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By treating the vacuum as a medium, H. Euler and W. Heisenberg estimated the nonlinear interactions
between photons well before the advent of quantum electrodynamics. In a modern language, their result is
often presented as the archetype of an effective field theory (EFT). In this work, we develop a similar EFT
for the gauge bosons of some generic gauge symmetry, valid for example for SUð2Þ, SUð3Þ, various grand
unified groups, or mixed Uð1Þ ⊗ SUðNÞ and SUðMÞ ⊗ SUðNÞ gauge groups. Using the diagrammatic
approach, we perform a detailed matching procedure which remains manifestly gauge invariant at all steps,
but does not rely on the equations of motion hence is valid off shell. We provide explicit analytic
expressions for the Wilson coefficients of the dimension four, six, and eight operators as induced by
massive scalar, fermion, and vector fields in generic representations of the gauge group. These expressions
rely on a careful analysis of the quartic Casimir invariants, for which we provide a review using conventions
adapted to Feynman diagram calculations. Finally, our computations show that at one loop, some operators
are redundant whatever the representation or spin of the particle being integrated out, reducing the apparent
complexity of the operator basis that can be constructed solely based on symmetry arguments.
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I. INTRODUCTION

In 1936, H. Euler and W. Heisenberg calculated the
nonlinear interactions among photons for a constant
Maxwell field, as induced by a spinor loop [1]. This has
been an important step in the development of QED, and their
result remains as the canonical example of an effective field
theory (EFT). That is, the idea that at energies below some
cutoff scaleΛ, all the effects of the degrees of freedommore
massive than Λ can be encoded as new interactions among
the fields remaining active below Λ. This concept is central
to modern phenomenology. The Fermi theory of the weak
interactions [2] and the chiral Lagrangian of pions [3] have
played an important role in the development of the Standard
Model [4,5]. Themethodology has since been used to define
many other frameworks to either simplify the problem at
hand, or to parametrize possible New Physics effects, for
example for neutrino [6], nuclear [7], flavor [8], electroweak
[9,10], and Higgs physics [11], or more globally for the
Standard Model (SMEFT) [12]. Few developments have

also been done regardingEFTs for darkmatter [13], inflation
[14] and cosmology [15].
The purpose of the present paper is to generalize the

Euler-Heisenberg (EH) result for photons to the gauge
bosons of an arbitrary gauge group, with their effective
interactions induced by loops of heavy fields in generic
representations and of spin 0, 1=2, or 1. Let us thus first
recall a few facts about the EH Lagrangian, and some of its
applications.
In QED, for energies below the electron mass me, the

photons can interact between themselves only indirectly via
virtual loops of electron-positron extracted from the vac-
uum. These interactions are suppressed by inverse powers
of the electron mass compared with the Maxwell term and
are thus very small. Integrating out the electron field in
the QED Lagrangian lead to a tower of new photon
interactions which should be Lorentz and gauge invariant,
and respect parity invariance. The first nontrivial photon
interaction corresponds to dimension-eight operators, the
Euler-Heisenberg Lagrangian, and reads

LEH ¼ −F þ 8

45

�
α2

m4
e

�
F 2 þ 14

45

�
α2

m4
e

�
G2; ð1Þ

with

F ¼ 1

4
FμνFμν ¼ 1

2
ðB2 −E2Þ;

G ¼ 1

8
ϵμνλρFμνFλρ ¼ E ·B; ð2Þ
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where B and E are the magnetic and electric fields, α ¼
e2=4π the fine structure constant, e the electron electric
charge, and ϵμνλρ the totally antisymmetric tensor. The first
term in Eq. (1), quadratic in the fields, is the classical
Lagrangian corresponding to Maxwell’s equations in vac-
uum. From it, one concludes that electromagnetic waves
propagating in the vacuum cannot interact with each other,
the superposition principle holds, and colliding light-by-
light will not give rise to any scattering. However, this does
not remain true once the corrections induced by the two last
terms in Eq. (1) are included. At the loop level, electro-
dynamics is nonlinear even in vacuum. In that sense,
observing e.g., the scattering of light by light would be
a tremendous confirmation of the quantum nature of QED.
Another consequence of the nonlinearities in Eq. (1) is

the so-called vacuum magnetic birefringence. Two photons
interact with an external field and this leads, in vacuum, to
magnetic birefringence, namely to different indices of
refraction for light polarized parallel and perpendicular
to an external magnetic field. This property of the vacuum
has never been observed, despite many dedicated searches.
For example, attempts were made to measure the change of
the polarization of a laser beam passing through an external
strong magnetic field [16–18]. The PVLAS [19] experi-
ment is another approach to detect the vacuum birefrin-
gence, by measuring the degree of polarization of visible
light from a magnetar, i.e., a neutron star whose magnetic
field is presumably very large (B ∼ 1013G). In that case,
there is also an interesting interplay with well-motivated
axionlike scenarios that could enhance the QED predictions
(see e.g., [20]).
When discussing the Euler-Heisenberg result, one

should also mention that the Born-Infeld (BI) electrody-
namics [21] contains similar nonlinear corrections to the
Maxwell theory, at least from a classical point of view. It
was motivated by the idea that there should be an upper
limit on the strength of the electromagnetic field.
Nevertheless, BI electrodynamics is peculiar, since BI-type
effective actions arise in many different contexts in super-
string theory [22]. In heavy-ion collisions, the ATLAS data
on light-by-light scattering can exclude the QED BI scale
∼100 GeV [23]. It has been subsequently shown in
Ref. [24] that the ATLAS data on gg → γγ scattering
enhances the sensitivity to ≲1 TeV for the analogous
dimension-8 operator scales (containing other combina-
tions of gluon and electromagnetic fields). Searches for γγ
production at possible future proton-proton colliders are an
example of how one should complement the searches via
dimension-6 SMEFT operators.
Returning to the purpose of this paper, generalizing EH

to non-Abelian gauge bosons present several challenges.
As a first step, all the effective interactions up to dimension-
eight can be constructed solely relying on gauge invariance.
The nonlinear nature of the field strength permits us to
construct many more operators than for QED. Operators

involving three field strengths arise already at the dimen-
sion-six level, and were constructed some time ago in
Ref. [12]. The most general basis of operators for QCD, up
to dimension eight and without imposing the gluon
equation of motion (EOM), was described in Ref. [25].
Remains the task of actually computing the coupling

constants of these operators, as induced by loops of heavy
particles. To our knowledge, this has never been done
before. To tackle this problem, there are two different
approaches. First, the heavy particle field can be genuinely
integrated out of the path integral. Several techniques are
available to perform this integration and obtain the effective
action at the one-loop level [26–32]. Though most power-
ful, the calculation has only been pushed up to the
coefficients of dimension-six operators [28,29]. Another
approach, which we will adopt in the present paper, is to
actually compute the loop amplitudes, expand them in
inverse power of the heavy particle mass, and match the
result with that computed using effective interactions.
Though most straightforward, several issues have to be
addressed. Since the EOM should not be imposed to
reproduce the generic effective action, loop amplitudes
have to be computed off shell. But then, gauge invariance is
not automatic since the amplitudes are not physical, and
special care is needed to ensure a proper matching onto
gauge invariant operators.
To illustrate our procedure and explain in details how to

deal with these aspects, we start in the next section by
rebuilding the well-known effective interactions of pho-
tons, as induced by loops of massive fermions, scalars, or
vector bosons. In particular, we point out that using a
nonlinear gauge is compulsory for the matching to succeed
for massive vector fields, in agreement with Ref. [33].
Then, we generalize this computation to gluonic effective
interactions in Sec. III, as induced by loops of massive
fermions, scalars, or vector bosons in the fundamental
representation of QCD. For the latter case, we use as
prototypes the leptoquarks of the SUð5Þ grand unified
theory (GUT), quantized using a nonlinear gauge condi-
tion. As this is not fully standard, that construction is
detailed in Appendix A.
Once the QCD case with heavy fields in the fundamental

representation is fully under control, it is a simple matter to
first generalize to arbitrary representations, and then to
generic gauge groups. This is done in Sec. IV, where we
discuss first the SUðNÞ case, then show how to recover the
previous results for Uð1Þ and SUð3Þ, and finally derive the
mixed operators and their coefficients for a nonsimple
gauge group like Uð1Þ ⊗ SUðNÞ or SUðNÞ ⊗ SUðMÞ.
The most striking result of that section is that some operator
combinations are never induced at one-loop, no matter the
spin or representation of the heavy particle. For QCD,
this means four instead of six operators are required to
describe the four-gluon interaction, while only two instead
of four operators are needed for the two gluon-two photon
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interaction. Throughout this section, the only technical
difficulty is related to quartic Casimir invariants, which
arise in the reduction of traces of four generators. From a
group theory perspective, these invariants have been
described in details before [34,35], but a more user-oriented
review seems to be lacking. Therefore, we collect in
Appendix B all the relevant information, as well as the
explicit values of the quartic invariant for simple Lie
algebras of interest for particle physics.

II. PHOTON EFFECTIVE INTERACTIONS

In the path integral formalism, the effective action is
obtained by integrating out someheavy fields [36]. In general,
this generates an infinite number of effective couplings
among the remaining light fields. Renormalizability ensures
that the effective couplings of dimension less than four can be
absorbed into the light-field Lagrangian free parameters,
while the other couplings are all finite and can be organized
as a series in powers of the inverse of the heavy mass [37].
To set the stage, consider the QED generating functional

ZQED½Jμ; η; η̄� ¼
Z

DAμDψDψ̄ exp i

×
Z

dxðLQED þ η̄ψ þ ψ̄ηþ JμAμÞ; ð3Þ

with

LQED ¼ −
1

4
FμνFμν þ ψ̄ði=D −mÞψ ; ð4Þ

and Dμ the usual covariant derivative. We omit the gauge
fixing term and its associated ghosts. At very low energy,
below m, only the photons are active. To construct the
effective theory valid in that limit, the fermion field is
integrated out. This can easily be carried out since the
fermionic path integral is gaussian when the sources η, η̄ are
set to zero:

ZQED½Jμ; 0; 0� ¼
Z

DAμ exp i
Z

dx

�
−
1

4
FμνFμν þ JμAμ

�

× detði=D −mÞ ð5Þ

≡
Z

DAμ exp i
Z

dxðLeff þ JμAμÞ: ð6Þ

Exponentiating the determinant, the QED effective
Lagrangian is then

Leff ¼ −
1

4
FμνFμν − iTr lnði=D −mÞ: ð7Þ

At this stage, several techniques are available to actually
compute detði=D −mÞ perturbatively, as an inverse mass
expansion.

Probably the most universal and powerful way is using
functional methods. Covariant calculation of the one-
loop effective action can be obtained by using a heat
kernel [38–40] to evaluate the effective action. This method
utilizes a position space representation and is significantly
more involved than the approach of Gaillard [26] and
Cheyette [27] who introduced a manifestly gauge-covariant
method of performing the calculation, using a covariant
derivative expansion (CDE). This elegant method simpli-
fies evaluating the quadratic term of the heavy fields in the
path integral to obtain the low-energy EFT, and was revived
recently in Ref. [28]. In particular, this work pointed out
that under the assumption of degenerate particle masses one
could evaluate the momentum dependence of the coeffi-
cients that factored out of the trace over the operator matrix
structure, without specifying the specific UV model. In
Ref. [29], it has been shown that this universality property
can be extended without any assumptions on the mass
spectrum, to obtain a universal result for the one-loop
effective action for up to dimension-six operators. There the
loop integrals have been computed for a general mass
spectrum once and for all. This universal one-loop effective
action [29–32,41] is a general expression that may then be
applied in any context where a one-loop path integral needs
to be computed, as for example in matching new physics
models to the Standard Model (SM) EFT. We should also
mention the usefulness of the string-inspired technique for
deriving effective actions [42–44].
However, in the present work, we wish to stick to the

more pedestrian diagrammatic approach with external
gauge fields, in which case one expands detði=D −mÞ as

Leff ¼ −
1

4
FμνFμν þ i

X∞
n¼1

en

n
Tr

�
1

i=∂ −m
=A

�
n
: ð8Þ

Graphically, this series is represented by the tower of one-
loop 1PI diagrams shown in Fig. 1. The main advantage of
expressing the effective action in terms of 1PI diagrams is
that well-tested automatic tools are available to actually
compute these loop amplitudes. In the present work, we
will rely on the Mathematica packages FEYNARTS [45],
FEYNCALC [46], and PACKAGE X [47] (as implemented
through FEYNHELPERS [48]).

FIG. 1. Fermionic one-loop 1PI amplitudes generating the QED
effective action up to dimension-eight operators. The six permu-
tations of the photons are understood for diagram (b).
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For QED, all the diagrams with an odd number of
photons vanish because they are odd under charge con-
jugation (Furry’s theorem [49]). Let us construct the
effective couplings up to order m−4. First, the inverse-mass
expansion of a charge-one fermion (of mass m and
quadrimomentum pμ) contribution to the photon vacuum
polarization is

Πμνðp2Þ¼ i
8e2

ð4πÞ2 ðg
μνp2−pμpνÞ

×

�
1

6
Dεþ

p2

30m2
þ p4

280m4
þOðp6=m6Þ

�
; ð9Þ

with Dε ¼ 2=ε − γ þ log 4πμ2=m2. The corresponding
effective interactions with two photons are

Lð0þ2Þ
eff ¼ −

1

4

�
1þ α

3π
Dε

�
FμνFμν þ α

60πm2
Fμν□Fμν

−
α

560πm4
Fμν□

2Fμν þOðm−6Þ: ð10Þ

With four photons, the amplitude matches onto the two
couplings

Lð4Þ
eff ¼

α2

90m4
ðFμνFμνÞ2 þ 7α2

360m4
ðFμνF̃μνÞ2 þOðm−6Þ;

ð11Þ

where the dual field strength is defined as F̃μν ¼ 1
2
εμνρσFρσ,

so that ðFμνF̃μνÞ2 ¼ 2ðFμνFμνÞ2 − 4FμνFνρFρσ Fσμ. The
divergent term is the usual photon wave function renorm-
alization, the first derivative term yields the Uehling
interaction [50], and the Euler-Heisenberg effective cou-
plings [1] are the nonderivative Oðm−4Þ terms.
Aword is in order concerning the derivative coupling. In

most operator bases [12], it is eliminated using the equation
of motion (EOM) as

Fμν□Fμν ¼ Fμν∂ρ∂ρFμν ¼ Fμν∂ρ∂μFρ
ν þ Fμν∂ρ∂νFμ

ρ

¼ −2∂μFμρ∂νFνρ ¼ −2jνjν; ð12Þ

where the Jacobi identity ∂μFρν − ∂ρFμν þ ∂νFμρ ¼ 0 has
been used in the first equality, followed by integration by
part, and finally the equation of motion ∂μFμν ¼ jν. This
makes sense physically, since the only impact of the
Uehling potential is on the interaction between currents,
at nonzero momentum transfer. Yet, in the QED effective
theory considered here, all the fermions have been inte-
grated out and ∂μFμν ¼ 0. This illustrate a generic feature
of the effective action formalism, where all of the effects of
the heavy fields are encoded into effective couplings among
light fields at the path integral (i.e., quantum) level. At no
stage are the light fields assumed on shell. So, some

effective interactions may actually never contribute to
physical processes, even though they are required to fully
encode the underlying dynamics of the heavy field.
At this stage, it should also be clear that the effective

couplings can be constructed a priori. Using only the
requirement of QED gauge invariance, the most general
basis is

Leff ¼ −
1

4

�
1þ α0

e2

4!π2

�
FμνFμν þ α2

e2

5!π2m2
∂μFμν∂ρFρν

þ α4
e2

6!π2m4
∂μFμν□∂ρFρν þ γ4;1

e4

6!π2m4
ðFμνFμνÞ2

þ γ4;2
e4

6!π2m4
ðFμνF̃μνÞ2 þOðm−6Þ: ð13Þ

The derivative operators are rewritten in a form that makes
the EOM manifest. This will prove useful when comparing
with the non-Abelian results in the next section, for which
this choice of operator basis is far more convenient. The
nomenclature adopted throughout the paper is to denote by
αi, βi, γi the two, three, four-field strength couplings of
inverse mass dimension i. Only the specific values of these
coefficients encode the information about the heavy field,
and we give in Table I the results for a scalar, fermion, and
vector boson. Note that the sole purpose of the rather
unconventional normalization of the coefficients in Eq. (13)
is to increase the readability of Table I. It is designed to
make the coefficients appear as simple Oð1Þ fractions for
the fermion case.
The calculation in the scalar case is very similar to that

for fermions and present no particular difficulty (see
Fig. 2). On the other hand, that for vectors circulating in
the loop is far less straightforward. Let us take the SM,
where the electroweak gauge bosons acquire their masses
through the Higgs mechanism. Working in the ’t Hooft-
Feynman gauge, the amplitude does not satisfy the
QED ward identities when the photons are off shell.
Consequently, the four-photon amplitude matches onto
the local Oðm−4Þ effective operators only when the four
photons are on shell [51], and the usual procedure to

TABLE I. Wilson coefficients of the effective photon operators
for a scalar, fermion, and vector boson of electric charge Q.
For the latter, the matching of 1PI amplitudes onto the Uð1Þ-
gauge-invariant operators of Eq. (13) is possible only when
using a nonlinear gauge for the massive vector bosons, and the
quoted values for α1;2;3 are specific to that gauge [κ ¼ 1 in
Eqs. (16) and (17)].

