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By treating the vacuum as a medium, H. Euler and W. Heisenberg estimated the nonlinear interactions
between photons well before the advent of quantum electrodynamics. In a modern language, their result is
often presented as the archetype of an effective field theory (EFT). In this work, we develop a similar EFT
for the gauge bosons of some generic gauge symmetry, valid for example for SU(2), SU(3), various grand
unified groups, or mixed U(1) ® SU(N) and SU(M) ® SU(N) gauge groups. Using the diagrammatic
approach, we perform a detailed matching procedure which remains manifestly gauge invariant at all steps,
but does not rely on the equations of motion hence is valid off shell. We provide explicit analytic
expressions for the Wilson coefficients of the dimension four, six, and eight operators as induced by
massive scalar, fermion, and vector fields in generic representations of the gauge group. These expressions
rely on a careful analysis of the quartic Casimir invariants, for which we provide a review using conventions
adapted to Feynman diagram calculations. Finally, our computations show that at one loop, some operators
are redundant whatever the representation or spin of the particle being integrated out, reducing the apparent

complexity of the operator basis that can be constructed solely based on symmetry arguments.
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I. INTRODUCTION

In 1936, H. Euler and W. Heisenberg calculated the
nonlinear interactions among photons for a constant
Maxwell field, as induced by a spinor loop [1]. This has
been an important step in the development of QED, and their
result remains as the canonical example of an effective field
theory (EFT). That is, the idea that at energies below some
cutoff scale A, all the effects of the degrees of freedom more
massive than A can be encoded as new interactions among
the fields remaining active below A. This concept is central
to modern phenomenology. The Fermi theory of the weak
interactions [2] and the chiral Lagrangian of pions [3] have
played an important role in the development of the Standard
Model [4,5]. The methodology has since been used to define
many other frameworks to either simplify the problem at
hand, or to parametrize possible New Physics effects, for
example for neutrino [6], nuclear [7], flavor [8], electroweak
[9,10], and Higgs physics [11], or more globally for the
Standard Model (SMEFT) [12]. Few developments have
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also been done regarding EFT's for dark matter [13], inflation
[14] and cosmology [15].

The purpose of the present paper is to generalize the
Euler-Heisenberg (EH) result for photons to the gauge
bosons of an arbitrary gauge group, with their effective
interactions induced by loops of heavy fields in generic
representations and of spin 0, 1/2, or 1. Let us thus first
recall a few facts about the EH Lagrangian, and some of its
applications.

In QED, for energies below the electron mass m,, the
photons can interact between themselves only indirectly via
virtual loops of electron-positron extracted from the vac-
uum. These interactions are suppressed by inverse powers
of the electron mass compared with the Maxwell term and
are thus very small. Integrating out the electron field in
the QED Lagrangian lead to a tower of new photon
interactions which should be Lorentz and gauge invariant,
and respect parity invariance. The first nontrivial photon
interaction corresponds to dimension-eight operators, the
Euler-Heisenberg Lagrangian, and reads
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where B and E are the magnetic and electric fields, a =
e? /4n the fine structure constant, e the electron electric
charge, and €,,,, the totally antisymmetric tensor. The first
term in Eq. (1), quadratic in the fields, is the classical
Lagrangian corresponding to Maxwell’s equations in vac-
uum. From it, one concludes that electromagnetic waves
propagating in the vacuum cannot interact with each other,
the superposition principle holds, and colliding light-by-
light will not give rise to any scattering. However, this does
not remain true once the corrections induced by the two last
terms in Eq. (1) are included. At the loop level, electro-
dynamics is nonlinear even in vacuum. In that sense,
observing e.g., the scattering of light by light would be
a tremendous confirmation of the quantum nature of QED.

Another consequence of the nonlinearities in Eq. (1) is
the so-called vacuum magnetic birefringence. Two photons
interact with an external field and this leads, in vacuum, to
magnetic birefringence, namely to different indices of
refraction for light polarized parallel and perpendicular
to an external magnetic field. This property of the vacuum
has never been observed, despite many dedicated searches.
For example, attempts were made to measure the change of
the polarization of a laser beam passing through an external
strong magnetic field [16-18]. The PVLAS [19] experi-
ment is another approach to detect the vacuum birefrin-
gence, by measuring the degree of polarization of visible
light from a magnetar, i.e., a neutron star whose magnetic
field is presumably very large (B ~ 10'3G). In that case,
there is also an interesting interplay with well-motivated
axionlike scenarios that could enhance the QED predictions
(see e.g., [20]).

When discussing the Euler-Heisenberg result, one
should also mention that the Born-Infeld (BI) electrody-
namics [21] contains similar nonlinear corrections to the
Maxwell theory, at least from a classical point of view. It
was motivated by the idea that there should be an upper
limit on the strength of the electromagnetic field.
Nevertheless, BI electrodynamics is peculiar, since Bl-type
effective actions arise in many different contexts in super-
string theory [22]. In heavy-ion collisions, the ATLAS data
on light-by-light scattering can exclude the QED BI scale
~100 GeV [23]. It has been subsequently shown in
Ref. [24] that the ATLAS data on gg — yy scattering
enhances the sensitivity to <1 TeV for the analogous
dimension-8 operator scales (containing other combina-
tions of gluon and electromagnetic fields). Searches for yy
production at possible future proton-proton colliders are an
example of how one should complement the searches via
dimension-6 SMEFT operators.

Returning to the purpose of this paper, generalizing EH
to non-Abelian gauge bosons present several challenges.
As afirst step, all the effective interactions up to dimension-
eight can be constructed solely relying on gauge invariance.
The nonlinear nature of the field strength permits us to
construct many more operators than for QED. Operators

involving three field strengths arise already at the dimen-
sion-six level, and were constructed some time ago in
Ref. [12]. The most general basis of operators for QCD, up
to dimension eight and without imposing the gluon
equation of motion (EOM), was described in Ref. [25].

Remains the task of actually computing the coupling
constants of these operators, as induced by loops of heavy
particles. To our knowledge, this has never been done
before. To tackle this problem, there are two different
approaches. First, the heavy particle field can be genuinely
integrated out of the path integral. Several techniques are
available to perform this integration and obtain the effective
action at the one-loop level [26-32]. Though most power-
ful, the calculation has only been pushed up to the
coefficients of dimension-six operators [28,29]. Another
approach, which we will adopt in the present paper, is to
actually compute the loop amplitudes, expand them in
inverse power of the heavy particle mass, and match the
result with that computed using effective interactions.
Though most straightforward, several issues have to be
addressed. Since the EOM should not be imposed to
reproduce the generic effective action, loop amplitudes
have to be computed off shell. But then, gauge invariance is
not automatic since the amplitudes are not physical, and
special care is needed to ensure a proper matching onto
gauge invariant operators.

To illustrate our procedure and explain in details how to
deal with these aspects, we start in the next section by
rebuilding the well-known effective interactions of pho-
tons, as induced by loops of massive fermions, scalars, or
vector bosons. In particular, we point out that using a
nonlinear gauge is compulsory for the matching to succeed
for massive vector fields, in agreement with Ref. [33].
Then, we generalize this computation to gluonic effective
interactions in Sec. III, as induced by loops of massive
fermions, scalars, or vector bosons in the fundamental
representation of QCD. For the latter case, we use as
prototypes the leptoquarks of the SU(5) grand unified
theory (GUT), quantized using a nonlinear gauge condi-
tion. As this is not fully standard, that construction is
detailed in Appendix A.

Once the QCD case with heavy fields in the fundamental
representation is fully under control, it is a simple matter to
first generalize to arbitrary representations, and then to
generic gauge groups. This is done in Sec. IV, where we
discuss first the SU(N') case, then show how to recover the
previous results for U(1) and SU(3), and finally derive the
mixed operators and their coefficients for a nonsimple
gauge group like U(1) ® SU(N) or SU(N) ® SU(M).
The most striking result of that section is that some operator
combinations are never induced at one-loop, no matter the
spin or representation of the heavy particle. For QCD,
this means four instead of six operators are required to
describe the four-gluon interaction, while only two instead
of four operators are needed for the two gluon-two photon
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interaction. Throughout this section, the only technical
difficulty is related to quartic Casimir invariants, which
arise in the reduction of traces of four generators. From a
group theory perspective, these invariants have been
described in details before [34,35], but a more user-oriented
review seems to be lacking. Therefore, we collect in
Appendix B all the relevant information, as well as the
explicit values of the quartic invariant for simple Lie
algebras of interest for particle physics.

