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We analyze the low-Q? behavior of the axial form factor G 4(Q?), the induced pseudoscalar form factor
Gp(Q?), and the axial nucleon-to-delta transition form factors C4(Q?) and C4(Q?). Building on the results
of chiral perturbation theory, we first discuss G, (Q?) in a chiral effective-Lagrangian model including the
a; meson and determine the relevant coupling parameters from a fit to experimental data. With this
information, the form factor Gp(Q?) can be predicted. For the determination of the transition form
factor C4(Q?), we make use of an SU(6) spin-flavor quark-model relation to fix two coupling
constants such that only one free parameter is left. Finally, the transition form factor C4(Q?) can be

2

predicted in terms of Gp(Q?), the mean-square axial radius (r3), and the mean-square axial nucleon-to-

delta transition radius (r3,,)-
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I. INTRODUCTION

At the fundamental level, the electroweak form factors of
hadrons originate from the dynamics of the constituents of
quantum chromodynamics (QCD), namely, quarks and
gluons. While a wealth of precision data exists for the
electromagnetic form factors of the proton and, to a lesser
extent, of the neutron (see, e.g., Refs. [1,2] for a review),
the nucleon form factors of the isovector axial-vector
current, the axial form factor G, and, in particular, the
induced pseudoscalar form factor Gp, are not as well
known (see, e.g., Refs. [3,4] for a review). A similar
situation occurs in the case of the nucleon-to-delta tran-
sition form factors. A considerable amount of data is
available for the electromagnetic transition form factors
(see, e.g., Refs. [5,6] for a review), whereas very little is
known about the axial nucleon-to-delta transition form
factors [7—11]. On the theoretical side, there have been
various approaches to determining the nucleon-to-delta
transition form factors. Calculations have been performed
in the framework of quark models [12-16], chiral effective
field theory [17-19], lattice QCD [20-22], and light-cone
QCD sum rules [23,24]. Moreover, a substantial amount
of work has been devoted to the question of how to
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parametrize and extract the form factors from experimental
data [25-34].

In this article, based on the results of Ref. [35], we make
use of a semiphenomenological description of the nucleon
axial form factor G, and the induced pseudoscalar form
factor Gp to predict, using certain model assumptions, two
of the four axial nucleon-to-delta transition form factors,
namely, C4 and C2. We will assume that the exchange of the
axial-vector meson a;(1260) provides a dominant contri-
bution to the form factor C4 at low values of Q?. Such a
scenario was already envisaged decades ago in Ref. [36],
where the common use of a dipole form was questioned.

II. AXTIAL-VECTOR CURRENT
OPERATOR IN QCD

In terms of the up-quark and down-quark fields,

u(x)
q\x) = ,
@ = (1)
the Cartesian components of the isovector axial-vector
current operator are defined as

AL(@) = (0775 29, (M)

In the isospin-symmetric limit, m, = m, = i, the diver-
gence of the isovector axial-vector current is given by
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where P; is the jth component of the pseudoscalar quark
density. After coupling external c-number axial-vector fields
a,;(x) to the axial-vector current operators A% (x) [37],

Loq = Z a1 (X)A" (), (3)

the invariant amplitude for a transition from a hadronic state
|A(p;)) to|B(py)),induced by a plane-wave external field of

the form a,;(x) = €,;(g)e™'**, is defined as (no summation
over j implied)

M =i, (9)B(p)IALO)AGP)). (@

where four-momentum conservation p, = p; + ¢ due to
translational invariance is implied.

III. PARAMETRIZATION OF THE
NUCLEON-TO-NUCLEON AND
NUCLEON-TO-DELTA TRANSITIONS

The axial-vector current matrix element between nucleon
states can be parametrized as [35]

(N(py.sp)lAG(0)IN(pisi))

_ qﬂ T.
:”(Pf’sf) V”YSGA(Q2)+2—}’5GP(Q2) —/”(Pi,&')’
mpy 2
(5)
where g = p; — p;, 0* = —¢*, and my is the nucleon mass.

The Pauli matrix z; has to be evaluated between nucleon
isospinors. At Q% = 0, the axial form factor reduces to the
axial-vector coupling constant g, = 1.2723 4+ 0.0023 [38].
At Q? = m2, where m, is the muon mass, the induced
pseudoscalar coupling constant is defined as

9p = —NGP(m;%)- (6)

Recently, the MuCap Collaboration obtained g, = 8.06 +

0.55 [39], which is in very good agreement with the result of

chiral perturbation theory [40,41], g, = 8.26 + 0.23 [3].1

Introducing the spherical tensor notation [42],

LV u(1) H

=F \/_E(Al :l:lAz), AO :A3,

and using isospin symmetry, we express the matrix element

of the spherical isospin components (@ = +1,0,—1)

between a nucleon state and a A state as

(1
AL

"The result of older experiments has been somewhat under
debate (see Table II of Ref. [4]) with a world average of g, =
10.5 £ 1.8 of all ordinary muon capture experiments.

