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We study the production of prompt photons at the RHIC in the context of a generalized parton model
framework, with a view to obtain information on the gluon Sivers function (GSF). At RHIC energy
(

ffiffiffi
s

p ¼ 200 GeV), the Compton process gq → γq contributes significantly to the production of direct
photons at midrapidity and dominates it in the negative (backward) rapidity region. We find that for direct
photons, asymmetries of up to 10% are allowed by a maximal gluon Sivers function. However, the
asymmetry obtained using existing fits of the GSF available in the literature is negligible. We also estimate
the impact that photons produced via fragmentation can have on the signal and find that their inclusion can
dilute the asymmetry by between 10% and 50% of the direct photon value. Finally, using the color-gauge
invariant generalized parton model (CGI-GPM) approach, we consider the effects of initial-state and final-
state interactions which can affect the universality of the Sivers functions in different processes. We find
that the inclusion of these effects leads to the size of the gluon contributions being roughly halved.
However, in the backward region which we are interested in, the sizes of the quark contributions are
suppressed even further, leading to increased dominance of the gluon contributions.
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I. INTRODUCTION

Transverse single-spin asymmetries (SSA) can provide
information on the three-dimensional structure of hadrons.
They have hence been a subject of great interest in recent
times. In the past few years, a large amount of data on SSAs
have become available in a wide variety of processes such
as semi-inclusive deep-inelastic scattering, hadroproduc-
tion of light and heavy mesons (see Refs. [1,2] for reviews
of experimental data on the subject) and most recently in
Drell-Yan [3]. One of the theoretical approaches used to
describe these asymmetries is TMD factorization [4–7].
In this approach, factorization in terms of transverse-
momentum-dependent parton distribution functions (TMD-
PDF) and fragmentation functions (TMD-FF) is assumed.
These functions depend on the transverse momentum of the

parton in addition to the light-cone momentum fraction; i.e.,
they are of the form fi=hðx; k; QÞ and Dh=iðz; k; QÞ respec-
tively. This is in contrast to the commonly used collinear
PDFs and FFs, which depend only on the light-cone
momentum fraction as the transverse momentum of the
parton is integrated over. So far, TMD factorization has been
demonstrated only for processes which have two scales: a
hard, high energy scale such as the virtuality of the photon in
theDrell-Yan process and a relatively soft scale of the order of
ΛQCD, such as the transverse momentum of the Drell-Yan
lepton pair. In the TMDapproach, one of themain TMDs that
can lead to a SSA is the Sivers distribution [8,9]. This encodes
the correlation between the azimuthal anisotropy in the
distribution of an unpolarized parton and the spin of its
parent hadron. This anisotropy in the parton’s transverse-
momentumdistribution can lead to an azimuthal anisotropy in
the distribution of the inclusive final state, i.e., a SSA.
Though TMD factorization has not been formally

established for hard single-scale processes such as p↑p →
hþ X and p↑p → γ þ X, an effective description of SSAs
in such processes in terms of the TMDs—under the
assumption of factorization and universality—has been
phenomenologically successful [10–15]. This effective
description is commonly referred to in the literature as
the generalized parton model (GPM).
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Recently a modification of the generalized parton model
has been proposed in which the process dependence of the
Sivers function is taken into account. In this approach,
known as the color-gauge invariant generalized parton
model (CGI-GPM) [16–18], the process-dependent initial-
state interactions (ISIs) and final-state interactions (FSIs)
are treated using one-gluon exchange approximation. These
interactions provide the complex phase necessary for the
SSA. The process dependence of the Sivers functions,
which arises from these interactions, is then shifted onto
appropriately defined “modified” partonic cross sections
and the Sivers functions can still be treated as universal.
This approach was first proposed in Ref. [16], where
they considered quark Sivers functions (QSF), and has
recently been extended to include gluon Sivers functions in
Ref. [19]. The process dependence of the Sivers function
(and in general T-odd functions) was earlier studied in the
context of two-scale processes in Refs. [20,21].
While the quark Sivers functions have been widely

studied over the years, the gluon Sivers function (GSF)
still remains poorly measured. An indirect estimate of the
gluon Sivers function was obtained using a GPM frame-
work in Ref. [22] where the authors fit the gluon Sivers
function to midrapidity data on SSA in π0 production at the
RHIC. In the analysis, the quark contribution to the SSA
was calculated using QSFs as extracted from semi-inclusive
deep inelastic scattering (SIDIS) data. The small and
positive GSF fits obtained by the analysis predicted
asymmetries much smaller than allowed by the positivity
bound on the GSF. The said bound restricts the GSF to be
less than twice the unpolarized TMD gluon distribution.
Further, a recent study of large-pT hadron pair production
in COMPASS indicates a substantial, negative gluon Sivers
asymmetry but with large errors and hence consistent with
zero at the 2.5 sigma level for a proton target [23]. Large-pT
hadron pairs are produced in this process through photon-
gluon fusion, a process which gives direct access to the
gluon content of the proton. The differences between these
two results, though of limited statistical significance, make
it clear that the GSF needs to be studied in more detail and
with unambiguous probes.
More direct probes of the GSF are thus needed. Closed

and open heavy-flavor production offers such probes.
A GPM study of open charm production as a probe of
the GSF was proposed in Ref. [24] for the process p↑p →
D0 þ X. Therein they considered two extreme scenarios for
the GSF: zero and saturated. By “saturated” we mean the
Sivers function with its positivity bound of twice the
unpolarized TMD, i.e., jΔNfi=p↑ðx;k⊥Þj=2fi=pðx;k⊥Þ≤1,
saturated for all values of x. Their study indicated that an
observation of SSA for this process at the RHIC can give a
direct indication of a nonzero gluon Sivers function.
Further in Ref. [25] we calculated the SSA for the same
process (open charm hadroproduction) using the fits of
Ref. [22] and found that these fits predict sizable,

measurable asymmetries. In Ref. [26], we proposed the
low-virtuality leptoproduction of open charm and studied it
in the context of the GPM framework. Unlike hadropro-
duction, this process does not involve any contributions
from quarks and hence can probe the gluon Sivers function
effectively. In this case too we found results similar to those
for the hadroproduction of open charm. For the kinematics
of COMPASS and a future electron-ion collider (EIC), the
fits of Ref. [22] gave sizable and distinct asymmetries.
Further we found that the asymmetry was well preserved in
the kinematics of the muons decaying from the D-meson.
Apart from the production of open charm, probes

involving the production of closed charm, i.e., J=ψ , can
also give direct access to the gluon content of the proton.
The low-virtuality leptoproduction of closed charm, i.e.,
J=ψ , was proposed as a probe of the GSF in Refs. [27–29]
and the hadroproduction of closed charm was studied in
Refs. [19,30]. Recently, the PHENIX Collaboration at the
RHIC has measured the SSA in the production of J=ψ in
p↑p collisions [31]. They find that the data indicate a
positive asymmetry at the two-standard-deviation level in
the xF < 0 region.
In this work, using both the GPM and CGI-GPM