II. PHOTON EFFECTIVE INTERACTIONS

In the path integral formalism, the effective action is
obtained by integrating out some heavy fields [36]. In general,
this generates an infinite number of effective couplings
among the remaining light fields. Renormalizability ensures
that the effective couplings of dimension less than four can be
absorbed into the light-field Lagrangian free parameters,
while the other couplings are all finite and can be organized
as a series in powers of the inverse of the heavy mass [37].

To set the stage, consider the QED generating functional

Zagep[JH 0, 71) = /DA”D{//DIZ/expi
X/dx(['QED + iy +yn +JFA,),  (3)

with

1 .
EQED = _ZFIU/F”U + li/(lp - m)Wv (4)

and D* the usual covariant derivative. We omit the gauge
fixing term and its associated ghosts. At very low energy,
below m, only the photons are active. To construct the
effective theory valid in that limit, the fermion field is
integrated out. This can easily be carried out since the
fermionic path integral is gaussian when the sources 7, 77 are
set to zero:

1
ZQED[J'M,O,O} :/DA”expi/dx{—ZFwF”"—i—J"A”}

x det(ip — m) (5)

_ / DA expi / dx(Los +'A).  (6)

Exponentiating the determinant, the QED effective

Lagrangian is then
L
Legs = —ZFWF" —iTrIn(ip — m). (7)

At this stage, several techniques are available to actually
compute det(ifp —m) perturbatively, as an inverse mass
expansion.

Probably the most universal and powerful way is using
functional methods. Covariant calculation of the one-
loop effective action can be obtained by using a heat
kernel [38—40] to evaluate the effective action. This method
utilizes a position space representation and is significantly
more involved than the approach of Gaillard [26] and
Cheyette [27] who introduced a manifestly gauge-covariant
method of performing the calculation, using a covariant
derivative expansion (CDE). This elegant method simpli-
fies evaluating the quadratic term of the heavy fields in the
path integral to obtain the low-energy EFT, and was revived
recently in Ref. [28]. In particular, this work pointed out
that under the assumption of degenerate particle masses one
could evaluate the momentum dependence of the coeffi-
cients that factored out of the trace over the operator matrix
structure, without specifying the specific UV model. In
Ref. [29], it has been shown that this universality property
can be extended without any assumptions on the mass
spectrum, to obtain a universal result for the one-loop
effective action for up to dimension-six operators. There the
loop integrals have been computed for a general mass
spectrum once and for all. This universal one-loop effective
action [29-32,41] is a general expression that may then be
applied in any context where a one-loop path integral needs
to be computed, as for example in matching new physics
models to the Standard Model (SM) EFT. We should also
mention the usefulness of the string-inspired technique for
deriving effective actions [42-44].

However, in the present work, we wish to stick to the
more pedestrian diagrammatic approach with external
gauge fields, in which case one expands det(i) — m) as

1 = " 1 n
Leg=—-F, F*" +i —T . 8
eff 4 1722 +l;n r(zé’—mA> ( )

Graphically, this series is represented by the tower of one-
loop 1PI diagrams shown in Fig. 1. The main advantage of
expressing the effective action in terms of 1PI diagrams is
that well-tested automatic tools are available to actually
compute these loop amplitudes. In the present work, we
will rely on the Mathematica packages FEYNARTS [45],
FEYNCALC [46], and PACKAGE X [47] (as implemented
through FEYNHELPERS [48]).

o
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FIG. 1. Fermionic one-loop 1PI amplitudes generating the QED
effective action up to dimension-eight operators. The six permu-
tations of the photons are understood for diagram (b).
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For QED, all the diagrams with an odd number of
photons vanish because they are odd under charge con-
jugation (Furry’s theorem [49]). Let us construct the
effective couplings up to order m~*. First, the inverse-mass
expansion of a charge-one fermion (of mass m and
quadrimomentum p*) contribution to the photon vacuum
polarization is

8 2
4y

6 ° 30m* 280m*

with D, =2/e —y + log4nu?>/m>. The corresponding
effective interactions with two photons are

I (p*) = 5 (g p* — p*p¥)

——F,OF"

1 a
02— __l1 4 Zp \p pe
eff 4 T3t 60

5607z —— F PP + O(m~ 6). (10)

With four photons, the amplitude matches onto the two
couplings

2 2
4 _ @ v Ta v -
Lt = oo, Ful™ )2+360 = (F, F")+ O(m™®),
(11)
where the dual field strength is defined as F** = > L gmpo g o

so that (F,,F*)? = 2(F,,F*)? — 4F,,F*F,, F*. The
divergent term is the usual photon wave function renorm-
alization, the first derivative term yields the Uehling
interaction [50], and the Euler-Heisenberg effective cou-
plings [1] are the nonderivative O(m~*) terms.

A word is in order concerning the derivative coupling. In
most operator bases [12], it is eliminated using the equation

of motion (EOM) as

F,,OF" = F,,00,F" = F,, 0’ "F, + F,, 0" F*,
= —ZE)”FW@DF”P ==2j,J", (12)
where the Jacobi identity 0, F,, — 0,F,, + 0,F,, = 0 has

been used in the first equality, followed by integration by
part, and finally the equation of motion 9,F** = j*. This
makes sense physically, since the only impact of the
Uehling potential is on the interaction between currents,
at nonzero momentum transfer. Yet, in the QED effective
theory considered here, all the fermions have been inte-
grated out and 9, F** = 0. This illustrate a generic feature
of the effective action formalism, where all of the effects of
the heavy fields are encoded into effective couplings among
light fields at the path integral (i.e., quantum) level. At no
stage are the light fields assumed on shell. So, some

TABLE I. Wilson coefficients of the effective photon operators
for a scalar, fermion, and vector boson of electric charge Q.
For the latter, the matching of 1PI amplitudes onto the U(1)-
gauge-invariant operators of Eq. (13) is possible only when
using a nonlinear gauge for the massive vector bosons, and the
quoted values for a;,3 are specific to that gauge [k =1 in
Egs. (16) and (17)].

[20) 125] Ay Va1 Va2
1 2 12 3 2 7 4 1 4
Scalar 3D.0 -30 %0 30 350
; 2 2 1 7
Fermion 2D.Q -0 % 0? 1% 0!
21D,+2 37 12 159 2 261 4 243 Hd
Vector e 0? 5 0 20 >0 53

effective interactions may actually never contribute to
physical processes, even though they are required to fully
encode the underlying dynamics of the heavy field.

At this stage, it should also be clear that the effective
couplings can be constructed a priori. Using only the
requirement of QED gauge invariance, the most general
basis is

2 2

e
geff: 4{1+(104 8F 8F/’
2 4
8FWD8F + 741

}F F —I—a25

e
tag s (PP

4
e -
+ 742 PP (F F)* + O(m™°). (13)

The derivative operators are rewritten in a form that makes
the EOM manifest. This will prove useful when comparing
with the non-Abelian results in the next section, for which
this choice of operator basis is far more convenient. The
nomenclature adopted throughout the paper is to denote by
a;, fi, v; the two, three, four-field strength couplings of
inverse mass dimension i. Only the specific values of these
coefficients encode the information about the heavy field,
and we give in Table I the results for a scalar, fermion, and
vector boson. Note that the sole purpose of the rather
unconventional normalization of the coefficients in Eq. (13)
is to increase the readability of Table I. It is designed to
make the coefficients appear as simple O(1) fractions for
the fermion case.