(3/2, 7545|172, 7)
= (1/2,%; 1,a]3/2,74)(3/2/]4*D||1/2),  (7)

where (3/2|A#(V||1/2) denotes the reduced matrix element
and (1/2,7;1,a|3/2,7,) is the relevant Clebsch-Gordan
coefficient. For example, using (1/2,1/2;1,0(3/2,1/2) =
\/2/—3 , we obtain the reduced matrix element in terms of the
p to AT transition as

B0 = . @

Because of its very short lifetime of the order of 1073 s,
the A is not a stable one-particle state. It shows up as a pole
of the S-matrix in the complex-energy plane and a model-
independent definition of its properties should take place at
a complex squared four-momentum s = p? = z3 with a
complex pole position z, = my —il'5/2 [43]. From the
experimental side, this means that one needs to look for a
process which involves the transition to an intermediate A
comprising, as a building block, the “matrix element” one
is interested in. For example, weak single-pion production
in the A-resonance region [25], vN — £Nr, contains
information on both the vector and axial-vector nucleon-
to-delta transitions. While experiments are performed for
real values of the squared center-of-mass energy s, an
analytic continuation of the three-point function to complex
values allows for an extraction of the delta properties from
the theoretical side. In Ref. [43], a method applicable for
spin-1/2 resonances was proposed to extract from the
general vertex only that piece surviving as the residue at the
pole. In the vicinity of the pole, the renormalized dressed
propagator of the resonance is written as’

1 P+z

S = +n.p. = + n.p.
(p) PR e s R
2 i _
w!'(p)w'(p)
=Y — 5 tnp.
i=1 p z

where n.p. refers to nonpole, i.e., regular terms and wi, W'
are Dirac spinors with complex masses z. An external leg of
the Green function is multiplied by p? — z? and the result is
then evaluated between the corresponding Dirac spinors.
The generalization to the case of Rarita-Schwinger vector-
spinors w;(p, s) [44,45] with a complex mass z, and p? =
ZZA was described in Ref. [46].

Even though a description in terms of stable states does
not exist, we use Dirac’s bra-ket notation, with the under-
standing that the relevant amplitude is extracted at the
complex pole. The Lorentz structure of the reduced matrix
element may be written as

Note that p +z = Y2, wi(p)w(p) + O(p* = 22).
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(pfvsf)rd (pl7 i)'
9)

Here, the initial nucleon is described by the Dirac spinor
u(p;,s;) with real mass my and p? =m3, the final
A(1232) is described via the Rarita-Schwinger vector-
spinor w;(py,sy) [44,45] with a complex mass z, and
pzf = zi. The explicit form of w, can be found in Ref. [46]
but we will only need the properties of Eq. (11) below.
In the following, it is always understood that the “tensor”

(AP sp)llA*D)IN(pi.si)) =

l'f\” is evaluated between on-shell spinors u and w;,
satisfying

piu(pi.s;) = myu(p;, s;), (10)
Wi(pssp)Pr = 2awa(pyss s5)s
wi(ps.sp)rt =0, wi(py,sp)py=0. (1)

The last two equations are responsible for identifying
the spin-3/2 component of the Rarita-Schwinger vector-
spinor. We tacitly assume that this is also true for the

analytic continuation. The “tensor” Fi\" contains a super-
position of four Lorentz tensors [25,26], which we choose
to be [19,21]

ry = g‘” % (9*ps-q-q'p})

+ e+ ELy (12

In particular, C4 and C2 correspond to the axial nucleon
form factor G4 and the induced pseudoscalar form factor
Gp, respectively.

Equations (9)—(12) provide the general framework for an
unstable A resonance. However, in the present work, we do
not calculate any loop corrections to A-resonance proper-
ties. We therefore also neglect the width 'y such that our
results for the form factors turn out to be real.

IV. AXTAL-VECTOR COUPLING CONSTANTS
IN THE STATIC QUARK MODEL

Here, we recall an SU(6) spin-flavor quark-model rela-
tion, which will be applied in the subsequent calculations. In
the static quark model, the operator A, ; is given by

13
32,70
The axial-vector coupling constant is obtained as

(p.S:=1/2|A5|p.S. = 1/2) =5 (13)

Inserting the appropriate quark-model wave function,

.5 =1/2) = —=l2ututdl +utdbut + dbutut)
—(utuldt +ulutd? +utdtul
+dtutul +uldtut +dtulut)], (14)
one obtains
ga = 2<P, Sz = 1/2|AZ,3 p’SZ = 1/2>
—3(p.S. = 1/20u(3)e. (). = 1/2) =2, (15)

On the other hand, evaluating Eq. (5) for p; = p, = 0 and
S, =S8, =1/2 yields

_ _ 1
<1)(0)73759A“(1)(0) X )
0 01 0
s 0 0 0 -1
—2 100 0
my 5 N2 00 o
0 10 0
00 1 0\ /1
000 1][o "
X =2my == 16
1 ooolfo "N (16)
o1 0 0/\o

The factor 2my originates from our normalization of the
Dirac spinors (see Appendix A). When comparing the
expression of Eq. (16) to the quark-model result of
Eq. (13), we have to discard this factor.

