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Form factors for pion interactions with constituent quarks are investigated as the leading effective
couplings obtained from a one-loop background field method applied to a global color model. Two pion
field definitions are considered and the resulting eleven form factors are expressed in terms of components
of the quark and gluon propagators that compose only two momentum-dependent functions. A momentum-
dependent Goldberger-Treiman relation is also obtained as one of the ratios between the form factors. The
resulting form factors with pion momenta up to 1.5 GeV are exhibited for different quark effective masses
and two different nonperturbative gluon propagators and they present similar behavior to fittings of
experimental data from nucleons form factors. The corresponding pseudoscalar averaged quadratic radii
(a.q.r.) and correction to the axial a.q.r. are presented as functions of the sea quark effective mass, being
equal, respectively, to the scalar and vector ones at the present level of calculation.
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I. INTRODUCTION

The strong, electromagnetic and weak content of
hadrons has been under continuous intense theoretical
and experimental scrutiny. Different hadron form factors
are among the main observables for understanding details
of their interactions and structures, including size, and they
are important quantities to compare theoretical and exper-
imental results [1–5]. For example, the vector form factors
provide the charge and electromagnetic hadron structure
and interactions, the nucleon axial form factor provides
important information for their spin structure and weak
interaction observables such as neutron beta decay or CKM
matrix unitarity. There are many theoretical calculations for
the light hadrons strong form factors, for example [6–18]
and references therein. Lately, lattice estimations for pion-
nucleon/baryons interactions were provided for progres-
sively lower values of the pion mass, for example in
[10,17,18]. Concerning their very low momentum behav-
ior, experimental results for nucleon electromagnetic and
strong averaged radii provide values

ffiffiffiffiffiffiffiffi
hr2i

p
≃ 0.8–0.9 fm

[1,13,19,20].
In spite of the many difficulties to provide a complete

description of hadrons and their interactions compatible
with experimental data directly from QCD, in particular in

the low and intermediary energies regimes, both effective
models and effective theories have been considered to
understand partial or isolated aspects of strong interactions.
Among these models the constituent quark models (CQM)
has shown to describe many aspects of hadron structure
and interactions by considering dressed quark degrees of
freedom (d.o.f.), dynamical chiral symmetry breaking
(DChSB) and eventually a pion cloud, [12,21–23].
Within the constituent quark model it has been argued
that the zero momentum limit of the axial form factor
should be gAð0Þ ¼ 3=4 or gAð0Þ ¼ 1 [12,21]. Also, a radius
of the order of 0.2–0.3 fm has been estimated for con-
stituent quarks [12,24]. In the Weinberg’s large Nc effective
field theory (EFT), constituent quarks and gluons interact
with pions whose dynamics is ruled by the leading terms of
chiral perturbation theory (ChPT), coping with the large Nc
expansion [21]. In [25,26], this EFT has been derived as the
leading terms from a large quark and gluon effective masses
expansion for the one-loop background field method
applied to a global color model in the vacuum and with
leading couplings to the electromagnetic field. It can be
expected that, by comparing the strong and electromagnetic
nucleon and light mesons form factors with those for
constituent quarks, the detailed role and contribution of
each internal d.o.f. for the details of hadron structure and
interactions might be elucidated clearly. Of course, to
accomplish this program, besides further comparisons
between different theoretical frameworks, it is also impor-
tant to improve the amount and precision of experimental
data. This means that the related developments might shed
light on the partial or even complete reliability of CQM-
type models to describe hadron interactions in particular
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energy ranges. Moreover, these comparisons might make
explicit particular effects or mechanisms present in hadron
structure and interactions by means of analytical or semi-
analytical approaches besides well-established lattice QCD
framework. Eventually, it can be used to assess or to improve
field theoretic schemes for an eventual unambiguous para-
metrization of the nucleon and nuclear potentials [27].
In the present work, the strong constituent quark form

factors associated to the leading pion couplings to con-
stituent quarks are derived and investigated. This method
was considered before for the zero momentum limit of the
corresponding pion-constituent quark couplings [25,26]
and for the light vector mesons momentum-dependent
couplings to constituent quarks [28,29]. The form factors
are obtained from a large quark and gluon effective masses
expansion for the one-loop background field applied to a
global color model. The background field quark becomes
the constituent quark due to the one-loop calculation in
which an internal (nonperturbative) gluon line dresses the
(background) quark. This is nearly independent from the
dynamical symmetry breaking, except for the fact that
the same gluon propagator required to yield DChSB is
considered. This momentum-dependent constituent quark
mass emerges, therefore, by means of a different mecha-
nism from the usual DChSB. This might be in agreement
with recent calculations [30]. The resulting couplings and
form factors, therefore, correspond to tree-level pion-
constituent quark vertices. These pion-constituent quarks
form factors are investigated and comparisons with exper-
imental data for pion nucleon are presented. Furthermore,
four further pion derivative couplings with scalar and
pseudoscalar constituent quark currents that emerge at
the same leading terms of the determinant expansion are
also presented. They might contribute to the vector and
axial channels. Direct and simple momentum-dependent
and -independent relations between different form factors
are also presented. In particular, one relation corresponds to
a generalized momentum-dependent Goldberger-Treiman
relation (GTR). Besides that the corresponding strong
quadratic radii of constituent quarks (scalar, pseudoscalar,
vector, and axial) are also presented as functions of the
quark effective mass. The axial (and vector) pion coupling
presented in this work provides a further contribution for
the corresponding axial (and vector) form factors and
quadratic radii to those calculated in [28]. Two pion field
definitions are considered, theWeinberg pion field, in terms
of covariant derivatives, and the usual parametrization in
terms of the operators U ¼ eiπ⃗·σ⃗ . The conventional defi-
nition in terms of the functions U ¼ eiπ⃗·τ⃗ provides the well-
known pseudoscalar pion coupling that is not found in the
Weinberg pion field case. The isospin nondegeneracy of
up-down quark masses is not considered in this work since
it should be responsible for smaller (higher-order) effects.
This work is organized as follows. In the next section, the
steps of the method are briefly reminded and the large

quark effective mass expansion of a sea quark determinant
is performed. By keeping the full momentum dependence
of the resulting constituent quark—pion couplings the
corresponding form factors are presented for the two
definitions of the pion field in the following section.
Due to the momentum structure of some of the form
factors it is also convenient to perform a truncation that
provides, latter, corresponding positive averaged quadratic
radii. All the eleven form factors, five for the Weinberg
pion field and six for the second pion field definition, are
written in terms of only two momentum-dependent func-
tions, denoted F1ðK;QÞ and F2ðK;QÞ. Besides that, the
momentum-dependent constituent quark mass correction,
M3ðQÞ is investigated. In the following section, numerical
results are exhibited for different values of quark effective
mass and for two very different gluon propagators: an
effective longitudinal confining propagator considered by
Cornwall [31] and a transversal one used extensively and
successfully to provide hadron observables by Tandy and
Maris [32]. Some ratios and comparisons of the form
factors are also presented including the estimation of a
momentum-dependent Goldberger-Treiman relation. The
corresponding contributions for the pseudoscalar and axial
strong constituent quark quadratic radii are also investi-
gated as a functions of the quark effective mass for the
different gluon propagators. In the last section, a summary
is presented.

