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Relativistic effects are important in the rigorous study of heavy quarks. In this paper, we study the
relativistic corrections of semileptonic Bc decays to charmonium with the instantaneous Bethe-Salpeter
method. Within the Bethe-Salpeter framework, we use two methods to study the relativistic effects. One of
them is to expand the transition amplitude in powers of q⃗ which is the relative momentum between the
quark and antiquark, and the other is to expand the amplitude base on the wave functions. In the level of
decay width, the results show that, for the transition of Bc → ηc, the relativistic correction is about 22%; for
Bc → J=ψ , it is about 19%; the relativistic effects of 1P final states are about 14%–46% larger than those of
1S final states; for 2S final states, they are about 19%–28% larger than those of 1S final states; for 3S final
states, they are about 12%–13% larger than those of 2S final states; for 2P final states, they are about
10%–14% larger than those of 1P final states; for 3P final states, they are about 7%–12% larger than those
of 2P final states. We conclude that the relativistic corrections of the Bc decays to the orbitally or radially
excited charmonium (2S, 3S, 1P, 2P, 3P) are quite large.
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I. INTRODUCTION

When studying the properties of heavy-light mesons,
we always pay attention to the relativistic effect of a light
quark but ignore that of a heavy quark. However, the
careful investigation of the relativistic corrections to the
heavy quark is important, especially the charm quark. For
example, recently, the authors of Ref. [1] have calculated
the relativistic corrections to the form factors of the Bc
decays to S-wave charmonium by the nonrelativistic QCD
(NRQCD) approach, with the heavy quark relative velo-
cities v⃗2J=ψ ¼ 0.267 and v⃗2Bc

¼ 0.186. They pointed out that
the relativistic corrections can bring about additional 15%–
27% contributions. The authors of Ref. [2] have calculated
the Oðv2Þ corrections to twist-2 light cone distribution
amplitudes (LCDAs) of S-wave Bc mesons. They pointed
out that the relativistic corrections are sizable and compa-
rable with the next-to-leading order radiative corrections.

Another famous example, the leading order NRQCD
predictions [3,4] of the production eþ þ e− → J=ψ þ ηc
are at least 5 times smaller than the experimental mea-
surements [5,6]. Later, people found that the relativistic
corrections increase the results to 2 times as much as the
nonrelativistic predictions [7,8]. Therefore, the relativistic
effect of heavy quark are important and need to be studied
carefully.
The Bþ

c meson consists of a c quark and b̄ antiquark, and
carries two different flavors. It only decays via weak
interactions; thus the Bc meson has attracted a lot of
attentions both in theories and experiments [9]. Recently
the cross section of the Bc meson is expected to reach the
level of μb via the proton-nucleus and the nucleus-nucleus
collision modes at the Large Hadron Collider [10]. The
LHCb experiment can produce and reconstruct a large
number of the Bc meson events, and it provides a solid
platform to study the properties of the Bc meson precisely.
A great deal of work has been done on various Bc decays

under different approaches, such as the NRQCD approach
[1,11–13], the perturbative QCD approach (PQCD) [14–17],
the relativistic quark model (RQM) [18–21], light cone sum
rules (LCSR) [22], the nonrelativistic constituent quark
model (NCQM) [23] andQCD sum rules (QCDSR) [24–27].
In a previous study, according to the numerical wave

function which is the solution of the instantaneous Bethe-
Salpeter (BS) equation (also called Salpeter equation)
[28,29], we have qualitatively pointed out that the relativ-
istic correction of an excited state is larger than that of the
corresponding ground state. The relativistic correction can
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not be ignored, so a relativistic model is needed to deal with
the problems including excited states [30]. There are also
some investigations of the relativistic effects from the
“nontraditional” orbital angular momentum components
in the BS framework [31–35]. We could extend these works
to the double-heavy mesons, and our conclusions are
similar to them that such relativistic effects are important
and non-negligible. In this paper, we give a quantitative
study of this topic and choose the semileptonicBc decays to
charmonium by using the instantaneous BS method. This
method has a comparatively solid foundation because both
the BS equation and the Mandelstam formula [36] are
established on a relativistic quantum field theory. We have
solved the full Salpeter equations for different JPðCÞ states
[37–39] and deduced the transition amplitude formula by
performing the instantaneous approach to the Mandelstam
formula. In these processes, the corresponding quark and
antiquark are charm and bottom quarks which both are
heavy. The instantaneous approximation is reasonable, and
we can provide a relatively rigorous relativistic calculation.
The paper is organized as follows. In Sec. II, we give the

useful formulas for the Bc decays to charmonium. In
Sec. III, we give the relativistic wave function in the
instantaneous BS method. In Sec. IV, we give a method
to separate the relativistic corrections. In Sec. V, we give
another method to calculate the relativistic corrections. In
Sec. VI, we give the numerical results and discussions. We
summarize and conclude in Sec. VII, and put the wave
functions and Salpeter equation in the Appendix.

II. FORM FACTORS AND SEMILEPTONIC
DECAY WIDTH

For the Bþ
c → ðcc̄Þlþνl processes shown in Fig. 1, the

transition amplitude element reads

T ¼ GFffiffiffi
2

p Vcbūνlγ
μð1 − γ5Þvlhðcc̄ÞðPfÞjJμjBþ

c ðPÞi; ð2:1Þ

where ðcc̄Þ denotes charmonium, Vcb is the Cabibbo-
Kobayashi-Maskawa (CKM) matrix element, Jμ≡Vμ−Aμ

is the charged current responsible for the decays,P andPf are
the momenta of the initial Bþ

c and the final charmonium,
respectively.
Taking a ηc meson as an example, the hadronic transition

element can be written as the overlapping integral over
the initial and final relativistic BS wave functions within
Mandelstam formalism. We would not solve the full
BS equation, but the instantaneous one, namely, the full
Salpeter equation. We perform the instantaneous approxi-
mation to the transition element [40] and write it as

hηcjb̄γμð1 − γ5ÞcjBþ
c i

¼
Z

dq⃗
ð2πÞ3 Tr

�
φ̄þþ
Pf

ðq⃗0Þ P
M

φþþ
P ðq⃗Þγμð1 − γ5Þ

�
; ð2:2Þ

where φþþ
P denotes the positive energy component of the

instantaneous BS wave function of the initial state, φ̄þþ
Pf

≡
γ0φþþ

Pf
γ0 is the Dirac conjugate of the positive energy

component of the final state, m0
1 and m0

2 are the masses of
quark and antiquark in the final state, respectively, and

q⃗0 ¼ q⃗ − m0
1

m0
1
þm0

2

P⃗f is the relative momentum between them.