α0 α2 α4 γ4;1 γ4;2

Scalar 1
2
DεQ2 − 1

8
Q2 3

56
Q2 7

32
Q4 1

32
Q4

Fermion 2DεQ2 −Q2 9
14
Q2 1

2
Q4 7

8
Q4

Vector − 21Dεþ2
2

Q2 37
8
Q2 − 159

56
Q2 261

32
Q4 243

32
Q4
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construct the effective action breaks down. The problem
originates in the gauge-fixing procedure. In the usual Rξ

gauge, one adds the term

L
Rξ;linear
gauge−fixing ¼ −

1

ξ
j∂μWþ

μ þ ξMWϕ
þj2; ð14Þ

with ϕ� the would-be Goldstone (WBG) scalars associated
to W�, and this explicitly breaks Uð1ÞQED. Though the
photon vacuum polarization remains transverse and
matches onto the effective operators in Eq. (13), the off
shell four-photon amplitude is not gauge invariant and
requires more operators already at the Oðm−2Þ [52]. Of
course, physical processes have to be gauge invariant, so
this should have no consequence. But in practice, adding
nongauge invariant operators in the effective Lagrangian is
not very appealing. One could attempt to solve this problem
by working in the unitary gauge, for which theW couplings
to the photon derive from

LU−gauge ¼ −
1

2
ðDμWþ

ν −DνWþ
ν ÞðDμW−ν −DνW−μÞ

þ ieFμνWþ
μ W−

ν þM2
WW

þ
μ W−μ; ð15Þ

where DμW�
ν ¼ ∂μW�

ν ∓ ieAμW�
ν . The magnetic moment

term FμνWþ
μ W−

ν , gauge-invariant by itself, is fixed by the
underlying SUð2ÞL gauge symmetry. As shown in
Ref. [53], its presence ensures a proper high-energy
behavior for scattering amplitudes. However, this is not
sufficient to ensure a correct behavior off shell, and the
matching fails again [54].
A better way to proceed is to enforce a nonlinear gauge

condition where ∂μW�
μ → DμW�

μ ¼ ∂μW�
μ � ieAμW�

μ in
Eq. (14). This closely parallels the constraint one needs to
impose to construct the CDE [28]. In the diagrammatic
approach, as shown in Ref. [33], the four-photon amplitude
is then gauge invariant, even off shell. We checked this
explicitly using the dedicated FEYNARTS model file [55] for
the SM in the nonlinear gauge, and indeed found a
consistent off shell matching on the Euler-Heisenberg
operators. The result in that gauge for all the coefficients
is shown in Table I. It should be clear though that the first

three coefficients are gauge-dependent, and only γ4;1 and
γ4;2 are physical. To investigate this feature, let us set the
gauge fixing term as [56,57]

Lnonlinear
gauge−fixing ¼ −

1

ξ
j∂μWþ

μ þ iκeAμWþ
μ þ ξMWϕ

þj2; ð16Þ

which permits us to interpolate between the linear (κ ¼ 0)
and the Uð1Þ-gauge-invariant nonlinear (κ ¼ 1) gauge. The
inverse-mass expansion of the photon vacuum polarization
in the ’t Hooft-Feynman gauge (ξ ¼ 1) then gives κ-
dependent coefficients:

α0 ¼ −
12κ þ 9

2
Dε − 1; α2 ¼

20κ þ 17

8
;

α4 ¼ −
84κ þ 75

56
: ð17Þ

Of course, these gauge dependences are unphysical. At very
low energy, when the photon remains as the only active
degree of freedom, the first coefficient is absorbed into the
photon field as the wave function renormalization constant
while the other two do not contribute since ∂μFμν ¼ 0. If
some fields remain active such that ∂μFμν ¼ jν ≠ 0, then
other types of processes are also present. In that case, the α2
operator should be eliminated in favor of the dimension-six
jμjμ=m2 operator, for which other diagrams occur. In the
SM, even if the fields in the current jμ are not coupled
directly to the W�, they are necessarily coupled to the Z
boson. The κ dependence of theW� contributions to the Zγ
and ZZ vacuum polarization [58] must cancel that of α2, so
that the coefficient of the jμjμ=m2 operator ends up gauge-
invariant and physical. The conclusion is thus that in the SM,
it is not consistent to define the Uehling potential in terms of
the Fμν□Fμν operator, and one must use the effective four-
fermion operators instead. After all, this is rather natural
since the Uehling potential is only relevant when some
fermion fields remain active.

III. GLUON EFFECTIVE INTERACTIONS

The effective action for gluon fields is constructed in the
sameway as for photons, using the diagrammatic approach.
For example, integrating out a heavy fermion generates

FIG. 2. Scalar one-loop 1PI amplitudes generating the QED effective action up to dimension-eight operators. Permutations of the
photons are understood for diagrams (b). For massive vector bosons, the topologies are the same but one should also include the
appropriate would-be Goldstone and ghost diagrams.

EFFECTIVE ACTION FOR GAUGE BOSONS PHYS. REV. D 99, 013003 (2019)

013003-5



Leff ¼−
1

4
Ga

μνGa;μν− iTrlnði=D−mÞ

¼−
1

4
Ga

μνGa;μνþ i
X∞
n¼1

en

n
Tr

�
1

i=∂−m
=GaTa

�
n
; ð18Þ

where Ta are the SUð3Þ generators, and the trace carries
over both Dirac and color space. This generates the series
of 1PI diagrams shown in Fig. 3 where, contrary to QED,
the odd-number of gluon amplitudes do not vanish.
Another difference with respect to QED is the nonlinear
nature of the field strength, which blurs the relationship
between the leading inverse-mass power of a given
diagram and the number of external gluons. The most
striking consequence is that the three and four-gluon
diagrams are not finite. Actually, since these infinities
both correspond to the renormalization of the same
operator Ga

μνGa;μν, they must be coherent with that
obtained from the two-gluon vacuum polarization. Let
us see how this happens in more details.
As a first step in the calculation of the effective action, let

us construct the most general basis of operators up to
Oðm−4Þ. With two field strengths, the operators are simple
generalizations of those for QED:

Lð0þ2Þ
eff ¼ −

1

4

�
1þ α0

g2S
4!π2

�
Ga

μνGa;μν

þ α2
g2S

5!π2m2
DνGa

νμDρGa;ρμ

þ α4
g2S

6!π2m4
DνGa

νμD2DρGa;ρμ; ð19Þ

where Ga
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν and DρGa

μν ¼
ð∂ρδ

ac þ gfabcGb
ρÞGc

μν. To see that there can be only one
derivative operator per inverse-mass order [12], first remark
that all the derivatives can be move to act on one of the field
strength by partial integration. Then, only one ordering
of the covariant derivatives is relevant since commuting
them generates an additional field strength, ½Dρ; Dσ�Ga

μν ¼
gfabcGb

ρσGc
μν. Finally, combining this with the Bianchi

identity

D½μGa
ρσ� ¼ DμGa

ρσ þDρGa
σμ þDσGa

μρ ¼ 0; ð20Þ

these operators can be written as manifestly vanishing
under the EOM for the field strength, DμGa

μν ¼ 0.
Let us stress though that the EOM are not used at
any stage, since using them would render the matching
impossible.
With three-gluon field strengths, there is only one

operator at Oðm−2Þ but many at Oðm−4Þ. However, upon
partial integration, use of the Bianchi identity, and dis-
carding terms involving four or more field strengths, only
two inequivalent contractions remain [59]. Here again, we
choose them to be manifestly vanishing under the field
strength EOM:

Lð3Þ
eff ¼ β2

g3S
5!π2m2

fabcGa ν
μ Gb ρ

ν Gc μ
ρ ð21Þ

þ β4;1
g3S

6!π2m4
fabcGa;μνDαGb

μνDβGc
αβ

þ β4;2
g3S

6!π2m4
fabcGa;μνDαGb

αμDβGc
βν: ð22Þ

At the four-field strength level, the operators up to
Oðm−4Þ contain no covariant derivatives. To reach a
minimal number of operators, we use the generalization
of the QED identity:

Ga
μνG̃

b;μνGc
ρσG̃

d;ρσ ¼Ga
μνGc;μνGb

ρσGd;ρσþGa
μνGd;μνGb

ρσGc;ρσ

−4Ga
μνGc;νρGb

ρσGd;σμ; ð23Þ

and note that no contractions with the totally symmetric
tensor dabc occurs because those are reduced using (see
Appendix B)

3dabedcde¼ δacδbd−δabδcdþδadδbcþfacefbdeþfadefbce:

ð24Þ

Contractions with both f and d tensors vanish identically
owing to their mixed symmetry properties. This leaves six

Oðm−4Þ operators for Lð4Þ
eff :

FIG. 3. Fermionic one-loop 1PI amplitudes generating the gluonic effective action. Permutations of the gluons are understood for
diagrams (b) and (c). As for QED in Fig. 2, additional diagrams are understood for the scalar and vector case.
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Lð4Þ
eff ¼ γ4;1

g4S
6!π2m4

Ga
μνGa;μνGb

ρσGb;ρσ

þ γ4;2
g4S

6!π2m4
Ga

μνG̃
a;μνGb

ρσG̃
b;ρσ

þ γ4;3
g4S

6!π2m4
Ga

μνGb;μνGa
ρσGb;ρσ

þ γ4;4
g4S

6!π2m4
Ga

μνG̃
b;μνGa

ρσG̃
b;ρσ

þ γ4;5
g4S

6!π2m4
fabefcdeGa

μνGc;μνGb
ρσGd;ρσ

þ γ4;6
g4S

6!π2m4
fabefcdeGa

μνG̃
c;μνGb

ρσG̃
d;ρσ: ð25Þ

This basis corresponds to that in Ref. [25], but for a slightly
different numbering and replacement of dual tensors
via Eq. (23).
The non-Abelian nature of QCD makes the effective

action expansion quite different from the QED case. The
operators vanishing under the EOM have to be kept
because they contribute to several off shell 1PI diagrams.
For example, theDνGa

νμDρGa;ρμ operator occurs in the two,
three, and four-gluon off shell 1PI diagrams of Fig. 3
simply because of the non-Abelian terms present in the
gluon field strengths. On the other hand, for a physical
process involving external on shell gluons, these operators
should not contribute, and the basis could be simplified. Let
us check this in the simplest case, which is the gluon-gluon
scattering amplitude

Aðgðp1; ε
μ1
p1
Þgðp2; ε

μ2
p2
Þ → gðp3; ε

μ3
p3
Þgðp4; ε

μ4
p4
ÞÞ

¼ εμ1p1
εμ2p2

εμ3�p3
εμ4�p4

Mμ1μ2μ3μ4 : ð26Þ

Computing this amplitude using the effective Lagrangian
up toOðm−4Þ, the basic topologies to consider are shown in
Fig. 4. Besides the four point local terms, we must add the
nonlocal contributions from the three-gluon and two-gluon
operators, as well as the wave function corrected tree-level
term. We observe:

(i) The wave function correction is automatically
accounted for through a rescaling of the field
and coupling constant gS.

(ii) The Lð2Þ
eff operators contribute to all topologies, Lð3Þ

eff

operators to (b − d) topologies, and Lð4Þ
eff to the (d)

topology only.

(iii) For the EOM operators, these topologically distinct
contributions precisely cancel each other. These
operators thus play no role for physical processes.

(iv) Independently for each non-EOM operator Qi, the
sum of the contributions Mμ1μ2μ3μ4ðQiÞ satisfy the
four Ward identities pμk

k Mμ1μ2μ3μ4ðQiÞ ¼ 0, k ¼ 1,
2, 3, 4.