Using

A*.5.=1/2) :%(muwwuwwuamw

+utuldt+ulutd? +utdtul

+dtutul +uldtut +dtulut) (17)

together with Eq. (14), one obtains for the nucleon-to-delta
axial-vector transition

(A, S, =1/2|A,5]p.S. = 1/2)
3
:B)lp. S =1/2)

—(a%S. = 1/2l5()0
2 52 2
:g\/izgg\/izg\/ig/,. (18)
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V. CONNECTION TO CHIRAL EFFECTIVE
FIELD THEORY

At lowest order in the quark-mass and momentum
expansion, the relevant interaction Lagrangian for nucleons
reads [47]

g —
[:int = TAKPyﬂ}/SMﬂka (19)

where g, is the chiral limit of the axial-vector coupling

constant and
¥ — (p ) (20)
n

denotes the nucleon field with two four-component Dirac
fields for the proton and the neutron. The so-called chiral
vielbein u, (see Chap. 4 of Ref. [48] for a detailed

discussion) is a traceless, Hermitian, (2 x 2) matrix,
3
u, = i[u‘(aﬂ — irﬂ)u — u(aﬂ — ilﬂ)u’] = eruw,
j=1

which involves the external fields r, = v, +a, and [, =
v, — 1, as well as pions. The latter are contained in the

unimodular, unitary, (2 X 2) matrix u:

u(x) = exp <iq)2(;;)>,
2(x)

3
o) = e (x) = ( s

Jj=1

\/Zﬁ(x) > 1)

—7°(x)

where F denotes the pion-decay constant in the chiral
limit: F, = F[1 + O(/)] = 92.2 MeV.

The expansion of the chiral vielbein in the pion fields
yields

0,0
u, =2a, - ”T + O(v,®. a,P*, 0,0P?),

where

Keeping only the first term of the expansion, i.e., the
replacement u, — 2a,, gives rise to the interaction

U
3
Lagrangian

30n the other hand, the second term results in the pseudovector
pion-nucleon interaction,

4 g
Lovy = —ﬁ‘PY"%aM‘DT'

g4 =
‘Cint = Zauj%lpyﬂ}’s'l'jlp. (22)
j=1

The invariant amplitude for a,;(x) = ¢,;(q)e™"~, with j
fixed, reads

T.
M = ieﬂ/(CI)gAb_l(Pf)V”Vsé”(!’i)-
A comparison with Egs. (4) and (5) yields
G4(Q%) = g, (23)

At lowest order, there is no Q° dependence and G, (Q?)
reduces to the axial-vector coupling constant in the chi-
ral limit.

For the nucleon-to-delta transition the lowest-order
Lagrangian is given by [see Eq. (4.200) of Ref. [48] with
z=-1]

3 3
52\)% =9 Z W& (g = 'y )u, ;¥ + Hee.
ij=1
3 — 3
-9 Z Tx,iﬁj(gﬂ” - r*y")a,;¥ + H.., (24)
ij=1

where ¥,; denotes a vector-spinor isovector-isospinor
field. The isovector-isospinor transforms under the 1 ®
%: % @% representation and, thus, contains both isospin
3/2 and isospin 1/2 components. In order to describe the
A, it is necessary to project onto the isospin-3/2 subspace.
The corresponding matrix representation of the projection

operator is denoted by é’% and the entries are given by [48]

3 1
2 f— b —— . .
i =0 31,1'/.

Furthermore, in order to identify the coupling to the
external axial-vector field a,;, we made, as in the nucleon

case, the replacement u, ; - a,;. Considering j = 3 and
making use of Eq. (4.184) of Ref. [48],

_ 3 2 <170
‘Puf%: §(A,1A,1)’

we obtain

Lin = \/EQ(A,T Ag > (g* — }//1]/”)61”3 <p> + H.c.
n

Using Eq. (11), the invariant amplitude of p — AT reads
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2
M = i\[39mi(pys. sp) g u(pis si)ea(a)-

The reduced matrix element [see Eq. (8)] is obtained by
multiplying by /3/2 and crossing out the factors i and
6/43 (Q)

Wy (P s )T u(pissi) = gwa(pr, sp)d u(pivsi).  (25)

A comparison with Eq. (12) then yields the analogue of
Eq. (23), namely,

C5(Q%) =g (26)

Finally, how is this related to the static quark model? For
this purpose, we consider

(8%(0).5. = 1/20A.30)|p(0).5. = 1/2)
= o058 = 1/2u(6.5. = 172

where we made use of ¢* = —1. Since €33 = —1 and
€13 +ie;3 =0, we obtain in terms of the appropriate
Clebsch-Gordan coefficients,

- 2 R
w3(0,5,=1/2)= \/;€3_3u(0,SZ =1/2)

1/ . -
+% <—7§(€1.3+l€2,3)> u(0,8,=-1/2)

:—\@u(dszzl/z).

Putting the pieces together, the matrix element is given by

-

(A7(0),5.=1/2|A,3(0)|p(0).5. = 1/2)

2

== 59(—1)\/;7(6,51—1/2)u(6,sz—1/2)

2
:gg\/ ZmAV sz.