In this paper, we keep only the positive energy component
φþþ of the relativistic wave functions, because the con-
tributions from other components are much smaller than the
1% in transition of Bc → ðcc̄Þ [41].
For Bþ

c → Plþνl (here P denotes ηc or χc0), the
hadronic matrix element can be written as

hPjb̄γμð1 − γ5ÞcjBþ
c i

¼
Z

dq⃗
ð2πÞ3 Tr

�
φ̄þþ
Pf

ðq⃗0Þ P
M

φþþ
P ðq⃗Þγμð1 − γ5Þ

�

¼ SþðPþ PfÞμ þ S−ðP − PfÞμ; ð2:3Þ

where Sþ and S− are the form factors.
For Bþ

c → Vlþνl (here V denotes J=ψ , hc or χc1), the
hadronic matrix element can be written as

hVjb̄γμð1 − γ5ÞcjBþ
c i

¼
Z

dq⃗
ð2πÞ3 Tr

�
φ̄þþ
Pf

ðq⃗0Þ P
M

φþþ
P ðq⃗Þγμð1 − γ5Þ

�

¼ ðt1Pμ þ t2P
μ
fÞ
ϵ · P
M

þ t3ðM þMfÞϵμ

þ 2t4
M þMf

iεμνσδϵνPσPfδ; ð2:4Þ

where ϵν is the polarization vector of the final vector meson,
and t1, t2, t3 and t4 are the form factors.
The summation formulas for polarization of the final

vector meson used in this paper are

FIG. 1. Feynman diagram corresponding to the semileptonic
decays Bþ

c → ðcc̄Þlþνl.
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ϵðλÞμ ðPfÞPμ
f ¼ 0;

X
λ

ϵðλÞμ ðPfÞϵ†ðλÞν ðPfÞ ¼ −gμν þ
PfμPfν

M2
f

: ð2:5Þ

Finally, the semileptonic decay width can be expressed as

Γ ¼ 1

8Mð2πÞ3
Z jP⃗lj

El
djP⃗lj

Z jP⃗fj
Ef

djP⃗fj
X
λ

jTj2; ð2:6Þ

where P⃗l is the three-dimensional momentum of the final
lepton, and P⃗f is the three-dimensional momentum of the
final meson.

III. RELATIVISTIC WAVE FUNCTION

Usually, the nonrelativistic wave function for a pseudo-
scalar is written as [42]

ΨPðq⃗Þ ¼ ðPþMÞγ5fðq⃗Þ; ð3:1Þ

where M and P are the mass and momentum of the
meson, respectively, q⃗ is the relative momentum between
the quark and antiquark in the meson, and the radial wave
function fðq⃗Þ can be obtained numerically by solving the
Schrodinger equation.
But in ourmethod, we solve the full Salpeter equation. The

form of the wave function is relativistic and depends on the
JPðCÞ quantum number of the corresponding meson. For a
pseudoscalar, the relativistic wave function can be written as
the four items constructed by P, q⊥ and γ-matrices [43–47],

φ0−ðq⊥Þ ¼ M
�
P
M

f1ðq⊥Þ þ f2ðq⊥Þ þ
q⊥
M

f3ðq⊥Þ

þ Pq⊥
M2

f4ðq⊥Þ
�
γ5; ð3:2Þ

where q ¼ p1 − α1P ¼ α2P − p2 is the relative momentum
between quark (with momentum p1 and mass m1) and
antiquark (momentum p2 and mass m2), α1 ¼ m1

m1þm2
,

α2 ¼ m2

m1þm2
; q⊥ ¼ q − P·q

M2 P, in the rest frame of the meson,
q⊥ ¼ ð0; q⃗Þ.
All the items in the wave function Eq. (3.2) have the

quantum number of 0−. This wave function is a general
relativistic form for a pseudoscalar with the instantaneous
approximation. If we set the items with f3 and f4 to zero,
and set f1 ¼ f2, the relativistic wave function is reduced to
the Schrodinger wave function Eq. (3.1).
Taking into account the last two equations in Eq. (A.14),

obtain the relations

f3ðq⊥Þ ¼
Mðω2 − ω1Þ

ðm1ω2 þm2ω1Þ
f1;

f4ðq⊥Þ ¼ −
Mðω1 þ ω2Þ

ðm1ω2 þm2ω1Þ
f2; ð3:3Þ

where the quark energy ωi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i − q2⊥
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ q⃗2
p

(i ¼ 1, 2). The wave function corresponding to the positive
energy projection has the form

φþþ
0− ðq⊥Þ ¼

�
A1ðq⊥Þ þ

P
M

A2ðq⊥Þ þ
q⊥
M

A3ðq⊥Þ

þ Pq⊥
M2

A4ðq⊥Þ
�
γ5; ð3:4Þ

where

A1 ¼
M
2

�
ω1 þ ω2

m1 þm2

f1 þ f2

�
; A3 ¼ −

Mðω1 − ω2Þ
m1ω2 þm2ω1

A1;

A2 ¼
M
2

�
f1 þ

m1 þm2

ω1 þ ω2

f2

�
; A4 ¼ −

Mðm1 þm2Þ
m1ω2 þm2ω1

A1:

ð3:5Þ
The normalization condition reads

Z
dq⃗

ð2πÞ3 4f1f2M
2

�
m1 þm2

ω1 þ ω2

þ ω1 þ ω2

m1 þm2

þ 2q⃗2ðm1ω1 þm2ω2Þ
ðm2ω1 þm1ω2Þ2

�
¼ 2M: ð3:6Þ

By solving the full Salpeter equation, the numerical
values of wave functions f1, f2, f3 and f4 are obtained.
The positive energy component Eq. (3.4) is brought into
the Mandelstam formula Eq. (2.2). After the trace and
integral are finished, the form factors Sþ and S− can be
calculated numerically. Finally, the decay width of the
semileptonic decay Bþ

c → ηclþνl can be obtained within
the relativistic BS method. In this paper, besides the wave
function for 0− state, we also need the wave functions for
the states of 1−− (J=ψ), 1þ− (hc), 0þþ (χc0), 1þþ (χc1), etc.,
and we give them in the Appendix.

IV. METHOD I OF SEPARATING THE
RELATIVISTIC CORRECTIONS

In this part, how to obtain the relativistic corrections is
shown. The transition element is obtained by overlapping
integral over the Schrodinger wave functions of the initial
and final states in a nonrelativistic model. The main differ-
ence between the relativistic and nonrelativistic models
comes from the wave functions. If we set the items with
q⃗ (or q⊥) in Eq. (3.4) to zero and let f1 ¼ f2, the relativistic
wave function is reduced to the nonrelativistic one Eq. (3.1).
To see the relativistic corrections at each expansive order,

we expand the amplitude in powers of q⃗. There are some
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reasons: (i) the quantity q⃗, which represents the relative
momentum between the quark and the antiquark, is a kind
of measure of the relativistic effect of a meson; (ii) when jq⃗j
is small, the ratio jq⃗j=M or jq⃗j=mi (i ¼ 1, 2) is small and
can be dealt as the power to expand the amplitude; when jq⃗j
is large, its contribution will be suppressed by the wave
function fiðq⃗Þ, especially for the ground state (ηc and J=ψ );
(iii) it has been investigated in NRQCD effective theory
that the decay rates can be ordered in powers of the quark
relative velocity v [48]. The relative momentum q⃗ is related
to relative velocity v⃗ and also can be used to perform the
Taylor expansion of the amplitude, see Refs. [1,13].
In the transition amplitude, the wave function of the