II. THE QUARK DETERMINANT, PIONS AND
CONSTITUENT QUARK CURRENTS

Consider the nonperturbative one gluon exchange
quark-quark interaction as one of the leading terms of
QCD effective action whose generating functional is given
by [33,34]

Z ¼ N
Z

D½ψ̄ ;ψ � exp i
Z
x

�
ψ̄ði=∂ −mÞψ

−
g2

2

Z
y
jbμðxÞR̃μν

bcðx − yÞjcνðyÞ þ ψ̄J þ J�ψ
�
; ð1Þ

where N is the normalization, J; J� the quark sources,
R
x

stands for
R
d4x, and a; b… ¼ 1;…ðN2

c − 1Þ stands for
color in the adjoint representation being Nc ¼ 3. The
functional measure for the quark field was written
as D½ψ̄ ;ψ � ¼ D½ψ̄ �D½ψ �. The quark gluon coupling con-
stant is assumed to be g and the development below is
akin to the rainbow ladder Schwinger-Dyson equation
(SDE). Below indices i; j; k ¼ 0;…ðN2

f − 1Þ will be used
for SU(2) isospin indices and, therefore, Nf ¼ 2. The
quark current mass will be assumed to be equal for u, d
quarks. The color quark currents are given by jμa ¼
ψ̄λaγ

μψ , and the sums in color, flavor, and Dirac indices
are implicit. A Landau-type gauge will be considered
for a nonpertubative gluon propagator that can be
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written as R̃μν
abðx − yÞ≡ R̃μν

ab ¼ δab½ðgμν − ∂μ∂ν
∂2 ÞRTðx − yÞþ

∂μ∂ν
∂2 RLðx − yÞ�, where the transversal and longitudinal
components are RTðx − yÞ and RLðx − yÞ. This nonper-
turbative gluon kernel, therefore, incorporates to some
extent the gluonic non-Abelian character with a corrected
quark-gluon coupling such that they will provide enough
strength to yield dynamical chiral symmetry breaking
(DChSB). This has been found in several approaches and
extensions [7,31,35–39].
The method was explained in detail in Refs. [25,26,

28,29,40], and therefore it will be succinctly described
below. A Fierz transformation for the model (1) is per-
formed and, by picking up the leading color singlet terms
that provide the usual pion couplings, it allows to inves-
tigate the flavor structure in a more complete way. Besides
that, color singlets, in one hand, avoid problems with
unconfined spurious color d.o.f. and, on the other hand,
provides a direct relation with quark-antiquark lightest
observed states. These states are to be identified with the
light hadrons d.o.f. and the scalar chiral condensate by
means of the corresponding fields to be introduced. Chiral
structures with combinations of bilocal currents are
obtained. The quark field must be responsible for the
formation of mesons and baryons and these different
possibilities are envisaged by considering the background
field method (BFM) [41,42]. Therefore, we consider the
quark field is split into sea quark, ψ2, composing (light)
quark-antiquark states including light mesons and the chiral
condensate, and the (constituent) background quark, ψ1, to
compose baryons. The shift of quark bilinears corresponds
to performing a one-loop BFM calculation and it might be
written for each of the color singlet Dirac/isospin channels
m ¼ s; p; si; pi; ps; v; a; as; vs (scalar, pseudoscalar,
scalar-isospin triplet, pseudoscalar-isospin triplet, vector,
axial, vector-isospin triplet, axial-isospin triplet, where the
isospin singlet states were omitted). Each of these channels
might have a corresponding auxiliary field. However, only
the lightest pseudoscalar-iso-triplet and isoscalar-scalar
d.o.f. will be investigated in the present work. The quark
field shift is of the following form:

jm ¼ ψ̄Γmψ → ðψ̄ΓmψÞ2 þ ðψ̄ΓmψÞ1: ð2Þ

This separation preserves chiral symmetry. The sea quark
can be integrated out exactly by means of the auxiliary field
method that give rise to colorless quark-antiquark states,
light mesons and the chiral quark condensate. Auxiliary
fields are introduced by means of the unity integrals
multiplying the generating functional. The only d.o.f.
considered in this work are the chiral scalar and pseudo-
scalar- iso-triplet ones which are needed for the pion sector
in the leading order. The heavier vector and axial mesons
can be neglected in the lower energy regime. Therefore,
one will be left with a model for pions and a scalar field
interacting with constituent quarks. The corresponding

unity integral for the scalar and pseudoscalar auxiliary
bilocal fields Sðx; yÞ; Piðx; yÞ is the following,

1 ¼ N00
Z

D½S�D½Pi�e−
i
2

R
x;y

Rðx−yÞα½ðS−gjSð2ÞÞ2þðPi−gjPi;ð2ÞÞ2�;

ð3Þ

where N00 is a normalization, and

Rðx − yÞ ¼ 3RTð−yÞ þ RLðx − yÞ: ð4Þ

Bilocal auxiliary fields for the different flavors can be
expanded in an infinite orthogonal basis with all the
excitations in the corresponding channel. For the pseudo-
scalar isotriplet fields, one has

Piðx;yÞ¼Pi

�
xþy
2

;x−y

�
¼Piðu;zÞ¼

X
k

FkðzÞPi;kðuÞ;

ð5Þ

where Fk are vacuum functions invariant under translation
for each of the local field Pμ

i;kðuÞ. For the low energy
regime one might pick up only the lowest energy modes,
lightest k ¼ 0 which corresponds to the pions in this
channel, i.e., Pi;k¼0 ¼ πi, making the form factors to reduce
to constants in the zero momentum limit FkðzÞ ¼ Fkð0Þ.
The saddle point equations for each of the remaining
auxiliary fields, after the integration of the sea quark,
can be written from the condition: ∂Seff∂ϕq