The fact that EOM operators drop out of the full physical
amplitude can be easily understood qualitatively. For exam-
ple, taking the dimension-six Lð2Þ

eff operator DνGa
νμDρGa;ρμ

and expanding the covariant derivatives, we get

DνGa
νμDρGa;ρμ ¼ ∂νGa

νμ∂ρGa;ρμ þ gfabcGb;νGc
νμ∂ρGa;ρμ

þ gfabc∂νGa
νμGb

ρGc;ρμ

þ g2fabcfadeGb;νGc
νμGd

ρGe;ρμ: ð27Þ

Replacing the field strength as Ga
μν → ∂μGa

ν − ∂νGa
μ, these

four terms are precisely those entering the four topologies
in Fig. 4.We can see that the cancellation occurs because the
gluon propagator poles are precisely compensated by the
momentum factors arising from the LO three-gluon vertex
and from the derivatives in the first three terms of Eq. (27). A
similar reasoning can be applied to the non-Abelian terms in
the field strengths, which cancel out similarly.
Let us now compute explicitly the coefficients of the

effective operators for a fermion, scalar, or vector in the
fundamental representation. Generically, the procedure is
as follows: Starting with the vacuum polarization graph
[Fig. 3(a)], we fix the α0;2;4 coefficients. Then, the three-
point 1PI loop amplitudes [Fig. 3(b)] generate again the

Lð2Þ
eff operators together with that of Lð3Þ

eff and thus fix β2,

β4;1, and β4;2. As a side effect, the basis chosen for Lð0þ2Þ
eff

thus affects the three Wilson coefficients of Lð3Þ
eff . Finally,

the four-point 1PI amplitudes [Fig. 3(c)] match over the

local four-gluon terms extracted from Lð0þ2þ3þ4Þ
eff , and

given the coefficients obtained in the first two steps, fix
the six γ4;i coefficients. The final results for the coefficients
are given in Table II. They agree with Ref. [28] for
dimension-six operators.
This procedure is rather straightforward for scalars

and fermions circulating in the loop, and only marginally
more complicated than in the QED case of Sec. II. We
checked our computation using the SM and minimal

FIG. 4. The four basic s-channel topologies for the gluon-gluon scattering amplitude. That for the t- and u-channel are understood.
The grey disks represent the insertion of the effective action vertices.
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supersymmetric Standard Model (MSSM) FEYNARTS mod-
els, using quarks or squarks as representative particles in
the fundamental representation. For vector particles, the
calculation is far more challenging. First, we must construct
a consistent model involving a massive vector field in the
fundamental representation of QCD. Second, we know
from the QED case that working in the unitary gauge does
not work, and even introducing an appropriate Higgs
mechanism to make these vectors massive is not sufficient.
Some generalization of the nonlinear gauge has to be
designed to preserve the QCD symmetry throughout the
quantization, otherwise the 1PI off shell amplitudes cannot
be matched onto gauge invariant operators. This is par-
ticularly annoying here since the three gluon 1PI ampli-
tudes kinematically vanish on shell.
To proceed, our strategy is to use the minimal SUð5Þ

GUT model, spontaneously broken by an adjoint Higgs
scalar down to the (unbroken) SM gauge group. Twelve of
the SUð5Þ gauge bosons become massive in the process,
and those fields have precisely the quantum numbers we
need. The weak doublet of leptoquarks ðX; YÞ transforms as
color antitriplets, so integrating them out generate the
effective gluonic operators. Note that we do not need the
second breaking stage down to SUð3ÞC ⊗ Uð1Þem. In
Appendix A, we describe in some details the minimal
SUð5Þ GUT model, along with its quantization using
nonlinear gauge fixing terms for the X and Y gauge bosons.
Denoting by Hk

X and Hk
Y the WBG scalars associated to Xk

μ

and Yk
μ, the main point is to modify the usual Rξ gauge

fixing terms

Lgf ¼ −
1

ξ
j∂μXkþ

μ − iξMXYH
kþ
X j2 − 1

ξ
j∂μYkþ

μ

− iξMXYH
kþ
Y j2 þ � � � : ð28Þ

by replacing the derivative by

∂μXiþ
μ → ∂μXiþ

μ − ig5

�
−αGX

jþ
ν Ta

jiG
a
μ þ

αW
2

W3
μXiþ

ν

þ αWffiffiffi
2

p Wþ
μ Yiþ

ν þ αB

ffiffiffiffiffi
5

12

r
BμXiþ

ν

�
; ð29Þ

∂μYiþ
ν → ∂μYi�

μ − ig5

�
−αGY

jþ
ν Ta

jiG
a
μ −

αW
2

W3
μYiþ

ν

þ αWffiffiffi
2

p W−
μXiþ

ν þ αB

ffiffiffiffiffi
5

12

r
BμYiþ

ν

�
; ð30Þ

where Tα are the SUð3Þ generators for the fundamental
representation, and i, j, k the corresponding indices. The
gauge parameters αG, αW , αB interpolate between the
’t Hooft-Feynman gauge αG ¼ αW ¼ αB ¼ 0 and the non-
linear gauge αG ¼ αW ¼ αB ¼ 1, when the above terms
coincidewithDμXiþ

μ andDμYiþ
μ . In that limit, the SM gauge

symmetries are preserved, exactly like theUð1Þem in the SM
in the nonlinear gauge. Technically, it should be remarked
also that this gauge has the nice feature of drastically
reducing the number of diagrams for a given process [57].
Indeed, remember that the purpose of the usualRξ gauge is to
get rid of themixing terms likeXk

μ∂μHk
X. But when thevector

is charged under some remaining unbroken symmetries, this
term is necessarily of the form Xk

μDμHk
X since it arises from

the Higgs scalar kinetic term which is invariant under the
unbroken symmetries. With the nonlinear gauge, all these
terms cancel out, leaving no X − VSM −HX couplings. As a
result, all the mixed loops where the massive vector occurs
alongside its WBG boson disappear, and given the large
number of diagrams, this is very welcome.
To actually perform the computation, we again use

FEYNARTS [45] but with a custom SUð5Þ model file.
The calculation then proceeds without particular difficulty,
and gives the coefficients quoted in Table II. Several
comments are in order:

(i) The matching works only for αG ¼ αW ¼ αB ¼ 1.
Without this condition, nongauge-invariant operators
are required. Note that out of a total of 207 irreducible
four-gluon diagrams, the gauge conditions αG ¼
αW ¼ αB ¼ 1 leaves only 21 gauge-boson loops,
21 WBG loops, and 42 ghost loops. The disappear-
ance of mixed loops therefore reduces the number of
diagrams by more than a factor of two.

(ii) Many of the properties discovered in Ref. [33] for
photons survive to the non-Abelian generalization:
the ghost and WBG contributions are separately
gauge invariant when αG ¼ αW ¼ αB ¼ 1. Actually,
matching separately the Hk

X contributions on the
effective operators reproduce the coefficients for the
scalar case in Table II, while matching the cX and
c†X ghost contributions gives −2 times the scalar

TABLE II. Wilson coefficients of the effective gluonic oper-
ators for a scalar, fermion, and vector boson in the fundamental
representation. This corresponds for example to the contributions
of squarks in the MSSM, or heavy quarks in the SM. For the
coefficients in the vector case, we use the leptoquark gauge fields
of the minimal SUð5Þ GUT model, quantized using a nonlinear
gauge fixing procedure (see Appendix A).

α0 α2 α4 β2 β4;1 β4;2

Scalar 1
4
Dε − 1

16
3

112
1
48

− 1
28

0

Fermion Dε − 1
2

9
28

− 1
24

1
14

− 3
4

Vector − 21Dεþ2
4

37
16

− 159
112

1
16

− 3
28

3

γ4;1 γ4;2 γ4;3 γ4;4 γ4;5 γ4;6

Scalar 7
768

1
768

7
384

1
384

1
96

1
672

Fermion 1
48

7
192

1
24

7
96

1
96

19
672

Vector 87
256

81
256

87
128

81
128

− 3
32

− 27
224
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coefficients of Table II. With the nonlinear gauge,
the ghosts behave exactly like scalar particles, but
for the fermi statistics.

(iii) As a check, we computed the full physical gluon-
gluon scattering amplitude keeping the gauge param-
eter αG arbitrary. On shell and when both 1PI and
non-1PI topologies are included, the only remaining
αG dependence can be absorbed into a wave function
correction. In other words, the inverse-mass expan-
sion of the full amplitudematches onto the non-EOM
operators, and except for α0, their coefficients are
gauge-independent and physical, as they should.

(iv) To further check our results, we computed the 1PI
diagrams with two, three, and four external SUð2ÞL
bosons. Since SUð2ÞL is kept unbroken, and since
ðX; YÞ form an SUð2ÞL doublet, we can use the same
operator basis as for gluons, up to obvious substitu-
tions, and found again the coefficients in Table II.

(v) Finally, we also computed the effective operators
involving two and four Uð1ÞY gauge bosons, and
recover the same results as in Table I for the W�
contribution in the nonlinear gauge to photon
effective operators.

To close this section, the same cautionary remark as for
the Uehling operator should be repeated here for EOM
gluonic operators. Those play no role for on shell gluon
processes, but do contribute when other fields like light
quarks remain active. However, in that case, it is compul-
sory to include also all the effective operators involving
quark fields. Though the EOM operators are gauge invariant
by construction, their coefficients are not gauge invariant by
themselves. For instance, the gauge chosen for the Xk

μ and
Yk
μ fields does affect their values [Eq. (17) remains valid for

the gluonic vacuum polarization]. In a phenomenological
study, it would thus make no sense to consider for example
the DνGa

νμDρGa;ρμ operator without including all the four-
quark operators. Taking again SUð5Þ, it is clear that Xk

μ and
Yk
μ loops would contribute to both DνGa

νμDρGa;ρμ and four-
quark operators, and only their combination would result in
a gauge-invariant physical result at the dimension-six level.
As an aside, it should be mentioned also that the gauge-
dependent coefficient of theDνGa

νμDρGa;ρμ operator quoted
in Table II agrees with that in Ref. [28]; the CDE
computation being done in the same nonlinear gauge.

IV. SUðNÞ EFFECTIVE INTERACTIONS

The computation done in the case of QCD can be
extended to arbitrary representations of other Lie groups.
For that, it suffices to replace the traces over the funda-
mental generators of SUð3Þ occurring for each of the 1PI
diagrams of the previous section by traces over generators
in some generic representationR. Our notations along with
various group-theoretic results are collected in Appendix B.
In this section, for definiteness, we refer to SUðNÞ gauge

group, but the results are trivially extended to other Lie
algebras.
Specifically, the vacuum polarization is tuned by

TrðTa
RT

b
RÞ ¼ I2ðRÞδab with I2ðRÞ the quadratic invariant,

so the αi coefficients are simply I2ðRÞ=I2ðFÞ ¼ 2I2ðRÞ
times those in Table II. Similarly, the three-boson diagrams
are proportional to

TrðTa
R½Tb

R; T
c
R�Þ ¼ iI2ðRÞfabc: ð31Þ

The fact that both the two and three-boson amplitudes are
proportional to the same I2ðRÞ coefficient ensures a proper
matching. In particular, the divergence of the three-boson

diagrams is correctly accounted for by the Lð2Þ
eff couplings.

The situation is more involved for the four-boson
amplitude. The 1PI loops in either the fermion, scalar, or
vector case are equivalent two-by-two under the reversing
of the loop momentum, so the total amplitudes can always
be brought to the form

Mabcd ¼ Cabcd
1 M1 þ Cabcd

2 M2 þ Cabcd
3 M3;8>><

>>:
Cabcd
1 ¼ TrðTa

RT
b
RT

d
RT

c
RÞ þ TrðTa

RT
c
RT

d
RT

b
RÞ;

Cabcd
2 ¼ TrðTa

RT
b
RT

c
RT

d
RÞ þ TrðTa

RT
d
RT

c
RT

b
RÞ;

Cabcd
3 ¼ TrðTa

RT
c
RT

b
RT

d
RÞ þ TrðTa

RT
d
RT

b
RT

c
RÞ:
ð32Þ

Expanding Mabcd in the mass of the heavy particle
circulating within the loop, only two independent combi-
nations of traces occur atOðm0Þ andOðm−2Þ, which can be
expressed entirely in terms of the quadratic invariants as

Dabcd
1 ¼ 2Cabcd

1 − Cabcd
2 − Cabcd

3

¼ I2ðRÞð2facefbde − fadefbceÞ; ð33aÞ

Dabcd
2 ¼ 2Cabcd

2 − Cabcd
1 − Cabcd

3

¼ I2ðRÞð2fadefbce − facefbdeÞ; ð33bÞ

Dabcd
3 ¼ 2Cabcd

3 −Cabcd
1 −Cabcd

2

¼ I2ðRÞð−fadefbce−facefbdeÞ¼−Dabcd
1 −Dabcd

2 ;

ð33cÞ

where we used ½Ta
R; T

b
R� ¼ ifabcTc

R together with Eq. (31)
and imposed the Jacobi identity fabefcde ¼ facefbde−
fadefbce. Thanks to this reduction, Mabcd matches the

four-boson amplitude obtained from the Lð2Þ
eff and Lð3Þ

eff
couplings at the Oðm0Þ and Oðm−2Þ.
At Oðm−4Þ, these same combinations Dabcd

1;2;3 induce the
operators tuned by γ4;5 and γ4;6, which involve the structure
constants. The rest is proportional to the fully symmetrized
trace
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Dabcd
0 ¼ Cabcd

1 þ Cabcd
2 þ Cabcd

3 ¼ 1

4
STrðTa

RT
b
RT

c
RT

d
RÞ:
ð34Þ

As detailed in Appendix B, for a general SUðNÞ algebra,
the fully symmetrized trace decomposes into quadratic and
quartic invariants. Plugging Eq. (B4) in Eq. (34),

Dabcd
0 ¼ 6I4ðRÞdabcdþ6ΛðRÞðδabδcdþδacδbdþδadδbcÞ;

ð35Þ

where dabcd is the fully symmetric fourth-order symbol
normalized such that I4ðFÞ ¼ 1 for the defining represen-
tation, and

ΛðRÞ ¼
�
NðAÞI2ðRÞ

NðRÞ −
I2ðAÞ
6

�
I2ðRÞ

2þ NðAÞ ; ð36Þ

where A denotes the adjoint representation and NðRÞ the
dimension of the representation R. The term proportional
to ΛðRÞ matches onto the operators tuned by γ4;1 to γ4;4,

while that proportional to dabcd requires to extend Lð4Þ
eff of

Eq. (25) with two extra operators. The total effective
Lagrangian is then:

Lð4Þ
eff ¼ γ4;1

g4S
6!π2m4

Ga
μνGa;μνGb

ρσGb;ρσ þ γ4;2
g4S

6!π2m4
Ga

μνG̃
a;μνGb

ρσG̃
b;ρσ þ γ4;3

g4S
6!π2m4

Ga
μνGb;μνGa

ρσGb;ρσ

þ γ4;4
g4S

6!π2m4
Ga

μνG̃
b;μνGa

ρσG̃
b;ρσ þ γ4;5

g4S
6!π2m4

fabefcdeGa
μνGc;μνGb

ρσGd;ρσ þ γ4;6
g4S

6!π2m4
fabefcdeGa

μνG̃
c;μνGb

ρσG̃
d;ρσ

þ γ4;7
g4S

6!π2m4
dabcdGa

μνGb;μνGc
ρσGd;ρσ þ γ4;8

g4S
6!π2m4

dabcdGa
μνG̃

b;μνGc
ρσG̃

d;ρσ: ð37Þ

The need of a total of eight operators for SUðNÞ and their
connection with the quartic tensor structure is in agreement
with Ref. [25]. Note, however, that the definition ofΛðRÞ is
a matter of convention, and it indirectly affects the definition
of all the operators but those tuned by γ4;3 and γ4;6. Yet,
adopting the convention in Eq. (36) for ΛðRÞ looks optimal
since it ensures I4ðRÞ ¼ 0 for all SUð2Þ and SUð3Þ
representations, as it should since these algebras have no
irreducible invariant tensor of rank four. As said before, all
these results stay valid for SOðNÞ algebras, but for a single
exception. As explained in Appendix B, SOð8Þ has the
unique feature of having two quartic symbols, and an
additional term occurs in Eq. (35). In that case, two extra
operators are required, tuned by the second quartic symbol
of Eq. (B9).
Now, even if a total of eight [or ten for SOð8Þ]

independent operators can be constructed in general,
our specific computations show that at one loop, most
of these operators derive from a single symmetrized
trace and are thus always correlated. In particular, no
matter the representation or spin of the particle in the
loop:

γ4;1 ¼
1

2
γ4;3; ð38aÞ

γ4;2 ¼
1

2
γ4;4: ð38bÞ

There are thus two operator combinations that never
occur in the one-loop effective action. From an effective
theory point of view, this should remain true in most
cases since it derives from the symmetry of the
amplitude. A necessary condition beyond one-loop is
the absence of diagrams where the color flow is
disconnected, that is, where a product of traces over
the generators occurs instead of a single trace. This
never happens if only one heavy state is integrated out,
but could arise in more general settings. For example, in
the SM, integrating out heavy quarks together with the
Higgs boson, the diagrams in Fig. 5 arise at two loops.
Since the CP-conserving effective Higgs coupling to
two gluons is of the form h0Ga

μνGa;μν, it is clear that the
Higgs boson exchange in Fig. 5(b) contribute to γ4;1 but
not to γ4;3.
The coefficients for a complex field (fermion, scalar,

vector particle) circulating in the loops are given in
Table III. Those for a self-conjugate particle are half of
those quoted there. Indeed, when the propagator is not
oriented, some Feynman diagrams get an extra symmetry
factor 1=2, while for others, the loop momentum cannot be

FIG. 5. Examples of two-loop diagrams in the SM that
preserves (a) or violate (b) the one-loop predictions Eq. (38)
among the gluonic operators. The particle circulating in the loops
are heavy quarks, and the dashed lines denote the Higgs boson.
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reversed and runs in only one direction. This latter situation
also brings a factor 1=2 because ðTa

RÞT ¼ −Ta
R for a real

representation. For example, instead of Eq. (31), the
triangle diagrams are now tuned by

TrðTa
RT

b
RT

c
RÞjself−conjugate ¼

1

2
TrðTa

R½Tb
R; T

c
R�Þ

¼ 1

2
iI2ðRÞfabc: ð39Þ

Similarly, the coefficients for the four-point amplitude
satisfy

Cabcd
1 jself−conjugate¼TrðTa

RT
b
RT

d
RT

c
RÞ

¼1

2
ðTrðTa

RT
c
RT

d
RT

b
RÞþTrðTa

RT
c
RT

d
RT

b
RÞÞ

¼1

2
Cabcd
1 : ð40Þ

We checked this property of the coefficients for two
physically relevant cases: the contribution to the gluon
coefficients of the SUð5Þ Higgs bosons Ha

G and of the

MSSM gluinos, both self-conjugate fields transforming in
the adjoint representation of SUð3ÞC.