Again, when we compare this to Eq. (18) for the
static quark model, we have to cross out the normalization
factors y/2m, and +/2my. In combination with Eq. (23),
we obtain

(27)

2 2

Zg=2V2

39 ngA,
or

9= %ﬁgA. (28)

TABLE I. Masses and coupling constants.

Pion mass M, = 139.57 MeV
Nucleon mass my = 938.92 MeV
a; mass M, = 1260 MeV
Pion-decay constant F, =922 MeV
Axial-vector coupling constant gq = 1.2723

Pion-nucleon coupling constant G/ (A7) = 13.69

In Table I, we collect the numerical values of the masses
and coupling constants which are taken as fixed in the
subsequent calculations.

VI. INCLUSION OF THE «,
AXTAL-VECTOR MESON

The vector mesons p and @ play an important role
in the description of the electromagnetic form factors of the
nucleon in chiral effective field theory [49-51]. Similarly,
the a; axial-vector meson leads to an improved description
of the axial form factor G, [35]. Moreover, in the y*N — A
transition, the contribution of the p meson is needed to
obtain a good description of the experimental data [52].
Even though we have rather little experimental data for the
axial NA transition [7-11], we expect that the a; meson
plays a similar role as in the nucleon case. For that reason,
we discuss the relevant Lagrangians and calculate their
contribution to the form factors.

A. Nucleon

The Lagrangian for the interaction of the a; meson
with the building block f_,, is given by [see Eq. (52) of
Ref. [53]]

P ), (29)

where (...) denotes Tr(...) and

AW — HAY — VVAK,
VHAY = QUAY + [T#, A,
| .
I+ = 3 [uf (0* —ir")u + u(0" — il*)u'],
f—m/ = MfL/qu - quR;wu’

fLm/ = 8/411/ - 81/1/4 - i[l/u lu]?

fruw = Oyry = Oyry — i1y, 1)

In comparison with Ref. [53], we omit the roof sign; i.e., we
write A* instead of AX. Moreover, we introduce an addi-

tional factor 1/ \/E, because our normalization of the field
matrix is
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3
A/‘ = ZA”iTi’
i=1
whereas Ecker ef al. use [see Eq. (3.4) of Ref. [54]]

1 3
ZAW'TI'.
2 i=1

A, =

S

The replacement

m—-a', M- —a,

- =2(ta* —0va"),

results in the interaction Lagrangian

1
EfA <AMD (6/4a1/ - abaﬂ)>

fa

=2 (@AY = A (D,

- (9Dam~) .

The invariant amplitude for the coupling of an incoming
external axial source with four-momentum ¢, polarization
vector ¢, and isospin component 3 to an outgoing a; meson
with four-momentum ¢, polarization vector €4, and isospin
component 3 reads

A e e, .
M = 1714 (lq’l(:'l;\ - lqyeﬁ )(_IQﬂev + ZC]U(:'M)
= ifa€s,(@°9" — 4°q" e, (30)

The lowest-order Lagrangian for the interaction of the
a; meson with the nucleon is given by [see Eq. (20) of
Ref. [35]]

JaN o
Loy = Z‘N‘I’y"ysA”‘P. (31)

The corresponding Feynman rule for the absorption of an
a; meson with isospin index i reads

.gu]N
I——yH i
2 Y'YsTi

The contribution to the invariant amplitude for the axial-
vector transition induced by a,;(x) = €,;(g)e™'?* is then
given by (see Fig. 1)

G - X 4,49
M = i=—=u(ps, sp)y’vstu(pi s;)| =g + pz,,
2 M2,

i

x mifA(ng”” —4"q")e,i(q).
a

Note that

1,(*¢* - ¢¢") = ¢"¢* — ¢*¢* = 0.

. >
Pi Pr

FIG. 1. a; contribution to the axial-vector current matrix
element between nucleon states.

We thus obtain

fadan 1

M=i _—
2 qz—le

[qz’z(Pf’ sp)r*ysTiu(pi, si)
= q"ulpy.sp)drstiu(pi. si)l€q;(q)-
Making use of @(py, s¢)dysu(p;.s;) = 2myi(py,sy)ys X

u(p;,s;), we can then read off the contributions to
G, and Gp*:

Q2
Gat fa9aN 7 s (32)
1 MZI + Q2
4m?
GP: nga N7N- (33)
1 Mgl + QZ

In essence, the loop diagrams play no role in the one-
loop calculation of the axial form factor G,. In terms of
the low-energy constants (LECs) of the Lagrangian of
Ref. [55], one obtains

GA(Q?) = ga + 4d\sM% — dp 0%, (34)

where d ¢ provides a quark-mass correction to the axial-
vector coupling constant, g4, = g, + 4d;sM2, and dy, is
related to the mean-square axial radius. In other words, the
low-Q? behavior is encoded in two constants g4 and (r3)
which chiral symmetry does not predict:

Gllinear(QZ) =g, <1 - % <rf2‘>Q2> . (35)

Experimental data are commonly analyzed in terms of the
dipole parametrization,

*Note that, due to a typo, Eqgs. (46) and (47) of Ref. [35]
contain an overall opposite sign.
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TABLE II. Axial masses reported by recent (quasi)elastic
neutrino and antineutrino scattering experiments.