¼ 0. These equa-

tions for the NJL model and for the model (1) with
Schwinger-Dyson equations at the rainbow ladder level
have been analyzed in many works in the vacuum or under
a finite energy density. The scalar field has the only saddle
point equation with nontrivial solution for the quark-
antiquark chiral condensate. This classical solution gen-
erates an effective mass for sea quarks.
Chiral symmetry leaves a freedom to define the pion

field and chiral rotations can be done to modify its
definition. The scalar field can be frozen by means of a
chiral rotation and this produces the chiral condensate and a
strongly nonlinear pion sector. An usual pion field defi-
nition is parametrized by the functions: U ¼ expðiπ⃗ · σ⃗Þ
and U† ¼ expð−iπ⃗ · σ⃗Þ. To investigate this aspect another
pion field definition, the Weinberg ones, is characterized by
writing all the chiral invariant sector in terms of a covariant
pion derivative given by

Dμπi ¼
∂μπi
1þ π⃗2

: ð6Þ

The chiral symmetry breaking terms, however, can depend
on combinations of π⃗ and π⃗2. By doing the corresponding
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chiral rotations particular set of constituent quark-pion
interactions are obtained. The corresponding Jacobian of
the path integral measure will not be calculated and it might
induce extra terms for the resulting form factors.
By performing a Gaussian integration of the sea quark

field, the resulting determinant can be written, by means of
the identity detA ¼ expTr lnðAÞ as

Seff ¼ −iTr ln f−iS−1q ðx − yÞg; ð7Þ

S−1q ðx − yÞ≡ S−10 ðx − yÞ þ Ξsðx − yÞ þ
X
q

aqΓqjqðx; yÞ;

ð8Þ

where Tr stands for traces of all discrete internal indices and
integration of spacetime coordinates and Ξsðx − yÞ stands
for the coupling of sea quark to the scalar-pseudoscalar
fields for a particular pion field. This coupling term can
be written, respectively, for the Weinberg pion field
(ΞW

s ðx − yÞ) and for the usual pion field (ΞU
s ðx − yÞ) in

terms of unitary functions U;U† as [25,26]

ΞW
s ðx − yÞ ¼

�
γμσ⃗ ·Dμπ⃗iγ5 þ iγμσ⃗ ·

π⃗ × ∂μπ⃗

1þ π⃗2

þ 4m

�
π⃗2

1þ π⃗2
−
ϵijkσkπiπj
1þ π⃗2

��
δðx − yÞ; ð9Þ

ΞU
s ðx − yÞ ¼ FðPRU þ PLU†Þδðx − yÞ; ð10Þ

where F ¼ fπ is the pion field normalization, and PR=L ¼
ð1� γ5Þ=2 are the chirality right- and left-hand projectors.
The free quark kernel can be written as S−10 ðx − yÞ ¼

ði=∂ −mÞδðx − yÞ, wherem is so far the current quark mass.
The classical solution for the scalar field, found from its gap
equation, is directly incorporated into an effective quark
mass M� ¼ m − hsi. The redefined quark kernel can be
written as

S−10 ðx − yÞ ¼ ði=∂ −M�Þδðx − yÞ: ð11Þ

In expression (8), the following quantity, with the usual
chiral constituent quark currents that yield the leading
couplings to pions, has been used:

P
qaqΓqjqðx; yÞ

αg2

¼ 2Rðx− yÞ½ψ̄ðyÞψðxÞ þ iγ5σiψ̄ðyÞiγ5σiψðxÞ�
− R̄μνðx− yÞγμσi½ψ̄ðyÞγνσiψðxÞ þ γ5ψ̄ðyÞγ5γνσiψðxÞ�:

ð12Þ

In this expression, α ¼ 2=9 from the Fierz transformation,
Rðx − yÞ was given in (4) and

R̄μνðx − yÞ ¼ gμνðRTðx − yÞ þ RLðx − yÞÞ

þ 2
∂μ∂ν

∂2
ðRTðx − yÞ − RLðx − yÞÞ: ð13Þ

III. LEADING FORM FACTORS

In the following, consider the quark (and gluon) large
effective mass expansion for the case in which quark and
pion fields exchange momenta. To provide the reader with
one example, one of the leading pion constituent quark
effective interactions is the pseudoscalar coupling and it
shows up in the first-order terms of the expansion as
follows,

Ipsdet ¼
i
2
Tr½S0ðy − xÞiγ5σiiγ5σiπiðxÞS0ðx − zÞ

× Rðy − zÞiγ5σjψ̄ðzÞiγ5σjψðyÞ�; ð14Þ

with the insertion of complete sets of orthogonal momentum
states, a pseudoscalar form factor at the constituent quark
level emerges in momentum space, GU

psðK;QÞ, where the
momenta K, Q are defined below. For this, the trace in
internal indices (isospin, color and Dirac) were calculated.
By considering incoming quark with momentum K, and
pion(s) with total momenta Q the set of leading momentum-
dependent effective couplings for the first pion definition
(W) in the weak pion field limit (1þ π⃗2 ≃ 1) is given by

Lq−π
W ¼ M3ðKÞψ̄ðKÞψðKÞ þ 2iϵijkGW

V ðK;QÞπiðqaÞ∂νπjðqbÞψ̄ðKÞγνσkψðK þQÞ
þ 2GW

A ðK;QÞ∂νπiðQÞψ̄ðKÞiγ5γνσiψðK þQÞ þ FGβsbFðK;QÞπiðq1aÞπiðqbÞψ̄ðKÞψðK þQÞ

− Gp;W
ps ðK;QÞ ∂μ∂μπiðQÞ

M� ψ̄ðKÞiγ5σiψðK þQÞ − Gp;W
s ðK;QÞ ∂μ∂μπ2ðQÞ

M� ψ̄ðKÞψðK þQÞ; ð15Þ

whereQ ¼ Qπ is the total momentum carried by one or two
pion in each of the vertices, and it will be for both pion field
definitions W and U, being that, in the vector and scalar
constituent quark currents couplings, Q ¼ qa þ qb and the

pion field was kept dimensionless. The last two terms,
momentum-dependent ones, were obtained with an inte-
gration by parts. In this expression, M3ðKÞ is a running
effective mass that will be defined below in (23), and the
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following dimensionless form factors were defined in terms
of the functions F1ðK;QÞ given below,