A. Reduction to SUð3Þ and SUð2Þ
The general basis of effective operators reduces immedi-

ately to SUð3Þ by removing the quartic invariant operators,
i.e., by setting γ4;7 and γ4;8 to zero. For the fundamental

representation, ISUð3Þ
2 ðFÞ ¼ 1=2 and ΛSUð3ÞðFÞ ¼ 1=24,

and we recover the results of Table II. But, an interesting
feature appears for more general representations. A priori,
as the representation get larger, one would expect the
strength of the effective interactions to increase mechan-
ically due to the increased number of particles circulating in
the loop. However, we show in Fig. 6 that ΛðRÞ grows
much faster than NðRÞ. The fastest growth happens for
representations which are the symmetric tensor products of
the fundamental representations, for whichΛðRÞ ∼ NðRÞ3.
For instance, Λð3Þ ¼ 1=24 but Λð6 ¼ 3 ⊗S 3Þ ¼ 17=24,
Λð10¼3⊗S3⊗S3Þ¼99=24, and Λð15¼3⊗S3⊗S3⊗S3Þ¼
371=24. The adjoint representation is not on this series,
but the effective interactions are nevertheless stronger than

FIG. 6. Evolution of ΛðRÞ as a function of the dimension NðRÞ for SUð2Þ and SUð3Þ. In the former case, we denote the first few
representations by the corresponding isospin. In the SUð3Þ case, several branches are apparent, each starting with a real representation.
The horizontal dashed lines depict the Euler-Heisenberg value, identified as Λð1Þ ¼ 1=3 for a charge-one loop particle from Eq. (48).

TABLE III. Wilson coefficients of the effective operators for SUðNÞ or SOðN ≠ 8Þ gauge bosons, as induced by a set of complex
fields of spin 0, 1=2, and 1 transforming under the representation R. For real fields, all the coefficients should be halved.

α0 α2 α4 β2 β4;1 β4;2

Scalar 1
2
I2ðRÞDε − 1

8
I2ðRÞ 3

56
I2ðRÞ 1

24
I2ðRÞ − 1

14
I2ðRÞ 0

Fermion 2I2ðRÞDε −I2ðRÞ 9
14
I2ðRÞ − 1

12
I2ðRÞ 1

7
I2ðRÞ − 3

2
I2ðRÞ

Vector − 21Dεþ2
2

I2ðRÞ 37
8
I2ðRÞ − 159

56
I2ðRÞ 1

8
I2ðRÞ − 3

14
I2ðRÞ 6I2ðRÞ

γ4;1 ¼ γ4;3=2 γ4;2 ¼ γ4;4=2 γ4;5 γ4;6 γ4;7 γ4;8

Scalar 7
32
ΛðRÞ 1

32
ΛðRÞ 1

48
I2ðRÞ 1

336
I2ðRÞ 7

32
I4ðRÞ 1

32
I4ðRÞ

Fermion 1
2
ΛðRÞ 7

8
ΛðRÞ 1

48
I2ðRÞ 19

336
I2ðRÞ 1

2
I4ðRÞ 7

8
I4ðRÞ

Vector 261
32

ΛðRÞ 243
32

ΛðRÞ − 3
16
I2ðRÞ − 27

112
I2ðRÞ 261

32
I4ðRÞ 243

32
I4ðRÞ
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naively expected from the dimension since ΛSUð3Þð8Þ ¼
3=4 ¼ 18 × ΛSUð3Þð3Þ. Interestingly, this corresponds to
physically sensible scenarios, for example that of the
gluinos in the MSSM for which (including the 1=2 factor
for self-conjugate particles):

1

2
×

g4S
6!π2m4

g̃
γ4;1 ¼ −

1

2
×
1

2
18

g4S
6!π2m4

g̃
¼ αS

10m4
g̃
; ð41Þ

which is an order of magnitude larger than the coefficient of
the effective photon interactions of the Euler-Heisenberg
Lagrangian.
For SUð2Þ, the effective Lagrangian gets simpler thanks

to the identity

fabefcde → εabeεcde ¼ δacδbd − δadδbc; ð42Þ
which permits us to get rid of two operators. Expressing the
remaining four operators explicitly in terms of the SUð2Þ
triplet states denoted as fW−

μ ;W3
μ;Wþ

μ g:

Lð4Þ
eff;SUð2ÞL ¼ ðγ4;1 þ γ4;3Þg4

6!π2m4
ðW3

μνW3;μνÞ2 þ ðγ4;2 þ γ4;4Þg4
6!π2m4

ðW3
μνW̃3;μνÞ2 þ 4ðγ4;1 þ γ4;5Þg4

6!π2m4
W3

μνW3;μνWþ
ρσW−;ρσ

þ 4ðγ4;2 þ γ4;6Þg4
6!π2m4

W3
μνW̃3;μνWþ

ρσW̃−;ρσ þ 4ðγ4;3 − γ4;5Þg4
6!π2m4

jW3
μνWþ;μνj2 þ 4ðγ4;4 − γ4;6Þg4

6!π2m4
jW3

μνW̃þ;μνj2

þ 2ð2γ4;1 þ γ4;3 þ γ4;5Þg4
6!π2m4

ðWþ
μνW−;μνÞ2 þ 2ðγ4;4 − γ4;6Þg4

6!π2m4
jWþ

μνW̃þ;μνj2

þ 2ðγ4;3 − γ4;5Þg4
6!π2m4

jWþ
μνWþ;μνj2 þ 2ð2γ4;2 þ γ4;4 þ γ4;6Þg4

6!π2m4
ðWþ

μνW̃−;μνÞ2: ð43Þ

These operators and coefficients are obtained from the
effective action, and are independent of the invariant mass
of the external states. Thus, they remain valid for massive
external weak bosons, at least as long as m is sufficiently
large compared to MZ;W . An important caveat though, of
relevance for the SM, is the presence of chiral fermions.
Those cannot be massive without breaking the gauge
symmetry, so the inverse mass expansion is defined only
in the broken phase. Nongauge invariant operators can then
arise, at both the Oðm0Þ and Oðm−2Þ level.
Concerning the strength of the effective interactions,

here also ΛðRÞ grows much faster than NðRÞ. Actually,
as the SUð2Þ representations are smaller than those of
SUð3Þ, the increase is much more pronounced, with
ΛðRÞ ∼ NðRÞ5, see Fig. 6. So, while ΛðFÞ ¼ 1=24, it is
already an order of magnitude stronger for the adjoint
representation, Λð3Þ ¼ 2=3 ¼ 16 × Λð2Þ.
To close this section, it is instructive to look at the

application of the SUðNÞ result from a group-theoretic
perspective. Up to now, the SUð2Þ and SUð3Þ effective
Lagrangians are obtained simply by settingN ¼ 2 orN ¼ 3
in the general result. But, ifSUðNÞ is large enough to contain
an SUð2Þ or SUð3Þ subalgebra, we could also ask where
these pieces are in the general SUðNÞ Lagrangian. More
generally, consider the effective Lagrangian for a represen-
tation RM of SUðMÞ. These NðRMÞ states organize them-
selves into representations of SUðNÞ ⊂ SUðMÞ, that is,RM
branches into a direct sumofSUðNÞ representationsRN . So,
from theSUðNÞ perspective, theSUðMÞ coefficients encode
the circulation of a collection of states in the loop. Since
these contributions simply add up, the SUðMÞ coefficients
must be the sum over the SUðNÞ coefficients for all theRN

representations present in the representation RM. Going
back to Eq. (35), we must thus have

1

6
Dabcd

0 ¼I4ðRMÞdabcdM þΛNðRMÞðδabδcdþδacδbdþδadδbcÞ
¼

X
RN⊂RM

I4ðRNÞdabcdN

þ
X

RN⊂RM

ΛNðRNÞðδabδcdþδacδbdþδadδbcÞ; ð44Þ

where the indices a, b, c, d are understood to denote
those SUðMÞ generators that correspond to the SUðNÞ
subalgebra. The main difficulty though is that even restricted
to those particular generators, dabcdM ≠ dabcdN because the
definition of the quartic invariant involves different functions
ΛN and ΛM. To proceed, let us assume that the fundamental
representation has the branching rule FM → FN . Knowing
that by definition, I4ðFMÞ ¼ I4ðFNÞ ¼ 1, we find

I4ðRMÞ ¼
X

RN⊂RM

I4ðRNÞ; ð45aÞ

I4ðRMÞðΛNðFNÞ−ΛMðFMÞÞþΛMðRMÞ¼
X

RN⊂RM

ΛNðRNÞ:

ð45bÞ

Using the numbers quoted in Appendix B and the branching
rules in Ref. [60], one can check that the two formulas are
valid for SUð3Þ ⊂ SUð4Þ and SUð4Þ ⊂ SUð5Þ. The second
one also applies to SUð2Þ ⊂ SUð3Þ in which case it becomes
a sum rule for the Λ functions since I4ðRÞ ¼ 0 in SUð3Þ.
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From a calculation point of view, once the branching rules of
the SUðMÞ representations are known, these equations are
particularly powerful, with the second one even allowing to
compute I4ðRMÞ in terms of ΛN and ΛM, that is, entirely in
terms of the quadratic invariants I2ðRNÞ and I2ðRMÞ.
Thanks to the convention Eq. (36), the branching rule for

the I4 invariant is very simple [34], but there is a price to
pay. Some part of the γ4;7 and γ4;8 operators of SUðMÞ are
moved into the γ4;1 to γ4;4 operators of SUðN < MÞ. This is
due to the very definition of the operators in terms of
different quartic symbols, and not related to the loop
structure of the amplitude or the specific branching rules.
For example, if for some unification group a specific
mechanism is found that generates only γ4;7 and γ4;8, the
four operators tuned by γ4;1 to γ4;4 are in general present
once the symmetry is spontaneously broken simply because
the dabcd symbol is defined differently within the surviving
subalgebra.

B. Reduction to Uð1Þ
Comparing the SUðNÞ coefficients γ4;i in Table III with

the Euler-Heisenberg results in Table I, the two clearly
appear related. Heuristically, it is simple to understand
this relationship by adapting the decomposition Eq. (32)
to the Uð1Þ case. When only a single generator occurs,
C1 ¼ C2 ¼ C3 ¼ 2Q4. This ensures the cancellation of the
UV divergence, and more generally the absence of all the
operators tuned by the structure constants. The whole
amplitude is then proportional to

D0 ≡ C1 þ C2 þ C3 ¼ 6Q4: ð46Þ
Since the same factor of 6 occurs in the SUðNÞ result in
Eq. (35), it is clear that γEH4;1 and γEH4;2 can be obtained

equivalently from γSUðNÞ
4;1 , γSUðNÞ

4;2 with ΛðRÞ → Q4 or from

γSUðNÞ
4;7 , γSUðNÞ

4;8 with I4ðRÞ → Q4, in agreement with
Tables III and I. Obviously, this line of reasoning is a
naive identification of the coefficients of the loop functions,
not a group-theoretic reduction of SUðNÞ down to one of its
Uð1Þ subgroup.
To perform a true reduction, let us denote Ta one of the

diagonal generators of the Cartan algebra of SUðNÞ. This
generator induces a Uð1Þα ⊂ SUðNÞ for which the SUðNÞ
effective Lagrangian reduces to

Lð4Þ
eff ðUð1Þα ⊂ SUðNÞÞ

¼ ðγ4;1 þ γ4;3 þ dααααγ4;7Þ
g4S

6!π2m4
Gα

μνGα;μνGα
ρσGα;ρσ

þ ðγ4;2 þ γ4;4 þ dααααγ4;8Þ
g4S

6!π2m4
Gα

μνG̃
α;μνGα

ρσG̃
α;ρσ:

ð47Þ
The Euler-Heisenberg result must arise from a combination
of six of the eight SUðNÞ operators, including those

involving the quartic invariant. Looking back at their
values in Table III for a given representation R, this
reduction matches the results in Table I for scalar, fermion,
and vector provided a single condition is satisfied:

3ΛðRÞ þ dααααI4ðRÞ ¼
X
qα∈R

q4α: ð48Þ

The sum on the right-hand side is carried over all the states in
the representation R. To see that this condition holds in
general, it suffices to go back to the very definition of the
quartic invariant, Eq. (B4), which becomes for a single
generator:

1

4!
STrðTα

RT
α
RT

α
RT

α
RÞ¼TrððTα

RÞ4Þ¼ I4ðRÞdααααþ3ΛðRÞ:
ð49Þ

Since Tα
R is diagonal, the trace collapses to a sum over the

quartic power of its eigenvalues, i.e., over the quartic power of
the Uð1Þα charges of the states of the representation R. The
final step to match Table I is to rescale the generator Tα

R to
properly normalize theUð1Þα charge in units ofQ. Note that
this relation can be trivially generalized to other Casimir
invariants. In particular, for the dimension-four and six
operators, I2ðRÞ ¼ TrððTα

RÞ2Þ ¼
P

qα∈R q2α, showing that
the αi coefficients for SUðNÞ reduce to those for QED under
the naive substitution I2ðRÞ → Q2 in Table III.
Numerical applications to illustrate this formula are in

Appendix B. Note that for both SUð2Þ and SUð3Þ, there is
no quartic invariant and the Euler-Heisenberg coefficients
for a single unit charge state are formally obtained setting
Λð1Þ ¼ 1=3 in Eq. (48). This value is plotted in Fig. 6 for
comparison.