The calculation in the scalar case is very similar to that
for fermions and present no particular difficulty (see
Fig. 2). On the other hand, that for vectors circulating in
the loop is far less straightforward. Let us take the SM,
where the electroweak gauge bosons acquire their masses
through the Higgs mechanism. Working in the 't Hooft-
Feynman gauge, the amplitude does not satisfy the
QED ward identities when the photons are off shell.
Consequently, the four-photon amplitude matches onto
the local O(m~*) effective operators only when the four
photons are on shell [51], and the usual procedure to
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FIG. 2. Scalar one-loop 1PI amplitudes generating the QED effective action up to dimension-eight operators. Permutations of the
photons are understood for diagrams (b). For massive vector bosons, the topologies are the same but one should also include the

appropriate would-be Goldstone and ghost diagrams.

construct the effective action breaks down. The problem
originates in the gauge-fixing procedure. In the usual R;
gauge, one adds the term

R¢ linear
& —
ggauge—fixing -

S IW Mg P (19
with ¢* the would-be Goldstone (WBG) scalars associated
to W=, and this explicitly breaks U(1)qgp. Though the
photon vacuum polarization remains transverse and
matches onto the effective operators in Eq. (13), the off
shell four-photon amplitude is not gauge invariant and
requires more operators already at the O(m=2) [52]. Of
course, physical processes have to be gauge invariant, so
this should have no consequence. But in practice, adding
nongauge invariant operators in the effective Lagrangian is
not very appealing. One could attempt to solve this problem
by working in the unitary gauge, for which the W couplings
to the photon derive from

1
‘CU—gauge = —5 (DﬂWj - DDWJ)(D”W_V — DVW_l‘)
+ieFRWEWS + M3, WEWH, (15)

where D, Wi = 0,W; F ieA,W;". The magnetic moment
term F**W,;W,, gauge-invariant by itself, is fixed by the
underlying SU(2), gauge symmetry. As shown in
Ref. [53], its presence ensures a proper high-energy
behavior for scattering amplitudes. However, this is not
sufficient to ensure a correct behavior off shell, and the
matching fails again [54].

A better way to proceed is to enforce a nonlinear gauge
condition where *Wif — D'Wi = "W + ieA*W; in
Eq. (14). This closely parallels the constraint one needs to
impose to construct the CDE [28]. In the diagrammatic
approach, as shown in Ref. [33], the four-photon amplitude
is then gauge invariant, even off shell. We checked this
explicitly using the dedicated FEYNARTS model file [55] for
the SM in the nonlinear gauge, and indeed found a
consistent off shell matching on the Euler-Heisenberg
operators. The result in that gauge for all the coefficients
is shown in Table I. It should be clear though that the first

three coefficients are gauge-dependent, and only y4; and
74, are physical. To investigate this feature, let us set the
gauge fixing term as [56,57]

gnonlinear _ _1
gauge—fixing — 5

|O“Wi + ikeA"W, + EMyg™|?, (16)
which permits us to interpolate between the linear (x = 0)
and the U(1)-gauge-invariant nonlinear (x = 1) gauge. The
inverse-mass expansion of the photon vacuum polarization
in the 't Hooft-Feynman gauge (£ = 1) then gives «-
dependent coefficients:

12 9 20 17
ay = — KT Dg—l, (12:7’(;_ s
84k + 75
- - 17
Q4 36 (17)

Of course, these gauge dependences are unphysical. At very
low energy, when the photon remains as the only active
degree of freedom, the first coefficient is absorbed into the
photon field as the wave function renormalization constant
while the other two do not contribute since 9, F** = 0. If
some fields remain active such that 8MF”” = j¥ # 0, then
other types of processes are also present. In that case, the a,
operator should be eliminated in favor of the dimension-six
Jud*/ m? operator, for which other diagrams occur. In the
SM, even if the fields in the current j# are not coupled
directly to the W*, they are necessarily coupled to the Z
boson. The x dependence of the W+ contributions to the Zy
and ZZ vacuum polarization [58] must cancel that of a,, so
that the coefficient of the j, j*/ m? operator ends up gauge-
invariant and physical. The conclusion is thus that in the SM,
itis not consistent to define the Uehling potential in terms of
the F,,LIF* operator, and one must use the effective four-
fermion operators instead. After all, this is rather natural
since the Uehling potential is only relevant when some
fermion fields remain active.

III. GLUON EFFECTIVE INTERACTIONS

The effective action for gluon fields is constructed in the
same way as for photons, using the diagrammatic approach.
For example, integrating out a heavy fermion generates
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FIG. 3.
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(©)

Fermionic one-loop 1PI amplitudes generating the gluonic effective action. Permutations of the gluons are understood for

diagrams (b) and (c). As for QED in Fig. 2, additional diagrams are understood for the scalar and vector case.

1
'C'eff = —ZGZDGa"Lw - lTrll’l(ll) - m)

_Lga g i _gara)' 13
=o'
where T¢ are the SU(3) generators, and the trace carries
over both Dirac and color space. This generates the series
of 1PI diagrams shown in Fig. 3 where, contrary to QED,
the odd-number of gluon amplitudes do not vanish.
Another difference with respect to QED is the nonlinear
nature of the field strength, which blurs the relationship
between the leading inverse-mass power of a given
diagram and the number of external gluons. The most
striking consequence is that the three and four-gluon
diagrams are not finite. Actually, since these infinities
both correspond to the renormalization of the same
operator Gy, G***, they must be coherent with that
obtained from the two-gluon vacuum polarization. Let
us see how this happens in more details.

As afirst step in the calculation of the effective action, let
us construct the most general basis of operators up to
O(m=*). With two field strengths, the operators are simple
generalizations of those for QED:

1
0+2 a (ya.uv
fia ):_4{1—{—(104' 2}(; G+
+a25' >3 D GyD, G
g vela a
+ a3 D'GLDD,G, (19)

where G¢, =0, A“ 0,A% + gf*“ALAS and D,G%, =
(9,6 + gf””‘ Gb )G, To see that there can be only one
derivative operator per inverse-mass order [12], first remark
that all the derivatives can be move to act on one of the field
strength by partial integration. Then, only one ordering
of the covariant derivatives is relevant since commuting
them generates an additional field strength, [D”, D?]Gj, =
gf“bCGﬁr,wa. Finally, combining this with the Bianchi
identity

D, G*

¢ = D,Gly + D,Gl, + DyGlYy =0, (20)

these operators can be written as manifestly vanishing
under the EOM for the field strength, D*Gj, = 0.
Let us stress though that the EOM are not used at
any stage, since using them would render the matching
impossible.

With three-gluon field strengths, there is only one
operator at O(m~2) but many at O(m~*). However, upon
partial integration, use of the Bianchi identity, and dis-
carding terms involving four or more field strengths, only
two inequivalent contractions remain [59]. Here again, we
choose them to be manifestly vanishing under the field
strength EOM:

abe (ra v b ¢
el = ﬁzs'zszc Gy Go* (21)

+ﬂ4 | ol 2 4fachaﬂvDaGb DﬂGgﬂ

3
+haaer 95 - feGem DG, DGy, (22)

At the four-field strength level, the operators up to
O(m™*) contain no covariant derivatives. To reach a
minimal number of operators, we use the generalization
of the QED identity:

Ga Gb MDGL Gd po __ Ga G meh Gd po 4 Ga Gd meb Gero

—~ 4G4, G GhGhon, (23)

and note that no contractions with the totally symmetric
tensor d’¢ occurs because those are reduced using (see
Appendix B)

3dabedcde 5a05bd 5ab56d + 5ad5bc +facefbde +fadefbce

(24)

Contractions with both f and d tensors vanish identically
owing to their mixed symmetry properties. This leaves six

- 4
O(m=*) operators for 2}
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W%}%%

FIG. 4. The four basic s-channel topologies for the gluon-gluon scattering amplitude. That for the #- and u-channel are understood.
The grey disks represent the insertion of the effective action vertices.

4
4 a a,pv c
8 = 741 A GRLG Gl G

4
_‘_y426'gz 4Ga Ga/wa Gbpa

4
+y4g6, >3 GGG, Ghr

4
+y446' >3 GGGy, G

4
9s abe rede (ra yeuv b dpo
+ Y45 6'71'2m4f f G#UG H G/,(,G S/

4
fabefcde Ga Gc /wa Gd PO (25)

+ Y46 6! 2 4
This basis corresponds to that in Ref. [25], but for a slightly
different numbering and replacement of dual tensors
via Eq. (23).

The non-Abelian nature of QCD makes the effective
action expansion quite different from the QED case. The
operators vanishing under the EOM have to be kept
because they contribute to several off shell 1PI diagrams.
For example, the D*Gj, D,G*?* operator occurs in the two,
three, and four-gluon off shell 1PI diagrams of Fig. 3
simply because of the non-Abelian terms present in the
gluon field strengths. On the other hand, for a physical
process involving external on shell gluons, these operators
should not contribute, and the basis could be simplified. Let
us check this in the simplest case, which is the gluon-gluon
scattering amplitude

A(g(p1.€p)9(P2. €52) = 9(P3. €52)9(Pa. €p}))

= 8’;711 8’;2281;33*%3*/\/1#]#2/43ﬂ4‘ (26)
Computing this amplitude using the effective Lagrangian
up to O(m™*), the basic topologies to consider are shown in
Fig. 4. Besides the four point local terms, we must add the
nonlocal contributions from the three-gluon and two-gluon
operators, as well as the wave function corrected tree-level
term. We observe:

(i) The wave function correction is automatically
accounted for through a rescaling of the field
and Couphng constant gg.