final state is dependent on q⃗0. We use the relation q⃗0 ¼
q⃗ − m0

1

m0
1
þm0

2

P⃗f during a numerical calculation. But q⃗0 is

treated as an independent variable to maintain covariance
when we expand the amplitude. In other words, we perform
the Taylor expansion of the amplitude Eq. (2.2) (before
doing the integrate over q⃗) in powers of relative momentum
q⃗ and q⃗0, where q⃗ and q⃗0 are the relative momenta between
quark and antiquark in the initial meson and final meson,
respectively. The relativistic corrections to form factors
can be given at each expansive order. According to the
expansion in the transition amplitude, we can obtain the
expansion in the level of decay width straightforwardly. We
expand the amplitude (or form factors) to the third order of
q⃗, but expand the decay width to the sixth order of q⃗. This
difference results from the cross items in jTj2, similarly
as Eq. (5.4).
In some nonrelativistic methods, both the wave functions

and the amplitude are nonrelativistic. If we set the items
with q⃗ (or q⊥) in Eq. (3.4) to zero and set f1 ¼ f2 as
mentioned above and modify the normalization condition
Eq. (3.6) as

Z
dq⃗

ð2πÞ3 4f1f2M
2 × 2 ¼ 2M; ð4:1Þ

the nonrelativistic wave function can be obtained. Taking
them into the leading order expansion of the amplitude, we
can estimate the decay widths obtained by the nonrelativ-
istic (NR) methods.

V. METHOD II OF CALCULATING THE
RELATIVISTIC CORRECTIONS

Though the behavior of a wave function fiðq⃗Þ will
suppress the contribution of large jq⃗j, there is still the
problem of rapidity of convergence. This problem will be
shown by numerical results later. We would like to provide
another method to give the relativistic corrections.
The first two items in Eq. (3.2) are close to the non-

relativistic wave function Eq. (3.1) because of f1 ≃ f2
numerically. Based on that, we can treat them as the leading
order and the last two items as the relativistic corrections.
Similarly, the positive energy wave function Eq. (3.4) can
be decomposed into two components,

φþþ
0− ðq⊥Þ ¼ φþþ

0 ðq⊥Þ þ φþþ
1 ðq⊥Þ; ð5:1Þ

where φþþ
0 ðq⊥Þ ¼ ½A1ðq⊥Þ þ P

M A2ðq⊥Þ�γ5 is treated as the

nonrelativistic (NR) wave function, and φþþ
1 ðq⊥Þ ¼

½q⊥M A3ðq⊥Þ þ Pq⊥
M2 A4ðq⊥Þ�γ5 is treated as the relativistic

corrections (RC) of the wave function.
If we use the approximate formula ωi ¼ mi þ q⃗2=2mi

(i ¼ 1, 2) (which is valid in small jq⃗j, but the contribution
from large jq⃗j will be suppressed by the wave functions fi)

and set f1 ¼ f2, then φþþ
0 ðq⊥Þ ¼ Mf1½ð1þ q⃗2

4m1m2
Þ þ

P
M ð1 − q⃗2

4m1m2
Þ�γ5. The difference between φþþ

0 and the NR
wave function Eq. (3.1) is left to the second order of q⃗.
Therefore φþþ

0 is approximated equivalent to the NR wave
function. For other states, we can reach the same conclusions.
The hadronic transition element can be decomposed into

three components,

hηcjb̄γμð1 − γ5ÞcjBþ
c i ¼

Z
dq⃗

ð2πÞ3 Tr
�
φ̄þþ
Pf

ðq⃗0Þ P
M

φþþ
P ðq⃗Þγμð1 − γ5Þ

�

¼
Z

dq⃗
ð2πÞ3 Tr

�
ðφ̄0þþ

0 þ φ̄0þþ
1 Þ P

M
ðφþþ

0 þ φþþ
1 Þγμð1 − γ5Þ

�

¼
Z

dq⃗
ð2πÞ3 Tr

�
ðφ̄0þþ

0 Þ P
M

ðφþþ
0 Þγμð1 − γ5Þ

�
þ ⇔ the leading order ðLOÞ

þ
Z

dq⃗
ð2πÞ3 Tr

�
ðφ̄0þþ

1 Þ P
M

ðφþþ
0 Þγμð1 − γ5Þ þ ðφ̄0þþ

0 Þ P
M

ðφþþ
1 Þγμð1 − γ5Þ

�

þ ⇔ the first order of relativistic correctionð1stRCÞ

þ
Z

dq⃗
ð2πÞ3 Tr

�
ðφ̄0þþ

1 Þ P
M

ðφþþ
1 Þγμð1 − γ5Þ

�

⇔ the second order of relativistic correctionð2ndRCÞ: ð5:2Þ
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In the transition amplitude T, the leptonic component
ūνlγ

μð1 − γ5Þvl is independent of the relative momentum
q⃗. The transition amplitude T can also be decomposed into
three components,

T ¼ T0 þ T1 þ T2; ð5:3Þ

where T0 denotes the leading order (LO), T1 denotes the
first order relativistic correction (1st RC), and T2 denotes
the second order relativistic correction (2nd RC). However,
the decay width is related to the square of transition
amplitude module, as shown in Eq. (2.6). The square of
transition amplitude module can be decomposed into five
components,

jTj2 ¼ ðT0 þ T1 þ T2ÞðT�
0 þ T�

1 þ T�
2Þ

¼ jT0j2þ ⇔ LO

þ T0T�
1 þ T�

0T1þ ⇔ 1stRC

þ jT1j2 þ ðT0T�
2 þ T�

0T2Þþ ⇔ 2ndRC

þ T1T�
2 þ T�

1T2þ ⇔ 3rdRC

þ jT2j2 ⇔ 4thRC: ð5:4Þ

Taking an component into the phase-space integral
Eq. (2.6), we can calculate the corresponding order of
the decay width. In summary, we separate the positive
energy wave function of the initial and final meson into two
components, the NR wave function and the RC one. Then
we compute each expansive orders of transition amplitude
(or form factors), and finally we use them to obtain each
expansive orders of decay width.