Experiment M, [GeV]

K2K [64] 1.20 £0.12
NOMAD [65] 1.05 £0.06
MiniBooNE [66] 1.35 £0.17
MINERVA [67] 0.99

MINOS [68] 1.235053 (fit) 1013 (syst)

Gilpole(QZ) — %’ (36)
(1 + M/Zx)

where the parameter M, is referred to as the axial mass.
The weighted average extracted from (quasi)elastic neu-
trino and antineutrino scattering experiments is M, =
(1.026 £ 0.021) GeV [3] corresponding to a mean-square
axial radius (%) = (0.444 £ 0.018) fm?. A subsequent re-
analysis of quasielastic data on deuterium has reported
M, =(1.01640.026) GeV [(r3) = (0.453 £ 0.023) fm?]
[56]. Table II shows the results for M, reported by more
recent experiments on neutrino-nucleus cross sections.
The extraction of the single-nucleon form factors from data
on nuclei is a challenging endeavor. Therefore, these
numbers have to be treated with some caution, because
they heavily rely on the theoretical input/model used in the
extraction. In particular, some important ingredients were
previously missing such as the n particle n hole excitation
mechanism proposed in Ref. [57]. Moreover, in contrast
to electron-scattering experiments, the extraction is made
more complex by the fact that one has to deal with a
spectrum of incident neutrinos rather than a monochromatic
neutrino beam. For a detailed review on both the exper-
imental and theoretical sides of this topic, see Ref. [58]. Fora
discussion of theoretical studies abandoning the dipole form
in their analyses, see, e.g., Refs. [59-63]. The weighted
average extracted from charged pion electroproduction
experiments is M, = (1.069 +0.016) GeV [3] resulting
in (r3) = (0.409 £ 0.012) fm?.

Including the a; meson, the axial form factor may be
written as

Q2
MG, +0°

(0%)?
M, (M3, + Q%))

Gu(Q*) =ga+¢10*+ ¢, (37)

=g |1+60"-& (38)

where gAEl = C —+ CZ/MgI and QAEZ = Cy) = nga]N' The
structure of the first two terms on the right-hand side of
Eq. (37) is the same as that of Eq. (34) but one has to keep
in mind that the LEC d,, will have a different value in the
theory including the a; meson. Introducing the normalized
axial form factor as

—Y 77— 77—

1.0 1

0.8}

N

Fa(Q) = Ga(Q%)/GA(0)

0.0 [ 1 " " " 1 " " " 1 " " " 1 " " " 1 " " " 1 " " ]
0.0 0.2 0.4 0.6 0.8 1.0

Q? [GeV?]

FIG. 2. F4(Q?%) = G4(0%)/G4(0) fitted to different ranges of
momentum transfer Q? using the dipole parametrization of
Eq. (36). The (black) solid line corresponds to a fit up to and
including Q2,, = 0.24 GeV?, the (red) long-dashed line up to
and including Q2. = 0.6 GeV?, and the (green) short-dashed
line up to and including Q2. = 1 GeV?, respectively. The
corresponding parameters are given in Table III.

2
Fa0) = 2. (39)

the parametrization of F,(Q?) contains two parameters,
namely, ¢; and ¢,, which can be determined from a fit to
experimental data. Expanding the normalized axial form
factor as

FAQ%) = 1= (R0 + o (PO 4+, (40)

for the parametrization including the a; meson, Eq. (38),
we can identify the mean-square and mean-quartic axial
radii as

y &

(ri> = —6C1, <rﬁ> = —120MT, (41)
respectively. On the other hand, for the dipole parametri-
zation, Eq. (36), one obtains

(R=am. =20 @)
A A

Figure 2 shows the results of fitting the dipole para-
metrization to experimental data extracted from pion
electroproduction experiments [3].”> The fits are performed
for different values of the maximal squared momentum
transfer, Q2. and the corresponding axial masses, mean-
square axial radii, and mean-quartic axial radii are

>We would like to thank U.-G. MeiBner for providing the data
in the form of a table.
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TABLE III. Comparison of the axial masses, mean-square axial radii, and mean-quartic axial radii obtained from

the dipole expression of the form factor F, fitted to different ranges of momentum transfer.

O [GeV?] M, [GeV] (r3) [fm’] (ry) [fm’] L

0.24 1.057 £ 0.027 0.418 +0.021 0.437 £ 0.045 2.87

0.6 1.084 £ 0.020 0.398 £0.015 0.395 £ 0.029 3.21

1.0 1.082 +0.019 0.399 £ 0.014 0.398 + 0.028 2.97
summarized in Table I11.° In their common domain, the myFgn 2