approaches, we study the hadroproduction of prompt
photons as a possible probe of the gluon Sivers function.
By prompt photons we mean both the direct photons which
are created in the hard process and fragmentation photons
which are created by fragmentation of outgoing partons
from the hard process. At leading order (LO) in αs, direct
photons are produced through the fundamental 2-to-2 hard
scattering subprocesses, gq → γq and qq̄ → γ þ g. The
first of these subprocesses, the QCD Compton process,
dominates in pp collisions. Indeed direct photon data from
fixed target experiments were used in early global fits of the
collinear PDFs in unpolarized protons to constrain the
gluon component [32–34]. At the RHIC, the study of
prompt photon production in the midrapidity and back-
wards rapidity regions should give clean and direct access
to the gluon content of the polarized proton, due to the
dominance of the QCD Compton process. Since the photon
is produced in the hard process and is colorless, the probe is
unaffected by theoretical uncertainties related to hadroni-
zation or final-state interactions. For this reason, SSA in the
production of direct photons in the backward region was
first proposed as a probe of the gluon Sivers function by
Schmidt, Soffer and Yang (SSY) [35]. They suggested in
general the large-PT region in the backward hemisphere.
The SSA in this process has also been studied in the context
of an alternative mechanism in the color glass condensate
formalism and found to be zero [36].
In this work, we follow up on the work of SSY and

consider estimates of the asymmetry in the production of
direct photons in the backwards, i.e., negative rapidity
region. In their work, SSY neglected the partonic transverse
momenta in the hard part. However it is known that partonic
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transverse momenta cannot be neglected in the hard part.
They lead to an important consequence, viz. a suppression
of the SSA in the backward region relative to the forward
region, as was found for the case of open-charm production
in Ref. [24]. Here, we include the effect of partonic
transverse momenta in the hard process. We find that after
the inclusion of these effects, the dominance of the gluon
contribution in the backward region continues even though
the SSAs are suppressed. In this work, following our earlier
studies of the GSF in open charm production [25,26], we
consider estimates for the asymmetry obtained using
saturated quark and gluon Sivers functions. The use of
saturated QSFs and GSF gives the upper bound on the
possible asymmetry and further allows us to study the
general kinematic dependencies of the asymmetry and the
relative importances of the quark and gluon contributions to
the asymmetry. It also allows us to assess the sensitivity of
the probe to the uncertainties in our current knowledge of
the collinear PDFs. Further we also consider the contribu-
tion to the asymmetry from photons produced via the
fragmentation of partons. While the contribution to the
signal and hence the asymmetry coming from the fragmen-
tation component can be reduced to an extent by applying a
photon isolation requirement, it cannot be completely
eliminated. Hence it is important to study the impact that
it can have on the asymmetry and hence on this probe of the
GSF. Therefore, we also consider the asymmetry in the
inclusive (direct as well as fragmentation) photons and
study how it differs from the direct photon asymmetry.
We then consider existing fits of the QSFs and the GSF

to give predictions for the expected asymmetry. We con-
sider two fits of the QSFs [37,38], both of which have been
obtained by fitting to data on semi-inclusive deep-inelastic
scattering. Associated with these two QSF sets are two fits
of the GSF in Ref. [22] which, as mentioned earlier, were
obtained by fitting to the data on SSA in midrapidity π0

production at the RHIC. Further we also consider indirect
bounds on the gluon Sivers function based on the Burkardt
sum rule (BSR) [39]. The BSR is the requirement that the
net transverse momenta of all partons in a transversely
polarized proton must vanish. The latest fits of the QSFs
from Ref. [38] allow a gluon transverse momentum in the
range −10 ≤ hk⊥gi ≤ 48 MeV. This constraint on the
allowed transverse momentum can be used to constrain
the size of the gluon contribution to the asymmetry. We plot
the asymmetry values allowed by the BSR constraint, along
with the predictions from the fits.
Finally we study how the results of the above analysis are

affected when we take into account the effects of initial-
and final-state interactions using the CGI-GPM approach.
We do so for both the direct and the fragmentation
contributions to the asymmetry.
This paper is organized as follows. In Sec. II, we give

expressions for the relevant quantities in the GPM frame-
work. In Sec. III, we present the CGI-GPM formalism and

give the modified hard part for the relevant processes.
In Sec. IV we present the parametrization of the various
TMDs in the analysis as well as details of the QSF and
the GSF parameters used. Finally, in Sec. V we present
estimates of the asymmetry in both the GPM and CGI-
GPM frameworks.

II. PROMPT PHOTON PRODUCTION
IN THE GPM FORMALISM

Prompt photons can be produced either in the hard
scattering or through the fragmentation of a final-state
parton into a photon. We refer to the former as “direct”
photons and the latter as “fragmentation” photons. At
leading order OðαsαemÞ, direct photons are produced
through the QCD Compton process, gq → γq, and
quark-antiquark annihilation into a photon and a gluon,
qq̄ → γg. Of these gq → γq dominates at RHIC energy and
hence the production of direct photons can give direct
access to the gluon content of the proton.
Fragmentation photons can be produced at leading order,

Oðα2sαemÞ, through the standard 2-to-2 QCD parton scat-
tering processes with the final-state parton fragmenting
into a photon. Here, unlike direct photon production, the
partonic subprocess is at Oðα2sÞ instead of OðαsαemÞ.
Though this is naively higher order in αs as compared to
direct photon production, the parton-to-photon fragmenta-
tion functions (FFs) grow logarithmically with Q2, making
them effectively of order 1=αs. This logarithmic growth of
the parton-to-photon FFs makes the production of frag-
mentation photons effectively at the same leading order
OðαsαemÞ as the production of direct photons. Though the
fragmentation photon contribution can be discriminated by
applying a photon isolation requirement, it can never be
completely eliminated. Therefore it is important to consider
the effect of fragmentation photons on the observed
asymmetry in the consideration of SSAs in an inclusive
signal. An illustration of both mechanisms of prompt
photon production is given in Fig. 1.
In this work, we are concerned with the single-spin

asymmetry in the hadroproduction of prompt photons,

AN ¼ dσ↑ − dσ↓

dσ↑ þ dσ↓
; ð1Þ

where dσ↑ð↓Þ is the invariant differential cross section for
the process p↑ð↓Þp → γ þ X with the spin of the trans-
versely polarized proton being aligned in the ↑ð↓Þ direction
with respect to the production plane. Here, ↑ would be
the þY direction in a frame where the polarized proton is
moving along the þZ direction and the photon is produced
in the XZ plane.
In the following, we give the expressions for the

denominator and numerator of Eq. (1) for the case of both
direct photons and fragmentation photons.
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A. Direct photon production

For direct photons, we can write the denominator and numerator of Eq. (1) as

dσ↑ þ dσ↓ ¼ Eγdσp
↑p→γX

d3pγ
þ Eγdσp

↓p→γX

d3pγ

¼ 2
X

a;b¼g;q;q̄

Z
dxad2k⊥adxbd2k⊥bfa=pðxa; k⊥aÞfb=pðxb; k⊥bÞ

ŝ
xaxbs

dσ̂ab→γd

dt̂
ŝ
π
δðŝþ t̂þ ûÞ ð2Þ

and

dσ↑ − dσ↓ ¼ Eγdσp
↑p→γX

d3pγ
−
Eγdσp

↓p→γX

d3pγ

¼
X

a;b¼g;q;q̄

Z
dxad2k⊥adxbd2k⊥bΔNfa=p↑ðxa; k⊥aÞfb=pðxb; k⊥bÞ

ŝ
xaxbs

dσ̂ab→γd

dt̂
ŝ
π
δðŝþ t̂þ ûÞ: ð3Þ

In the above expressions, xa and xb are the light-cone
momentum fractions of the incoming partons of the polarized
and unpolarized proton respectively. k⊥a and k⊥b are the
transverse momenta of the partons a and b. ŝ ¼ ðpa þ pbÞ2,
t̂ ¼ ðpγ − paÞ2 and û ¼ ðpγ − pbÞ2 are the Mandelstam
variables for the relevant subprocesses: the QCD Compton
scattering process gq → γq, as well as qq̄ → γg.