GW
A ðK;QÞ ¼ GW

V ðK;QÞ ¼ 4d1Ncðαg2ÞF1ðK;QÞ ð16Þ

GβsbFðK;QÞ ¼ 64d1Nc
m
F
ðαg2ÞF1ðK;QÞ; ð17Þ

Gp;W
ps ðK;QÞ ¼ M�

4m
Gp;W

s ðK;QÞ
¼ 16d1M�Ncðαg2ÞF2ðK;QÞ; ð18Þ

where Nc ¼ 3, dn ¼ ð−1Þnþ1=ð2nÞ. It is interesting to note
that the scalar pion coupling is proportional to the current
quark mass and, therefore it is a consequence of explicit

chiral symmetry breaking. There are scalar and a pseudo-
scalar momentum-dependent form factors. Although the
usual pseudoscalar pion coupling to pseudoscalar quark
current does not emerge at this level of calculation for the
W pion field definition, there is the coupling Gp;W

ps ðK;QÞ
that might contribute for the axial channel. Because it is
simply proportional to other form factors by means of the
function F2ðK;QÞ it will not be investigated explicitly
numerically below. An analogous conclusion can be drawn
for the derivative-scalar term Gp;W

s ðK;QÞ that might
contribute for the vector channel.
The complete set of leading momentum dependent

couplings with their form factors for the second pion
definition, with the same convention for momenta of
expression (15) and dimensionless pion filed, is given by

Lq−π
U ¼ M3ðKÞψ̄ðKÞψðKÞ þ G2jsðK;QÞFπiðqaÞπiðqbÞψ̄ðKÞψðK þQÞ þGU

psðK;QÞFπiðQÞψ̄ðKÞσiiγ5ψðK þQÞ
þ iϵijk2GU

V ðK;QÞπiðqaÞð∂μπjðqbÞÞψ̄ðKÞγμσjψðK þQÞ;
þ 2GU

A ðK;QÞð∂μπiðQÞÞψ̄ðKÞiγ5γνσiψðK þQÞ

−Gp
psðK;QÞ ð∂

2πiðQÞÞ
M� ψ̄ðKÞσiiγ5ψðK þQÞ −Gp

s ðK;QÞ ∂
2ðπiðqaÞπiðqbÞÞ

M� ψ̄ðKÞψðK þQÞ; ð19Þ

where M3ðKÞ is the same as the mass in expression (15)
and it will be defined in expression (23). The other form
factors were defined as

GU
psðK;QÞ ¼ G2jsðK;QÞ ¼ 32d1Ncðαg2ÞF1ðK;QÞ; ð20Þ

GU
A ðK;QÞ ¼ GU

V ðK;QÞ ¼ 16d1NcFðαg2ÞF2ðK;QÞ ð21Þ

Gp
psðK;QÞ ¼ Gp

s ðK;QÞ ¼ 16d1NcFðαg2ÞF2ðK;QÞ: ð22Þ

The derivative couplings with form factors Gp
psðK;QÞ and

Gp
s ðK;QÞ have simply a different normalization with

respect to the ones from the W pion field definition:
Gp;W

ps ðK;QÞ and Gp;W
s ðK;QÞ. For example, it can be seen

that Gp;W
ps ðK;QÞ ¼ M�

F Gp
psðK;QÞ. At this level, it is inter-

esting to note that GpsðK;QÞ ¼ G2jsðK;QÞ in reasonable
agreement with other results [43], and also GAðK;QÞ ¼
GVðK;QÞ for both pion field definitions.
The loop momentum integrals of each of the form factors

above will be written and investigated for constituent quark
with K ¼ 0, except for the effective mass M3ðQÞ. After a
Wick rotation for the Euclidean momentum space, these
functions are given by

F1ð0; QÞ ¼
Z
k
ðk · ðkþQÞ −M�2ÞS̃0ðkÞS̃0ðkþQÞ ¯̄Rð−kÞ;

F2ð0; QÞ ¼
Z
k
M�S̃0ðkÞS̃0ðkþQÞ ¯̄Rð−kÞ

M3ðQÞ ¼ 16d1NcM�ðαg2Þ
Z
k
S̃0ðkþQÞRð−kÞ; ð23Þ

where
R
k ¼

R
d4k
ð2πÞ4 and the following functions in momen-

tum space for components of the quark and gluon propa-
gator used:

S̃0ðkÞ ¼
1

k2 þM�2 ; ð24Þ

¯̄RðkÞ ¼ 2RðkÞ ¼ 6RTðkÞ þ 2RLðkÞ: ð25Þ

The only form factor that might have an ultraviolet
divergence UV is M3ðQÞ if the gluon propagator does
not possess particular UV behavior. The other are com-
pletely finite if the nonperturbative gluon propagator is
infrared regular.
The momentum structure of the form factor F1ð0; QÞ has

a positive first derivative with respect to Q2 for very small
Q, and therefore it yields negative quadratic radii. To
overcome that, F1ð0; QÞ might be truncated by approxi-
mating the quark kernel by S0ðkÞ ≃M�S̃0ðkÞ. It yields for
the function F1ð0; QÞ the following expression:

PION CONSTITUENT QUARKS COUPLINGS STRONG FORM … PHYS. REV. D 99, 014001 (2019)

014001-5



Ftr
1 ð0; QÞ ¼ M�2

Z
k
S̃0ðkÞS̃0ðkþQÞ ¯̄Rð−kÞ: ð26Þ

This truncation might be expected to correspond to making
an effective mass M� to be momentum dependent in the
expression of F1ðK;QÞ.
In Fig. 1, the diagrams corresponding to the expressions

(15) for the Weinberg pion field definition are presented,
where the pion-quark vertices with a square are the
derivative ones and diagram 1(d) stands for the effective
mass M3ðQÞ. The dressed (nonperturbative) gluon propa-
gator is indicated by a wavy line with a full circle and pion
is represented by dashed lines. In diagrams 1(a)–1(c), the
incoming constituent has momentum K and the outgoing
constituent quark has momentum K þQ, being Q the total
momentum transferred by pion(s). Figure 2 exhibits the
diagrams for the pion constituent quark couplings for the
usual pion field definition given in expression (19) with
the same conventions as Fig. 1.