(i) The ﬂiff) operators contribute to all topologles ﬂgf)

operators to (b — d) topologies, and Seff to the (d)
topology only.

(iii) For the EOM operators, these topologically distinct
contributions precisely cancel each other. These
operators thus play no role for physical processes.

(iv) Independently for each non-EOM operator Q;, the
sum of the contributions M, , ... (Q;) satisfy the
four Ward identities pi* M, ..., (Q;) =0, k=1,
2,3, 4.

The fact that EOM operators drop out of the full physical
amplitude can be easily understood qualitatively. For exam-
ple, taking the dimension-six ng operator DGy, D,G**
and expanding the covariant derivatives, we get

D*GY,D,G*" = & G4,0,G + gf "GP G, 0,G*
+ gf“”"a”G,‘jﬂGf,’G‘“/’”
+ Qquhcfude Gb’yGiﬂ G;)lGe,/m . (27)

Replacing the field strength as Gy, — 9,G{ — 0,Gy, these
four terms are precisely those entering the four topologies
in Fig. 4. We can see that the cancellation occurs because the
gluon propagator poles are precisely compensated by the
momentum factors arising from the LO three-gluon vertex
and from the derivatives in the first three terms of Eq. (27). A
similar reasoning can be applied to the non-Abelian terms in
the field strengths, which cancel out similarly.

Let us now compute explicitly the coefficients of the
effective operators for a fermion, scalar, or vector in the
fundamental representation. Generically, the procedure is
as follows: Starting with the vacuum polarization graph
[Fig. 3(a)], we fix the a4 coefficients. Then, the three-
point 1PI loop amplitudes [Fig. 3(b)] generate again the

2(?12 operators together with that of & ?f and thus fix f,,

Pa.1, and B, ;. As a side effect, the basis chosen for 26?;’ 2

thus affects the three Wilson coefficients of Seﬁ-. Finally,

the four-point 1PI amplitudes [Fig. 3(c)] match over the

local four-gluon terms extracted from £ 0+2+3+4), and

given the coefficients obtained in the first two steps, fix
the six y,4 ; coefficients. The final results for the coefficients
are given in Table II. They agree with Ref. [28] for
dimension-six operators.

This procedure is rather straightforward for scalars
and fermions circulating in the loop, and only marginally
more complicated than in the QED case of Sec. II. We
checked our computation using the SM and minimal
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TABLE II. Wilson coefficients of the effective gluonic oper-
ators for a scalar, fermion, and vector boson in the fundamental
representation. This corresponds for example to the contributions
of squarks in the MSSM, or heavy quarks in the SM. For the
coefficients in the vector case, we use the leptoquark gauge fields
of the minimal SU(5) GUT model, quantized using a nonlinear
gauge fixing procedure (see Appendix A).

Qo 125] Q4 )2 Bai Pan
1 _1 3 1 _ 1
Scalar 4 D, 16 112 43 28 0
i _1 9 _ L 1 _3
Fermion D, 3 58 o7 7 1
21D, +2 37 159 1 _3
Vector - 16 112 16 28 3
V4.1 1£%) 743 Va4 V45 Va6
1 1 7 1 1 1
Scalar 768 768 384 384 9 672
i 1 1 1 7 1 19
Fermion 48 192 24 9% 96 672
87 81 87 8L _3 _27
Vector 256 256 128 128 32 224

supersymmetric Standard Model (MSSM) FEYNARTS mod-
els, using quarks or squarks as representative particles in
the fundamental representation. For vector particles, the
calculation is far more challenging. First, we must construct
a consistent model involving a massive vector field in the
fundamental representation of QCD. Second, we know
from the QED case that working in the unitary gauge does
not work, and even introducing an appropriate Higgs
mechanism to make these vectors massive is not sufficient.
Some generalization of the nonlinear gauge has to be
designed to preserve the QCD symmetry throughout the
quantization, otherwise the 1PI off shell amplitudes cannot
be matched onto gauge invariant operators. This is par-
ticularly annoying here since the three gluon 1PI ampli-
tudes kinematically vanish on shell.

To proceed, our strategy is to use the minimal SU(5)
GUT model, spontaneously broken by an adjoint Higgs
scalar down to the (unbroken) SM gauge group. Twelve of
the SU(5) gauge bosons become massive in the process,
and those fields have precisely the quantum numbers we
need. The weak doublet of leptoquarks (X, ) transforms as
color antitriplets, so integrating them out generate the
effective gluonic operators. Note that we do not need the
second breaking stage down to SU(3)- ® U(1),,,. In
Appendix A, we describe in some details the minimal
SU(5) GUT model, along with its quantization using
nonlinear gauge fixing terms for the X and Y gauge bosons.
Denoting by HY and HY, the WBG scalars associated to X}
and Y,’j, the main point is to modify the usual R gauge
fixing terms

1 , 1
Ly = —E|aﬂx’,§+ — iEMyyHY? — : |oHyk*

— My HY P (28)

by replacing the derivative by

2
AW yy+yit+ S p xit 29
+E utv +ap E urv s ( )

YT — DYEE — igs (—aGY£+T7,.Gg - %WW;Y#

FXIF > KLY — igy <_acx£+ Te.Go + 2 wixi+

Ay

V2

where 7% are the SU(3) generators for the fundamental
representation, and i, j, k the corresponding indices. The
gauge parameters ag, Qy, op interpolate between the
’t Hooft-Feynman gauge a; = ay = ag = 0 and the non-
linear gauge ag = ay = ag = 1, when the above terms
coincide with D*X'* and D*Y};". In that limit, the SM gauge
symmetries are preserved, exactly like the U(1),,, in the SM
in the nonlinear gauge. Technically, it should be remarked
also that this gauge has the nice feature of drastically
reducing the number of diagrams for a given process [57].
Indeed, remember that the purpose of the usual R gauge is to
get rid of the mixing terms like X% 0* H . But when the vector
is charged under some remaining unbroken symmetries, this
term is necessarily of the form XX D*HY since it arises from
the Higgs scalar kinetic term which is invariant under the
unbroken symmetries. With the nonlinear gauge, all these
terms cancel out, leaving no X — Vgy — Hy couplings. As a
result, all the mixed loops where the massive vector occurs
alongside its WBG boson disappear, and given the large
number of diagrams, this is very welcome.

To actually perform the computation, we again use
FEYNARTS [45] but with a custom SU(5) model file.
The calculation then proceeds without particular difficulty,
and gives the coefficients quoted in Table II. Several
comments are in order:

(1) The matching works only for a; = ay = ag = 1.
Without this condition, nongauge-invariant operators
are required. Note that out of a total of 207 irreducible
four-gluon diagrams, the gauge conditions ag =
aw = ag = 1 leaves only 21 gauge-boson loops,
21 WBG loops, and 42 ghost loops. The disappear-
ance of mixed loops therefore reduces the number of
diagrams by more than a factor of two.

(i) Many of the properties discovered in Ref. [33] for
photons survive to the non-Abelian generalization:
the ghost and WBG contributions are separately
gauge invariant when a; = ay = ap = 1. Actually,
matching separately the H% contributions on the
effective operators reproduce the coefficients for the
scalar case in Table II, while matching the cy and
c; ghost contributions gives —2 times the scalar

A 5 .
+ WX, +ag —B”Y,’f), (30)

12
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coefficients of Table II. With the nonlinear gauge,
the ghosts behave exactly like scalar particles, but
for the fermi statistics.

(iii) As a check, we computed the full physical gluon-
gluon scattering amplitude keeping the gauge param-
eter ag arbitrary. On shell and when both 1PI and
non-1PI topologies are included, the only remaining
ag dependence can be absorbed into a wave function
correction. In other words, the inverse-mass expan-
sion of the full amplitude matches onto the non-EOM
operators, and except for a, their coefficients are
gauge-independent and physical, as they should.

(iv) To further check our results, we computed the 1PI
diagrams with two, three, and four external SU(2),
bosons. Since SU(2), is kept unbroken, and since
(X,Y) form an SU(2), doublet, we can use the same
operator basis as for gluons, up to obvious substitu-
tions, and found again the coefficients in Table II.

(v) Finally, we also computed the effective operators

involving two and four U(1), gauge bosons, and
recover the same results as in Table I for the W=
contribution in the nonlinear gauge to photon
effective operators.