The expressions ΔNfi=p↑ðx;k⊥Þ and fi=pðx;k⊥Þ are the
Sivers function and unpolarized TMD for parton i, respec-
tively. The functional forms used for these two distributions
are given in Sec. IV.

The Sivers function ΔNfi=p↑ðx; k⊥;QÞ describes the
azimuthal anisotropy in the transverse-momentum distri-
bution of an unpolarized parton, in a transversely polarized
hadron,

fi=h↑ðx;k⊥;S;QÞ

¼ fi=hðx; k⊥;QÞ þ 1

2
ΔNfi=h↑ðx; k⊥;QÞ ϵabk

a⊥Sb
k⊥

¼ fi=hðx; k⊥;QÞ þ 1

2
ΔNfi=h↑ðx; k⊥;QÞ cosϕ⊥ ð4Þ

where k⊥ ¼ k⊥ðcosϕ⊥; sinϕ⊥Þ. Another notation, f⊥i
1T , is

also commonly used for the Sivers function and is related to
ΔNfi=h↑ by

ΔNfi=h↑ðx; k⊥Þ ¼ −2
k⊥
Mh

f⊥i
1Tðx; k⊥Þ; ð5Þ

where Mh is the mass of the hadron, which in this case is
the proton. We will use this notation when discussing the
CGI-GPM formalism in Sec. III.

The partonic cross sections can be written as

dσ̂ab→γd

dt̂
¼ παsαem

ŝ2
HU

ab→γd; ð6Þ

with the hard parts for the two subprocesses given by

HU
gq→γq ¼ −

e2q
3

�
û
ŝ
þ ŝ
û

�
; HU

qq̄→γg ¼
8

9
e2q

�
û
t̂
þ t̂
û

�
: ð7Þ

The on-shell condition ŝþ t̂þ û ¼ 0 can be used to fix
one of the integration variables, in this case, xb.

FIG. 1. Representative diagrams for prompt photon production at the hard scattering (left) and in the fragmentation of a final-state
parton (right), in hadron-hadron collisions. We consider one of the hadrons to be a proton moving in the þZ direction, with a
polarization along the þY axis. The other hadron is an unpolarized proton moving along the −Z direction.
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B. Photons from fragmentation of quarks

For photons that are produced in the fragmentation of
quarks, there can be two TMDs that contribute towards a
SSA: the Sivers function and the Collins function [40].
Here we consider only the Sivers function. A model

calculation of the quark-to-photon Collins function has
shown that the contribution to the asymmetry from the
Collins function is negligible [41]. Following the formalism
used in single-inclusive hadron productions [14,25], the
denominator and numerator of Eq. (1) can be written as

dσ↑ þ dσ↓ ¼ Eγdσp
↑p→γX

d3pγ
þ Eγdσp

↓p→γX

d3pγ

¼ 2
X

a;b¼g;q;q̄

Z
dxad2k⊥adxbd2k⊥bdzd3kγδðkγ:p̂qÞfa=pðxa; k⊥aÞfb=pðxb; k⊥bÞ

×
ŝ

xaxbs
dσ̂ab→cd

dt̂
ŝ
π
δðŝþ t̂þ ûÞ 1

z2
Jðz; jkγjÞDγ=qðz; kγÞ ð8Þ

and

dσ↑ − dσ↓ ¼ Eγdσp
↑p→γX

d3pγ
−
Eγdσp

↓p→γX

d3pγ

¼
X

a;b¼g;q;q̄

Z
dxad2k⊥adxbd2k⊥bdzd3kγδðkγ:p̂qÞΔNfa=p↑ðxa; k⊥aÞfb=pðxb; k⊥bÞ

×
ŝ

xaxbs
dσ̂ab→cd

dt̂
ŝ
π
δðŝþ t̂þ ûÞ 1

z2
Jðz; jkγjÞDγ=qðz; kγÞ: ð9Þ

In the above expressions Dγ=qðz; kγÞ is the TMD frag-
mentation function describing the fragmentation of the
quark q into a photon carrying a light-cone momentum
fraction z ¼ pþ

γ =pþ
q , and a transverse momentum kγ with

respect to the fragmenting quark direction. Jðz; jkγjÞ is the
Jacobian factor connecting the phase space of parton c to
the phase space of the photon. It is given by

Jðz; jkγjÞ ¼
�
Eγ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
γ − k2γ

q �
2

4ðE2
γ − k2γÞ

: ð10Þ

The delta function δðkγ · p̂qÞ in Eqs. (9) and (10) confines
the integration region for kγ to the two-dimensional
plane perpendicular to the direction of the fragmenting
quark p̂c, i.e.,Z

d3kγδðkγ · p̂cÞDγ=cðz; kγÞ… ¼
Z

d2k⊥γDD=cðz; k⊥γÞ…

ð11Þ

where k⊥γ represents values of transverse momenta on the
allowed plane. For photon production via fragmentation, at
LO the partonic cross section is of order α2s,

dσ̂ab→cd

dt̂
¼ πα2s

ŝ2
HU

ab→cd; ð12Þ

and the relevant hard parts can be found, for instance,
in Ref. [42].
The details of the treatment of parton kinematics for both

direct and fragmentation processes are presented in the
Appendix.

III. THE CGI-GPM FORMALISM

In the generalized parton model it is assumed that all the
transverse-momentum-dependent densities are universal.
For instance, one can use a quark Sivers function fitted to
SIDIS data to calculate asymmetries in hadroproduction
processes [22]. Similarly the GSF fitted to data on pion
hadroproduction can be used to calculate the asymmetry in
J=ψ production [30]. However, different processes—take,
e.g., SIDIS and Drell-Yan—can have different initial- and
final-state interactions between the active partons and the
spectators from the polarized proton. For instance, in
SIDIS, the scattered quark can exchange soft gluons with
the remnant of the proton. This would be a final-state
interaction. In the case of Drell-Yan, the incoming quark
from the unpolarized proton can exchange soft gluons with
the transversely polarized proton. This would be an initial-
state interaction. These interactions can affect the univer-
sality of the TMD densities. The effects of these different
ISI/FSIs can be understood by looking at the different
Wilson line configurations that are required to render the
operator definition of the Sivers function gauge invariant.
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In the color-gauge invariant GPM formalism, these ISIs
and FSIs are treated at the one-gluon exchange level, i.e.,
by expanding the Wilson lines to leading order in the
coupling constant, gs. To illustrate this, in Fig. 2, we show
the diagrams for a process of the form A↑ þ B → Cþ X in
(a) the standard GPM framework, and in the CGI-GPM
framework with (b) the initial-state interactions and (c) the
final-state interactions, both at the one-gluon exchange
level. This approach was first proposed in Ref. [16] where
the effects of the ISI/FSIs were calculated for the various
quark-initiated subprocesses (subprocesses with a quark
from the polarized proton) involved in p↑p → π þ X. They
used their formalism to reproduce the expected sign flip
between SIDIS and Drell-Yan Sivers asymmetries.
In order to obtain the asymmetry in the CGI-GPM

formalism, we need to take into account the effects of
the ISIs and FSIs. For processes that probe the QSFs, this
is done by making the following substitutions in Eqs. (3)
and (9):

f⊥q
1T H

U
qb→cd ≡ f⊥q

1T

X
i;j

A�
iAj →

X
i;j

Cij
I þ Cij

Fc

Cij
U

f⊥q
1T A

�
iAj:

ð13Þ

Note that we have used an alternative notation for the Sivers
function, which is related to the one in Eqs. (4) and (10)
by f⊥q

1T ¼ −MpΔNfi=p↑=2k⊥i. The above expression has
various terms which we will explain now: the Ai are the
amplitudes for the different channels that contribute to the
subprocess qb → cd. Here, q corresponds to the quark
from the polarized proton. On the right-hand side, Cij

U is
the standard QCD color factor for the product of ampli-
tudesA�

iAj. C
ij
I and Cij

Fc
are color factors for the diagrams

with the initial-state and final-state interactions respec-
tively. Since the IS/FS interactions occur through eikonal
soft gluons, they do not affect the kinematics of the
relevant diagrams and we can retain the same product
of amplitudes A�

iAj, with the new modified color

factors, ðCij
I þ Cij

Fc
Þ=Cij

U, giving the appropriate color flow.
Collecting the color factors and the bilinear amplitudes in
Eq. (13), we can define the modified partonic hard parts,

Hmod
qb→cd ≡

X
i;j

Cij
I þ Cij

Fc

Cij
U

A�
iAj: ð14Þ

While in Ref. [16] only quark initiated subprocesses
were considered, in Ref. [19] the CGI-GPM approach was
extended to gluon initiated processes. They calculated the
effects of the ISIs/FSIs relevant for p↑p → J=ψ þ X and
p↑p → Dþ X. For the case of gluons, the substitution
required is

f⊥g
1TH

gb→cd
U ≡ f⊥g

1T

X
i;j

A�
iAj

→
X
i;j

CðfÞij
I þ CðfÞij

Fc

Cij
U

f⊥gðfÞ
1T A�

iAj

þ CðdÞij
I þ CðdÞij

Fc

Cij
U

f⊥gðdÞ
1T A�

iAj: ð15Þ

Here things are different compared to the quark case since
in the CGI-GPM framework, the process-dependent gluon
Sivers function can be written as a linear combination of

two independent universal gluon distributions f⊥gðfÞ
1T and

f⊥gðdÞ
1T . These two gluon Sivers functions correspond to two

possible ways of contracting the color indices of the three
gluon fields in the operator definition of the gluon Sivers
function. The f-type denotes a completely antisymmetric
contraction, −ifabc, and the d-type denotes a completely
symmetric contraction, dabc. We therefore define two
modified hard parts, one associated with the f-type GSF
and the other associated with the d-type GSF:

Hðf=dÞ
gb→cd ≡

X
i;j

Cðf=dÞij
I þ Cðf=dÞij

Fc

Cij
U

A�
iAj: ð16Þ

(a) (b) (c)

FIG. 2. LO diagrams for A↑ þ B → Cþ X in (a) GPM, (b) CGI-GPMwith initial-state interactions and (c) final-state interactions. The
eikonal soft gluon, shown in red, does not affect the kinematics of the process but only changes the color flow.
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The two GSFs f⊥gðfÞ
1T and f⊥gðdÞ

1T have different proper-
ties. They have different behaviors under charge conjuga-

tion. f⊥gðfÞ
1T is C-even and f⊥gðdÞ

1T is C-odd. Therefore only

f⊥gðfÞ
1T is constrained by the Burkardt sum rule, which is

defined in terms of C-even operators. We will be looking at
bounds on the gluon contribution to AN , from the BSR,
both in the GPM and CGI-GPM frameworks. In this work,
we calculate the effects of the initial- and final-state
interactions for both direct photon production and photon
production via fragmentation from quarks, following the
techniques of Ref. [19].

A. Modified hard parts for direct photon production

In direct photon production, there are no final-state
interactions since the partonic final state is a photon, which
is colorless. The only partonic subprocesses which give
access to the GSF at leading order are gq → γq and
gq → γq̄. Here, the first parton to the left of the arrow in
the subprocess label (in this case, the gluon) is the one
coming from the polarized proton. We have calculated the
modified hard parts for these subprocesses in the CGI-
GPM framework. While the two subprocesses have the
same cross section, they receive different modifications in
the CGI-GPM framework due to their differing color
structures. The unpolarized and the modified hard parts
are given below:

HU
gq→γq ¼ −

e2q
Nc

�
û
ŝ
þ ŝ
û

�

HðfÞ
gq→γq ¼ HðfÞ

gq̄→γq̄ ¼ −
1

2
HU

gq→γq

HðdÞ
gq→γq ¼ −HðdÞ

gq̄→γq̄ ¼
1

2
HU

gq→γq: ð17Þ

Let us note a few things. Firstly, the modified hard parts
are all half the magnitude of the unpolarized hard part.
Secondly the hard part associated with the f-type GSF
has a negative sign with respect to HU for processes with
both quarks and antiquarks from the unpolarized proton,
whereas the hard part associated with the d-type GSF
retains the same sign as HU for quarks and has a negative
sign for antiquarks.
The quark Sivers functions also contribute to direct

photon production via the following subprocesses: qg →
γq and qq̄ → γg. The relevant hard parts in this case are
available in Ref. [16] and we have reproduced them here for
the sake of completeness. These are

HU
qg→γq ¼ −

e2q
Nc

�
t̂
ŝ
þ ŝ

t̂

�

Hmod
qg→γq ¼ −Hmod

q̄g→γq̄ ¼
Nc

N2
c − 1

e2q

�
t̂
ŝ
þ ŝ

t̂

�
ð18Þ

HU
qq̄→γg ¼

N2
c − 1

N2
c

e2q

�
û
t̂
þ t̂
û

�

Hmod
qq̄→γg ¼ −Hmod

q̄q→γg ¼
e2q
N2

c

�
û
t̂
þ t̂
û

�
: ð19Þ

Note that for the process qg → γq the modified hard part is
roughly similar in size and has a negative sign for quarks
and positive sign for antiquarks (relative to HU). For the
process qq̄ → γg the modified hard part is much smaller
(by a factor of 8) and has a positive sign for quarks and a
negative sign for antiquarks (relative to HU). As we will
see, this has significant consequences for the SSAs.

B. Modified hard parts for photon production
from fragmentation

For photon production via fragmentation at leading
order, there are seven processes that give access to the
GSF: gq → qg, gq̄ → q̄g, gq → gq, gq̄ → gq̄, gg → gg,
gg → qq̄, and gg → q̄q. The modified hard parts for the
first five of these processes are not available in the literature
and we have calculated them. We first give the hard parts
for gq → qg and gq̄ → q̄g:

HU
gq→qg¼−

ðŝ2þ t̂2Þ
2ŝ t̂ û2

�
ŝ2þ t̂2−

û2

N2
c

�

HðfÞ
gq→qg¼HðfÞ

gq̄→q̄g¼−
ðŝ2þ t̂2Þ
4ŝ t̂ û2

½2t̂ ûþû2�

HðdÞ
gq→qg¼−HðdÞ

gq̄→q̄g¼−
ðŝ2þ t̂2Þ
4ŝ t̂ û2

�
ŝ2þ t̂2−2

û2

N2
c

�
: ð20Þ

The hard parts for gq → gq and gq̄ → gq̄ are as follows:

HU
gq→gq¼−

ðŝ2þ û2Þ
2ŝt̂2û

�
ŝ2þ û2−

t̂2

N2
c

�

HðfÞ
gq→gq¼HðfÞ

gq̄→gq̄¼−
ðŝ2þ û2Þ
4ŝt̂2û

�
ŝ2þ t̂2

N2
c

�

HðdÞ
gq→gq¼−HðdÞ

gq̄→gq̄¼þðŝ2þ û2Þ
4ŝt̂2û

�
ŝ2−2û2þ t̂2

N2
c

�
: ð21Þ

The hard parts for gg → gg are

HU
gg→gg ¼

4N2
c

N2
c − 1

ðt̂2 þ t̂ ûþû2Þ3
ŝ2 t̂2û2

HðfÞ
gg→gg ¼ N2

c

N2
c − 1

ðt̂2 þ t̂ ûþû2Þ2
ŝ2 t̂2û2

ð2t̂ ûþû2Þ

HðdÞ
gg→gg ¼ 0: ð22Þ

Finally, the hard parts for gg → qq̄ and gg → q̄q were
calculated in Ref. [19] and are reproduced below for the
sake of completeness:
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HU
gg→qq̄ ¼

Nc

N2
c − 1

1

t̂ û

�
N2

c − 1

2N2
c

−
t̂ û
ŝ2

�
ðt̂2 þ û2Þ

HðfÞ
gg→qq̄ ¼ HðfÞ

gg→q̄q ¼ −
Nc

4ðN2
c − 1Þ

1

t̂ û

�
t̂2

ŝ2
þ 1

N2
c

�
ðt̂2 þ û2Þ

HðdÞ
gg→qq̄ ¼ −HðdÞ

gg→q̄q ¼ −
Nc

4ðN2
c − 1Þ

1

t̂ û

�
t̂2 − 2û2

ŝ2
þ 1

N2
c

�
× ðt̂2 þ û2Þ: ð23Þ

The relevant hard parts for quark initiated subprocesses
that give access to the QSFs can be found in Ref. [16]. We
do not present them here.

IV. PARAMETRIZATION OF THE TMDS

In this section we give the details of the functional forms
and parameters that we use for the TMDs. For the
unpolarized TMDs we adopt the commonly used form
with the collinear PDF multiplied by a Gaussian transverse-
momentum dependence,

fi=pðx; k⊥;QÞ ¼ fi=pðx;QÞ 1

πhk2⊥i
e−k

2⊥=hk2⊥i ð24Þ

with hk2⊥i ¼ 0.25 GeV2. As with the unpolarized densities,
we use a similar factorized Gaussian form for the photon
fragmentation function,

Dγ=cðz; kγÞ ¼ Dγ=cðzÞ
1

πhk2⊥γi
e−k

2
γ=hk2⊥γi ð25Þ

with hk2⊥γi ¼ 0.25 GeV2.
Since we give predictions using the GSF fits of Ref. [22],

we adopt the functional form of the Sivers functions used
therein:

ΔNfi=p↑ðx; k⊥;QÞ ¼ 2N iðxÞfi=pðx;QÞ
ffiffiffiffiffi
2e

p

π

×

ffiffiffiffiffiffiffiffiffiffiffi
1 − ρ

ρ

s
k⊥

e−k
2⊥=ρhk2⊥i

hk2⊥i3=2
ð26Þ

with 0 < ρ < 1. Here N iðxÞ parametrizes the x-depend-
ence of the Sivers function and is generally written as

N iðxÞ ¼ Ngxαið1 − xÞβi ðαi þ βiÞαiþβi

ααii β
βi
i

: ð27Þ

For the Sivers function to satisfy the positivity bound,

jΔNfi=p↑ðx;k⊥Þj
2fi=pðx;k⊥Þ

≤ 1 ∀ x;k⊥; ð28Þ

it is necessary to have jN iðxÞj < 1.

In order to study the efficacy of the probe, we explore the
following choices for the Sivers functions:
(1) Quark and gluon Sivers functions with the positivity

bound saturated, viz. N iðxÞ ¼ 1 and ρ ¼ 2=3.
(2) The SIDIS1 [37] and SIDIS2 [38] fits of the QSFs,

along with the associated GSF fits from Ref. [22].
The first choice, which we will refer to as the “saturated”

Sivers function, is the maximal Sivers function allowed by
the positivity bound for a fixed width hk2⊥i and ρ, with a
particular choice of unpolarized collinear gluon density.
The parameter ρ is set to 2=3 in order to maximize the first
k⊥-moment of the Sivers function, following Ref. [43].
Using the saturated Sivers functions for quarks and gluons
allows us to study the general kinematic dependencies of
the asymmetry and the relative importances of the quark
and gluon contributions to the asymmetry. It also lets us
study how uncertainties in the knowledge of the collinear,
unpolarized gluon and sea quark densities might impact
the probe.
SIDIS1 [37] and SIDIS2 [38] are two different sets of

QSFs both fitted to data on single-spin asymmetry in
SIDIS. The SIDIS1 set was fit to data on pion production
at HERMES and flavor unsegregated data on positive
hadron production at COMPASS. They used quark frag-
mentation functions by Kretzer [44]. The data, being flavor
unsegregated, were not sensitive to sea quark contributions.
Hence this set contains parametrizations for only u and d
quark Sivers functions. The SIDIS2 set was fit to flavor-
segregated data on hadron production at HERMES and
COMPASS. Since strange meson production receives a
contribution from sea quarks, this fit includes sea quark
Sivers functions as well. Further they used fragmentation
functions by de Florian, Sassot and Stratmann (DSS) [45]
in this second fit.
Associated with these two QSF sets are the two fits of the

GSF from Ref. [22], which we will refer to as SIDIS1 and
SIDIS2 as well. These were both obtained by constraining
the gluon contribution to data on AN in midrapidity pion
production at the RHIC [46], with the aforementioned
QSFs being used to account for the quark contribution.
While both the GSFs—along with their associated QSF
sets—give good fits to the data on midrapidity pion
production, they have very different x-dependencies.
SIDIS1 is larger in the moderate-x region and SIDIS2 is
larger in the low-x region. The values of the parameters
of the two QSF sets as well as the associated GSF fits are
given in Table I.

V. NUMERICAL ESTIMATES FOR DIRECT
PHOTON PRODUCTION

In this work we wish to see if prompt photon production
at RHIC can be used to obtain any information on the gluon
Sivers function and whether it has any discriminating
power between the available GSF parametrizations. To
this end we need to consider various things such as the
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kinematics; contribution of QSFs to the asymmetry;
uncertainties in the knowledge of the collinear, unpolarized
PDFs; existing bound on the GSFs; etc.
Direct photon production at xF < 0 was analyzed in