VI. RESULTS AND DISCUSSIONS

The parameters used in this paper are ΓBc
¼ 1.298×

10−12 GeV, GF ¼ 1.166 × 10−5 GeV−2, mb ¼ 4.96 GeV,
mc¼1.62GeV, Vcb¼40.5×10−3, Mhcð2PÞ ¼ 3.887 GeV,
Mχc0ð2PÞ ¼ 3.862 GeV, Mχc1ð2PÞ ¼ 3.872 GeV, Mηcð3SÞ ¼
3.949 GeV, Mψð3SÞ ¼ 4.039 GeV, Mhcð3PÞ ¼ 4.242 GeV,
Mχc0ð3PÞ ¼ 4.140 GeV, Mχc1ð3PÞ ¼ 4.229 GeV.
By solving the corresponding full Salpeter equations,

we obtain the numerical results of a wave function for
different JPðCÞ states and show them in Figs. 2–4. In some
nonrelativistic approaches, there is only one wave function.
According to our results, the dominate two wave functions
are almost equivalent, for example, f1 ≃ f2 for 0− state,
g5 ≃ −g6 for 1− state, and ϕ1 ≃ ϕ2 for 0þ state, etc.
Therefore these nonrelativistic approaches are reasonable
in some cases.
With these relativistic wave functions, the form

factors and the corresponding relativistic corrections
are obtained. With the nonrelativistic wave functions

[see Eq. (4.1)] and the leading order amplitude, the
results obtained by those NR approaches are estimated.
For each process in method I, we only show one of the
form factors which makes the main contribution to the
decay width. The corresponding results of the Bc decays
to 1S-wave and 1P-wave charmonium are shown in
Fig. 5, where the green solid lines are the results of
relativistic BS method (BSE) without expansion, the red
solid lines are the leading order (nonrelativistic) con-
tributions to the form factors, dash lines are the first
order relativistic corrections (q2), dot-dash lines are the
second order relativistic corrections (q3), and dot lines
are the third order relativistic corrections (q3);
t≡ ðP − PfÞ2, and tm is the maximum of t. The LO
contributions in form factors are dominant. The first
relativistic corrections for the 1S final state cases are
negligible. In the cases of 1P final states, the first
relativistic corrections provide sizable contributions,
especially for χc0 and χc1. The ratio of the first
relativistic corrections to LO in Bc → hc is around
15%. But for χc0 or χc1 final states, this ratio can reach
up to 80%. Other higher order corrections are less than
10% as much as the leading order and are negligible.
Therefore we conclude that the relativistic corrections in
the Bc decays to P-wave charmonium have large
contributions, even though both the initial state and
final state are the double heavy mesons.
The form factors of the Bc decays to radially excited

charmonium are plotted in Figs. 6 and 7. The first
relativistic corrections are comparable to the leading
order for the Bc decays to 2S or 3S charmonium. The
first relativistic corrections are larger than the leading
order for the Bc decays to 2P or 3P charmonium. The
second order contribution and the third one may also
appear reversal. We conclude that compared with the
ground states, the relativistic corrections of the Bc
decays to corresponding excited charmonium are much
larger.
Then we calculate the decay widths of the semi-

leptonic decay Bþ
c → ðcc̄Þ þ eþ þ ν̄e. To see the relativ-

istic effects, we give each order expansion of the decay
fractions and their sums in two methods. The results from
method I are shown in Table I, and the results from
method II are shown in Table II. In method I, the
amplitude is expanded in powers of q⃗ before the integral,
and q⃗ relates directly to the relative velocity v⃗ between
quark and antiquark in the meson, q⃗ ¼ m1m2

m1þm2
v⃗. The

average relative velocity is not very large in a double-
heavy meson, so one can make such a kind of expansion.
jq⃗j is actually not a fixed quantity, whose range is from
zero to infinity. We argue when jq⃗j is large, the con-
tribution is suppressed by the values of wave functions.
But from the diagrams of wave functions in Figs. 2–4,
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these arguments may be not very good especially for
highly excited states. It may lead to the problem of
convergence. For 1S wave (ηc and J=ψ) as the final
states, the leading order (q⃗0) makes dominant

contribution. For the channels 2S or 3S as the final
states, the leading order makes the largest contribution.
Meanwhile, the first and second order relativistic correc-
tions, q⃗1 and q⃗2 items, provide comparable contributions
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FIG. 2. The wave functions for the ground state mesons.
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to the leading order. For some of P wave final states, the
leading order (q⃗2) which is nonrelativistic contributions,
may be not dominant. Instead, the first order relativistic
corrections make the dominant contributions. For both

the orbitally excited states and the radially ones as the
final states, the relativistic effects are huge.
In Table III, the comparisons of the branch ratios

obtained by different ways are given, where sum column
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FIG. 3. The wave functions for the radially excited state mesons.
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means the sum of all of expansion orders; BS column
means the results by the BS method without expansion;
NR means the result by the nonrelativistic wave function
and the leading order expansion of the amplitude. For the

Bc decays to the 1S charmonium, the nonrelativistic results
(NR) are very close to those by the BS method. But for the
orbitally or radially excited charmonium as the final state,
the NR results are closer to the leading orders (q⃗0) rather

(a)

(c) (d)

(e)

(b)
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FIG. 4. The wave functions for the radially excited state mesons.
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than the BS results. Therefore, we conclude that the
nonrelativistic approach may be a good approximation
for the ground heavy meson, but it is unreasonable for the
excited state. The sum of all of expansion orders are not

exactly equal to the BS results, which means the con-
vergence rate is not fast enough. In the last column, we
show the differences between them and conclude that high
order q⃗n (n > 6) contributions are still important for the

(a) (b)

(c) (d)

(e)

FIG. 5. Form factors of the Bc decays to 1S and 1P charmonium.
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radially excited states. We provide a supplementary method
II to see the relativistic effects. The details are given in
Sec. V, and numerical results are shown in Table II. The
main difference between the two methods is the treatment

of q⃗2 in ω1 and ω2. The amplitude is expanded in powers of
jq⃗j=mi or jq⃗j=M in method I, which suffers from the
problem of convergence. In the method II, the relativistic
correction is based on the wave functions. It has no problem

(a)

(c) (d)

(e)

(b)

FIG. 6. Form factors of the Bc decays to 2S and 2P charmonium.
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with convergence but suffers from the overlapping
problem.
For the highly excited charmonium as final states, the

first order relativistic corrections may be larger than the

leading order. This special behavior can be understood. In
the transition of Bc → χc0, for example, the ratio of the
first order expansion over LO, T1=T0 ≈ 80% (Fig. 5) in the
level of form factor. As a rough estimate, see Eq. (5.4),

(a)

(c)

(e)

(d)

(b)

FIG. 7. Form factors of the Bc decays to 3S and 3P charmonium.
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ðT0T�
1 þ T�

0T1Þ=T2
0 ≈ 160% at most, so the large contri-

bution of the first order expansion is reasonable. For the
process of Bc → χc1, the ratio of the first order expansion
form factor over the LO form factor is as high as 80%.
However, the first order expansion of decay width is much
smaller than LO decay width. It means there is cancella-
tion when calculating T0T�

1 þ T�
0T1. Therefore it is not

enough to just provide the relativistic corrections of form
factors. To investigate the relativistic effects of the decay
processes, the relativistic corrections should be given not
only in the level of form factors, but also in the level of
decay widths.
To see the whole relativistic effects in the level of

decay widths, we define the ratios BS−LO
BS as the relativistic

TABLE I. The branch ratios of Bþ
c → ðcc̄Þ þ eþ þ νe in method I according to the power q⃗n (in 10−4).