. . 5 5 5 GP(QZ) = 4% ——m12v9A<”%\>’ (43)

curves associated with Q. = 0.6 GeV- and Qf.« = Mz + Q" 3

1 GeV? are hardly distinguishable in Fig. 2, because the
difference between the fitted axial masses is very small.

Figure 3 shows the corresponding fits using the para-
metrization of Eq. (38) including the a; meson (a; fits for
short). The respective parameters ¢, and ¢,, mean-square
axial radii, and mean-quartic axial radii are summarized in
Table IV. When comparing the a; fit to the dipole fit, one
should keep in mind that Eq. (38) represents a model for the
low-Q? behavior of the axial form factor with a restricted
domain of validity. The fits of Fig. 3 share the common
feature that F4, when extrapolated beyond Q2Z,,, very soon
starts to rise again and diverges as Q> — co. This is, of
course, an unphysical feature, originating from the linear
term proportional to ¢; in Eq. (37). Moreover, the a;
contribution asymptotically does not fall off as 1/(Q?)? as
predicted by perturbative QCD [70].” Motivated by the
observation that the dipole fit and the a, fit produce similar
results for Q2. = 0.6 GeV?, we will, somewhat arbitrarily,
assume that this value provides a reasonable upper limit for
the range of applicability of the a; model. According to
Egs. (37) and (41), the mean-square axial radius obtains a
contribution from both the low-energy constant (LEC) c¢;
and the a;-pole diagram (see Fig. 1). For the values of ¢, and
¢, of Table IV, the a; contribution to (r3) is larger than
the total result, implying a negative contribution from the
LEC c¢,. To be specific, for Q2,,=0.6GeV? we obtain
(ri)iec + (r3)a, = (=0.366 +0.781) fm* = 0.415 fm?*,

At order O(p?) in chiral perturbation theory, the low-Q?
behavior of the induced pseudoscalar form factor Gp(Q?)
can entirely be written in terms of known physical
quantities [35,40],

6Stn'ctly speaking, because of a loop correction to the threshold
electric dipole amplitude Ej,, the mean-square axial radius
extracted from pion electroproduction has to be modified by an

amount
3 12
——— 5 —1) =0.0456 fm?,
64F2 (71’2 >
such that the true axial radius is slightly larger [3,69]. This is
consistent with the observation that the average for M, extrac-
ted from charged pion electroproduction experiments is larger
than the value from (quasi)elastic neutrino and antineutrino
scattering experiments.
"Note that the dipole form shows this behavior.

where g,y denotes the pion-nucleon coupling constant with
o/ (4x) = 13.69 + 0.19 [71]. Using Eq. (33), the relevant
expression including the a; meson reads

my F z9zN 2 2 2
o — 2 My 9alri)
M72[ + Q2 3 N A

2

MG, (M3, + Q%)
where the mean-square axial radius is given in Eq. (41). In
Fig. 4, we compare the results for Gp(Q?) including the a,
contribution (solid line) and without the a; contribution
(dashed line). Clearly, at low Q2 the form factor is
dominated by the pion-pole contribution and a deviation

due to the a; meson is only seen for larger values of Q2,
where the form factor is small.

GP(QZ) =4

— 4m3gacs (44)

B. Nucleon-to-delta transition

In order to discuss the a;-meson contribution to C2(Q?)
and C2(Q?), we need the coupling of the a; meson to the
NA system. We model this interaction in analogy to the
coupling of the external axial-vector field a,;(x) [see
Egs. (22) and (24)]. For the neutral a; meson we obtain

—r 77— T—T— T

1.0 1
s | i
0.8 - R
5 i I I
T o0sf h i l ]
S i T \T:‘ﬂ
" oaf e ]
T T
l.l:( 0.2: b
0-0 [ 1 " " " 1 " " " 1 " " " 1 " " " 1 " " " 1 " "
0.0 0.2 0.4 0.6 0.8 1.0
Q? [GeV?]
FIG. 3. F4(Q%) = G4(0?)/G4(0) fitted to different ranges of

momentum transfer Q2 using the parametrization of Eq. (38)
including the a; meson. The (black) solid line corresponds to a fit
up to and including Q2,, = 0.24 GeV?, the long-dashed (red)
line up to and including Q2. = 0.6 GeV?, and the short-dashed
(green) line up to and including Q2,, = 1 GeV?, respectively.
The corresponding parameters are given in Table IV.
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TABLE IV. Comparison of the parameters ¢; and ¢,, mean-square axial radii, and mean-quartic axial radii
obtained from the expression Eq. (37) of the form factor F, fitted to different ranges of momentum transfer.

Ohax [GeV?] &1 [GeV~’] & (r3) [fm’] (i) [fm*] e
0.24 —2.44 +0.32 —148+4.4 0.570 +0.075 1.068 +0.318 2.08
0.6 —1.78 £0.09 -5.31£0.69 0.416 +0.021 0.383 +0.050 2.68
1.0 —1.61 £0.07 —3.84 £0.39 0.376 £ 0.016 0.277 £ 0.028 3.27
2( -, = P where gyya8s = c3+ ¢y /M2 and &,=c,4/gaya- By analogy
L _ \/: AT AV iyl A +H.c. ) ANAC3 3 4 a; 4 4/ YANA- .
aNA = JaNa\[ 3 ( LA g =rr) P\ n with Eq. (41), we find for the mean-square and mean-quartic
(45) axial transition radii