IV. NUMERICAL RESULTS

To provide numerical results, two gluon propagators
were chosen. A transversal one from Tandy-Maris DIðkÞ
[32] and the other is an effective longitudinal confining one
by Cornwall DIIðkÞ [31]. Both of them yield DChSB and
they are written below with the following association:

g2R̃μνðkÞ≡ haD
μν
a ðkÞ ð27Þ

where Dμν
a ðkÞ (a ¼ I; II) is one of the chosen gluon

propagators from the quoted articles, ha is a real positive
constant factor used in previous works [26,29] to fix the
quark gluon (running) coupling constant such as to repro-
duce one expected value either of the vector/axial pion
coupling constant in the vacuum or vector meson coupling
to constituent quarks constant, gVha ¼ 1, gAha ¼ 1 or
gρha ≃ 12. In the present work, this factor was chosen

for each of the gluon propagators and pion field definition
to provide gAð0Þha ¼ 1. Their values will be shown in the
caption of the corresponding figure.
The expressions for the two gluon propagators are the

following:

DIðkÞ ¼
8π2

ω4
De−k

2=ω2 þ 8π2γmEðk2Þ
ln ½τ þ ð1þ k2=Λ2

QCDÞ2�
; ð28Þ

DIIðkÞ ¼
KF

ðk2 þM2
kÞ2

; ð29Þ

where for the first expression γm¼12=ð33−2NfÞ, Nf ¼ 4,
ΛQCD ¼ 0.234 GeV, τ ¼ e2 − 1, Eðk2Þ ¼ ½1 − expð−k2=
½4m2

t �Þ=k2, mt ¼ 0.5 GeV, ω ¼ 0.5 GeV, D ¼ 0.553=ω
(GeV2); and for the second expression KF ¼
ð2πMk=ð3keÞÞ2 where ke ¼ 0.15 and Mk ¼ 220 MeV.
In Fig. 3, the resulting constituent quark (running)

effective mass M�
3ðQÞ is shown as a function of the

constituent quark momentum for an UV cutoff
Λ ¼ 2 GeV, in dashed and continuous lines and it is
compared to a result from Schwinger-Dyson equations at
the rainbow ladder approximation from Ref. [44]. The
multiplicative factors 1=4 and 3=4 were chosen to fit
the curves into a suitable scale and they are needed because
of the large value of Λ.
In Fig. 4, the axial form factor contribution for zero

quark momentum GW
A ð0; QÞ and its truncated version

GW;tr
A ð0; QÞ for the Weinberg pion field are presented for

different values of the quark effective mass from the gap
equation M� and for the gluon propagator DIIðkÞ. In all
cases of the figures with the axial form factor, the linear
dependence on the pion momentum from the coupling was

FIG. 2. These diagrams correspond to the quark-pion effective
couplings from expression (19). The wavy line with a full dot is a
(dressed) nonperturbative gluon propagator, the solid lines stand
for a constituent quark (external line) or sea quark (internal line),
and dashed lines represents pion field, the full square in a vertex
represents a derivative coupling.

FIG. 1. These diagrams correspond to the quark-pion effective
couplings from expression (15). The wavy line with a full dot is a
(dressed) nonperturbative gluon propagator, the solid lines stand
for a constituent quark (external line) or sea quark (internal line),
and dashed lines represents pion field, the full square in a vertex
represents a derivative coupling. Diagram 1(d) represents the
effective quark mass correction.
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not included. In Fig. 5, the same results are exhibited for the
gluon propagator DIðkÞ. Figures 4 and 5 present the same
behavior without meaningful differences except for the
relative normalization of the nontruncated form factor.
Besides that, a dipolar fitting for experimental results of
axial pion-nucleon coupling is drawn with symbols þ with
a normalization to allow for comparison of the momentum
dependence. It is given by [16,18,20]

Gpar
A ðQ2Þ ¼ G0

ð1þ Q2

M2
A
Þ2
; ð30Þ

by considering MA ¼ 1.1 GeV and by adopting a normali-
zation for Gpar

A ðQ2 ¼ 0Þ obtained in the present work for
each of the gluon propagators, for the case of M� ¼
0.31 GeV. The fitting for experimental values decreases
slower than the (constituent quark) form factors GW

A ð0; QÞ
and two reasons might directly identified for that. It might
signal there is missing strength from more complete quark
and gluon kernels. However, it also might indicate the need
to account other effects rather related to nucleon structure
d.o.f. These two possibilities are not exclusive of one
another; however, they correspond to different types of
constituent quark models for hadrons (baryons) since they
correspond to different roles of constituent quark inter-
actions for the baryon structure. In any case, apart from a
possible difference on the overall normalization, the differ-
ence is not very large and it appears in intermediary
momenta. It can be noted that the nontruncated expressions
provide a positive momentum slope at Q ¼ 0, these
expressions therefore would provide a negative averaged
quadratic axial radii. The truncated expressions correct
this behavior.
In Fig. 6, the axial form factor correction for the second

pion field definition, GU
A ð0; QÞ, as a function of pion

momentum is shown for gluon propagators DIIðkÞ and
DIðkÞ for different values of the quark effective mass M�.
The same fitting Gpar

A ðQÞ is plotted (þ) with the value
at Q ¼ 0 adjusted from the GU

A ð0; Q ¼ 0Þ to make an
appropriated comparison. The truncated version of

FIG. 4. The normalized axial form factor GW
A ð0; QÞ for the

Weinberg pion field as a function of the pion momentum is
presented in this figure for the gluon propagator DIIðkÞ, un-
truncated expression with ha ¼ 1

0.2 and truncated one with
ha ¼ 1

0.46, and for different values of the sea quark effective mass
M� from the gap equation. Solid thin and thick lines for
M� ¼ 350 MeV; dashed lines for 310 MeV. Signs þ for the
normalized fitting of expression (30), Gpar

A ðQ2Þ.

FIG. 5. The axial form factor GW
A ð0; QÞ for the Weinberg pion

field as a function of the pion momentum is presented in this
figure for the gluon propagator DIðkÞ from Ref. [32], being that
for the untruncated expression it is taken ha ¼ 1

0.38 and for the
truncated one ha ¼ 1

1.4, and for different values of the sea quark
effective mass M� from the gap equation. Solid thin and thick
lines forM� ¼ 350 MeV; dashed lines for 310 MeV. Signs þ for
the fitting of expression (30), Gpar

A ðQ2Þ.

FIG. 3. The dynamical running constituent quark effective mass
M3ðQÞ divided by 4, M3ðQÞ=4, for the gluon propagator I, in
continuous and dashed thin lines and multiplied by 3=4, 3

4
M3ðQÞ,

in thick lines for the gluon propagator II, in dashed (M� ¼
350 MeV) and continuous (M� ¼ 310 MeV) lines. A gap effec-
tive massM�ðQÞ from SDE from Ref. [44] multiplied by a factor
1.15 to allow for a better comparison of the momentum
dependence.
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GW;tr
A ð0; QÞ from Figs. 4 and 5 has a similar behavior to

GU
A ð0; QÞ, and in fact they both are written in terms

of F2ð0; QÞ with different normalizations. Although the
overall behavior is similar to the experimental fit, for
both GW;tr

A ð0; QÞ and GU
A ð0; QÞ, the form factor contribu-

tion GU
A ð0; QÞ has a behavior slightly closer to the

experimental fit.
The axial coupling constant at the constituent quark level

has been argued to be close to gA ≃ 3=4 [12] or gA ≃ 1 [21].
Results from the form factors fall well within the correct
order of magnitude and value. Also, in the present work,
it was shown in expressions (16) and (21) that the axial
and vector form factors are equal to each other, due to
chiral symmetry, for each the two pion field definitions
considered.