Mode q⃗0 q⃗1 q⃗2 q⃗3 q⃗4 q⃗5 q⃗6

ηc 47.4 11.0 4.10 −3.49 −0.390 −0.135 0.0811
J=ψ 157 20.2 18.8 0.517 0.150 −0.00270 0.0203
ηcð2SÞ 3.66 2.29 1.43 −0.294 −0.122 −0.0951 0.0284
ψð2SÞ 6.88 1.87 2.74 0.362 0.185 0.0247 0.00849
ηcð3SÞ 0.408 0.339 0.293 −0.0100 −0.0133 −0.0287 0.00675
ψð3SÞ 0.652 0.241 0.510 0.108 0.0809 0.0138 0.00282

Mode q⃗2 q⃗3 q⃗4 q⃗5 q⃗6 q⃗7 q⃗8

hc 15.4 11.0 4.20 −0.420 −0.142 0.00354 0.0100
χc0 5.13 7.90 1.85 −1.12 −0.0765 0.0224 0.00224
χc1 7.82 1.50 2.30 0.218 −0.480 −0.0189 0.0278
hcð2PÞ 1.75 1.86 1.11 −0.0110 −0.0810 −0.0168 0.00575
χc0ð2PÞ 0.508 1.16 0.635 −0.0776 −0.0531 0.00158 0.00121
χc1ð2PÞ 0.666 0.104 0.444 0.0265 −0.157 −0.00197 0.0159
hcð3PÞ 0.173 0.249 0.207 0.0205 −0.0136 −0.00470 0.00103
χc0ð3PÞ 0.0731 0.220 0.170 −0.00436 −0.0183 −0.000377 0.000541
χc1ð3PÞ 0.0580 0.00784 0.0758 0.00580 −0.0379 −0.000542 0.00539

TABLE II. The branch ratios of Bþ
c → ðcc̄Þ þ eþ þ νe in

method II (in 10−4) according to Eq. (5.4).

Mode LO First Second Third Fourth Total(BS)

ηc 44.1 8.24 7.32 0.650 0.279 60.7
J=ψ 158 18.2 15.2 1.94 0.219 193
ηcð2SÞ 3.24 1.81 1.71 0.420 0.166 7.34
ψð2SÞ 6.96 1.66 2.00 0.353 0.108 11.1
ηcð3SÞ 0.355 0.272 0.311 0.101 0.0475 1.09
ψð3SÞ 0.651 0.201 0.365 0.0834 0.0388 1.34
hc 14.7 10.2 5.21 0.688 0.0822 30.9
χc0 5.20 7.88 2.03 −0.736 0.0453 14.4
χc1 7.75 1.35 2.31 0.307 0.0292 11.8
hcð2PÞ 1.61 1.67 1.27 0.288 0.0448 4.88
χc0ð2PÞ 0.523 1.16 0.664 0.0211 0.000490 2.37
χc1ð2PÞ 0.650 0.0804 0.406 0.0353 0.00421 1.18
hcð3PÞ 0.159 0.228 0.222 0.0614 0.0111 0.682
χc0ð3PÞ 0.0760 0.221 0.175 0.0208 0.000717 0.493
χc1ð3PÞ 0.0562 0.00589 0.0615 0.00427 0.000765 0.129

TABLE III. Comparisons of the branch ratios of Bþ
c → ðcc̄Þ þ

eþ þ νe obtained by different ways, where q⃗0 means the leading
order result, sum means the sum of all of expansion orders, BS
means the result by BS method without expansion, and NR
means the result by the nonrelativistic wave function and the
leading order expansion of the amplitude (in 10−4 except the last
column).

Mode q⃗0 Sum BS NR BS−sum
BS

ηc 47.4 58.6 60.7 56.7 3.4%
J=ψ 157 197 193 188 −1.8%
ηcð2SÞ 3.66 6.90 7.34 4.48 6.0%
ψð2SÞ 6.88 12.1 11.1 8.40 −8.8%
ηcð3SÞ 0.408 0.995 1.09 0.509 8.7%
ψð3SÞ 0.652 1.61 1.34 0.806 −20%

Mode q⃗2 Sum BS NR BS−sum
BS

hc 15.4 30.0 30.9 18.8 2.9%
χc0 5.13 13.7 14.4 6.28 4.8%
χc1 7.82 11.4 11.8 9.60 2.8%
hcð2PÞ 1.75 4.62 4.88 2.18 5.3%
χc0ð2PÞ 0.508 2.17 2.37 0.633 8.4%
χc1ð2PÞ 0.666 1.10 1.18 0.853 7.2%
hcð3PÞ 0.173 0.633 0.682 0.220 7.1%
χc0ð3PÞ 0.0731 0.440 0.493 0.0923 11%
χc1ð3PÞ 0.0580 0.114 0.129 0.0735 11%

TABLE IV. The relativistic effects of Bþ
c → ðcc̄Þeþνe: BS−LO

BS
from the two methods (in %).

Method ηc J=ψ ηcð2SÞ ψð2SÞ ηcð3SÞ ψð3SÞ
I 21.9 18.8 50.2 38.0 62.5 51.3
II 27.3 18.5 55.8 37.2 67.3 51.5
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effects and show them in Tables IV and V. Except for
the ηc case, the two methods give consistent results of
the relativistic effects. The method I suffers from the
problem of convergence of jq⃗j expansion, but it dose not
affect the leading order; the method II suffers from the
overlapping problem because ωi (i ¼ 1, 2) has no

expansion on jq⃗j. But in leading order, if we use the
approximate formula ωi ¼ mi þ q⃗2=2mi, the difference
between the two methods is left to the q⃗2 order.
Therefore both methods give accurate estimate of the
relativistic corrections. For the ground states, the rela-
tivistic effects are about 20%; for the excited states, we

TABLE VI. The branch ratios of Bþ
c → ðcc̄Þ þ τþ þ ντ in method I according to the power q⃗n (in 10−5).

