31� 0.69 0.416� 0.021 0.383� 0.050 2.68
1.0 −1.61� 0.07 −3.84� 0.39 0.376� 0.016 0.277� 0.028 3.27

FIG. 4. Induced pseudoscalar form factor GPðQ2Þ. (Red)
dashed line: Pion-pole-dominance result. (Black) solid line:
Result including the a1 meson.
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In terms of the lowest-order Lagrangian, Eq. (24), and
the lowest-order prediction gANΔ ¼ g, Eq. (26), the pion-
nucleon-Δ coupling constant satisfies the generalization
of the Goldberger-Treiman relation [73,74],8

gπNΔ ¼ mN

Fπ
gANΔ: ð54Þ

Using c̃2 ¼ c̃4 of Eq. (50) and the quark-model relation
gANΔ ¼ 3

ffiffiffi
2

p
gA=5, we obtain the following prediction,

CA
6 ðQ2Þ¼ 3

ffiffiffi
2

p

20
GPðQ2Þþm2

N

�
CA
5
0ð0Þ−3

5

ffiffiffi
2

p
G0

Að0Þ
�

¼ 3
ffiffiffi
2

p

20
GPðQ2Þ−1

6
m2

N

�
hr2ANΔi−

3

5

ffiffiffi
2

p
hr2Ai

�
;

ð55Þ

where GPðQ2Þ is the induced pseudoscalar form factor of
Eq. (44). At this stage, we assume that G0

Að0Þ ¼ c1 and
CA
5
0ð0Þ ¼ c3 are independent. Figure 6 shows a comparison

between CA
6 ðQ2Þ without and including the a1 meson. In

each case we make use of the quark-model estimate gπNΔ ¼
3

ffiffiffi
2

p
gπN=5 as obtained from the respective Goldberger-

Treiman relations. The (black) long-dashed line corresponds
to Eq. (52) with CA

5
0ð0Þ ¼ gANΔc̃1 and c̃1 ¼ −1.78 GeV−2.

For the result that includes the a1 we assume, in addition,
c̃4 ¼ c̃2 ¼ −5.31 (second row of Table IV). The (black)
solid line corresponds to Eq. (53) for CA

6 ðQ2Þ, the (blue)
short-dashed line and the (red) dashed line correspond to a
decrease and an increase of the mean-square axial transition
radius by 10%, respectively.

VII. SUMMARY AND CONCLUSIONS

We analyzed the low-Q2 behavior of the axial form factor
GAðQ2Þ, the induced pseudoscalar form factor GPðQ2Þ, and
the axial nucleon-to-delta transition form factors CA

5 ðQ2Þ
and CA

6 ðQ2Þ. To this end we made use of a chiral effective
Lagrangian for the interaction of the a1 meson with an
external axial current, the nucleon, and the Δ. Within this
approach, the axial form factorGAðQ2Þ is described in terms
of three parameters [see Eq. (37)]. We investigated the
parameters by fitting the model to empirical data, choosing
different values of the maximal squared momentum transfer
(see Table IV). We compared the results with the commonly
used dipole parametrization (see Figs. 2 and 3). Extending a
relation known from chiral perturbation theory, we made a
prediction for the induced pseudoscalar form factor GPðQ2Þ.
For the determination of the transition form factor CA

5 ðQ2Þ
we drew on an SU(6) spin-flavor quark-model relation to fix
gANΔ and ga1NΔ in terms of gA and ga1N , respectively. With
this assumption, the result for CA

5 ðQ2Þ depends only on a
single parameter c̃3, which is related to the mean-square
axial transition radius (see Fig. 5). Finally, the transition form
factor CA

6 ðQ2Þ was predicted in terms of GPðQ2Þ, and the
derivatives G0

Að0Þ and CA
5
0ð0Þ. We emphasize that the

predictions at hand represent a model of the relevant form
factors at low Q2. To be specific, we expect Q2 ¼ 0.6 GeV2

to be a reasonable upper limit for the applicability of
the model.
The purpose of the present investigation was to identify

the a1 meson as an important messenger particle in the
context of axial-vector current transitions. The use of SU(6)
spin-flavor quark-model relations has to be regarded as a
first attempt to restrict the number of free parameters.
Clearly, merging the a1-meson contribution with the

FIG. 6. Axial nucleon-to-delta transition form factor CA
6 ðQ2Þ.

(Black) long-dashed line: Pion-pole-dominance result of
Eq. (52). The (black) solid line corresponds to Eq. (55), the
(blue) short-dashed and (red) dashed lines correspond to a
decrease and an increase of the mean-square axial transition
radius by 10%, respectively.

FIG. 5. Axial form factor of the nucleon GAðQ2Þ [(black) long-
dashed line]. Axial NΔ transition form factor CA

5 ðQ2Þ: The
(black) solid line corresponds to Eq. (51), the (blue) short-dashed
and (red) dashed lines correspond to a decrease and an increase of
the mean-square axial transition radius by 5%, respectively.