Ref. [35]. The authors noted that this region is dominated
by the Compton scattering process gq → γq with the
gluons coming from the transversely polarized proton.
Hence xF < 0 had been identified as the region appropriate
for probing the GSF. They had then suggested, in general,
to use the large-PT region in the backward hemisphere. In
Fig. 3, we show the unpolarized Lorentz-invariant cross

section for the production of prompt photons at RHIC
energy,

ffiffiffi
s

p ¼ 200 GeV, as a function of xF, at fixed PT ¼
5 GeV (left panel) and as a function of PT at a fixed
pseudorapidity η ¼ −2. By prompt photons, we mean both
direct and fragmentation photons. The plot also shows the
direct photon contribution separately. The inclusive com-
ponents are given as thin lines and the direct components
are given as thick lines. For both the inclusive and direct
components, the contribution from subprocesses with the
gluon in the transversely polarized proton is indicated
separately. Further for the direct component, the contribu-
tions from subprocesses with quarks, as well as sea quarks
in the transversely polarized proton, are indicated sepa-
rately. In obtaining these numbers, we used CTEQ6L [47]
PDFs for the collinear part of the proton densities and the
BFGII [48] parton-to-photon FFs for the collinear part of
the fragmentation functions. A Gaussian width hk2⊥i ¼
0.25 GeV2 was used for both gluon and quark TMD-PDFs
as well as for the TMD photon FFs. The renormalization
and factorization scales were chosen to be Q ¼ PT .
As we can see from Fig. 3, the total prompt photon cross

section inclusive of direct and fragmentation photons is of
the same order of magnitude as the direct photon cross
section alone. Overall, gluons dominate the production
process in the kinematic regions we consider. Of the direct
photon component, for PT ≳ 3 GeV and xF ≲ −0.1, more
than 75% of the cross section is from the Compton process
gq → γqwith the initial-state gluon from the forward-going
proton. Among the contributions to direct photons coming
from quark-initiated processes (processes with quarks in
the transversely polarized proton), the sea quarks give the
dominant component, being around 10%–15% of the total

FIG. 3. Unpolarized Lorentz-invariant cross section for prompt photon production at the RHIC (
ffiffiffi
s

p ¼ 200 GeV) as a function of xF
(at PT ¼ 5 GeV, left panel) and PT (at rapidity η ¼ −2, right panel). The thick lines indicate the direct photon contributions and the thin
lines indicate the inclusive (direct and fragmentation) prompt photon contributions. The renormalization and factorization scales were
chosen to be Q ¼ PT .

TABLE I. Parameters for the various Sivers function fits used.

SIDIS2 QSFs from Ref. [38]

Nu ¼ 0.35 Nd ¼ −0.90 Ns ¼ −0.24
Nū ¼ 0.04 Nd̄ ¼ −0.40 Ns̄ ¼ 1
αu ¼ 0.73 αd ¼ 1.08 αsea ¼ 0.79
β ¼ 3.46 M2

1 ¼ 0.34 GeV2

SIDIS1 QSFs from Ref. [37]

Nu ¼ 0.32 Nd ¼ −1.00
αu ¼ 0.73 αd ¼ 1.08 M2

0 ¼ 0.32 GeV2

βu ¼ 0.53 βd ¼ 3.77

SIDIS2 GSF from Ref. [22]

Ng ¼ 0.05 αg ¼ 0.8 βg ¼ 1.4 ρ ¼ 0.576

SIDIS1 GSF from Ref. [22]

Ng ¼ 0.65 αg ¼ 2.8 βg ¼ 2.8 ρ ¼ 0.687
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cross section. In the low PT (≲3 GeV) and xF > −0.1
regions, where the cross section is highest, the contribu-
tions from gluons, valence quarks and sea quarks are
similar in magnitude; hence precise knowledge of the
collinear densities will be required for any analysis of
the SSA in this kinematic region. The qualitative details of
the above observations remain unchanged even when we
use other available fits of the collinear densities.

A. GPM

1. Asymmetry estimates using saturated
Sivers functions

We now consider results for the asymmetry obtained
using saturated Sivers functions for gluons and quarks. As
mentioned in Sec. IV, the saturated Sivers function can be
taken to be an upper bound on the Sivers function as
allowed by the positivity bound, Eq. (28). Considering the
asymmetries obtained using the saturated Sivers functions

is useful for two reasons. First it allows us to see the
maximum possible sizes of the effect and consider the
relative importances of the valence quarks, sea quarks and
gluons in the absence of any inputs from fits of the QSFs
and the GSF. Second, by considering different choices of
collinear densities we can get an idea of how uncertainties
in the knowledge of the collinear PDFs can affect the
analysis. We will consider both now.
In Fig. 4, we show the asymmetries obtained in the GPM

framework using saturated Sivers functions for the gluon
and all flavors of quarks. A positive sign is used for QSFs
of all flavors. We show the asymmetry in the direct photons
alone, as well as the asymmetry inclusive of direct and
fragmentation photons. The inclusive photon asymmetries
are given as thin lines and the direct photon asymmetries
are given as thick lines. The gluon and quark contributions
for both are shown separately. In the bottom panels, we
show the percentage change in direct photon results when
using different two different choices of LO collinear
densities, MRST2001LO [49] and GRV98LO [50].

FIG. 4. SSA in prompt photon production using saturated quark and gluon Sivers functions. Results shown as a function of xF (at
PT ¼ 5 GeV, left panel) and PT (at rapidity η ¼ −2, right panel). Thick lines indicate asymmetry in direct photons and thin lines
indicate asymmetry in all prompt photons inclusive of fragmentation photons. The top pair of panels shows the results obtained using
CTEQ6L [47] PDFs. The pair of panels below them indicates the percentage change in the direct photon results when MRST2001LO
[49] PDFs are used, i.e., 100 × ðACTEQ

N − AMRST
N Þ=AMRST

N . The pair of panels further below shows the percentage change in direct photon
results when GRV98LO [50] PDFs are used.
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We first discuss the direct photon results. When using
CTEQ6L PDFs, the saturated GSF (with QSFs set to zero)
gives an asymmetry of up to almost 10% at xF ¼ −0.8 and
8% at PT ¼ 2 GeV. The asymmetry from the saturated
QSFs is largest at low values of jxFj with PT being 6% at
xF ¼ 0 and 3% at PT ¼ 2 GeV. It can be seen from the plot
of the cross section in Fig. 3 that the contribution of sea
quarks is significant in the entire kinematics range and is in
fact dominant for xF < −0.2 at PT ¼ 5 GeV.
From the bottom two sets of panels of Fig. 4, we can see

how the direct photon results vary when using the
MRST2001LO and GRV98LO PDF sets for the collinear
parts of the TMDs. This gives us an idea of how
uncertainties in our knowledge of the collinear densities
can impact the predictions of SSA in the considered
kinematic region. Both MRST and GRV give quark
contributions that are larger by 50%–70%, whereas gluon
contributions are mostly similar throughout the kinematic
range except at low-PT values at η ¼ 2 where MRST gives
a gluon contribution that is smaller by up to 50% and GRV
gives a gluon contribution that is smaller by up to 25%.
Finally we consider the fragmentation contributions.

Since it is important to get an idea of the maximum impact
that fragmentation photons can have on the asymmetry,
we look at the asymmetry inclusive of both direct and
fragmentation photons. We have plotted the GSF-only and
QSF-only contributions of inclusive asymmetry for two
different choices of parton-to-photon FFs, BFGI and
BFGII. As can be seen from the thin violet curves in
Fig. 4, the GSF contribution of the inclusive asymmetry is
diluted by anywhere between 10% and 50% of the direct
photon value. The QSF contribution to the inclusive
asymmetry also has the same fate. Hence, it is important
to remove the fragmentation contribution as much as
possible. Overall the results for the inclusive asymmetry
do not depend much on the choice of the FF set used.
Results obtained for the inclusive asymmetry for different
choices of collinear PDFs also show a similar trend.