Mode q⃗0 q⃗1 q⃗2 q⃗3 q⃗4 q⃗5 q⃗6

ηc 158 19.0 20.0 −5.16 0.109 −0.333 0.0832
J=ψ 405 33.7 48.4 1.20 0.842 0.00264 0.0264
ηcð2SÞ 2.01 0.870 1.35 0.0262 0.116 −0.0543 0.00792
ψð2SÞ 2.99 0.490 1.66 0.121 0.183 0.00833 0.00288
ηcð3SÞ 0.0430 0.0187 0.0534 0.00462 0.0120 −0.00245 0.000284
ψð3SÞ 0.0493 0.00698 0.0571 0.00450 0.0149 0.000764 0.000151

Mode q⃗2 q⃗3 q⃗4 q⃗5 q⃗6 q⃗7 q⃗8

hc 9.00 6.28 5.61 0.310 0.0620 0.00222 0.00155
χc0 4.12 7.74 5.65 −0.886 −0.0110 0.00549 0.000419
χc1 6.84 0.915 3.14 0.226 −0.522 −0.0139 0.0232
hcð2PÞ 0.141 0.163 0.292 0.0292 0.00428 −0.000102 0.000126
χc0ð2PÞ × 10−2 4.98 15.5 26.7 0.272 −0.397 −0.00241 0.00344
χc1ð2PÞ 0.114 0.0124 0.157 0.00599 −0.0520 −0.000127 0.00480
hcð3PÞ × 10−3 0.444 0.779 4.01 0.270 −0.000403 0.00639 0.00111
χc0ð3PÞ × 10−3 0.721 3.36 12.5 0.278 −0.406 −0.00608 0.00385
χc1ð3PÞ × 10−3 0.443 0.0467 2.36 0.0544 −1.22 −0.00180 0.165

TABLE VII. The decay fractions of the Bþ
c → ðcc̄Þ þ τþ þ ντ in method II according to Eq. (5.4) (in 10−5).

Mode LO First Second Third Fourth Total(BS)

ηc 152 14.6 24.5 1.18 0.953 193
J=ψ 406 30.5 40.9 3.57 0.507 481
ηcð2SÞ 1.89 0.712 1.33 0.234 0.199 4.36
ψð2SÞ 2.96 0.422 1.30 0.128 0.0991 4.91
ηcð3SÞ 0.0417 0.0159 0.0473 0.00865 0.0115 0.125
ψð3SÞ 0.0464 0.00548 0.0418 0.00351 0.00707 0.104
hc 8.85 6.16 5.99 0.523 0.0664 21.6
χc0 4.15 7.78 5.86 −0.657 0.0296 17.2
χc1 6.82 0.850 3.01 0.233 0.0177 10.9
hcð2PÞ 0.136 0.157 0.302 0.0374 0.00715 0.640
χc0ð2PÞ 0.0509 0.157 0.278 0.0125 0.000336 0.497
χc1ð2PÞ 0.112 0.0104 0.131 0.00457 0.000899 0.260
hcð3PÞ 0.000446 0.000779 0.00408 0.000274 0.0000527 0.00563
χc0ð3PÞ 0.000748 0.00343 0.0127 0.000568 0.0000205 0.0175
χc1ð3PÞ 0.000432 0.0000405 0.00169 0.0000267 0.00000797 0.00220

TABLE V. The relativistic effects of Bþ
c → ðcc̄Þeþνe: BS−LO

BS from the two methods (in %).

Method hc χc0 χc1 hcð2PÞ χc0ð2PÞ χc1ð2PÞ hcð3PÞ χc0ð3PÞ χc1ð3PÞ
I 50.2 64.4 33.7 64.1 78.5 43.3 74.6 85.2 54.9
II 52.5 63.9 34.0 67.0 77.9 44.7 76.7 84.6 56.3
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reach much larger relativistic effects. The smallest one is
χc1 case, which is 33%. The largest one is χc0ð3PÞ case,
which is 85%.
We also calculate the processes Bþ

c → ðcc̄Þτþντ, as
Tables VI–IX and X shown.

VII. CONCLUSION

In this paper, we choose the instantaneous BS method to
calculate the semileptonic Bc decays to charmonium,
whose final states include 1S, 2S, 3S, 1P, 2P and 3P.
We focus on the relativistic effects. Two methods are

provided to see the relativistic corrections. In the first
method, the amplitude is expanded in powers of q⃗ which is
the relative momentum between the quark and the anti-
quark. We find this widely used method suffers from the
problem of convergence though the quark and antiquark are
heavy, and the high order q⃗n items still have sizable
contributions. The other method is based on the relativistic
wave functions. In this method there is no problem of
convergence, while it suffers from the overlapping prob-
lem. Both methods give accurate and consistent leading
order (nonrelativistic) contributions. In another words, both
methods provide accurate relativistic corrections. We find
that for the semileptonic Bc decays, the relativistic effects
are about 20% when final states are 1S charmonium (ηc and
J=ψ ), but the relativistic effects are much higher for the
excited final states. First of all, the nP final state has larger
relativistic corrections than the corresponding nS state;
secondly, the ðnþ 1ÞS state has larger relativistic correc-
tions than the corresponding nS state; thirdly, the ðnþ 1ÞP
state has larger relativistic corrections than the correspond-
ing nP state. Therefore, we conclude that even though the
higher excited state has a higher mass, its relativistic effect
is larger. A relativistic method is needed to deal with a
problem including a excited state, though the correspond-
ing quark and antiquark are heavy.
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APPENDIX A: EQUATION AND SOLUTION
FOR HEAVY MESONS

BS equation for a quark-antiquark bound state generally
is written as [49]

ðp1 −m1ÞχPðqÞðp2 þm2Þ ¼ i
Z

d4k
ð2πÞ4 VðP; k; qÞχPðkÞ;

ðA1Þ

where p1, p2; m1, m2 are the momenta and masses of the
quark and antiquark, respectively, χPðqÞ is the BS wave
function with the total momentum P and relative momen-
tum q, VðP; k; qÞ is the kernel between the quark-antiquark
in the bound state. P and q are defined as

p⃗1 ¼ α1P⃗þ q⃗; α1 ¼
m1

m1 þm2

;

p⃗2 ¼ α2P⃗ − q⃗; α2 ¼
m2

m1 þm2

: ðA2Þ

The instantaneous kernel has the following form:

VðP; k; qÞ ∼ Vðjk − qjÞ; ðA3Þ

TABLE VIII. Comparisons of the branch ratios of Bþ
c →

ðcc̄Þ þ τþ þ ντ obtained by different ways, where q⃗0 means
the leading order result, sum means the summed values of
expanded items, BS means the result by BS method without
expansion, and NR means the result by the nonrelativistic wave
function and the leading order expansion of the amplitude (in
10−5 except the last column).

Mode q⃗0 Sum BS NR BS−sum
BS

ηc 158 191 193 189 1.0%
J=ψ 405 489 481 485 −1.6%
ηcð2SÞ 2.01 4.33 4.36 2.46 0.7%
ψð2SÞ 2.99 5.45 4.91 3.65 −11%
ηcð3SÞ 0.0430 0.130 0.125 0.0536 −4.0%
ψð3SÞ 0.0495 0.134 0.104 0.0609 −29%

Mode q⃗2 Sum BS NR BS−sum
BS

hc 9.00 21.3 21.6 11.0 1.4%
χc0 4.12 16.6 17.2 5.04 3.1%
χc1 6.86 10.6 10.9 8.39 2.9%
hcð2PÞ 0.141 0.628 0.640 0.175 1.9%
χc0ð2PÞ 0.0498 0.470 0.497 0.0621 5.3%
χc1ð2PÞ 0.114 0.241 0.260 0.153 7.0%
hcð3PÞ 0.000444 0.00551 0.00563 0.000562 2.1%
χc0ð3PÞ 0.000721 0.0164 0.0175 0.000911 6.1%
χc1ð3PÞ 0.000443 0.00185 0.00220 0.000562 16%

TABLE IX. The relativistic effects of Bþ
c → ðcc̄Þτþντ: BS−LO

BS
from the two methods (in %).