In particular, since the external axial-vector field a,;(x) and
the field A,;(x) carry the same quantum numbers, it is
natural to assume the same SU(6) relation for the coupling
constants g, y and g, ya as for g4 and g [see Eq. (28)],
3

Ya,NA = gﬁgalN- (46)
The contribution of the a; meson to C4(Q?) is obtained
from Eq. (26) by the replacement

2

- — .
9 = faYana MZI 02

As in the nucleon case, the loop contributions to the low-
Q? behavior of C4(Q?) are small [72] and we can write

Q2

——. (47)
M; +0°

CH(0%) = gana + 30 + ¢4

where ¢4 = f4g,, na. Extracting C4(0) = gaya, We get

Q%)

C5(Q%) = gana |1 +E0% - 54m . (48)

70;!'"'x""x""x""x""x""xE
60 F
50
40t

Gp(@?)

30
20

100

~ -
—
—

T S T R B I

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Q? [GeV?]

FIG. 4. Induced pseudoscalar form factor Gp(Q?). (Red)
dashed line: Pion-pole-dominance result. (Black) solid line:
Result including the a; meson.

Cq
(Faya) = —120M2 .

a

(Fana) = =603, (49)

At this point, we make use of the quark-model relation of
Eg. (46) between the coupling constants g, ya and g, y to
reexpress ¢4 as

da -
Cy.

a 3 a 3
z :ng INA:7\/§ng 'sz\/ﬁ

4
9ANA 5

9ANA 5 JANA

Applying, in addition, to g4ya and g, the quark-model
relation of Eq. (28), we obtain the simple result

6'4 - 6'2. (50)
With these assumptions, the form factor C4(Q?) contains
only one single free parameter ¢ (or ¢3). In order to show
the dependence on this parameter, as a starting point we
make use of the assumption

CAQ%) = gumaFa(07) = 2V3GA(QY),  (51)

i.e., ¢3 = ¢y, and then vary the LEC ¢5. Figure 5 shows a
comparison between G, (Q?) and C2(Q?). The parameters
for G, (Q?) [(black) long-dashed line] are taken from the fit
with Q2. = 0.6 GeV? (second row of Table IV). The
(black) solid line corresponds to Eq. (51) for C5(Q?), the
(blue) short-dashed line and the (red) dashed line corre-
spond to a decrease and an increase of the mean-square
axial transition radius by 5%, respectively.

By analogy with Eq. (43), the low-Q? behavior of C4(Q?)
without the a; meson can be written as (see Appendix B)

myFrgana
CA(Q%) = — 52N 4 m3,C2(0), (52)
6 M]Z[ + Q2 N*>5
where g,ya = Gya(—M?2) is the pion-nucleon-A coupling
constant. Including the @; meson, we obtain

myFrg.
CA(0?) = "=t 1 miy Y (0)
_ 0?
- mIZVgANAC4 (53)

MG, (M3, + Q%)
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©
%o
g
o |
0.2 ]
0.0 ;l n PR 1 PR 1 PR 1 PR 1 PR 1 PR lj
0.0 0.1 0.2 0.3 0.4 0.5 0.6
@’ [GeV?]
FIG. 5. Axial form factor of the nucleon G, (Q?) [(black) long-

dashed line]. Axial NA transition form factor C4(Q?): The
(black) solid line corresponds to Eq. (51), the (blue) short-dashed
and (red) dashed lines correspond to a decrease and an increase of
the mean-square axial transition radius by 5%, respectively.

In terms of the lowest-order Lagrangian, Eq. (24), and
the lowest-order prediction g ya = 9, Eq. (26), the pion-
nucleon-A coupling constant satisfies the generalization
of the Goldberger-Treiman relation [73,74],8
m

GaNA = F—NgANA- (54)
Using ¢, = ¢4 of Eq. (50) and the quark-model relation
Jana = 3V2g4/5, we obtain the following prediction,

) 3V2
ci(0) ="

32
20

Gel@) 3 (C20)-326,0))

Gol @)= g ((a) ~2VER) ).

(55)

where Gp(Q?) is the induced pseudoscalar form factor of
Eq. (44). At this stage, we assume that G/;(0) = ¢; and
C%'(0) = c; are independent. Figure 6 shows a comparison
between C4(Q?) without and including the a; meson. In
each case we make use of the quark-model estimate g,y =
3v/2g,y/5 as obtained from the respective Goldberger-
Treiman relations. The (black) long-dashed line corresponds
to Eq. (52) with C2'(0) = guyaC; and & = —1.78 GeV~2.
For the result that includes the a; we assume, in addition,
¢4 = ¢y = —5.31 (second row of Table IV). The (black)
solid line corresponds to Eq. (53) for C4(Q?), the (blue)
short-dashed line and the (red) dashed line correspond to a
decrease and an increase of the mean-square axial transition
radius by 10%, respectively.

8Using the values of Table I, the Goldberger-Treiman discrep-
ancy at the nucleon level, A = 1 — mygy/(Frg.y), amounts to
A =12%.

14F
12}
10f

cA(0H

S N A & @

0% [GeV?]