C. Reduction to factor groups

The general result also reduces to mixed interactions,
involving the gauge bosons of two different algebras.
Before investigating this reduction, let us directly compute
them using FEYNARTS models. For that, we consider the
photon-gluon interactions induced by quark, squark, or
SUð5Þ leptoquark loops in the nonlinear gauge (see Fig. 7).
It is then a simple matter to generalize the results obtained
for the fundamental SUð3ÞC representation to that for
generic SUðNÞ representations. The loops are finite and
the effective interactions start at the dimension-eight level,

FIG. 7. Quark loops generating the effective dimension-eight
photon-gluon interactions.
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Lð4Þ
eff ðUð1Þ ⊗ SUðNÞÞ ¼ α1

g21g
2
n

6!π2m4
FμνFμνGa

ρσGa;ρσ þ α2
g21g

2
n

6!π2m4
FμνF̃μνGa

ρσG̃
a;ρσ þ α3

g21g
2
n

6!π2m4
FμνGa;μνFρσGa;ρσ

þ α4
g21g

2
n

6!π2m4
FμνG̃

a;μνFρσG̃
a;ρσ þ β1

g1g3n
6!π2m4

dabcFμνGa;μνGb
ρσGc;ρσ

þ β2
g1g3n

6!π2m4
dabcFμνG̃

a;μνGb
ρσG̃

c;ρσ; ð50Þ

where g1 and gn denote the Uð1Þ and SUðNÞ coupling
constants, respectively. The numerical values of the Wilson
coefficients are in Table IV. They are invariant under charge
conjugation since QðR�Þ ¼ −QðRÞ, I2ðR�Þ ¼ þI2ðRÞ,
and I3ðR�Þ ¼ −I3ðRÞ, and they obviously vanish for a
real representation. Note in particular that the SUð5Þ

leptoquarks give βi < 0 since the electric charge of the
antitriplet is positive, Qð3̄Þ ¼ þ ffiffiffiffiffiffiffiffiffiffi

5=12
p

.
The first four interactions are immediately extended to

the case of two SUðNÞ and two SUðMÞ gauge bosons.
Specifically, the operators are then

Lð4Þ
eff ðSUðMÞ ⊗ SUðNÞÞ ¼ α1

g2mg2n
6!π2m4

Wi
μνWi;μνGa

ρσGa;ρσ þ α2
g2mg2n
6!π2m4

Wi
μνW̃i;μνGa

ρσG̃
a;ρσ

þ α3
g2mg2n
6!π2m4

Wi
μνGa;μνWi

ρσGa;ρσ þ α4
g2mg2n
6!π2m4

Wi
μνG̃

a;μνWi
ρσG̃

a;ρσ; ð51Þ

where gm and gn denote the SUðMÞ and SUðNÞ coupling
constants, respectively. Looking at Fig. 7(a), it is easy to
realize that the coefficients are obtained from those
for Uð1Þ in Table IV by replacing QðRÞ2I2ðRÞ →
IM2 ðRMÞIN2 ðRNÞ when the particles in the loop are in the
ðRM;RNÞ representation of SUðMÞ ⊗ SUðNÞ.
For the SM, the case SUð2ÞL ⊗ SUð3ÞC is immediately

obtained in the fW−
μ ;W3

μ;Wþ
μ g basis by replacing

Wi
μνWi;μν¼W3

μνW3;μνþ2Wþ
μνW−;μν and gn → g, gm → gS.

Note however that the same caveat as for the effective
interactions in Eq. (43) applies. In the presence of chiral
fermions, these interactions are not leading and dimension-
six operators of Oðm−2Þ appear, like e.g., G̃a

μνGa;νρZμρ or
ZμZρGa

μνGa;ρν inducing Z → ggg [61] and gg → ZZ [62].
The only exceptions are the Z → ggγ [63] and Z → γγγ
[64] interactions for on shell gluons and photons, which
still start at Oðm−4Þ for chiral fermions because the γ5 term
of the Z boson coupling to fermions cancels out. On shell,
these effective interactions are simply obtained from the

γγ → gg and γγ → γγ results by rescaling of one photon
couplings to match that of the Z boson.
Because Uð1Þ ⊗ SUðNÞ ⊂ SUðM ≥ N þ 1Þ, the αi, βi

coefficients in Table IV are directly related to the γ4;i in
Table III, which is not very surprising comparing their
values. As for the reduction down to Uð1Þ in the previous
section, this can be understood looking at the coefficients of
the loop functions. For the αi coefficients, the decompo-
sition Eq. (32) becomes Cab

1 ¼Cab
2 ¼Cab

3 ¼ 2I2ðRÞQ2δab,
hence Dab

0 ¼ 6I2ðRÞQ2δab. Comparing with Eq. (35), we
see that αi ¼ 2γ4;i with the replacement ΛðRMÞ →
QðRNÞ2I2ðRNÞ in Table III. The factor of two comes
from the two ways of identifying the Uð1Þ and SUðNÞ
gauge bosons, e.g., ðGa

μνGa;μνÞ2M → 2ðFρσFρσÞðGa
μνGa;μνÞN .

A similar reasoning can be done for the βi coefficients.
To go beyond a naive identification of the loop functions,

let us denote Ta the Cartan generator of SUðMÞ generating
Uð1Þ and Ti, i ¼ 2;…; N2 − 1 those generating SUðNÞ.
Because ½Tα; Ti� ¼ 0 implies fαia ¼ 0, the UV divergent

TABLE IV. Wilson coefficients of the effective operators for the mixed operators, as induced by a complex field (scalar, fermion,
vector boson) in the representation R of SUðNÞ with Uð1Þ charge QðRÞ. The αi coefficients for two SUðNÞ and two SUðMÞ gauge
bosons are obtained by replacing QðRÞ2I2ðRÞ → IM2 ðRMÞIN2 ðRNÞ.

α1 ¼ α3=2 α2 ¼ α4=2 β1 β2

Scalar 7
16
QðRÞ2I2ðRÞ 1

16
QðRÞ2I2ðRÞ 7

32
QðRÞI3ðRÞ 1

32
QðRÞI3ðRÞ

Fermion QðRÞ2I2ðRÞ 7
4
QðRÞ2I2ðRÞ 1

2
QðRÞI3ðRÞ 7

8
QðRÞI3ðRÞ

Vector 261
16

QðRÞ2I2ðRÞ 243
16

QðRÞ2I2ðRÞ 261
32

QðRÞI3ðRÞ 243
32

QðRÞI3ðRÞ
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contributions disappear and the γSUðMÞ
4;5 and γSUðMÞ

4;6 operators
do not contribute to the Uð1Þ ⊗ SUðNÞ effective operators.
For the other coefficients, consider a specific representation
of SUðMÞ with branching rule RM →

P
RN , and denote

qαðRNÞ the Uð1Þα charge of the states of the representation
RN . Mathematically, this branching rule means N2 of the
TRM

generators of SUðMÞ can be brought to a block
diagonal form. Those corresponding to SUðNÞ have blocks
containing the SUðNÞ generators in the representation RN ,
while the Tα generator is a diagonal matrix containing all
the qαðRNÞ charges, which are constant over each block
since ½Tα; Ti� ¼ 0. The fully symmetrized trace with two or
three SUðNÞ generators then necessarily take the form

1

4!
STrðTα

RT
α
RT

i
RT

j
RÞ ¼ ΛðRMÞδij þ dααijI4ðRMÞ

¼
X

RN⊂RM

qαðRNÞ2I2ðRNÞδij; ð52Þ

1

4!
STrðTα

RT
i
RT

j
RT

k
RÞ ¼ dαijkI4ðRMÞ

¼ 1

4

X
RN⊂RM

qαðRNÞI3ðRNÞdijk: ð53Þ

This shows how the αi and βi coefficients of Uð1Þ ⊗
SUðNÞ arise from the γ4;i coefficients of the general
SUðM ≥ N þ 1Þ effective Lagrangian. Computationally,
to check these identities requires first to work out the
relationship between the symmetric symbols. In general,
all we can say from the block-diagonal structure of the
generators is that dααijM ¼ η1δ

ij and dαijkM ¼ η2d
ijk
N [see

Eq. (B19)], but the proportionality constants η1 and η2
depend on how Uð1Þ ⊗ SUðNÞ is embedded into SUðMÞ.
This is illustrated in Appendix B, where Eq. (53) is used to
derive the quartic Casimir invariant I4 of SUð5Þ out of the
anomaly coefficients I3 of SUð3Þ.
As an interesting corollary of this exact reduction, the

identities in Eq. (38) remain valid and imply α1;2 ¼ α3;4=2.
So, there are only two independent operators at the
one loop level, no matter the spin and representation of
the particle in the loop. As before, this is not true in general
if more than a single field is integrated out. For example,
the analogue of the Higgs boson exchange shown in
Fig. 5(b) contributes to α1 only since the effective Higgs
boson couplings to photons and gluons are h0FμνFμν

and h0Ga
μνGa;μν.

V. CONCLUSION

In this paper, the effective action for gauge theories is
revisited. Integrating out some heavy charged fields, self-
interactions among gauge bosons are encoded into effective
operators. Using the diagrammatic approach, we explicitly
constructed these interactions up to the dimension-eight

level, and computed their coefficients as induced by loops
of heavy particles of spin 0, 1=2, or 1. More specifically,

(i) To set the stage and identify possible issues, we first
reviewed in details the construction of the off shell
effective couplings for photons. In the diagrammatic
approach, integrating out fermions or scalars is
straightforward and we recover the usual Euler-
Heisenberg result. For heavy vector fields, the
matching does not proceeds as trivially. Indeed, in
the ’t Hooft-Feynman gauge, the gauge-fixing term
required for the massive vector fields breaks the
Uð1Þ gauge invariance. Consequently, the off shell
four-photon amplitude fails to satisfy the QEDWard
identities, and the usual procedure to construct the
effective action breaks down. To solve this problem,
we adopted the strategy of Ref. [33] and quantized
the SM in the nonlinear gauge. Matching is then
consistent off shell, and the diagrammatic approach
closely parallels the path integral-based Covariant
Derivative Expansion method [26,27]. The Wilson
coefficients in that gauge are shown in Table I.

(ii) The calculation of the photon EFTwas then extended
to the QCD gluon EFT. The most general basis of
gluonic operators up to dimension-eight is quite
different from the QED case due to the non-Abelian
nature of QCD [25]. We computed explicitly the
coefficients of the effective operators for a scalar,
fermion or vector in the fundamental representation.
The final results for the coefficients are given in
Table II. As for photons, integrating out heavy vector
fields requires dealing with gauge dependences. Our
strategy was to use the minimal SUð5Þ GUT model,
spontaneously broken by an adjoint Higgs scalar
down to the unbroken SM gauge group, and quan-
tized using a nonlinear gauge condition preserving
the SM gauge invariance. Twelve of the SUð5Þ gauge
bosons become massive in the process, and those
fields have precisely the quantum numbers needed to
induce the effective gluon couplings. This construc-
tion is detailed in Appendix A. Technically, it should
be mentioned that this nonlinear gauge has the
additional nice feature of drastically reducing the
number of diagrams for a given process.

(iii) We then extended the computation done in the QCD
case to generic Lie gauge groups, taking SUðNÞ,
Uð1Þ ⊗ SUðNÞ, and SUðMÞ ⊗ SUðNÞ as examples,
and allowing the heavy particle to sit in arbitrary
representations. The coefficients for a complex field
of spin 0, 1=2, or 1 circulating in the loops are given in
Table III for SUðNÞ and in Table IV for nonsimple
gauge groups. One feature apparent in these tables is
worth stressing. At one loop, some operators are
redundant no matter the representation or spin of the
particle circulating in the loops. From our Eq. (38),
we conclude that two operator combinations never
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occur in the one-loop effective action for SUðNÞ
gauge bosons. This implies in particular that only
four instead of six operators are required for QCD,
and only two instead of four operators are sufficient
to describe the two gluon-two photon interactions.
Finally, it should be mentioned that generalizing the
QCD result to an arbitrary Lie algebra required a
careful analysis of quartic Casimir invariants. While
all the needed information can be dig out of the
available literature [34,35], it seems to us a short
review detailing all the definitions and conventions,
and with emphasis on practical use in loop
calculations, was lacking and so, it is included in
Appendix B.

(iv) On a more technical note, the relationship between
effective action and Feynman diagram matching was
carefully analyzed. Specifically, the effective action
can be computed from the one-loop 1PI off shell
amplitudes. In this way, the coefficients of all the
operators, including those vanishing under the
equation of motion, are obtained. However, these
coefficients are not necessarily gauge-invariant.
Actually, since the matching is possible only using
a nonlinear gauge fixing, they are well-defined in
that gauge only. This is to be compared to the
computation of the coefficients using on shell
processes, where the physical on shell one-loop
amplitudes are matched onto a subset of operators.
Those operators that vanish under the EOM are
absent, so the whole effective action is never
reproduced. Further, from a calculation point of
view, matching with on shell processes requires
dealing with both 1PI and non-1PI amplitudes.
For example, the coefficient of the three-gluon-field
strength operator fabcGaν

μ Gbρ
ν Gcμ

ρ cannot be obtained
from a three-gluon process since it is kinematically
forbidden. Instead, it has to be extracted alongside
all the four-gluon-field strength operators by match-
ing onto the four-gluon physical amplitudes.

Altogether, the construction of the effective gauge-boson
Lagrangian up to dimension-eight is now fully under
control in the diagrammatic approach. The operator bases
are confirmed, their group-theoretic properties clarified,
and the coefficients are known for the standard benchmark
scenarios of heavy scalars, fermions, and vector bosons.

Phenomenologically, though the four-gluon or four weak
boson effective couplings is unlikely to be ever seen, given
the presence of such a coupling in the tree-level
Lagrangian, there may be some room for γγ → gg. In
any case, having laid out a well-defined strategy to
construct fully general effective actions involving gauge
bosons will prove useful in the future.