Method ηc J=ψ ηcð2SÞ ψð2SÞ ηcð3SÞ ψð3SÞ
I 18.4 15.8 53.8 39.1 65.6 52.6
II 21.3 15.7 56.7 39.7 66.6 55.3

TABLE X. The relativistic effects of Bþ
c → ðcc̄Þτþντ: BS−LO

BS
from the two methods (in %).

Method hc χc0 χc1

hc
ð2PÞ

χc0
ð2PÞ

χc1
ð2PÞ

hc
ð3PÞ

χc0
ð3PÞ

χc1
ð3PÞ

I 58.3 76.0 37.2 78.0 90.0 56.2 92.1 95.9 79.8
II 59.0 75.8 37.6 78.8 89.8 56.8 92.1 95.7 80.3
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especially when the two constituents of meson are
very heavy. The kernel we used contains a linear scalar
interaction for color-confinement, a vector interaction
for one-gluon exchange and a constant V0 which as a
“zero-point”, i.e.,

IðrÞ ¼ λrþ V0 − γ0 ⊗ γ0
4

3

αsðrÞ
r

; ðA4Þ

where λ is the “string constant”, αsðrÞ is the running
coupling constant. In order to avoid the infrared divergence,
a factor e−αr is introduced, i.e.,

VsðrÞ ¼
λ

α
ð1 − e−αrÞ;

VvðrÞ ¼ −
4

3

αsðrÞ
r

e−αr: ðA5Þ

In momentum space the kernel reads

Iðq⃗Þ ¼ Vsðq⃗Þ þ γ0 ⊗ γ0Vvðq⃗Þ; ðA6Þ

where

Vsðq⃗Þ ¼ −
�
λ

α
þ V0

�
δ3ðq⃗Þ þ λ

π2
1

ðq⃗2 þ α2Þ2 ;

Vvðq⃗Þ ¼ −
2

3π2
αsðq⃗Þ
q⃗2 þ α2

;

αsðq⃗Þ ¼
12π

27

1

lnðaþ q⃗2=Λ2
QCDÞ

: ðA7Þ

The fitted parameters are a ¼ e ¼ 2.7183, α ¼ 0.06 GeV,
λ ¼ 0.21 GeV2, ΛQCD ¼ 0.27 GeV; V0 is fixed by fitting
the mass of the ground state.
We divide the relative momentum q into two parts, qPjj

and qP⊥ , a parallel part and an orthogonal one to P,
respectively,

qμ ¼ qμPjj þ qμP⊥ ; ðA8Þ

where qμPjj ≡ ðP · q=M2ÞPμ, qμP⊥ ≡ qμ − qμPjj , and M is the

mass of the relevant meson. Correspondingly, we have two
Lorentz-invariant variables

qP ¼ P · q
M

; qPT
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2P − q2

q
¼

ffiffiffiffiffiffiffiffiffiffiffi
−q2P⊥

q
: ðA9Þ

If we introduce two notations as below

ηðqμP⊥Þ≡
Z

k2PT
dkPT

ds

ð2πÞ2 VðkP⊥ ; s; qP⊥Þφðkμp⊥Þ;

φðqμp⊥Þ≡ i
Z

dqP
2π

χPðqμPjj ; q
μ
P⊥Þ; ðA10Þ

then the BS equation can take the form as follows:

χPðqμPjj ; q
μ
P⊥Þ ¼ S1ðpμ

1ÞηðqμP⊥ÞS2ðp
μ
2Þ: ðA11Þ

The propagators of the relevant particles with masses m1

and m2 can be decomposed as

Siðpμ
i Þ ¼

Λþ
iP
ðqμP⊥Þ

JðiÞqP þ αiM − ωiP þ iε

þ Λ−
iP
ðqμP⊥Þ

JðiÞqP þ αiM þ ωiP − iε
; ðA12Þ

with

ωiP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ q2PT

q
;

Λ�
iP
ðqμP⊥Þ ¼

1

2ωiP

�
P
M

ωiP � JðiÞðqP⊥ þmiÞ
�
; ðA13Þ

where i ¼ 1, 2 for quark and antiquark, respectively,
and JðiÞ ¼ ð−1Þiþ1.
Then the instantaneous Bethe-Salpeter equation can be

decomposed into the coupled equations

ðM −ω1p −ω2pÞφþþðqP⊥Þ ¼ Λþ
1 ðP1p⊥ÞηðqP⊥ÞΛþ

2 ðP2p⊥Þ;
ðMþω1p þω2pÞφ−−ðqP⊥Þ ¼ −Λ−

1 ðP1p⊥ÞηðqP⊥ÞΛ−
2 ðP2p⊥Þ;

φþ−ðqP⊥Þ ¼ 0; φ−þðqP⊥Þ ¼ 0:

ðA14Þ

The instantaneous Bethe-Salpeter wave function for 1−

states mesons has the general form [44–47,50],

φ1−ðq⊥Þ

¼ ðq⊥ · ϵÞ
�
g1ðq⊥Þþ

P
M

g2ðq⊥Þþ
q⊥
M

g3ðq⊥Þþ
Pq⊥
M2

g4ðq⊥Þ
�

þM=ϵ

�
g5ðq⊥Þþ

P
M

g6ðq⊥Þþ
q⊥
M

g7ðq⊥Þþ
Pq⊥
M2

g8ðq⊥Þ
�
;

ðA15Þ

with

g1ðq⊥Þ ¼
q2⊥g3ðω1 þ ω2Þ þ 2M2g5ω2

Mðm1ω2 þm2ω1Þ
;

g2ðq⊥Þ ¼
q2⊥g4ðω1 þ ω2Þ þ 2M2g6ω2

Mðm1ω2 þm2ω1Þ
;

g7ðq⊥Þ ¼
Mðω1 − ω2Þ
m1ω2 þm2ω1

g5;

g8ðq⊥Þ ¼
Mðω1 þ ω2Þ
m1ω2 þm2ω1

g6: ðA16Þ
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The wave function corresponding to the positive projection has the form

φþþ
1− ðq⊥Þ ¼ ðq⊥ · ϵÞ

�
B1ðq⊥Þ þ

P
M

B2ðq⊥Þ þ
q⊥
M

B3ðq⊥Þ þ
Pq⊥
M2

B4ðq⊥Þ
�

þM=ϵ

�
B5ðq⊥Þ þ

P
M

B6ðq⊥Þ þ
q⊥
M

B7ðq⊥Þ þ
Pq⊥
M2

B8ðq⊥Þ
�
; ðA17Þ

where

B1 ¼
1

2Mðm1ω2 þm2ω1Þ
½ðω1 þ ω2Þq2⊥g3 þ ðm1 þm2Þq2⊥g4 þ 2M2ω2g5 − 2M2m2g6�;