To close this section, the same cautionary remark as for
the Uehling operator should be repeated here for EOM
gluonic operators. Those play no role for on shell gluon
processes, but do contribute when other fields like light
quarks remain active. However, in that case, it is compul-
sory to include also all the effective operators involving
quark fields. Though the EOM operators are gauge invariant
by construction, their coefficients are not gauge invariant by
themselves. For instance, the gauge chosen for the X,’j and
Yﬁ fields does affect their values [Eq. (17) remains valid for
the gluonic vacuum polarization]. In a phenomenological
study, it would thus make no sense to consider for example
the D*Gy,D,G*"* operator without including all the four-
quark operators. Taking again SU(5), it is clear that X ;j and

Y,’j loops would contribute to both D*Gy,D,G*"* and four-
quark operators, and only their combination would result in
a gauge-invariant physical result at the dimension-six level.
As an aside, it should be mentioned also that the gauge-
dependent coefficient of the D* Gy, D ,G*"* operator quoted
in Table II agrees with that in Ref. [28]; the CDE

computation being done in the same nonlinear gauge.

IV. SU(N) EFFECTIVE INTERACTIONS

The computation done in the case of QCD can be
extended to arbitrary representations of other Lie groups.
For that, it suffices to replace the traces over the funda-
mental generators of SU(3) occurring for each of the 1PI
diagrams of the previous section by traces over generators
in some generic representation R. Our notations along with
various group-theoretic results are collected in Appendix B.
In this section, for definiteness, we refer to SU(N) gauge

group, but the results are trivially extended to other Lie
algebras.

Specifically, the vacuum polarization is tuned by
Tr(T4T%) = I,(R)5% with I,(R) the quadratic invariant,
so the a; coefficients are simply I,(R)/I,(F) = 21,(R)
times those in Table II. Similarly, the three-boson diagrams
are proportional to

Tr(T§ [Tk TR]) = iL(R) . (31)

The fact that both the two and three-boson amplitudes are
proportional to the same I,(R) coefficient ensures a proper
matching. In particular, the divergence of the three-boson
diagrams is correctly accounted for by the ng) couplings.

The situation is more involved for the four-boson
amplitude. The 1PI loops in either the fermion, scalar, or
vector case are equivalent two-by-two under the reversing
of the loop momentum, so the total amplitudes can always
be brought to the form

Mabcd — Czllhchl + C‘gbcd‘/\/l2 + Cghc'dM3,
Cibed = Tr(T{TRTETR) + Tr(TRTRTRTR)-

CsPed = Tr(T TR TR T) + Tr(TR T TR TR)-

C4bed = Tr(T{T{TRTE) + Tr(TRTETRTR)

(

32)

Expanding M%< in the mass of the heavy particle
circulating within the loop, only two independent combi-
nations of traces occur at O(m®) and O(m~2), which can be
expressed entirely in terms of the quadratic invariants as

abced __ abcd __ abed _ abed
Dabed — pCabed _ cabed _ 4

— Iz(R) (Zfacefbde _ fadefbce% (333)
ngcd — zcgbcd _ C?de _ Cgbcd
— 12 (R) (2fadefbce _ facefbde>’ (33]3)

Dgzbcd — chlbcd _ Ctlzbcd _ Ctzzbcd
— IZ(R)<_fadefbce _facefbde) — _D?bcd _ ngcd’
(33¢)

where we used [Ty, Th] = if*°T§ together with Eq. (31)
and imposed the Jacobi identity fabefede = face fbde_
fade fbee Thanks to this reduction, M%¢¢ matches the

four-boson amplitude obtained from the ng) and ﬁgf)
couplings at the O(m") and O(m=2).

At O(m™), these same combinations D{%¢ induce the
operators tuned by 74 5 and y, 6, which involve the structure
constants. The rest is proportional to the fully symmetrized
trace
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Dahcd

1
Cabcd + Calnd + Cuhcd — —STT(T%T%T%T‘{{)

(34)
As detailed in Appendix B, for a general SU(N) algebra,

the fully symmetrized trace decomposes into quadratic and
quartic invariants. Plugging Eq. (B4) in Eq. (34),

Dabcd 6l ( )dahcd + 6A(R) (éahécd + éacabd + 5ad5hc) ,

(35)

where d?? is the fully symmetric fourth-order symbol
normalized such that 7,(F) = 1 for the defining represen-
tation, and

L(R)
2+ N(A)’

- Iz(A)) (36)

N(R) 6

(@) ()

FIG. 5. Examples of two-loop diagrams in the SM that
preserves (a) or violate (b) the one-loop predictions Eq. (38)
among the gluonic operators. The particle circulating in the loops
are heavy quarks, and the dashed lines denote the Higgs boson.

where A denotes the adjoint representation and N(R) the
dimension of the representation R. The term proportional
to A(R) matches onto the operators tuned by y, 1 t0 744,

while that proportional to d*°¢ requires to extend 2% of
Eq. (25) with two extra operators. The total effective
Lagrangian is then:

4 4
“4) _ a (a, c 9s a b a a c
geff = Y41 P 2 4 GIWG ﬂI/G/!;UGh P! 6 5 4 G Ga ’MDG;”)_Gpr 6' 2 4 GWGb HY (G (rGh P
g g g
+ Vas——3— T 2 4 GﬁUGb ;wGa Gb po 4 Yas i ég fabefcdeGu G¢ ;wGh Gd/m- +74 46 i 2 4fahefcdeGu Gc ﬂUGh Gd po
+ Va7 6 dabchzbe ;ch Gd po 4 Vag 6 dabcha Gb /ch Gd PO (37)
The need of a total of eight operators for SU(N) and their 1
connection with the quartic tensor structure is in agreement Y42 = 5744 (38b)

with Ref. [25]. Note, however, that the definition of A(R) is
amatter of convention, and it indirectly affects the definition
of all the operators but those tuned by y,; and y4¢. Yet,
adopting the convention in Eq. (36) for A(R) looks optimal
since it ensures I4,(R) =0 for all SU(2) and SU(3)
representations, as it should since these algebras have no
irreducible invariant tensor of rank four. As said before, all
these results stay valid for SO(N) algebras, but for a single
exception. As explained in Appendix B, SO(8) has the
unique feature of having two quartic symbols, and an
additional term occurs in Eq. (35). In that case, two extra
operators are required, tuned by the second quartic symbol
of Eq. (B9).

Now, even if a total of eight [or ten for SO(8)]
independent operators can be constructed in general,
our specific computations show that at one loop, most
of these operators derive from a single symmetrized
trace and are thus always correlated. In particular, no
matter the representation or spin of the particle in the
loop:

1

= —y4a, 38
Va1 2}’4,3 (38a)

There are thus two operator combinations that never
occur in the one-loop effective action. From an effective
theory point of view, this should remain true in most
cases since it derives from the symmetry of the
amplitude. A necessary condition beyond one-loop is
the absence of diagrams where the color flow is
disconnected, that is, where a product of traces over
the generators occurs instead of a single trace. This
never happens if only one heavy state is integrated out,
but could arise in more general settings. For example, in
the SM, integrating out heavy quarks together with the
Higgs boson, the diagrams in Fig. 5 arise at two loops.
Since the CP-conserving effective Higgs coupling to
two gluons is of the form hOG,‘j,,G“'””, it is clear that the
Higgs boson exchange in Fig. 5(b) contribute to y,; but
not to Y43

The coefficients for a complex field (fermion, scalar,
vector particle) circulating in the loops are given in
Table III. Those for a self-conjugate particle are half of
those quoted there. Indeed, when the propagator is not
oriented, some Feynman diagrams get an extra symmetry
factor 1/2, while for others, the loop momentum cannot be
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TABLE III.  Wilson coefficients of the effective operators for SU(N) or SO(N # 8) gauge bosons, as induced by a set of complex
fields of spin 0, 1/2, and 1 transforming under the representation R. For real fields, all the coefficients should be halved.
) @ a4 P Paa P2

Scalar 1L(R)D, -1L(R) 21 (R) 3 h(R) -5 L(R) 0
Fermion 21,(R)D, -I,(R) ul(R) -5 hL(R) 11(R) -35,(R)
Vector ~ 20421 (R) I5L(R) -2 (R) LI (R) -3 L(R) 6/,(R)

Va1 =743/2 Ya2 =744/2 745 V4.6 Y47 V4.8
Scalar % AR) 5 A(R) =L (R) sz 2(R) % 14(R) 3 14(R)
Fermion IA(R) IA(R) =L (R) 1= (R) 11,(R) $1,(R)
Vector LLA(R) Z5A(R) -25L(R) -2 L(R) BL1L(R) 21,(R)

reversed and runs in only one direction. This latter situation
also brings a factor 1/2 because (T )" T4 for a real
representation. For example, instead of Eq. (31), the
triangle diagrams are now tuned by

1
==-Tr

Te(TRTRTR) .