2. Asymmetry estimates using existing fits as well as
constraints from the Burkardt sum rule

We now consider existing information on the gluon and
quark Sivers functions that have been obtained from fits to
data. As mentioned in Sec. IV, we consider two different
sets of the QSFs, labeled SIDIS2 and SIDIS1, along with
their associated GSF fits from Ref. [22]. Apart from the two
available fits of the GSF, a general indirect bound on the
GSF can be obtained based on the Burkardt sum rule [39].
This sum rule for the Sivers functions is essentially the
requirement that the net transverse momentum of all the
partons in a transversely polarized proton must vanish,

hk⊥i ¼
X

i¼q;q̄;g

hk⊥ii ¼
X

i¼q;q̄;g

Z
dxf⊥ð1Þi

1T ðxÞ ¼ 0 ð29Þ

where f⊥ð1Þi
1T is the first transverse moment of the Sivers

function,

f⊥ð1Þi
1T ≡ −

Z
d2k⊥

k⊥
4Mp

ΔNfg=p↑ðx; k⊥Þ: ð30Þ

The QSF fits of the SIDIS2 set, taken with their
associated errors, allow the gluon contribution to be in
the following range:

−10 ≤ hk⊥gi ≤ 48 MeV: ð31Þ

This is to be compared with the following values obtained
for the quarks in the SIDIS2 fit:

hk⊥ui ¼ 98þ60
−28 MeV; hk⊥di ¼ −113þ45

−51 MeV: ð32Þ

Since this is an indirect constraint based on a quantity
integrated over the parton light-cone momentum fraction x,
this tells us nothing about the x-dependence—or for that
matter the k⊥-dependence—of the GSF. However, we can
still get an idea of the possible sizes of the gluon
contribution to the asymmetry in direct photon production
by considering various possible GSF parameter sets, Ng,
αg, βg and ρ, that result in a Sivers function obeying
Eq. (31). We obtained these sets by performing a scan over
the parameter space, varying the parameters in the follow-
ing ranges:Ng in the range −1 to 1 in steps of 0.1, αg and βg
in the range 0 to 4 in steps of 0.2, and ρ in the range 0.1 to
0.9 in steps of 0.05. This exercise is justified given the very
different x-dependencies of the SIDIS1 and SIDIS2 fits of
the GSF, both of which were obtained using QSF sets that
describe SIDIS data equally well.
In Fig. 5 we plot the band of direct photon AN values

obtained with the GSF parameter set results from the scan.
This is shown by the light blue shaded region. Along with
it, we also plot the quark and gluon contribution to the
direct photon asymmetry as given by the SIDIS2 and
SIDIS1 sets. For the collinear parts of the densities, we used
GRV98LO PDFs as they were used in the extraction of the
SIDIS2 fits and the BSR bound. Both the GSF fits give
asymmetries that lie well within the asymmetry band given
by the constraint in Eq. (31). The indirect bound allows a
gluon contribution to the asymmetry of up to 0.07%–0.1%.
Overall we find that both the SIDIS1 and SIDIS2 GSF fits,
as well as the Burkardt sum rule constraints, predict
negligible values for the gluon contribution to the
asymmetry.

B. CGI-GPM

1. Asymmetry estimates using saturated
Sivers functions

We now consider the probe in the context of the color-
gauge invariant generalized parton model.
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In Fig. 6, we show the asymmetries obtained using
saturated Sivers functions, in the CGI-GPM framework. We
show the asymmetry in the direct photons alone, as well as
the asymmetry inclusive of direct and fragmentation
photons.
We first discuss the direct photon results. We can see that

the f-type contribution has a negative sign. This is because

the hard parts HðfÞ
gqðq̄Þ→γqðq̄Þ have an opposite sign with

respect to HU
gq→γq, whereas the hard parts H

ðdÞ
gqðq̄Þ→γqðq̄Þ have

the same sign as HU
gq→γq. Since the modified hard parts

associated with the two GSFs are half the magnitude of the
unpolarized hard part, the asymmetry estimates will be
halved in magnitude as compared to the GPM result.
Further the d-type hard parts have opposite signs for quarks

and antiquarks, i.e., HðdÞ
gq→γq ¼ −HðdÞ

gq̄→γq̄, so in regions

FIG. 5. Burkardt sum rule based constraints on AN in the GPM framework and predictions of asymmetry using the SIDIS2 [38] and
SIDIS1 [37] QSFs and associated GSFs [22]. The light blue band shows the envelope of asymmetries obtained from GSFs that obey the
BSR based constraint, Eq. (23).

FIG. 6. SSA in direct photon production using the CGI-GPM framework with saturated quark and gluon Sivers functions. The results
are shown as a function of xF (at PT ¼ 5 GeV, left panel) and PT (at rapidity η ¼ −2, right panel). Note that direct photon asymmetries
from the f and d type GSFs are shown with opposite signs. This is because their modified hard parts associated with them have opposite
signs. Depending on the relative signs of the two GSFs and also their relative magnitudes, the contributions from the two GSFs may add
up or cancel out. The results were obtained using CTEQ6L PDFs.
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where the antiquark content of the unpolarized proton is
significant, there is a further suppression for the d-type
contribution. This can be clearly seen from the panel for
η ¼ −2. Overall, depending on the relative signs of the two
GSFs and also their relative magnitudes, the contributions
from the two of them may add up or cancel out.
Unlike the gluon contribution which decreases by a

factor of 2 with respect to the GPM, the changes in the
quark contribution are not so straightforward. We should
first note that in obtaining the above plot, the signs of the
saturated u, d and s quark Sivers functions were chosen to
be negative, i.e., N uðxÞ ¼ N dðxÞ ¼ N sðxÞ ¼ −1. The
modified hard part for the process qg → γq has a negative
sign with respect to the unpolarized hard part; therefore the
negative sign ensures that the resulting quark contribution
to the asymmetry is positive in regions where qg → γq
dominates over qq̄ → γg. This is the case in the neighbor-
hood of midrapidity, xF > −0.2. For further backward
regions, the process qq̄ → γg is dominant and the quark
asymmetries are highly suppressed since the modified hard
part for this process is suppressed by a factor of 8 with
respect to the unpolarized hard part [cf. Eq. (15)].
Overall for the case of direct photons, the saturated

Sivers function based analysis in the CGI-GPM framework
leads us to the following conclusions on how things are
different with respect to the GPM: both the f and d type
GSF contributions to the asymmetry are about half the
magnitude of the GPM result. If the two GSFs are similar
in magnitude, their overall contributions may add up or
cancel each other out depending on their signs, which
are unknown. The changes in the quark contributions
depend on the various signs involved. In highly backward
regions, the quark contribution to the asymmetry is highly

suppressed with respect to the gluon contribution. This is
because (a) the quark contribution happens through the
qq̄ → γg subprocess which has a much smaller cross
section as compared to qg → γq, and (b) the initial-state
interactions contribute a further suppression by a factor of 8
with respect to the standard partonic cross section.
As was the case with the GPM estimates, the results for

the inclusive photon asymmetry are somewhat lower
compared to the direct photon asymmetry.

2. Asymmetry estimates using existing fits as well as
constraints from the Burkardt sum rule

In Fig. 7 we plot the range of values for the GSF
contribution to the asymmetry in the CGI-GPM framework,
as allowed by the constraint from the Burkardt sum rule.
We also show the quark contribution to the asymmetry as
given by the SIDIS2 QSFs. Since there are no available fits
of the GSF in the CGI-GPM framework, we do not show
any gluon contribution, except for the asymmetry band
allowed by the BSR constraint. It is important to note that
the band shown in the plot corresponds only to the
contribution of the f-type GSF. As mentioned in
Sec. III, the BSR does not constrain the d-type Sivers
function as it is odd under charge conjugation. As was the
case with the GPM framework, we find that both the fits as
well as the constraints based on the Burkardt sum rule
predict negligible values for the gluon contribution to the
asymmetry.
Overall, in the CGI-GPM framework we see that

asymmetry predictions decrease in magnitude but the
relative importance of the gluon contribution increases in
the highly backward regions, i.e., xF < −0.3.