B2 ¼
1

2Mðm1ω2 þm2ω1Þ
½ðm1 −m2Þq2⊥g3 þ ðω1 − ω2Þq2⊥g4 þ 2M2ω2g6 − 2M2m2g5�;

B3 ¼
1

2

�
g3 þ

m1 þm2

ω1 þ ω2

g4 −
2M2

m1ω2 þm2ω1

g6

�
;

B4 ¼
1

2

�
ω1 þ ω2

m1 þm2

g3 þ g4 −
2M2

m1ω2 þm2ω1

g5

�
;

B5 ¼
1

2

�
g5 −

ω1 þ ω2

m1 þm2

g6

�
; B6 ¼

1

2

�
−
m1 þm2

ω1 þ ω2

g5 þ g6

�
;

B7 ¼
M
2

ω1 − ω2

m1ω2 þm2ω1

�
g5 −

ω1 þ ω2

m1 þm2

g6

�
;

B8 ¼
M
2

m1 þm2

m1ω2 þm2ω1

�
−g5 þ

ω1 þ ω2

m1 þm2

g6

�
: ðA18Þ

If the masses of the quark and antiquark are equal, the normalization condition reads as

Z
dq⃗

ð2πÞ3
16ω1ω2

3

�
3g5g6

M2

2m1ω2

þ q⃗2

2m1ω2

�
g4g5 − g3

�
g4

q⃗2

M2
þ g6

���
¼ 2M: ðA19Þ

The instantaneous Bethe-Salpeter wave function for 1þ− states mesons has the form [39,44–47],

φ1þ−ðq⊥Þ ¼ ðq⊥ · ϵÞ
�
h1ðq⊥Þ þ

P
M

h2ðq⊥Þ þ
q⊥
M

h3ðq⊥Þ þ
Pq⊥
M2

h4ðq⊥Þ
�
γ5; ðA20Þ

with

h3ðq⊥Þ ¼ −
Mðω1 − ω2Þ
m1ω2 þm2ω1

h1;

h4ðq⊥Þ ¼ −
Mðω1 þ ω2Þ
m1ω2 þm2ω1

h2: ðA21Þ

The wave function corresponding to the positive projection has the form,

φþþ
1þ−ðq⊥Þ ¼ q⊥ · ϵ

�
C1ðq⊥Þ þ

P
M

C2ðq⊥Þ þ
q⊥
M

C3ðq⊥Þ þ
Pq⊥
M2

C4ðq⊥Þ
�
γ5; ðA22Þ

where
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C1 ¼
1

2

�
h1 þ

ω1 þ ω2

m1 þm2

h2

�
;

C2 ¼
1

2

�
m1 þm2

ω1 þ ω2

h1 þ h2

�
;

C3 ¼ −
Mðω1 − ω2Þ
m1ω2 þm2ω1

C1;

C4 ¼ −
Mðm1 þm2Þ
m1ω2 þm2ω1

C1: ðA23Þ

If the masses of the quark and antiquark are equal, the
normalization condition reads as

Z
dq⃗

ð2πÞ3
4h1h2ω1q⃗2

3m1

¼ M: ðA24Þ

The instantaneous Bethe-Salpeter wave function for 0þ
states mesons has the form [39,44–47],

φ0þðq⊥Þ ¼ M

�
q⊥
M

ϕ1ðq⊥Þ þ
Pq⊥
M2

ϕ2ðq⊥Þ

þ ϕ3ðq⊥Þ þ
P
M

ϕ4ðq⊥Þ
�
; ðA25Þ

with

ϕ3ðq⊥Þ ¼
q2⊥ðω1 þ ω2Þ

Mðm1ω2 þm2ω1Þ
ϕ1;

ϕ4ðq⊥Þ ¼
q2⊥ðω1 − ω2Þ

Mðm1ω2 þm2ω1Þ
ϕ2: ðA26Þ

The wave function corresponding to the positive projection
has the form

φþþ
0þ ðq⊥Þ ¼ D1ðq⊥Þ þ

P
M

D2ðq⊥Þ þ
=q⊥
M

D3ðq⊥Þ

þ P=q⊥
M2

D4ðq⊥Þ; ðA27Þ

where

D1 ¼
ðω1 þ ω2Þq2⊥

2ðm1ω2 þm2ω1Þ
�
ϕ1 þ

m1 þm2

ω1 þ ω2

ϕ2

�
;

D2 ¼
ðm1 −m2Þq2⊥

2ðm1ω2 þm2ω1Þ
�
ϕ1 þ

m1 þm2

ω1 þ ω2

ϕ2

�
;

D3 ¼
M
2

�
ϕ1 þ

m1 þm2

ω1 þ ω2

ϕ2

�
;

D4 ¼
M
2

�
ω1 þ ω2

m1 þm2

ϕ1 þ ϕ2

�
: ðA28Þ

If the masses of the quark and antiquark are equal, the
normalization condition reads as

Z
dq⃗

ð2πÞ3
4ϕ1ϕ2ω1q⃗2

m1

¼ M: ðA29Þ

The instantaneous Bethe-Salpeter wave function for 1þþ
states mesons has the form [39,44–47],

φ1þþðq⊥Þ ¼ iεμναβ
Pν

M
qα⊥ϵβγμ

�
ψ1ðq⊥Þ þ

P
M

ψ2ðq⊥Þ

þ q⊥
M

ψ3ðq⊥Þ þ
Pq⊥
M2

ψ4ðq⊥Þ
�
; ðA30Þ

with

ψ3ðq⊥Þ ¼ −
Mðω1 − ω2Þ
m1ω2 þm2ω1

ψ1;

ψ4ðq⊥Þ ¼ −
Mðω1 þ ω2Þ
m1ω2 þm2ω1

ψ2: ðA31Þ

The wave function corresponding to the positive projection
has the form,

φþþ
1þþðq⊥Þ ¼ iεμναβ

Pν

M
qα⊥ϵβγμ

�
F1ðq⊥Þ þ

P
M

F2ðq⊥Þ

þ q⊥
M

F3ðq⊥Þ þ
Pq⊥
M2

F4ðq⊥Þ
�
; ðA32Þ

where

F1 ¼
1

2

�
ψ1 þ

ω1 þ ω2

m1 þm2

ψ2

�
;

F2 ¼ −
1

2

�
m1 þm2

ω1 þ ω2

ψ1 þ ψ2

�
;

F3 ¼
Mðω1 − ω2Þ
m1ω2 þm2ω1

F1;

F4 ¼ −
Mðm1 þm2Þ
m1ω2 þm2ω1

F1: ðA33Þ

If the masses of the quark and antiquark are equal, the
normalization condition reads as

Z
dq⃗

ð2πÞ3
8ψ1ψ2ω1q⃗2

3m1

¼ M: ðA34Þ
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