8Using the values of Table I, the Goldberger-Treiman discrep-
ancy at the nucleon level, Δ ¼ 1 −mNgA=ðFπgπNÞ, amounts to
Δ ¼ 1.2%.
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inclusion of pion loops within a consistent power counting
is a desirable next step. However, as far as the predictive
power is concerned, one has to keep in mind that the chiral
effective field theory calculation will essentially contain the
same number of free parameters, i.e., LECs.
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APPENDIX A: CONVENTIONS FOR
DIRAC SPINORS

For the normalization of spinors and states, we follow
Appendix A of Ref. [47]. We only include the relations
which are necessary for our calculation.

hp⃗0; rjp⃗; si ¼ 2Eðp⃗Þð2πÞ3δ3ðp⃗0 − p⃗Þδrs;

Eðp⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p⃗2

q
;

jNðp⃗; sÞi ¼ b†sðp⃗Þj0i;
fbrðp⃗0Þ; b†sðp⃗Þg ¼ 2Eðp⃗Þð2πÞ3δ3ðp⃗0 − p⃗Þδrs;

ΨðxÞ ¼
X2
r¼1

Z
d3p

2Eðp⃗Þð2πÞ3 ðbrðp⃗Þu
ðrÞðp⃗Þe−ip·x þ d†rðp⃗ÞvðrÞðp⃗Þeip·xÞ;

p0 ¼ Eðp⃗Þ;

uðrÞðp⃗Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eðp⃗Þ þm

p � χr
σ⃗·p⃗

Eðp⃗Þþm χr

�
;

χ1 ¼
�
1

0

�
; χ2 ¼

�
0

1

�
;

ūðrÞðp⃗ÞuðsÞðp⃗Þ ¼ 2mδrs;

h0jΨðxÞjNðp⃗; sÞi ¼ uðsÞðp⃗Þe−ip·x:

APPENDIX B: LOW-Q2 EXPANSION
OF CA

6 ðQ2Þ
We define the pion-nucleon-Δ form factor GπNΔðQ2Þ in

terms of the reduced matrix element

hΔðpf; sfÞjjm̂Pð1ÞjjNðpi; siÞi

¼ M2
πFπ

M2
π þQ2

GπNΔðQ2Þiw̄λðpf; sfÞ
qλ

mN
uðpi; siÞ: ðB1Þ

Using the parametrization of Eq. (12), the equation
for the divergence of the axial-vector current, Eq. (2),
results in

CA
5 ðQ2Þ − Q2

m2
N
CA
6 ðQ2Þ ¼ M2

πFπ

M2
π þQ2

GπNΔðQ2Þ
mN

: ðB2Þ

Truncating the expansion of the form factors CA
5 ðQ2Þ and

GπNΔðQ2Þ after the linear order in Q2,

CA
5 ðQ2Þ ¼ CA

5 ð0Þ þQ2CA
5
0ð0Þ;

GπNΔðQ2Þ ¼ GπNΔð0Þ þQ2GπNΔ
0ð0Þ;

and using

gπNΔ ¼ GπNΔð−M2
πÞ ¼ GπNΔð0Þ −M2

πGπNΔ
0ð0Þ;

we obtain
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CA
6 ðQ2Þ ¼ m2

N

Q2

�
CA
5 ðQ2Þ − M2

πFπ

M2
π þQ2

GπNΔðQ2Þ
mN

�

¼ m2
N

Q2

1

M2
π þQ2

�
ðM2

π þQ2ÞðCA
5 ð0Þ þQ2CA

5
0ð0ÞÞ −M2

πFπ

mN
ðGπNΔð0Þ þQ2GπNΔ

0ð0ÞÞ
�

¼ m2
N

Q2ðQ2 þM2
πÞ
�
M2

πCA
5 ð0Þ þM2

πQ2CA
5
0ð0Þ þQ2CA

5 ð0Þ þ ðQ2Þ2CA
5
0ð0Þ −M2

πFπ

mN
GπNΔð0Þ −

M2
πFπ

mN
Q2GπNΔ

0ð0Þ
�

¼ m2
N

M2
π þQ2

�
CA
5 ð0Þ −M2

π
Fπ

mN
GπNΔ

0ð0Þ þ ðM2
π þQ2ÞCA

5
0ð0Þ

�

¼ m2
N

M2
π þQ2

�
FπGπNΔð0Þ

mN
−M2

π
Fπ

mN
GπNΔ

0ð0Þ þ ðM2
π þQ2ÞCA

5
0ð0Þ

�

¼ mNFπgπNΔ

M2
π þQ2

þm2
NC

A
5
0ð0Þ:
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