FIG. 7. Burkardt sum rule based constraints on AN in the CGI-GPM framework and predictions of asymmetry using the SIDIS2 [38]
QSFs. The light blue band shows the envelope of asymmetries obtained from GSFs that obey the BSR based constraint, Eq. (23).
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VI. CONCLUSIONS

In this work we have presented results for SSA in the
production of prompt photons in the negative rapidity
region at the RHIC. In this region, the production of direct
photons is dominated by gluons in the transversely polar-
ized proton through the QCD Compton process, gq → γq.
Thus any observed asymmetry in this region could be a
strong indication of a nonzero gluon Sivers function. We
find that the use of a gluon Sivers function that saturates the
positivity bound can lead to an asymmetry in direct photons
of up to 10%. We find that inclusion of fragmentation
photons can dilute the asymmetries by anywhere between
10% and 50% of the value for just the direct photons. A
stricter constraint on the GSF than the positivity bound can
be obtained using the Burkardt sum rule. In Ref. [38],
wherein the SIDIS2 QSFs were extracted, it was found that
the BSR allowed an average gluon transverse momentum in
the range −10 ≤ hk⊥gi ≤ 48 MeV. We find that the GSF
parametrizations that satisfy this constraint give negligible
asymmetries.
Further we also studied the asymmetry in the context of

the color-gauge invariant generalized parton model, in
which the nonuniversality of the Sivers functions is
accounted for by taking into account the effects of the
process-dependent initial-state and final-state interactions.
We find that both the f-type and d-type GSFs can
contribute to a SSA in direct photon production. Both of
them, when saturated, lead to peak direct photon asymme-
tries of around 5%. Constraints based on the BSR apply
only to the f-type GSF and give negligible values for the
asymmetry, as was the case with the GPM framework.
However the d-type GSF is so far not constrained by
anything except the positivity bound and hence, on prin-
ciple, can be much larger.
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APPENDIX: TREATMENT OF GPM
KINEMATICS

In this work, we have considered the single-inclusive
production of both direct photons and photons produced
via fragmentation of partons. Here we outline the treatment
of parton kinematics for both cases.
The momenta of the polarized proton (A), unpolarized

proton (B) and the photon can be written in the pp center of
mass frame as

pA ¼
ffiffiffi
s

p
2

ð1; 0; 0; 1Þ; pB ¼
ffiffiffi
s

p
2

ð1; 0; 0;−1Þ and

pγ ¼
�
Eγ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
T þ P2

L

q
; PT; 0; PL

�
: ðA1Þ

The parton from the polarized proton (a) and the parton
from the unpolarized proton (b) carry light-cone momen-
tum fractions xa ¼ pþ

a =p
þ
A and xb ¼ p−

b =p
−
B and transverse

momenta k⊥a and k⊥b respectively. Taking them both to
be on shell, their momenta are given by

pa ¼ xa

ffiffiffi
s

p
2

�
1þ k2⊥a

x2as
;
2k⊥a

xa
ffiffiffi
s

p cosϕ⊥a;

2k⊥a

xa
ffiffiffi
s

p sinϕ⊥a; 1 −
k2⊥a

x2as

�

pb ¼ xb

ffiffiffi
s

p
2

�
1þ k2⊥b

x2bs
;
2k⊥b

xb
ffiffiffi
s

p cosϕ⊥b;

2k⊥b

xb
ffiffiffi
s

p sinϕ⊥b;−1þ
k2⊥b

x2bs

�
ðA2Þ

where ϕ⊥a and ϕ⊥b are the azimuthal angles of the parton
transverse momenta.
In the case of direct photon production, the treatment

of parton kinematics is relatively simple as the on-shell
condition ŝþ t̂þ û ¼ 0 can be used to fix one of the
variables, such as xa or xb. In addition, we have the
requirement that the energy of the incoming parton should
not be greater than that of its parent particle, EaðbÞ ≤ EAðBÞ.
This leads to the following constraint,

k⊥aðbÞ <
ffiffiffi
s

p
min

h
xaðbÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xaðbÞð1 − xaðbÞÞ

q i
: ðA3Þ

In the case of photon production via fragmentation, the
transverse momentum in the fragmentation makes the
kinematics more involved. In this case, the photon is
produced via fragmentation of the final-state parton in a
2-to-2 process, ab → cd. The momentum of the photon
relative to the fragmenting parton is given by z, the light-
cone momentum fraction of the heavy meson, and kγ , the
transverse momentum of the meson with respect to the
direction of the heavy quark. In a choice of coordinates
where the fragmenting parton’s momentum pc is along the
z-axis, the photon’s momentum can be written as

pγ ¼ ðEγ; 0; 0; jpγ − kγjÞ þ ð0; kγÞ ðA4Þ

where the first term on the right is the component along
the fragmenting parton’s direction and the second term
is the component transverse to it. Here, kγ is simply
ðkγx ; kγy ; 0Þ ¼ ðkγ⊥ ; 0Þ. In the lab coordinates however, kγ
can have all three components nonzero and is specified as
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kγ ¼ kγðsin θ cosϕ; sin θ sinϕ; cos θÞ; with jkγj ¼ jkγ⊥ j
ðA5Þ

and the orthogonality condition kγ · pc ¼ 0 ensures that kγ
lies in a plane perpendicular to pc. The light-cone momen-
tum fraction z is given by

z ¼ pþ
γ

pþ
c
¼ Eγ þ jpγ − kγj

Ec þ jpcj
¼

Eγ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2γ − k2γ

q
2Ec

: ðA6Þ

This gives us the expression for the energy of the heavy
quark,

Ec ¼
Eγ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2γ − k2γ

q
2z

: ðA7Þ

The expression for pc can be obtained from the fact that it is
collinear with pγ − kγ and that the unit vector constructed
out of both must therefore be equal:

pc¼
Ec

Eγ−k2γ
ðPT −kγ sinθcosϕ;−kγ sinθsinϕ;PL−kγ cosθÞ

ðA8Þ

where we have used the orthogonality condition, kγ ·pc¼0.
Equations (A7) and (A8) relate the energy and momentum

of the observed photon with that of the fragmenting parton
for given values of kγ and z.
Using the expressions for the parton momenta given in

Eqs. (A3) and (A8), one can solve the on-shell condition
ŝþ t̂þ û ¼ 0 for z [14].
The term d3kγδðkγ · p̂cÞ in Eqs. (9) and (10) ensures that

the kγ integration is only over momenta transverse to the
fragmenting parton:

d2kγ⊥ ¼d3kγδðkγ · p̂cÞ

¼dkγkγdθdϕ
jpγ−kγj
PT sinϕ1

½δðϕ−ϕ1Þþδðϕ−ð2π−ϕ1ÞÞ�

ðA9Þ

where

cosϕ1 ¼
kγ − PL cos θ

PT sin θ
: ðA10Þ

Limits on kγ can be obtained by requiring j cosϕ1j ≤ 1,

max ½PL cos θ − PT sin θ; 0�
≤ kγ ≤ max ½PL cos θ þ PT sin θ; 0�: ðA11Þ
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