APPENDIX A: SUð5Þ GAUGE BOSONS IN THE
NONLINEAR GAUGE

This Appendix is not intended as a review of the minimal
SUð5Þmodel. Rather, it is meant as a guide to construct the
Lagrangian of SUð5Þ broken down to SUð3ÞC ⊗ SUð2ÞL ⊗
Uð1ÞY , quantized using a nonlinear gauge-fixing term, in a
form suitable for automatic calculation tools. The main
point is to input all the Lagrangian terms in a consistent and
tractable way. This requires to set a number of conventions
and definitions, so we found it useful to detail them here.
The starting point is to input the SUð5Þ gauge bosons,

and write them in terms of those of the SUð3ÞC ⊗
SUð2ÞL ⊗ Uð1ÞY gauge group. For that, we start from
the branching rule of the adjoint representation 24:

24¼ð8;1Þ0þð1;3Þ0þð3;2Þ5þð3̄;2Þ−5þð1;1Þ0: ðA1Þ

Denoting by A; B;… ¼ 1;…; 24 the SUð5Þ adjoint indices,
a; b;… ¼ 1;…; 8 the adjoint color indices, and
i; j;… ¼ 1, 2, 3 the fundamental SUð3Þ indices, the
twenty-four Aμ

A gauge bosons are identified as the octet
of gluons ð8 ⊗ 1Þ0 ∼ Gμ

i ¼ Aμ
i , a ¼ 1;…; 8, the triplet of

weak bosons ð1⊗3Þ0∼W�μ¼ðAμ
9∓iAμ

10Þ=
ffiffiffi
2

p
, Wμ

3 ¼ Aμ
11,

and the singlet ð1 ⊗ 1Þ0 ∼ Bμ ¼ Aμ
24. The remaining fields

are the twelve leptoquark gauge bosons and their conjugate
fields in the ð3̄ ⊗ 2Þ5=3 and ð3 ⊗ 2̄Þ−5=3 representation,

respectively. We define these fields as Xμ�
1 ¼ðAμ

12� iAμ
13Þ=ffiffiffi

2
p

, Yμ�
1 ¼ ðAμ

18 � iAμ
19Þ=

ffiffiffi
2

p
and so on. Note that lepto-

quarks are charged under all the SM gauge groups, and
those with positive hypercharge transform like antiquarks
under SUð3ÞC.
Since the adjoint is contained in 5 ⊗ 5̄ ¼ 24 ⊕ 1, all

these identifications of the gauge fields can be put together
to construct a traceless 5 × 5 matrix for the SUð5Þ gauge
fields:

Aμ ¼ Aμ
AT

A ¼

0
BBB@

Ta
ijG

a
μ − 1ffiffiffiffi

15
p Bμδij

1ffiffi
2

p Xi−
μ

1ffiffi
2

p Yi−
μ

1ffiffi
2

p Xjþ
μ

1
2
W3

μ þ 3

2
ffiffiffiffi
15

p Bμ
1ffiffi
2

p Wþ
μ

1ffiffi
2

p Yjþ
μ

1ffiffi
2

p W−
μ − 1

2
W3

μ þ 3

2
ffiffiffiffi
15

p Bμ

1
CCCA; ðA2Þ

where TA are the conventional SUð5Þ generators in the fundamental representation, normalized as TrðTATBÞ ¼ δAB=2.
This identification is compatible with the eigenstates of the electric charge operator,
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Q ¼ T11 þ
ffiffiffiffiffiffiffiffi
5=3

p
T24;

½Q;Aμ� ¼
1ffiffiffi
2

p

0
B@

0 −4=3Xi−
μ −1=3Yi−

μ

4=3Xjþ
μ 0 þWþ

μ

1=3Yjþ
μ −W−

μ 0

1
CA; ðA3Þ

with the normalization of the hypercharge operator Y ¼
2

ffiffiffiffiffiffiffiffi
5=3

p
T24. In practice, we have used the Mathematica

package FEYNARTS [45] and FEYNCALC [46]. Both allow
to keep the summations over the SUð3Þ indices as implicit,
soAμ is truly input as the 3 × 3matrix of Eq. (A2). Once all
the relevant pieces of the Lagrangian are encoded, it is then
a simple matter to extract the Feynman rules and export
them to FEYNARTS. Let us now review the Lagrangian
terms of relevance to us.

1. Gauge interactions

The gauge self-couplings derive from the Yang-Mills
kinetic term

Lgauge ¼ −
1

2
hAμνAμνi ¼ −

1

4
AA
μνAA;μν; ðA4Þ

with the field strength

Aμν ¼ ∂μAν − ∂νAμ − ig5½Aμ;Aν�
¼ ð∂μAA

ν − ∂νAA
μ þ gfABCAB

μAC
ν ÞTA: ðA5Þ

The SUð5Þ structure constants are defined as ½TA; TB� ¼
ifABCTC. An explicit calculation shows that there are 68
nonzero fABC, plus antisymmetric permutations of the
indices. Among them there are the nine fabc of SUð3Þ
and the single εijk of SUð2Þ, which reproduce the QCD
and electroweak self-interactions. All the other nonzero
structure constants are fABC with A; B ¼ 12;…; 23 and
C ¼ 1;…; 11; 24. In other words, they involve twice the
leptoquark fields, as can be expected since these particles
are charged under the three SM gauge groups. The same g5
occurs for all the interactions between gauge bosons. In
explicit form,

Lgauge ¼ −
1

2
hð∂μAν − ∂νAμÞð∂μAν − ∂νAμÞ þ 4ig5AμAνð∂μAν − ∂νAμÞ − 2g25AμAν½Aμ;Aν�i

¼ −
1

4
Ga

μνGa;μν −
1

2
Wþ

μνW−;μν −
1

4
W3

μνW3;μν −
1

4
BμνBμν

−
1

2
ðDμXþ

ν −DνXþ
μ ÞiðDμX−ν −DνX−μÞi − 1

2
ðDμYþ

ν −DνYþ
μ ÞiðDμY−ν −DνY−μÞi

þ ig5Ga
μνðXjþ

μ ð−Ta
jiÞXi−

ν þ Yjþ
μ ð−Ta

jiÞYi−
ν Þ þ i

g5ffiffiffi
2

p ðWþ;μνYiþ
μ Xi−

ν þW−;μνXiþ
μ Yi−

ν Þ

þ i
g5
2
W3;μνðXiþ

μ Xi−
ν − Yiþ

μ Yi−
ν Þ þ ig5

ffiffiffiffiffi
15

p

6
BμνðXiþ

μ Xi−
ν þ Yiþ

μ Yi−
ν Þ þOððX; YÞ4Þ; ðA6Þ

where the weak and strong field strengths are understood to contain their respective non-Abelian terms, as

Ga
μν ¼ ∂νGa

μ − ∂μGa
ν þ g5fabcGb

μGc
ν → Ga

μνTa ¼ ∂νGa
μTa − ∂μGa

νTa − ig5½Gb
μTb;Gc

νTc�;

Wi;μν ¼ ∂νWi
μ − ∂μWi

ν þ g5εijkW
j
μWk

ν →

8>><
>>:

W3;μν ¼ ∂νW3
μ − ∂μW3

ν þ ig5ðW−
μWþ

ν −Wþ
μ W−

ν Þ;
Wþ;μν ¼ ∂νWþ

μ − ∂μWþ
ν þ ig5ðWþ

μ W3
ν −W3

μWþ
ν Þ;

W−;μν ¼ ∂νW−
μ − ∂μW−

ν þ ig5ðW3
μW−

ν −W−
μW3

νÞ:
The covariant derivative Dμ ¼ ∂μ1 − ig5TAAμ

A acting on the twelve leptoquarks living in the ð3̄ ⊗ 2Þ5=3 representation is

ðDμÞijXjþ
ν ¼ ∂μXiþ

ν − ig5

�
Xjþ
ν ð−Ta

jiÞGa
μ þ

1

2
W3

μXiþ
ν þ 1ffiffiffi

2
p Wþ

μ Yiþ
ν þ y

5

6
BμXiþ

ν

�
; ðA7Þ

ðDμÞijYjþ
ν ¼ ∂μYi�

ν − ig5

�
Yjþ
ν ð−Ta

jiÞGa
μ −

1

2
W3

μYiþ
ν þ 1ffiffiffi

2
p W−

μXiþ
ν þ y

5

6
BμYiþ

ν

�
; ðA8Þ

where y ¼ ffiffiffiffiffiffiffiffi
3=5

p
is the hypercharge normalization.

Finally, OððX; YÞ4Þ denotes quartic interactions among X
and Y gauge bosons which are of no interest for our
purpose. It is interesting to remark that the SM gauge
invariance is satisfied separately for the X, Y kinetic terms

(thanks to the covariant derivatives), the magnetic inter-
actions (the BμνXμXν and similar), and the OððX; YÞ4Þ
interactions. At the level of the SM, the strength of the
magnetic and OððX; YÞ4 interactions are thus uncon-
strained, and these could even be absent. On the contrary,
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here their relative strengths is fixed by the underlying
SUð5Þ gauge invariance. The situation is similar in the
SM, with the relative strength of the ðDμWþ

ν −DνWþ
μ Þ

ðDμW−ν −DνW−μÞ and FμνWþ
μ W−ν interactions fixed by

the underlying SUð2ÞL ⊗ Uð1ÞY symmetry.

2. Scalar interactions

In the present work, we are only interested in the initial
breaking stage

SUð5Þ → SUð3ÞC ⊗ SUð2ÞL ⊗ Uð1ÞY: ðA9Þ
For that, we need a scalar in the adjoint representation,
H̄24 ¼

ffiffiffi
2

p
HATA. Note that H̄24 ¼ H̄†

24, since the adjoint is
a real representation, and further assuming a H̄24 → −H̄24
symmetry to get rid of cubic interactions, the most general
Lagrangian is

Lscalar ¼
1

2
hDμH̄24DμH̄24iþ

μ2

2
hH2

24i−
a
4
hH2

24i2−
b
2
hH4

24i:
ðA10Þ

The breaking of the SUð5Þ symmetry arises when H̄24 gets
its vacuum expectation value h0jH̄24j0i ∼ v5 > 0, which
happens for μ2 > 0. There are two classes of minima,
depending on the sign of b. First, it is possible to find
values of μ, a, and b < 0 such that the minimum is of the
form h0jH̄24j0i ¼ diagðv; v; v; v;−4vÞ. This corresponds
to SUð5Þ → SUð4Þ ⊗ Uð1Þ. The second class occurs for
b > 0 and is such that h0jH̄24j0i commutes with the
SUð3ÞC, SUð2ÞL, and Uð1ÞY generators:

H0
24¼h0jH̄24j0i¼

1ffiffiffi
2

p v5diagð1;1;1;−3=2;−3=2Þ

¼−v5
ffiffiffiffiffiffiffiffiffiffi
15=4

p
T24; v25¼

4μ2

15aþ7b
:

ðA11Þ

The value of v5 is found by requiring that this is a global
minimum of the potential, which asks for 15aþ 7b > 0.
Plugging this constraint in the scalar potential and

writing

H24 ¼ H̄24 −H0
24 ¼

ffiffiffi
2

p

0
BBBB@

Ta
ijH

a
G − 1ffiffiffiffi

15
p H0

Bδij
1ffiffi
2

p Hi−
X

1ffiffi
2

p Hi−
Y

1ffiffi
2

p Hjþ
X

1
2
H3

W þ 3

2
ffiffiffiffi
15

p H0
B

1ffiffi
2

p Hþ
W

1ffiffi
2

p Hjþ
Y

1ffiffi
2

p H−
W − 1

2
H3

W þ 3

2
ffiffiffiffi
15

p H0
B

1
CCCCA; ðA12Þ

the Higgs boson masses are found to be

M2
Hi

W
¼ 4M2

Ha
G
¼ 5bv25; M2

HB
¼ 2μ2; M2

Hi
X;Y

¼ 0:

Note that the
ffiffiffi
2

p
is conventional; it ensures a correctly

normalized kinetic terms given the Lagrangian in Eq. (A10).
Additional couplings involving three and four scalars
are derived from the potential, with the former all propor-
tional to v5.
To get the scalar couplings to gauge bosons, it then

suffices to expand the covariant derivative, with for the
adjoint representation,

DμH̄24 ¼ ∂μH̄24 − ig5½Aμ; H̄24�
¼ ∂μH24 − ig5½Aμ;H24� − ig5½Aμ;H0

24�: ðA13Þ

This gives

1

2
hDμH̄24DμH̄24i →

1

2
h∂μH24∂μH24i þ Lmass

þ Lmix þ Lgauge-Higgs: ðA14Þ

The Lmass couplings are just the leptoquark mass terms,

Lmass ¼ −
1

2
g25h½Aμ;H0

24�½Aμ;H0
24�i

¼ 25

16
g25v

2
5ðXiþ

μ Xi−μ þ Yiþ
μ Yi−μÞ; ðA15Þ

so MXY ¼ 5g5v5=4. The Lmix piece induces mixings
between the Xμ and Yμ gauge bosons and their associated
WBG bosons,

Lmix ¼ −ig5h½Aμ;H0
24�∂μH24i

¼ iMXYXk−
μ ∂μHkþ

X þ iMXYYk−
μ ∂μHkþ

Y þ H:c: ðA16Þ

The other couplings involve gauge and scalar bosons,

Lgauge-Higgs ¼ −ig5h½Aμ;H24�∂μH24i
− g25h½Aμ;H0

24�½Aμ;H24�i

−
g25
2
h½Aμ;H24�½Aμ;H24�i: ðA17Þ

The explicit forms can easily be worked out and will not be
given here. Remark though that because all the SM gauge
bosons disappear from ½Aμ;H0

24�, LAAH only couples
scalars to the massive gauge bosons, with couplings
proportional to their mass.
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3. Gauge-fixing and ghost interactions

The next step to quantize this theory is to fix the gauge, and add the corresponding ghost terms. The general ansatz in
linear Rξ gauge is to define the constraint in terms of the WBG as

G ¼
ffiffiffi
2

p ∂μAμ þ ξMXY

0
BB@

0 iHi−
X iHi−

Y

−iHjþ
X 0 0

−iHjþ
Y 0 0

1
CCA

¼

0
BBBBB@

ffiffiffi
2

p
Ta
ij∂μGa

μ −
ffiffiffiffi
2
15

q
∂μBμδij ∂μXi−

μ þ iξMXYHi−
X ∂μYi−

μ þ iξMXYHi−
Y

∂μXjþ
μ − iξMXYH

jþ
X

1ffiffi
2

p ∂μW3
μ þ

ffiffiffiffi
3
10

q
∂μBμ ∂μWþ

μ

∂μYjþ
μ − iξMXYH

jþ
Y ∂μW−

μ − 1ffiffi
2

p ∂μW3
μ þ 3

2
ffiffiffiffi
15

p ∂μBμ

1
CCCCCA
; ðA18Þ

so that

Lgf ¼ −
1

2ξ
hG2i ¼ −

1

ξ
j∂μXkþ

μ − iξMXYH
kþ
X j2 − 1

ξ
j∂μYkþ

μ − iξMXYH
kþ
Y j2 ðA19Þ

−
1

ξ
j∂μWþ

μ j2 −
1

2ξ
ð∂μW3

μÞ2 −
1

2ξ
ð∂μBμÞ2 −

1

2ξ
ð∂μGa

μÞ2: ðA20Þ

Since in practice, all our computations are done in the
’t Hooft-Feynman gauge, a common parameter ξ is intro-
duced for all the gauge bosons. Obviously, the parameters
forGa

μ,Bμ,W3
μ, andW�

μ can be all different since they appear
only in the respective propagator and not in any of the
vertices. For Xi�

μ and Yi�
μ , not taking a common parameter

would make life more complicated since those two form an
SUð2ÞL doublet. When the first line is expanded, the terms
linear in MXY precisely cancel those in Lmix, while those
quardratic imply M2

HXY
¼ ξM2

XY as usual. Remember that
WBG do not get any mass term from the scalar potential.
The goal of the nonlinear gauge fixing of Ref. [57] is to

maintain the unbroken gauge symmetries as explicit. This
requires general covariant derivatives in the constraints
involving the massive gauge bosons. To be able to
interpolating between the linear and nonlinear gauge, we
introduce the parameters αG, αW , αB and use