(TR[T%- Tg])

self—conjugate

(R)fubc.

:*l.lz

. (3)

Similarly, the coefficients for the four-point amplitude
satisfy

MSSM gluinos, both self-conjugate fields transforming in
the adjoint representation of SU(3).

A. Reduction to SU(3) and SU(2)

The general basis of effective operators reduces immedi-
ately to SU(3) by removing the quartic invariant operators,
i.e., by setting y,; and y,g to zero. For the fundamental

representation, I‘;U@)(F) =1/2 and ASUG)(F) = 1/24,
and we recover the results of Table II. But, an interesting
feature appears for more general representations. A priori,
as the representation get larger, one would expect the
strength of the effective interactions to increase mechan-

Cabed| self—conjugate = Tr(TETRTETS) ically due to the increased number of particles circulating in
1 the loop. However, we show in Fig. 6 that A(R) grows

=5 (Tr(TRTRTRTR) +Tr(TRTRTRTR))  much faster than N (R). The fastest growth happens for

1 representations which are the symmetric tensor products of

= EC abed, (40)  the fundamental representations, for which A(R) ~ N(R)?3.

We checked this property of the coefficients for two
physically relevant cases: the contribution to the gluon
coefficients of the SU(5) Higgs bosons H¢ and of the

For instance, A(3) = 1/24 but A(6 =3 ®; 3) = 17/24,
A10=3®3®3)=99/24, and A(15=3®33R®;3R®s3)=
371/24. The adjoint representation is not on this series,
but the effective interactions are nevertheless stronger than

1o4§ SU?) . ] 104§ SUG) gt
1000k e ] 1000 £ ] —
; . E E o : - 125
_ 100k g 1 100 g v, " Tes
g ‘ 2 * ] & 15/ v
< 10 4 . < 10 27
; 32 E P,
F d 3 15
L ] 1E6,. ]
[T 0.1t
01 124 Ee3
L 1 L 1 1 0.01 1 1 1 1 1 1 L
0 5 10 15 20 0 20 40 60 80 100 120 140
MR) NR)

FIG. 6. Evolution of A(R) as a function of the dimension N(R) for SU(2) and SU(3). In the former case, we denote the first few
representations by the corresponding isospin. In the SU(3) case, several branches are apparent, each starting with a real representation.
The horizontal dashed lines depict the Euler-Heisenberg value, identified as A(1) = 1/3 for a charge-one loop particle from Eq. (48).
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naively expected from the dimension since ASUG)(8) =
3/4 = 18 x ASUG)(3). Interestingly, this corresponds to
physically sensible scenarios, for example that of the
gluinos in the MSSM for which (including the 1/2 factor
for self-conjugate particles):

which is an order of magnitude larger than the coefficient of
the effective photon interactions of the Euler-Heisenberg
Lagrangian.

For SU(2), the effective Lagrangian gets simpler thanks
to the identity

fabefcde N gahf:ngf — 5“C5bd — 5ud(5hc, (42)

4 4 which permits us to get rid of two operators. Expressing the
1 9s _ 1 1 18 gs Qg 41 . L
3 X m}/“ =73 X B e ™ Tomd (41) remaining four operators explicitly in terms of the SU(2)
g B g triplet states denoted as {W,, Wﬁ, Wi}
4 (Y41 +743)9" (Ya2 +7144)9" 5 4(ra1 +74s)g" _
8 v, = e (Wi, Whn 2 4 SIS (a2 g SIS i wrsew weee
4 b . 4(y4s — 4 A(y4q — 4 3
n (7/4,62'+2 mf)g W, WA W v 4 (7/463' 27/445)9 W3, W2 4 (“54. 2744,16)9 (W3, W2
lz=m lz=m = m
2(2y41 + 743+ 7a5)g" _ 2(r44 = 146)9" ~
+ 6'”2’m4 (W;ZW ,ﬂu)z 4 6'”2m4 ‘W;rDW+.ﬂl/|2
2(y43 = 7145)9" 22742 + V44 + 7a6)9" -
T L B e LA (#3)

These operators and coefficients are obtained from the
effective action, and are independent of the invariant mass
of the external states. Thus, they remain valid for massive
external weak bosons, at least as long as m is sufficiently
large compared to M . An important caveat though, of
relevance for the SM, is the presence of chiral fermions.
Those cannot be massive without breaking the gauge
symmetry, so the inverse mass expansion is defined only
in the broken phase. Nongauge invariant operators can then
arise, at both the O(m°) and O(m2) level.

Concerning the strength of the effective interactions,
here also A(R) grows much faster than N(R). Actually,
as the SU(2) representations are smaller than those of
SU(3), the increase is much more pronounced, with
A(R) ~N(R)>, see Fig. 6. So, while A(F) = 1/24, it is
already an order of magnitude stronger for the adjoint
representation, A(3) =2/3 = 16 x A(2).

To close this section, it is instructive to look at the
application of the SU(N) result from a group-theoretic
perspective. Up to now, the SU(2) and SU(3) effective
Lagrangians are obtained simply by setting N =2or N = 3
in the general result. But, if SU(N) is large enough to contain
an SU(2) or SU(3) subalgebra, we could also ask where
these pieces are in the general SU(N) Lagrangian. More
generally, consider the effective Lagrangian for a represen-
tation R, of SU(M). These N(R,) states organize them-
selves into representations of SU(N) € SU(M), thatis, Ry,
branches into a direct sum of SU(N) representations R . So,
from the SU(N) perspective, the SU(M) coefficients encode
the circulation of a collection of states in the loop. Since
these contributions simply add up, the SU(M) coefficients
must be the sum over the SU(N) coefficients for all the Ry

representations present in the representation R;,. Going
back to Eq. (35), we must thus have

1
6ngcd :14(RM)dX,?Cd—|—AN(RM)(5”b5Cd+5ac(3bd+5ad5bc)

= 3 LRy

RyCRy

+ ) Ay(Ry) (589 455 - 59d5P<),  (44)
RyCRy,

where the indices a, b, ¢, d are understood to denote
those SU(M) generators that correspond to the SU(N)
subalgebra. The main difficulty though is that even restricted
to those particular generators, d{2°¢ # d’? because the
definition of the quartic invariant involves different functions
Ay and A,,. To proceed, let us assume that the fundamental
representation has the branching rule F,; — Fy. Knowing
that by definition, 1,(F,,) = I4(Fy) = 1, we find

Li(Ry) = Z I,(Ry).

RycRy

(45a)

LRy ) (An(Fy) = Ay (Fy)) + Ay (Ry) = Z Ay(Ry).
RyCRy,

(45b)

Using the numbers quoted in Appendix B and the branching
rules in Ref. [60], one can check that the two formulas are
valid for SU(3) c SU(4) and SU(4) C SU(5). The second
one also applies to SU(2) € SU(3) in which case it becomes
a sum rule for the A functions since I4(R) =0 in SU(3).
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From a calculation point of view, once the branching rules of
the SU(M) representations are known, these equations are
particularly powerful, with the second one even allowing to
compute /,(R,,) in terms of Ay and Ay, that is, entirely in
terms of the quadratic invariants I,(Ry) and I,(Ry;).

Thanks to the convention Eq. (36), the branching rule for
the 1, invariant is very simple [34], but there is a price to
pay. Some part of the y,; and y, g operators of SU(M) are
moved into the y, | to y44 operators of SU(N < M). This is
due to the very definition of the operators in terms of
different quartic symbols, and not related to the loop
structure of the amplitude or the specific branching rules.
For example, if for some unification group a specific
mechanism is found that generates only y,- and y, g, the
four operators tuned by y4; to y44 are in general present
once the symmetry is spontaneously broken simply because
the d*’¢¢ symbol is defined differently within the surviving
subalgebra.