FIG. 6. Axial nucleon-to-delta transition form factor C4(Q?).
(Black) long-dashed line: Pion-pole-dominance result of
Eq. (52). The (black) solid line corresponds to Eq. (55), the
(blue) short-dashed and (red) dashed lines correspond to a
decrease and an increase of the mean-square axial transition
radius by 10%, respectively.

VII. SUMMARY AND CONCLUSIONS

We analyzed the low-Q? behavior of the axial form factor
G4 (Q?), the induced pseudoscalar form factor Gp(Q?), and
the axial nucleon-to-delta transition form factors C2(Q?)
and C2(Q?). To this end we made use of a chiral effective
Lagrangian for the interaction of the a; meson with an
external axial current, the nucleon, and the A. Within this
approach, the axial form factor G, (Q?) is described in terms
of three parameters [see Eq. (37)]. We investigated the
parameters by fitting the model to empirical data, choosing
different values of the maximal squared momentum transfer
(see Table IV). We compared the results with the commonly
used dipole parametrization (see Figs. 2 and 3). Extending a
relation known from chiral perturbation theory, we made a
prediction for the induced pseudoscalar form factor G »(Q?).
For the determination of the transition form factor C2(Q?)
we drew on an SU(6) spin-flavor quark-model relation to fix
gana and g, ya in terms of g, and g, y, respectively. With
this assumption, the result for C2(Q?) depends only on a
single parameter ¢3, which is related to the mean-square
axial transition radius (see Fig. 5). Finally, the transition form
factor C4(Q?) was predicted in terms of Gp(Q?), and the
derivatives G/,(0) and C2'(0). We emphasize that the
predictions at hand represent a model of the relevant form
factors at low Q. To be specific, we expect 0% = 0.6 GeV?
to be a reasonable upper limit for the applicability of
the model.

The purpose of the present investigation was to identify
the @; meson as an important messenger particle in the
context of axial-vector current transitions. The use of SU(6)
spin-flavor quark-model relations has to be regarded as a
first attempt to restrict the number of free parameters.
Clearly, merging the a;-meson contribution with the
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inclusion of pion loops within a consistent power counting
is a desirable next step. However, as far as the predictive
power is concerned, one has to keep in mind that the chiral
effective field theory calculation will essentially contain the
same number of free parameters, i.e., LECs.
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APPENDIX A: CONVENTIONS FOR
DIRAC SPINORS

For the normalization of spinors and states, we follow
Appendix A of Ref. [47]. We only include the relations
which are necessary for our calculation.

(P'.r|p.s) = 2E(p)(2n)°6* (p' = P)b,s,
E(p) =\/m*+ p?,
IN(p.5)) = bi(p)|0).
{b,(P). bi(P)} = 2E(p)(27)*8 (B = P)5,s.
- d3p ™ 3 p—iPx DN (7)) (7)) pipx
¥(x) = ; 2E() (2] (b,(p)u (p)e=P* + df(p)v'") (p)er™),
p° = E(p).
u(p) = B tm( s
(7) = VEG) + (H;.),,+ X)

1
X1 =
i) (p)ul)(p) = 2mé,,
(O (x)|N(p, 5)) = ul) (p)e~r~,

APPENDIX B: LOW-Q? EXPANSION
OF Cg(Q?)

We define the pion-nucleon-A form factor Gy, (Q?) in
terms of the reduced matrix element

(A(ps.sp)|lmPY|IN(pi. s;))
_ MiF,
CMi4+Q?

A

. q
Gona(0?)iwy(py, sp) —u(pin s;).
my

(B1)

Using the parametrization of Eq. (12), the equation
for the divergence of the axial-vector current, Eq. (2),
results in

o M%Fﬂ? GnNA(QZ)
M+ 0 '

CA(0) - = CA(Q) (B2)

2
N my

Truncating the expansion of the form factors C?(Qz) and
G,na(Q?) after the linear order in Q2,

C§(Q%) = C5(0) + 0*C4(0),
GﬂNA(Qz) = GnNA(O) + QZGJTNA/(O)’

and using

gzNA = GﬂNA(—Mzzz) = GnNA(O) - MierﬂNA/(O)’

we obtain
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MJZTF]L' GﬂNA(QZ)

ca(g) = [cg*<Q2> -

0 M:+Q*  my
my 1 MZF,
g |2+ €0 + G 0) - T (6,04 0) + 0260 (0)
2 2 2
ny 2 A 2 2 Al 2 A 212 A MF, M:F, /
=M M - -
QZ(QZ —FM%) |: ﬂCS (0) + ﬂ'Q CS (O) + Q CS (O) + (Q ) CS (0) v GerA(O) my Q GﬂNA (0)
_ m12V CAO ZFﬂG /O 2 2cA/0
_7M%+Q2 5()—M7zm—N ava'(0) + (M7 4 Q%) CE'(0)
2
My F,G,ya(0) 2 Fa / 2 2\ AT
= - M= M
Mzzr -+ Q2 |: my ”mN GﬂNA (0) + ( n + Q )C5 (0)
My F g,
= 7]‘22{ - QNZA +m2,C¥(0).
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