∂μXiþ
μ → ∂μXiþ

μ − ig5

�
αGX

jþ
ν ð−Ta

jiÞGa
μ þ αW

1

2
W3

μXiþ
ν

þ αW
1ffiffiffi
2

p Wþ
μ Yiþ

ν þ αBy
5

6
BμXiþ

ν

�
; ðA21Þ

∂μYiþ
ν → ∂μYi�

μ − ig5

�
αGY

jþ
ν ð−Ta

jiÞGa
μ − αW

1

2
W3

μYiþ
ν

þ αW
1ffiffiffi
2

p W−
μXiþ

ν þ αBy
5

6
BμYiþ

ν

�
: ðA22Þ

Plugging this in Lgf generates new contributions to Lgauge

and Lgauge-Higgs. At this stage, one of the interest of this
gauge becomes apparent. The gauge and gauge-WBG
Lagrangian of the previous section must be invariant under
the SM gauge symmetry. This means that among the WBG-
gauge-gauge interactions, there are precisely those needed
to promote the derivatives in Lmix to covariant ones. But
then, having covariant derivatives in Lgf cancels them out.
As a result, when αi ¼ 1, the A − A −WBG couplings get
much simpler.
To this constraint corresponds the ghost Lagrangian

Lghost ¼ cA†
�
ð−g5Þ

δGA

δλB

����
λ¼0

�
cB: ðA23Þ

To get the variation ofGA under a gauge transformation, we
first need that of the fields, expressed in the same physical
basis as the gauge bosons and WBG scalars. For the gauge
fields, the variation under a gauge transformation is

δAμ ¼ 1

g5
Dμλ ¼ 1

g5
∂μλ − i½Aμ; λ�; ðA24Þ

where the physical basis parameters are defined from λ ¼
λATA in full analogy to the gauge bosons. In explicit form,
reconstructing the individual field transformation,
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δGa
μ ¼

1

g5
∂μλaG þ fabcGb

μλ
c
G þ iðXiþ

μ Ta
ijλ

j−
X − λiþX Ta

ijX
j−
μ þ Yiþ

μ Ta
ijλ

j−
Y − λiþY Ta

ijY
j−
μ Þ; ðA25Þ

δWþ
μ ¼ 1

g5
∂μλþW þ iWþ

μ λ
3
W − iW3

μλ
þ
W þ iffiffiffi

2
p ðλiþX Yi−

μ − λi−Y Xiþ
μ Þ; δW−

μ ¼ ðδWþ
μ Þ†; ðA26Þ

δW3
μ ¼

1

g5
∂μλ3W þ iW−

μ λ
þ
W − iWþ

μ λ
−
W þ i

2
ðλiþX Xi−

μ − λi−X Xiþ
μ − λiþY Yi−

μ þ λi−Y Yiþ
μ Þ; ðA27Þ

δBμ ¼
1

g5
∂μλB þ i

2

ffiffiffi
5

3

r
ðλiþX Xi−

μ − λi−X Xiþ
μ þ λiþY Yi−

μ − λi−Y Yiþ
μ Þ; ðA28Þ

δXiþ
μ ¼ 1

g5
∂μλiþX − iðλkþX Ta

kiG
a
μ − Xkþ

μ Ta
kiλ

a
GÞ þ

iffiffiffi
2

p ðλþWYiþ
μ − λiþY Wþ

μ Þ þ
i
2
ðλ3WXiþ

μ − λiþX W3
μÞ þ

i
2

ffiffiffi
5

3

r
ðλBXiþ

μ − λiþX BμÞ;

δXi−
μ ¼ ðδXiþ

μ Þ†; ðA29Þ

δYiþ
μ ¼ 1

g5
∂μλiþY þ iðλkþY Ta

kiG
a
μ − Ykþ

μ Ta
kiλ

a
GÞ þ

iffiffiffi
2

p ðλ−WXiþ
μ − λiþX W−

μ Þ −
i
2
ðλ3WYiþ

μ − λiþY W3
μÞ þ

i
2

ffiffiffi
5

3

r
ðλBYiþ

μ − λiþY BμÞ;

δYi−
μ ¼ ðδYiþ

μ Þ†: ðA30Þ

Similarly, the transformation of the scalar fields in the adjoint representation δHA ¼ fABCHBλC can be obtained in matrix
form

gδH̄24 ¼ i½λ; H̄24� → δH24 ¼ i½λ;H24� þ i½λ;H0
24�:

We only need the transformation rule of the WBG, since the other scalar fields will not be introduced in the gauge
constraints:

δHiþ
X ¼ −iHkþ

X Ta
kiλ

a
G þ iffiffiffi

2
p λþWH

iþ
Y þ i

2
λ3WH

iþ
X þ i

2

ffiffiffi
5

3

r
λBH

iþ
X þ i

5

4
v5λ

iþ
X

þ iλkþX Ta
kiH

a
G −

iffiffiffi
2

p Hþ
Wλ

iþ
Y −

i
2
H3

Wλ
iþ
X −

i
2

ffiffiffi
5

3

r
HBλ

iþ
X ; ðA31Þ

δHiþ
Y ¼ −iHkþ

Y Ta
kiλ

a
G þ iffiffiffi

2
p λ−WH

iþ
X −

i
2
λ3WH

iþ
Y þ i

2

ffiffiffi
5

3

r
λBH

iþ
Y þ i

5

4
v5λ

iþ
Y þ iλkþY Ta

kiH
a
G

−
iffiffiffi
2

p H−
Wλ

iþ
X þ i

2
H3

Wλ
iþ
Y −

i
2

ffiffiffi
5

3

r
HBλ

iþ
Y : ðA32Þ

Note that these transformation rules imply that only the ghost fields associated to the massive gauge bosons couple to all the
Higgs bosons, as expected from the absence of direct couplings of the scalar fields to SM gauge bosons.
OnceG is expressed in the physical basis [as in Eq. (A18) for the linear gauge], the physical gauge parameters identified

from λ, and ghost matrices defined in full analogy as

c ¼ cATA ¼

0
BBB@

Ta
ijc

a
G − 1ffiffiffiffi

15
p cBδij 1ffiffi

2
p ci−X

1ffiffi
2

p ci−Y
1ffiffi
2

p cjþX
1
2
c3W þ 3

2
ffiffiffiffi
15

p cB 1ffiffi
2

p cþW
1ffiffi
2

p cjþY
1ffiffi
2

p c−W − 1
2
c3W þ 3

2
ffiffiffiffi
15

p cB

1
CCCA; ðA33Þ

one can proceed by computing −
ffiffiffi
2

p
g5hc† δGi and replacing each λ by the corresponding ghost, i.e., λB → cB, λaG → caG,

etc. Given the many possible couplings once a nonlinear gauge fixing is imposed, the final expression are very lengthy and
will not be written down here. Let us just remark that only the ghosts associated to the leptoquarks get massive,
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Lghost ¼ ca†G ð−∂2ÞcG þ c†Bð−∂2ÞcB þ c3†W ð−∂2Þc3W þ c†þW ð−∂2Þc−W þ c†−W ð−∂2ÞcþW
þ c†þX ð−∂2 − ξM2

XYÞc−X þ c†−X ð−∂2 − ξM2
XYÞcþX þ c†þY ð−∂2 − ξM2

XYÞc−Y þ c†−Y ð−∂2 − ξM2
XYÞcþY

þ LCCV þ LCCH þ LCCVV: ðA34Þ

Still, the SM ghosts get new interactions with pairs of
heavy states (one ghost, one gauge boson). Note also that
LCCVV derives entirely from the nonlinear gauge fixing.

APPENDIX B: CASIMIR INVARIANTS OF
STANDARD LIE ALGEBRAS

The structure constants of a simple Lie algebra are
defined as ½Ta

R; T
b
R� ¼ ifabcTc

R, with Ta
R the generators in

the representation R. The quadratic and cubic Casimir
invariants are defined in terms of the fully symmetrized
trace over two and three generators

1

2!
STrðTa

RT
b
RÞ ¼ TrðTa

RT
b
RÞ≡ I2ðRÞdab; ðB1Þ

1

3!
STrðTa

RT
b
RT

c
RÞ ¼

1

2
TrðTa

RfTb
R; T

c
RgÞ≡ 1

4
I3ðRÞdabc:

ðB2Þ

In terms of these two invariants, we can reduce the trace
over three generators as

TrðTa
RT

b
RT

c
RÞ ¼

1

2
Trð½Ta

R; T
b
R�Tc

RÞ þ
1

2
TrðfTa

R; T
b
RgTc

RÞ

¼ I3ðRÞ
4

dabc þ iI2ðRÞ
2

fabc: ðB3Þ

The quadratic invariant defines a metric in the generator
space. TrðTa

RT
b
RÞ being positive definite, it is always

possible to choose a basis for the generators so that
dab ¼ δab. By convention, the generators are further
normalized so that I2ðFÞ≡ c, with F the defining repre-
sentation of dimension NðFÞ ¼ N and the constant c

usually set to 1=2 or 1. Note also that once dab ¼ δab,
Ta
RT

a
R becomes proportional to the identity, with Ta

RT
a
R ¼

ðNðAÞI2ðRÞ=NðRÞÞ1NðRÞ×NðRÞ where NðRÞ denotes the
dimension of the representation R, while A stands for the
adjoint representation.
The totally symmetric tensor dabc is normalized such that

I3ðFÞ≡ 1 for unitary groups. It is absent for orthogonal
groups, except for SOð6Þ isomorphic to SUð4Þ. When
defined, the coefficient I3ðRÞ is often called the anomaly
coefficient of the representation R.

1. Quartic symmetric symbol

To compute traces over four generators, we need to
extend the basis to include the quartic symmetric symbol
and its associated invariant (for more information, see
Ref. [35]). It is not immediately given by the fully symmetric
trace over four generators because the symmetrized product
of two second-order symmetric symbols is an invariant
symmetric tensor with four indices. Specifically, the most
general decomposition is:

1

4!
STrðTa

RT
b
RT

c
RT

d
RÞ

¼ I4ðRÞdabcdþΛðRÞðδabδcdþδacδbdþδadδbcÞ: ðB4Þ

The constant ΛðRÞ is a matter of convention, while dabcd is
normalized by fixing I4ðFÞ ¼ c for some chosen constant c.
To fix ΛðRÞ, we choose to define the tensor dabcd as
orthogonal to the lower rank invariants, i.e., such
that dabdcddabcd ¼ 0:

I4ðRÞdabdcddabcd ¼
1

4!
δabδcdSTrðTa

RT
b
RT

c
RT

d
RÞ − δabδcdΛðRÞðδabδcd þ δacδbd þ δadδbcÞ

¼ TrðTa
RT

a
RT

b
RT

b
RÞ þ

1

3
TrðTa

R½Tb
R; T

a
R�Tb

RÞ − ΛðRÞð2þ NðAÞÞNðAÞ

¼
�
NðAÞI2ðRÞ

NðRÞ −
I2ðAÞ
6

�
I2ðRÞNðAÞ − ΛðRÞð2þ NðAÞÞNðAÞ; ðB5Þ

where we have used fabcfdbc ¼ I2ðAÞδad, fabcfabc ¼ I2ðAÞNðAÞ. Hence, dabdcddabcd vanishes provided

ΛðRÞ ¼
�
NðAÞI2ðRÞ

NðRÞ −
I2ðAÞ
6

�
I2ðRÞ

2þ NðAÞ : ðB6Þ

This convention ensures dabcd has no left-over part proportional to the quadratic symbol. This is particularly convenient
because I4ðRÞ then vanishes for all R of SUð2Þ and SUð3Þ. Remember that a tensor dabcd such that dabdcddabcd ¼ 0 does
not exist for SUðN ≤ 3Þ. For N ¼ 2, 3, ΛðFÞ ¼ 1=24 and
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STrðTa
FT

b
FT

c
FT

d
FÞ ¼N¼2;3

δabδcd þ δacδbd þ δadδbc: ðB7Þ

This formula also provides a useful identity for the SUð3Þ
structure constant:

1

4!
STrðTa

8T
b
8T

c
8T

b
8Þ¼

1

4!

X
permða;b;c;dÞ

fax1x2fbx2x3fcx3x4fdx4x1

¼ 3

4
ðδabδcdþδacδbdþδadδbcÞ; ðB8aÞ

since Λð8Þ ¼ 3=4.
The formula Eq. (B4) is valid for all unitary and

orthogonal algebras, except for SOð8Þ. Indeed, the N-
dimensional Levi-Civita symbol is an invariant for SOðNÞ,
and when N is even, it is possible to construct out of it a
symmetric symbol withN=2 indices. To see this, remember
that the adjoint A of SOðNÞ is obtained as the antisym-
metric tensor product of the defining N-dimensional
representation F, A ¼ F ⊗A F. Thus, the SOðNÞ gener-
ators can be labelled by antisymmetric combinations

of two indices i; j ¼ 1;…; N. If we denote a ¼ ði; jÞ, with
a ¼ 1;…; NðN − 1Þ=2, then

Θa1…aN=2 ¼ ηεi1…iN ; ðB9Þ

with η some constants, is a totally symmetric invariant
tensor with N=2 indices. This explains one aspect of the
isomorphism SOð6Þ ∼ SUð4Þ. None of the orthogonal
algebras have a genuine dabc symbol, but the extra invariant
tensor Θabc of SOð6Þ corresponds to the dabc symbol of
SUð4Þ. For SOð8Þ, Θabcd is an additional quartic symbol,
orthogonal to both tensor structures in Eq. (B4). Thus, the
totally symmetric trace over four SOð8Þ generators projects
not just on two but three tensor structures.

2. Fourth-order trace reductions

Any trace over four generators can be reduced and
expressed entirely in terms of the invariant tensors. For
instance, for SUðNÞ and SOðN ≠ 8Þ, we can write

1

4!
STrðTa

RT
b
RT

c
RT

d
RÞ ¼

1

6
TrðTa

RT
b
RT

c
RT

d
RÞ þ

1

6
TrðTa

RT
b
RT

d
RT

c
RÞ þ

1

6
TrðTa

RT
c
RT

b
RT

d
RÞ

þ 1

6
TrðTa

RT
c
RT

d
RT

b
RÞ þ

1

6
TrðTa

RT
d
RT

b
RT

c
RÞ þ

1

6
TrðTa

RT
d
RT

c
RT

b
RÞ

¼ TrðTa
RT

b
RT

c
RT

d
RÞ þ

2

6
ifdceTrðTa

RT
b
RT

e
RÞ þ

3

6
ifcbeTrðTa

RT
e
RT

d
RÞ þ

2

6
ifdbeTrðTa

RT
c
RT

e
RÞ

þ 1

6
ifdbeTrðTa

RT
e
RT

c
RÞ þ

1

6
ifdceTrðTa

RT
e
RT

b
RÞ

¼ TrðTa
RT

b
RT

c
RT

d
RÞ þ i

I3ðRÞ
8

ðfdcedabe þ fcbedaed þ fdbedaceÞ þ I2ðRÞ
12

fabefcde

−
I2ðRÞ
4

fadefbce þ I2ðRÞ
12

facefbde: ðB10Þ

Or, introducing the quartic invariant:

TrðTa
RT

b
RT

c
RT

d
RÞ ¼ I4ðRÞdabcd − i

I3ðRÞ
8

ðfdcedabe þ fcbedaed þ fdbedaceÞ

−
I2ðRÞ
12

ðfabefcde − 3fadefbce þ facefbdeÞ þ ΛðRÞðδabδcd þ δacδbd þ δadδbcÞ: ðB11Þ

As special cases, we can set I3ðRÞ ¼ 0 for SOðN ≠ 6Þ, I4ðRÞ ¼ 0 for SUð3Þ, and I4ðRÞ ¼ I3ðRÞ ¼ 0 for SUð2Þ. Note that
the last two terms can be brought to a simpler though less symmetric form using the Jacobi identities:

fcdedabe þ fadedbce þ fbdedace ¼ 0; ðB12Þ

fabefcde − facefbde þ fadefbce ¼ 0: ðB13Þ

Other identities sometimes useful in the computation of triangle graphs are:

fadefbeffcfd ¼ þ 1

2
I2ðAÞfabc; ðB14Þ
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dadefbeffcfd ¼ −
1

2
I2ðAÞdabc: ðB15Þ

The first identity derives from TrðTa
AT

b
AT

c
AÞ ¼ TrðTa

A½Tb
A; T

c
A�Þ=2 since ðTa

AÞT ¼ −Ta
A for a real representation.