B. Reduction to U(1)

Comparing the SU(N) coefficients y4; in Table III with
the Euler-Heisenberg results in Table I, the two clearly
appear related. Heuristically, it is simple to understand
this relationship by adapting the decomposition Eq. (32)
to the U(1) case. When only a single generator occurs,
C, = C, = C; = 20". This ensures the cancellation of the
UV divergence, and more generally the absence of all the
operators tuned by the structure constants. The whole
amplitude is then proportional to

DO = C] + Cz + C3 == 6Q4 (46)

Since the same factor of 6 occurs in the SU(N) result in
Eq. (35), it is clear that y§ and y§% can be obtained

equivalently from yi 1( ), yi? ) with A(R) - Q* or from

yig(m, yig(m with I,(R) — Q% in agreement with
Tables III and I. Obviously, this line of reasoning is a
naive identification of the coefficients of the loop functions,
not a group-theoretic reduction of SU(N) down to one of its
U(1) subgroup.

To perform a true reduction, let us denote 7¢ one of the
diagonal generators of the Cartan algebra of SU(N). This
generator induces a U(1), C SU(N) for which the SU(N)
effective Lagrangian reduces to

gl(u (1), c suw))

4
(7/4 1 =+ y43 + daaaa ) 6!r 2 4 GZDGQMI/GG G*re
4
+ (74,2 + Y44+ as®y 8) 6\x 2 m* GZDG{I ”UGO’ Gro,

(47)

The Euler-Heisenberg result must arise from a combination
of six of the eight SU(N) operators, including those

involving the quartic invariant. Looking back at their
values in Table III for a given representation R, this
reduction matches the results in Table I for scalar, fermion,
and vector provided a single condition is satisfied:

)= 3 gt (48)

q,€R

3A(R) + d*@a], (R

The sum on the right-hand side is carried over all the states in
the representation R. To see that this condition holds in
general, it suffices to go back to the very definition of the
quartic invariant, Eq. (B4), which becomes for a single
generator:

1
ST TRTRTRTR)

= Tr((T%)*) = I,(R)d + 3A(R).

(49)

Since T is diagonal, the trace collapses to a sum over the
quartic power of its eigenvalues, i.e., over the quartic power of
the U(1), charges of the states of the representation R. The
final step to match Table I is to rescale the generator T to
properly normalize the U(1),, charge in units of Q. Note that
this relation can be trivially generalized to other Casimir
invariants. In particular, for the dimension-four and six
operators, I(R) =Tr((T})*) = >_, cr 92 showing that
the a; coefficients for SU(N) reduce to those for QED under
the naive substitution /,(R) — Q2 in Table III.

Numerical applications to illustrate this formula are in
Appendix B. Note that for both SU(2) and SU(3), there is
no quartic invariant and the Euler-Heisenberg coefficients
for a single unit charge state are formally obtained setting
A(1) = 1/3 in Eq. (48). This value is plotted in Fig. 6 for
comparison.

C. Reduction to factor groups

The general result also reduces to mixed interactions,
involving the gauge bosons of two different algebras.
Before investigating this reduction, let us directly compute
them using FEYNARTS models. For that, we consider the
photon-gluon interactions induced by quark, squark, or
SU(5) leptoquark loops in the nonlinear gauge (see Fig. 7).
It is then a simple matter to generalize the results obtained
for the fundamental SU(3). representation to that for
generic SU(N) representations. The loops are finite and
the effective interactions start at the dimension-eight level,

S S

A Y A v

o

FIG. 7. Quark loops generating the effective dimension-eight
photon-gluon interactions.

Y

\

A

<
<
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where g, and g, denote the U(1) and SU(N) coupling
constants, respectively. The numerical values of the Wilson
coefficients are in Table I'V. They are invariant under charge
conjugation since Q(R*) = —Q(R), I,(R*) = +I,(R),
and I3(R*) = —I3(R), and they obviously vanish for a
real representation. Note in particular that the SU(5)
|

4 gmgn
L (SUM) @ SUN)) = a1 /"5
+ ay ImIn I

6'24

where g,, and g, denote the SU(M) and SU(N) coupling
constants, respectively. Looking at Fig. 7(a), it is easy to
realize that the coefficients are obtained from those
for U(1) in Table IV by replacing Q(R)*/,(R) —
I (Ry)IY (Ry) when the particles in the loop are in the
(R, Ry) representation of SU(M) ® SU(N).

For the SM, the case SU(2), ® SU(3) is immediately
obtained in the {W, ,W; W/} basis by replacing
Wi, Wi =w;, W3"”—|—2W+W # and g, = g, Gu = Js-
Note however that the same caveat as for the effective
interactions in Eq. (43) applies. In the presence of chiral
fermions, these interactions are not leading and dimension-
six operators of O(m~2) appear, like e.g., G;UG‘”’PZ”P or
Z,2,G,,G*" inducing Z — ggg [61] and gg — ZZ [62].
The only exceptions are the Z — ggy [63] and Z — yyy
[64] interactions for on shell gluons and photons, which
still start at O(m~*) for chiral fermions because the y5 term
of the Z boson coupling to fermions cancels out. On shell,
these effective interactions are simply obtained from the

919 919

6'24

glgn
6!7w2m*

Wl Wz ;u/Gu G4rs 4

Wl Ga;le Gap0+ a

F, G F,,G*"

FHI/F DGa Gap6+a36' 2 4 )22

dachlea U G/bm Gere

(50)

|
leptoquarks give f; < 0 since the electric charge of the
antitriplet is positive, Q(3) = ++/5/12.

The first four interactions are immediately extended to
the case of two SU(N) and two SU(M) gauge bosons.
Specifically, the operators are then

Inn

6' 5 4Wl Wt;wGa Gapd

gmgn

o Wi G W, G, (51)

|
vy — gg and yy — yy results by rescaling of one photon
couplings to match that of the Z boson.

Because U(1) ® SUN) c SUM > N + 1), the a;, f;
coefficients in Table IV are directly related to the y,; in
Table III, which is not very surprising comparing their
values. As for the reduction down to U(1) in the previous
section, this can be understood looking at the coefficients of
the loop functions. For the «; coefficients, the decompo-
sition Eq. (32) becomes C{* = C§> = C4* =21,(R)Q*5,
hence D§? = 61,(R )Q25“b. Comparing with Eq. (35), we
see that a; =2y,; with the replacement A(R,) —
Q(Ry)?*I,(Ry) in Table II. The factor of two comes
from the two ways of identifying the U(1) and SU(N)
gauge bosons, e.g., (G4,G**)3, = 2(F,,F*7)(G4,G**) y.
A similar reasoning can be done for the f; coefficients.

To go beyond a naive identification of the loop functions,
let us denote 7 the Cartan generator of SU(M) generating
U(1) and T%, i =2,...,N> — 1 those generating SU(N).
Because [T, T'] = 0 implies f*4 = 0, the UV divergent

TABLE IV. Wilson coefficients of the effective operators for the mixed operators, as induced by a complex field (scalar, fermion,
vector boson) in the representation R of SU(N) with U(1) charge Q(R). The a; coefficients for two SU(N) and two SU(M) gauge
bosons are obtained by replacing Q(R)*I,(R) — IY(R)IY (Ry).

ap =az/2 o = ay/2 A P2
Scalar ZOR)*L(R) % O(R)?*I,(R) % O(R)I5(R) 5 O(R)I5(R)
Fermion O(R)’L(R) 7O(R)’L(R) 3O(R)I;(R) §Q(R)I(R)
Vector % O(R)’1,(R) 36 Q(R)’1r(R) P OR)I(R) % O(R)I5(R)
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contributions disappear and the yig(m and yig(M) operators

do not contribute to the U(1) ® SU(N) effective operators.
For the other coefficients, consider a specific representation
of SU(M) with branching rule Ry, — >~ Ry, and denote
q.(Ry) the U(1), charge of the states of the representation
R,. Mathematically, this branching rule means N? of the
Tg, generators of SU(M) can be brought to a block
diagonal form. Those corresponding to SU(N) have blocks
containing the SU(N) generators in the representation R y,
while the 7% generator is a diagonal matrix containing all
the ¢g,(Ry) charges, which are constant over each block
since [T%, T'] = 0. The fully symmetrized trace with two or
three SU(N) generators then necessarily take the form

1

o STr(TETETETR) = A(Ry)87 4 d*I1,(Ry,)

= > q.(Ry)L(Ry)8,  (52)
RyCRy,

1 o .
L STHTRTRTRTR) = dF 1L (Ry,)

1 ,
=1 > q.(Ry)(Ry)d*. (53)
R\ CR,,

This shows how the «; and f; coefficients of U(1) ®
SU(N) arise from the y4; coefficients of the general
SU(M > N + 1) effective Lagrangian. Computationally,
to check these identities requires first to work out the
relationship between the symmetric symbols. In general,
all we can say from the block-diagonal structure of the
generators is that d%/ =87 and d%* = pd* [see
Eq. (B19)], but the proportionality constants #; and #,
depend on how U(1) ® SU(N) is embedded into SU(M).
This is illustrated in Appendix B, where Eq. (53) is used to
derive the quartic Casimir invariant 7, of SU(5) out of the
anomaly coefficients I3 of SU(3).