A. Pseudoscalar coupling

In Figs. 7 and 8, the pseudoscalar form factor GU
psð0; QÞ

and its truncated version GU;tr
ps ð0; QÞ are presented for the

gluon propagatorsDIIðkÞ andDIðkÞ, respectively. The zero
momentum Q ¼ 0 values are basically 1 order of magni-
tude larger than the zero momentum axial form factor as
expected from phenomenology. Results with DIðkÞ have
considerably larger absolute values than with DIIðkÞ. The
dipolar fitting for data from lattice QCD calculations (30)
[45] is also shown with a suitable normalization atGpsð0; 0Þ
to compare with the results from expressions above for the
case M� ¼ 0.31 GeV. All the results from the truncated
expressions for GU

psð0; QÞ yield similar results for M� ¼
0.31 and 0.35 GeV. Whereas the truncated version presents
a monotonic decrease with momentum Q the complete

expression has an increase up to aroundQ∼0.40–0.45GeV
and then it decreases for largerQ. It has, therefore, the same
behavior of GW

A ðQÞ shown in the previous section. The
deviation of the form factor GU;tr

ps ð0; QÞ momentum
dependence from the fitting Gpar

ps ð0; QÞ is slightly larger
than the deviation of the axial GU

A ð0; QÞ form factor with
respect to the corresponding nucleon-pion experimental
fitting. The reasons must be the same, the momentum

FIG. 7. The pseudoscalar form factor GU
psð0; QÞ as a function of

the quark momentum is presented in this figure for the gluon
propagator DIIðkÞ, with factor ha ¼ 1

0.27, and for different values
of the sea quark effective mass M�, from the gap equation.
Results from both the complete and the truncated (tr) expressions
are shown. Solid lines are used for M� ¼ 350 MeV, dashed lines
for M� ¼ 310 MeV. Signs þ for the corresponding fitting of
expression (30), Gpar

A ðQ2Þ.

FIG. 8. The pseudoscalar form factor GU
psð0; QÞ as a function of

the quark momentum is presented in this figure for the gluon
propagator DIðkÞ, with factor ha ¼ 1

0.83, and for different values
of the sea quark effective mass M�, from the gap equation.
Results from both the complete and the truncated (tr) expressions
are shown. Solid lines are used for M� ¼ 350 MeV, dashed lines
for M� ¼ 310 MeV. Signs þ for the corresponding fitting of
expression (30), Gpar

A ðQ2Þ.

FIG. 6. The axial (equal to the vector) form factor GU
A ð0; QÞ

(usual pion field) as a function of the pion momentum is
presented in this figure for the gluon propagators DIðkÞ, with
factor ha ¼ 1

0.83, and DIIðkÞ, with ha ¼ 1
0.27, and for different

values of the sea quark effective massM�, from the gap equation.
Solid line is used for M� ¼ 350 MeV, dashed line for M� ¼
310 MeV. Sign þ for the fitting of expression (30), Gpar

A ðQ2Þ.
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dependence of the quark and gluon kernels and/or internal
nucleon effects.
Standard hadron effective coupling constants are usually

obtained for particular values of the transferred momentum
such as Q2 ¼ 0 or Q2 ≃ −m2

π. The only numerical values
for the form factors at the spacelike momenta Q2 < 0
shown in this work are these next ones for the usual
pseudoscalar pion coupling at Q2 ¼ −m2

π , i.e., closer to the
physical definition of GπN that is taken from spacelike
momenta at the muon or pion mass. For the quark effective
mass M� ¼ 0.31 GeV and the two gluon propagators two
values were obtained: for the complete expression (20) and
for the momentum truncated expression GW;tr

ps ð0; QÞ with
(26). By considering the same factors ha adopted for the
figures of the pseudoscalar form factors (hI ¼ 1=0.83 and
hII ¼ 1=0.27), they are given by

I GU
psð0; Q2 ¼ −m2

πÞ ¼ 1.9; GU
psð0; 0Þ ¼ 3.4; ð31Þ

I GU;tr
ps ð0; Q2 ¼ −m2

πÞ ¼ 16.4; GU;tr
ps ð0; 0Þ ¼ 13.4;

ð32Þ

II GU
psð0; Q2 ¼ −m2

πÞ ¼ 4.1; GU
psð0; 0Þ ¼ 5.9; ð33Þ

II GU;tr
ps ð0; Q2 ¼ −m2

πÞ ¼ 15.2; Gtr
psð0; 0Þ ¼ 13.3:

ð34Þ

The difference between the form factor GU
psð0; QÞ and its

truncated version, GU;tr
ps ð0; QÞ, is of course present in this

spacelike values. The values from the truncated expression
are also closer to experimental data for the nucleon-pion
coupling constant and results from other calculations.

B. Goldberger-Treiman and other relations
in timelike momenta

Next ratios of the form factors are calculated. The
following momentum-dependent ratios between dimen-
sionless quantities were considered:

GTWðQÞ≡ GW
V ð0; QÞ

GβsbFð0; QÞ ¼
F

16m
≃ 1; ð35Þ

GTðQÞ ¼ M�

F

�
GU

A ð0; QÞ
GU

psð0; QÞ
�

¼ M�

F
GVð0; QÞ
G2jsð0; QÞ

¼ M�

F
F
2

F2ð0; QÞ
F1ð0; QÞ ; ð36Þ

GU
A ð0; QÞ

GU
V ð0; QÞ ¼

GU
psð0; QÞ

G2jsð0; QÞ ¼ 1; ð37Þ

where the first one GTWðQÞ is an equivalent of the GTR
expression for the Weinberg pion field in which the

pseudoscalar pion coupling does not appear but the
(symmetry breaking) scalar two pion coupling to constitu-
ent quark appears. This ratio is momentum independent,
and it depends on the current quark mass m ∼ 5.75 MeV
for which 16m ≃ fπ ¼ F ¼ 92 MeV and, therefore,
GTW ≃ 1. The function GTðQÞ for the second pion
definition has a constant factor F=M� such that if the
GTR relation is satisfied the ratio GTðQÞ → 1 and this is
verified for very large M�. The last expression has two
chiral symmetry relations for form factors, and their
corresponding effective coupling constants for the second
pion field definition.
In Fig. 9, the ratio GTðQÞ is presented as a function of

momentum for different effective quark masses M�. The
ratio GTðQÞ does not satisfy necessarily the GTR at Q ¼ 0
because the quark effective masses are not large enough.
This ratio GTðQÞ has the same behavior found in other
works [15]. The deviation from the GTR intrinsically due to
the momentum dependence of each of the form factors for
the nucleon level Goldberger-Treiman relation is usually
denoted by RðQÞ. It is usually parametrized in terms of the
nucleon mass M [15], and by substituting M by the quark
effective mass M� it is given by the following expression:

GAðQ2Þ ¼ fπ
M�GπNNðQ2Þ − Q2

4M� RðQ2Þ; ð38Þ

where GπNðQ2Þ is to be substituted by GpsðQÞ. By
considering the constituent quark mass M� ¼ 0.28 GeV
and 0.31 GeV this function is exhibited in Fig. 10 for the
second pion definition. It goes to zero quite fast with
increasing (Q) depending not only on the quark effective
mass M� but also on the gluon propagator considered.

FIG. 9. The ratio GTð0; QÞ is shown as a function of momenta
for two different quark effective massesM� ¼ 280; 310 MeV and
for the two gluon propagators. The limit in which the Goldberger-
Treiman relation is recovered corresponds to GTð0Þ ¼ 1.
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C. Averaged quadratic radii

Next, the corresponding strong averaged quadratic
radii are defined from the different pion-constituent quark
couplings presented above. Since the form factors are
dimensionless the corresponding axial and pseudoscalar
quadratic radii were defined by

hr2iWA ¼ −6
dGW

A ð0; QÞ
dQ2

����
Q¼0

¼ hr2iWV ; ð39Þ

hr2iW;tr
A ¼ −6

dGW;tr
A ð0; QÞ
dQ2

����
Q¼0

¼ hr2iW;tr
V ; ð40Þ

hr2iUA ¼ −6
dGU

A ð0; QÞ
dQ2

����
Q¼0

¼ hr2iUV ; ð41Þ

hr2ips ¼ −6
dGU

psð0; QÞ
dQ2

����
Q¼0

¼ hr2i2js; ð42Þ

hr2itrps ¼ −6
dGU;tr

ps ð0; QÞ
dQ2

����
Q¼0

¼ hr2itr2js: ð43Þ

where in the right hand side of these expressions the
relations to vector and scalar quadratic radii from the form
factors defined in the previous sections are exhibited. In
[28], the light vector/axial meson couplings to constituent
quarks were considered to provide corresponding quadratic
radii. The corresponding averaged axial and vector quad-
ratic radii seen by the coupling to the pion, presented in this
work, also turn out to be equal. Both results, from the pion
and axial mesons couplings, are to be added, i.e., in fact
expressions (39)–(41) provide corrections to the corre-
sponding quadratic radii. However, their experimental

values, at the nucleon level, must receive further corrections
since vector and axial a.q.r. are different from each other
and expected to follow

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2Vi=hr2Ai

p
≃ 1.6 [12].

In Fig. 11, the different estimations for the axial
quadratic radius contribution for the two pion definitions,
W andU, and for the two gluon propagators, as functions of
the quark effective mass M�. In the figures with a.q.r., the
factors ha were considered hI ¼ 3 and hII ¼ 1, such that
results could be compared with results from [28]. In the
case of theWeinberg definition, there are also results for the
truncated expression. The axial radius (contribution) hr2iWA
is negative because of the behavior of the axial form factor
close to zero exchanged momentum and this unexpected
behavior is corrected by the truncated expression as
discussed above. Besides the problem with the sign for
hr2iWA it is also noted a different behavior in the M�

dependence of the axial quadratic radii between hr2iWA
and hr2iW;tr

A , being that the former presents a stronger
variation for increasing M� and the latter a smoother
variation.
These axial quadratic radii correction due to the pion are

smaller than the vector/axial quadratic radii due to the
vector/axial light mesons calculated with the same method
for both gluon propagators in [28]. In that work, the axial
quadratic radii found from the coupling to the A1 meson,
hr2a:m:iA, were estimated to be in the following range of
values—for the same range of values of the quark effective
mass M�—by keeping the corresponding ha to the ones
used in the figures for the a.q.r.:

hr2a:m:iA ∼ 0.4 − 0.2 fm2; DIIðkÞ;
hr2a:m:iA ∼ 4.0 − 2.0 fm2; DIðkÞ; ð44Þ

FIG. 11. The axial quadratic averaged radius (contribution) for
the two pion definitions, W and U, and two gluon propagators,
I and II, as functions of the effective quark massM�. The factors
ha were chosen to be hI ¼ 3 and hII ¼ 1. The numerical result
for hr2iWA has a sign minus and the results for the gluon
propagator DI it is divided by 5 to fit in the scale of the figure.

FIG. 10. The momentum-dependent deviation of the Gold-
berger-Treiman relation for the gluon propagators DIðkÞ and
DIIðkÞ and quark effective masses M� ¼ 280 and 310 MeV, by
considering normalized definitions for GU

A ð0; 0Þ and GU
psð0; 0Þ

such as to satisfy the GTR at Q ¼ 0.
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respectively, for gluon propagators DIIðkÞ and DIðkÞ. Of
course, the estimations for hr2a:m:iA with DIðkÞ are
extremely large, also present in Figs. 11 and 12, and this
is attributed to the corresponding quark-gluon coupling
constant and gluon propagator strengths. Both resulting
values, however, are basically of the order of magnitude as
(or larger than) the estimation for constituent quark radiusffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2iCQ

q
≃ 0.2–0.3 fm [12,24], apart from normalizations

of the quark-gluon coupling constant. The experimental
value for the axial radius of the nucleon is hr2Ai1=2 ≃
0.68 fm [1,13] and there are many estimations from lattice
hr2Ai1=2 ≃ 0.45–0.50 fm, for example in [18,46] and refer-
ences therein.
Similar behavior was found for the pseudoscalar quad-

ratic radii presented in the next Fig. 12 from expressions
(42), (43), complete and truncated ones, as functions of the
quark effective mass M� for the two gluon propagators.
The nontruncated expression provides negative values and
they are presented with a sign minus. One of them is
divided by factor 10 for DIðkÞ to fit into a reasonable scale
of the figure. To make possible a correct calculation
with the previous figure it was assumed hI ¼ 3 and
hII ¼ 1. The axial hr2iA contribution was found to be
smaller than the pseudoscalar hr2ips in all cases. This is
related to the fact that the pseudoscalar form factor
normalization is larger than the axial form factor one. At
this level, all the form factors reduce to only F1ðK;QÞ and
F2ðK;QÞ and the truncated version Ftr