Specializing to SUðNÞ, there is another way to derive the fourth-order symmetric symbol. First, remember that,

Ta
FT

b
F ¼ 1

N
I2ðFÞδab þ

I3ðFÞ
4I2ðFÞ

dabcTc
F þ i

2
I2ðFÞfabcTc

F: ðB16Þ

With this, we can derive

Tr½fTa
FT

b
FgfTc

FT
d
Fg� ¼

4I2ðFÞ2
N

δabδcd þ I3ðFÞ2
4I2ðFÞ

dabedcde ¼ 1

N
δabδcd þ 1

2
dabedcde: ðB17Þ

On the other hand, this trace can be computed using the general reduction in terms of invariant, giving

Tr½fTa
FT

b
FgfTc

FT
d
Fg� ¼ 4I4ðFÞdabcd þ

1

3
I2ðFÞðfacefbde þ fadefbceÞ þ 4ΛðFÞðδabδcd þ δacδbd þ δadδbcÞ: ðB18Þ

Combining the two,

I4ðFÞdabcd ¼
I3ðFÞ2
16I2ðFÞ

dabedcde −
I2ðFÞ
12

ðfacefbde þ fadefbceÞ − ΛðFÞðδabδcd þ δacδbd þ δadδbcÞ þ I2ðFÞ2
N

δabδcd: ðB19Þ

With the convention I4ðFÞ ¼ 1, this identity permits us to compute the quartic symbol dabcd directly out of the lower-rank
invariants. We can now check that for N ¼ 3, I2ðFÞ ¼ 1=2, I3ðFÞ ¼ 1, I4ðFÞ ¼ 0 and ΛðFÞ ¼ 1=24,

0 ¼ 1

8
dabedcde −

1

24
ðfacefbde þ fadefbceÞ − 1

24
ðδacδbd − δabδcd þ δadδbcÞ; ðB20Þ

which gives back the identity in Eq. (24). For N ¼ 2, I2ðFÞ ¼ 1=2, I3ðFÞ ¼ I4ðFÞ ¼ 0, ΛðFÞ ¼ 1=24, we recover the usual
reduction formula for the Levi-Civita tensor:

0 ¼ −
1

24
ðεaceεbde þ εadeεbceÞ − 1

24
ðδacδbd − 2δabδcd þ δadδbcÞ: ðB21Þ

3. Casimir invariants for simple groups

Thanks to the orthogonality condition adopted to fix
ΛðRÞ [34], the usual formula can be employed to get
the explicit values of the invariant I4ðRÞ for various
representations,

InðRÞ ¼ ð−1ÞnInðR†Þ; ðB22Þ

InðR1 ⊕ R2Þ ¼ InðR1Þ þ InðR2Þ; ðB23Þ

InðR1 ⊗ R2Þ ¼ InðR1ÞNðR2Þ þ InðR2ÞNðR1Þ
¼

X
InðR0

iÞ; ðB24Þ

with n ¼ 2, 3, 4 and whereR1 ⊗ R2 ¼
P

iR
0
i. Altogether,

these relations are more than sufficient to derive the
Casimir invariants for any of the standard Lie algebra.

We give in Tables V–VII their values for the first few
representations of some unitary and orthogonal algebras of
rank r ≤ 5, along with ΛðRÞ. We also checked these
numbers by computing I2;3;4ðRÞ directly using explicit
matrix representations for the first few representations
of each algebra. These numbers are compatible with the
explicit formula in terms of Dynkin indices given in
Ref. [34], up to the normalization conventions.
The normalization of the generators adopted for SOðNÞ

algebras in Tables VI and VII is not standard but physically
inspired. Specifically, the invariants of an algebraM can be
expressed in terms of that of its subalgebra N. For instance,
if a representation RM branches into the sum of represen-
tations RN , we have the simple sum rule:

InðRMÞ ¼ η
X

RN⊂RM

InðRNÞ; ðB25Þ
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TABLE V. First few representations of SUðNÞ, N ¼ 2, 3, 4, 5, labelled by their Dynkin index, and their dimensions, quadratic, cubic,
and quartic Casimir invariants, together with ΛðRÞ as given by Eq. (B6).

SUð2Þ
R (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
N 2 3 4 5 6 7 8 9 10 11
I2 1=2 2 5 10 35=2 28 42 60 165=2 110
Λ 1

24
2
3

41
12

34
3

707
24

196
3

259
2

236 3223
8

1958
3

SUð3Þ
R (10) (20) (11) (30) (21) (40) (05) (13) (22) (60)
N 3 6 8 10 15 150 21 24 27 28
I2 1=2 5=2 3 15=2 10 35=2 35 25 27 63
I3 1 7 0 27 14 77 −182 −64 0 378
Λ 1

24
17
24

3
4

33
8

29
6

371
24

539
12

235
12

81
4

441
3

SUð4Þ
R (100) (010) (200) (101) (011) (020) (003) (400) (201) (210)
N 4 6 10 15 20 200 2000 35 36 45
I2 1=2 1 3 4 13=2 8 21=2 28 33=2 24
I3 1 0 8 0 −7 0 −35 112 21 48
I4 1 −4 12 8 −11 −56 69 272 57 24
Λ 29

816
11
102

23
34

40
51

1313
816

128
51

1211
272

56
3

1639
272

176
17

SUð5Þ
R (1000) (0100) (2000) (1001) (0003) (0011) (0101) (0020) (2001) (0110)
N 5 10 15 24 35 40 45 50 70 75
I2 1=2 3=2 7=2 5 14 11 12 35=2 49=2 25
I3 1 1 9 0 −44 −16 −6 −15 29 0
I4 1 −3 13 10 82 −2 −6 −55 79 −70
Λ 47

1560
83
520

77
120

125
156

1841
390

1903
780

167
65

1589
312

11123
1560

1075
156

TABLE VI. First few representations of SOðNÞ, N ¼ 5, 7, 9, 10, labelled by their Dynkin index, and their dimensions, quadratic, and
quartic Casimir invariants, together with ΛðRÞ as given by Eq. (B6). The cubic invariant vanishes for all these algebras.
The normalizations of the generators and of the quartic symbols is fixed in terms of that adopted for SUðNÞ algebras, using
Eq. (B25). The SOð4Þ and SOð6Þ algebras are not included since they are isomorphic to SUð2Þ ⊗ SUð2Þ and SUð4Þ, respectively. Note
that the normalizations does not necessarily match, with for example I2ðSUð4ÞÞ ¼ I2ðSOð6ÞÞ but I4ðSUð4ÞÞ ¼ −2I4ðSOð6ÞÞ.
SOð5Þ
R (10) (01) (02) (20) (11) (03) (30) (12) (04) (21)
N 5 4 10 14 16 20 30 35 350 40
I2 1 1=2 3 7 6 21=2 27 21 28 29
I4 2 −1=2 −6 26 6 −69=2 162 −6 −132 91
Λ 1

8
1
32

5
8

21
8

13
8

133
32

153
8

77
8

35
2

261
16

SOð7Þ
R (100) (001) (010) (200) (002) (101) (300) (110) (011) (003)
N 7 8 21 27 35 48 77 105 112 112
I2 1 1 5 9 10 14 44 45 46 54
I4 2 −1 −2 30 −16 10 220 42 −46 −126
Λ 13

138
43
552

125
138

111
46

155
69

889
276

1474
69

735
46

187
12

2007
92

SOð9Þ
R (1000) (0001) (0100) (2000) (0010) (0002) (1001) (3000) (1100) (0101)
N 9 16 36 44 84 126 128 156 231 432
I2 1 2 7 11 21 35 32 65 77 150
I4 2 −2 2 34 −18 −50 16 286 106 −54
Λ 17

228
10
57

245
228

517
228

329
76

1855
228

376
57

5395
228

5005
228

850
19

SOð10Þ
R (10000) (00001) (01000) (20000) (00100) (00002) (10010) (00011) (30000) (11000)
N 10 16 45 54 120 126 144 210 2100 320
I2 1 2 8 12 28 35 34 56 77 96
I4 2 −2 4 36 −16 −50 14 −68 322 144
Λ 19

282
103
564

160
141

104
47

770
141

2345
282

3791
564

1792
141

7007
282

1168
47
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where η is a constant reflecting the normalization con-
vention adopted for the generators ofM andN. In Table VI,
we chose to fix η ¼ 1. For example, the generators in the
defining representation of SOð10Þ are normalized so that

I2ð10ÞSOð10Þ ¼ I2ð5̄ÞSUð5Þ þ I2ð5ÞSUð5Þ ¼ 1; ðB26Þ

since 10 → 5̄þ 5. Similarly, the normalization of the
quartic symbol of SOð10Þ is then fixed by imposing
I4ð10ÞSOð10Þ ¼ 2I4ð5ÞSUð5Þ ¼ 2. This makes sense physi-
cally if one thinks of a field in a given SOð10Þ
representation circulating in some loop. Our normaliza-
tion conventions make the matching of this amplitude to
that computed in terms of the fields of the subalgebra
most transparent. Note that the generators and quartic
symbols of all SOðNÞ algebras are fixed once that of
SOð10Þ is, since SOðNÞ ⊂ SOðN þ 1Þ. Further, we also
checked that these conventions are compatible with
SOð3Þ⊗SOð7Þ⊂SOð10Þ and SOð4Þ⊗ SOð6Þ⊂ SOð10Þ,
with SOð4Þ ∼ SUð2Þ ⊗ SUð2Þ.
Other relations between the invariants of an algebra and

that of its subalgebras are given in the text, see in particular
Eq. (53) which gives InðRMÞ in terms of In−1ðRNÞ,
Eq. (53) which fixes I4ðRMÞ in terms of I2ðRNÞ,
or Eq. (48) which gives InðRMÞ in terms of the Uð1Þ
charges of theRM states. To close this section, let us give a
few illustrations for these relations.
Consider first the reduction of SUð2Þ down to the Uð1Þ

subgroup of SUð2Þ generated by T3. Since there is no
quartic invariant for SUð2Þ, Eq. (48) is easy to check. The
fundamental SUð2Þ representation corresponds to two

complex states of charge jT3j ¼ 1=2, so we can identify
2ð1=2Þ4 ¼ 3ΛSUð2Þð2Þ since ΛSUð2Þð2Þ ¼ 1=24. Similarly,
the complex adjoint representation of SUð2Þ contains
two states of unit charge, hence 2 ¼ 3ΛSUð2Þð3Þ, and the
isospin 3=2 decomposes into four states such that
2ðð1=2Þ4 þ ð3=2Þ4Þ ¼ 3ΛSUð2Þð4Þ, which give back the
correct values ΛSUð2Þð3Þ ¼ 2=3 and ΛSUð2Þð4Þ ¼ 41=12.
The same exercise can be repeated for SUð3Þ, for which the
absence of the quartic invariant ensures that TrððT3

RÞ4Þ ¼
TrððT8

RÞ4Þ if T3 and T8 are the conventional Cartan
generators (equal to half the corresponding Gell-Mann
matrices in the fundamental representation). To apply the
same method for SUð5Þ, we need to first fix two free
parameters. Specifically, we start from

3ΛðRÞ þ dααααI4ðRÞ ¼ δ
X
qα∈R

q4α; ðB27Þ

The value of dαααα and the Uð1Þ generator normalization
δ [which was coincidentally equal to one in the
previous SUð2Þ example] need to be fixed. If we identify
Tα as the hypercharge generator in the subalgebra
SUð3Þ ⊗ SUð2Þ ⊗ Uð1Þ ⊂ SUð5Þ, we can use the branch-
ing rules [60]

5 ¼ ð3; 1Þ2 þ ð1; 2Þ−3; ðB28aÞ

10 ¼ ð3̄; 1Þ4 þ ð3; 2Þ−1 þ ð1; 1Þ−6; ðB28bÞ

and these two constants are fixed as

TABLE VII. First few representations of SOð8Þ, labeled by their Dynkin index. Because of the invariance of the eight-dimensional
Levi-Civita tensor, this algebra has a second quartic invariant tensor. Its normalization is fixed to make manifest the relationship between
the values of both quartic Casimir invariants, and corresponds to η ¼ −1=8 in Eq. (B9). A second feature of SOð8Þ is its triality
symmetry: dimensions and quadratic Casimir invariants are the same under permutations of the first, third, and fourth simple root. Both
quartic Casimir invariants vanish when summed over representations linked by the permutation symmetry [34]. This means in particular
that they vanish identically for the 28, 300, and 350.

SOð8Þ
8ðI2;Λ ¼ 1; 1=12Þ 112ðI2;Λ ¼ 54; 45=2Þ 224ðI2;Λ ¼ 100; 115=3Þ 28ðI2;Λ ¼ 6; 1Þ

(1000) (0001) (0010) (2000) (0002) (0020) (1002) (1020) (2001) (0100)
I4 2 −1 −1 252 −126 −126 −40 −40 212 0
I04 0 −1 1 0 −126 126 −128 128 −44 0

35ðI2;Λ ¼ 10; 7=3Þ 160ðI2;Λ ¼ 60; 19Þ 300ðI2;Λ ¼ 150; 65Þ
(2000) (0002) (0020) (1100) (0101) (0110) (0012) (0021) (2010) (0200)

I4 32 −16 −16 72 −36 −36 −172 −172 212 0
I04 0 −16 16 0 −36 36 −84 84 44 0

56ðI2;Λ ¼ 15; 13=4Þ 294ðI2;Λ ¼ 210; 133Þ 567ðI2;Λ ¼ 324; 162Þ 350ðI2;Λ ¼ 150; 55Þ
(0011) (1001) (1010) (4000) (0004) (0040) (2100) (0102) (0120) (1011)

I4 −18 9 9 1344 −672 −672 864 −432 −432 0
I04 0 9 −9 0 −672 672 0 −432 432 0
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�
I4ð5Þdαααα þ 3Λð5Þ ¼ δð2 × 34 þ 3 × 24Þ
I4ð10Þdαααα þ 3Λð10Þ ¼ δð64 þ 3 × 44 þ 3 × 2 × 14Þ

→

�
δ ¼ 1=602;

dαααα ¼ −5=156:
ðB29Þ

One can then check that the I4 for the other SUð5Þ
representations are correctly reproduced.
The same branching rules can be used in connection with

Eq. (53), which we write as

I4ðRMÞ ¼ η
X

RN⊂RM

qαðRNÞI3ðRNÞ: ðB30Þ

The subalgebra needs not be maximal so we consider
Uð1Þ ⊗ SUð3Þ ⊂ SUð5Þ. Using the values quoted in
Table V, the first rule of Eq. (B28) translates into

ISUð5Þ
4 ð5Þ ¼ 2ηISUð3Þ

3 ð3Þ and fixes η ¼ 1=2. Then, we can
check that this equation is valid for all the other SUð5Þ
representations listed in Table V.
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