1 ðK;QÞ. However,
the difficulty in fixing the quark-gluon vertex and the
overall momentum behavior of the quark and gluon
propagators cannot be neglected. When compared to the

value
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2iCQ

q
≃ 0.2–0.3 fm from [12,24], the gluon

propagator DIðkÞ provides larger values for hr2i and the
gluon propagatorDIIðkÞ again provides smaller values. The
reasons for the differences between hr2ips and the trun-
cated-hr2ips must be the same as the ones responsible for
the discrepancies in the axial radii from Fig. 11. Besides
that, it might be interesting, for the sake of comparison, to
compare with the scalar radius of the lightest hadron, the
pion, that has been calculated, for example, in lattice with
hr2is ¼ 0.6 fm2 [47]. The pion charge radius has estima-
tions for example in lattice hr2i ¼ 0.37 fm2 [8] and with
SDEhr2i ¼ 0.46–0.48 fm2 [48], whereas its experimental
value hr2i ≃ 0.45 fm2 [9,20]. The pion scalar radius seems,
therefore, to be larger than its charge radius analogously to
the fact that according to the present results the pseudo-
scalar, and also scalar, radii are larger than the axial and
vector radii.

V. SUMMARY AND DISCUSSION

Pion-constituent quark momentum-dependent form fac-
tors were investigated from the one-loop background field
method for the one nonperturbative gluon exchange quark
interaction from the QCD effective action. At this level, the
pseudoscalar coupling only shows up for the usual pion
field definition in terms of unitary functions U;U† but not
for the Weinberg pion field. Besides the usual pseudoscalar
pion coupling, other derivative pion -scalar and pseudo-
scalar currents form factors were also found in the leading
order of the determinant expansion in expressions (18),
(15) and also (19) and (22). Several of them have a reduced
strength with respect to the usual scalar and pseudoscalar
form factors by a constant coefficient of the order of 1=M�.
By means of an integration by parts these terms might
contribute for the vector and axial channels. All the (eleven)
resulting form factors, pseudoscalar, scalar, vector and
axial, were found to be written in terms of only two
momentum-dependent functions F1ð0; QÞ and F2ð0; QÞ for
zero external constituent quark momentum, with different
coefficients. A truncated momentum dependence of the
quark kernel for F1ð0; QÞ was also considered such that the
resulting form factors, GW;tr

A ð0; QÞ and GU;tr
ps ð0; QÞ, were

shown to have a decreasing monotonic behavior more
similar to the experimental results, corresponding rather to
the function F2ð0; QÞ. The truncated expressions might
in fact correspond to considering running momentum-
dependent effective sea quark mass from the gap equation.
Besides that, these truncated expressions yield positive
quadratic averaged radii. Different values for the sea quark
effective mass M� were considered and it mostly contrib-
utes for the overall normalization of the form factors. The
first momentum-dependent function presented was the
constituent quark effective mass correction M3ðQÞ. Its
momentum dependence is in excellent agreement with
estimations from SDE calculations, except for its overall
normalization that appeared to be very large due to absence

FIG. 12. The pseudoscalar averaged quadratic radius and two
gluon propagators,DI andDII , as functions of the effective quark
mass M�, with factors ha from the previous figures. The
numerical result for hr2ips has a sign minus and the results for
the gluon propagatorDI it is divided by 10 to fit in the scale of the
figure. The factors ha were chosen to be hI ¼ 3 and hII ¼ 1.
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of an UV cutoff. It is important to stress that the mech-
anisms that give rise to the gap effective massM� and to the
mass M3ðQÞ are different. However, the behavior of
constituent quark mass M3ðQÞ is nearly independent of
the scalar condensate contribution for the (constant) quark
effective massM�. At the level of the calculation presented,
the axial and vector form factors are equal to each other for
each of the pion field definitions. The same chiral relation
appeared for the scalar and pseudoscalar form factors for
the second pion definition. The axial and pseudoscalar form
factors were compared to fittings of available experimental
data for pion nucleon form factors by adjusting the values at
zero momenta. Results showed that the momentum depend-
ence of constituent quark coupling to pions is not very
different from the nucleon coupling to pions. The larger
difference between experimental (nucleon form factor)
values and the present form factors appear in the range
of 0.15 < Q < 1.4 GeV for M� ¼ 0.31 GeV. This might
signal the need for improved momentum structure of the
quark and gluon kernels but it might also signal need to
account for effects from nucleon structure. The pseudo-
scalar form factor has a larger strength than the axial one, in
agreement with expectations from phenomenology. This
conclusion remains valid if other components for the axial
form factor are included such as the coupling to light axial
mesons, as seen by comparing with results from Ref. [28]
in which vector/axial mesons couplings to constituent
quark had been investigated by means of the same method
employed in the present work. A systematic and more
general analysis will be presented elsewhere. The pseudo-
scalar form factor at the spacelike point Q2 ¼ −m2

π, closer
to current physical definitions of gπN , was obtained for
the complete (or truncated) expressions being smaller (or
larger) than the zero momentum Q2 ¼ 0 case. Different
momentum-dependent and -independent ratios between the
form factors were also presented. Some of them simply

show the resulting chiral symmetry relations, e.g., between
vector and axial ones, or between scalar and pseudoscalar
ones. The momentum dependence of the Goldberger-
Treiman relation (GTR) was also presented by considering
the pseudoscalar and axial form factors for timelike
momenta and a qualitative agreement with calculations
at the nucleon level as found. Finally the corresponding
results for the pseudoscalar and contribution to the axial
constituent quark averaged quadratic radii were obtained as
functions of a constant quark effective mass M� from the
gap equation. In particular, resulting values for the axial/
vector quadratic radii are somewhat smaller than estimations
of the constituent quark axial/vector radii from the coupling
to light axial/vector mesons obtained with the same method
[28]. The structureless pion limit might have had effect on
the estimations but this structureless limit had also been
considered for the vector/axial mesons. In general, the
pseudoscalar quadratic radius is larger than the axial radius
(from both couplings to pions and axial mesons) due to the
corresponding form factors normalizations. This becomes
clear by noting all the quadratic radii and form factors
depend on only two momentum-dependent functions. The
relevance of each of the constituent quark d.o.f. presented in
this work and [28] for nucleon structure and corresponding
form factors is to be investigated elsewhere.
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