As an interesting corollary of this exact reduction, the
identities in Eq. (38) remain valid and imply a; , = a34/2.
So, there are only two independent operators at the
one loop level, no matter the spin and representation of
the particle in the loop. As before, this is not true in general
if more than a single field is integrated out. For example,
the analogue of the Higgs boson exchange shown in
Fig. 5(b) contributes to a; only since the effective Higgs
boson couplings to photons and gluons are h°F wF™

and h°G4, G4

V. CONCLUSION

In this paper, the effective action for gauge theories is
revisited. Integrating out some heavy charged fields, self-
interactions among gauge bosons are encoded into effective
operators. Using the diagrammatic approach, we explicitly
constructed these interactions up to the dimension-eight

level, and computed their coefficients as induced by loops
of heavy particles of spin 0, 1/2, or 1. More specifically,
(i) To set the stage and identify possible issues, we first
reviewed in details the construction of the off shell
effective couplings for photons. In the diagrammatic
approach, integrating out fermions or scalars is
straightforward and we recover the usual Euler-
Heisenberg result. For heavy vector fields, the
matching does not proceeds as trivially. Indeed, in
the ’t Hooft-Feynman gauge, the gauge-fixing term
required for the massive vector fields breaks the
U(1) gauge invariance. Consequently, the off shell
four-photon amplitude fails to satisfy the QED Ward
identities, and the usual procedure to construct the
effective action breaks down. To solve this problem,
we adopted the strategy of Ref. [33] and quantized
the SM in the nonlinear gauge. Matching is then
consistent off shell, and the diagrammatic approach
closely parallels the path integral-based Covariant
Derivative Expansion method [26,27]. The Wilson
coefficients in that gauge are shown in Table L.

(i1) The calculation of the photon EFT was then extended
to the QCD gluon EFT. The most general basis of
gluonic operators up to dimension-eight is quite
different from the QED case due to the non-Abelian
nature of QCD [25]. We computed explicitly the
coefficients of the effective operators for a scalar,
fermion or vector in the fundamental representation.
The final results for the coefficients are given in
Table II. As for photons, integrating out heavy vector
fields requires dealing with gauge dependences. Our
strategy was to use the minimal SU(5) GUT model,
spontaneously broken by an adjoint Higgs scalar
down to the unbroken SM gauge group, and quan-
tized using a nonlinear gauge condition preserving
the SM gauge invariance. Twelve of the SU(5) gauge
bosons become massive in the process, and those
fields have precisely the quantum numbers needed to
induce the effective gluon couplings. This construc-
tion is detailed in Appendix A. Technically, it should
be mentioned that this nonlinear gauge has the
additional nice feature of drastically reducing the
number of diagrams for a given process.

(iii) We then extended the computation done in the QCD
case to generic Lie gauge groups, taking SU(N),
U(l) @ SU(N),and SU(M) ® SU(N) as examples,
and allowing the heavy particle to sit in arbitrary
representations. The coefficients for a complex field
of spin 0, 1/2, or 1 circulating in the loops are given in
Table III for SU(N) and in Table IV for nonsimple
gauge groups. One feature apparent in these tables is
worth stressing. At one loop, some operators are
redundant no matter the representation or spin of the
particle circulating in the loops. From our Eq. (38),
we conclude that two operator combinations never
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occur in the one-loop effective action for SU(N)
gauge bosons. This implies in particular that only
four instead of six operators are required for QCD,
and only two instead of four operators are sufficient
to describe the two gluon-two photon interactions.
Finally, it should be mentioned that generalizing the
QCD result to an arbitrary Lie algebra required a
careful analysis of quartic Casimir invariants. While
all the needed information can be dig out of the
available literature [34,35], it seems to us a short
review detailing all the definitions and conventions,
and with emphasis on practical use in loop
calculations, was lacking and so, it is included in
Appendix B.
On a more technical note, the relationship between
effective action and Feynman diagram matching was
carefully analyzed. Specifically, the effective action
can be computed from the one-loop 1PI off shell
amplitudes. In this way, the coefficients of all the
operators, including those vanishing under the
equation of motion, are obtained. However, these
coefficients are not necessarily gauge-invariant.
Actually, since the matching is possible only using
a nonlinear gauge fixing, they are well-defined in
that gauge only. This is to be compared to the
computation of the coefficients using on shell
processes, where the physical on shell one-loop
amplitudes are matched onto a subset of operators.
Those operators that vanish under the EOM are
absent, so the whole effective action is never
reproduced. Further, from a calculation point of
view, matching with on shell processes requires
dealing with both 1PI and non-1PI amplitudes.
For example, the coefficient of the three-gluon-field
strength operator f“bCG“”G ”G,' cannot be obtained
from a three-gluon process since it is kinematically
forbidden. Instead, it has to be extracted alongside
all the four-gluon-field strength operators by match-
ing onto the four-gluon physical amplitudes.
Altogether, the construction of the effective gauge-boson
Lagrangian up to dimension-eight is now fully under
control in the diagrammatic approach. The operator bases
are confirmed, their group-theoretic properties clarified,
and the coefficients are known for the standard benchmark
scenarios of heavy scalars, fermions, and vector bosons.
|

(iv)

TGy - \/_Bﬂéu
J+
AF = AT = TEX”

1
2

Phenomenologically, though the four-gluon or four weak
boson effective couplings is unlikely to be ever seen, given
the presence of such a coupling in the tree-level
Lagrangian, there may be some room for yy — gg. In
any case, having laid out a well-defined strategy to
construct fully general effective actions involving gauge
bosons will prove useful in the future.

APPENDIX A: SU(5) GAUGE BOSONS IN THE
NONLINEAR GAUGE

This Appendix is not intended as a review of the minimal
SU(5) model. Rather, it is meant as a guide to construct the
Lagrangian of SU(5) broken down to SU(3)-® SU(2), ®
U(1)y, quantized using a nonlinear gauge-fixing term, in a
form suitable for automatic calculation tools. The main
point is to input all the Lagrangian terms in a consistent and
tractable way. This requires to set a number of conventions
and definitions, so we found it useful to detail them here.

The starting point is to input the SU(5) gauge bosons,
and write them in terms of those of the SU(3), ®

U(2), ® U(1), gauge group. For that, we start from
the branching rule of the adjoint representation 24:
24=(8.1),+(1,3))+(3.2)s+(3.2)_s+(1,1),. (A1)
Denoting by A, B, ... = 1, ..., 24 the SU(5) adjoint indices,
a,b,...=1,...,8 the adjoint color indices, and
i,j,...=1, 2, 3 the fundamental SU(3) indices, the
twenty-four A% gauge bosons are identified as the octet
of gluons (8 ® 1), ~ G/ =AY, a=1,...,38, the triplet of
weak bosons (1®3),~ W™= (Al FiAk,)/v/2, Wy = A,
and the singlet (1 ® 1), ~ B* = A,. The remaining fields
are the twelve leptoquark gauge bosons and their conjugate
fields in the (3 ® 2)5/3 and (3 ® 2)_s,; representation,
respectively. We define these fields as X!~ = (A¥, + iA%;)/

V2, YA = (A%, £ iA%,)/+/2 and so on. Note that lepto-
quarks are charged under all the SM gauge groups, and
those with positive hypercharge transform like antiquarks
under SU(3),.

Since the adjoint is contained in 5 ® 5 =24 @ 1, all
these identifications of the gauge fields can be put together
to construct a traceless 5 x 5 matrix for the SU(5) gauge
fields:

X BT
W, + 55 B, HWi : (A2)
\/IEW; _%W +2\/_ u

where T* are the conventional SU(5) generators in the fundamental representation, normalized as Tr(TAT?) = §48/2.
This identification is compatible with the eigenstates of the electric charge operator,
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0 =T"+/5/31%,

0 —4/3Xi7 —1/3Yi
1 .
[Q,A,,]zﬁ 4/3x5" 0 +wi |, (A3)
1/3v," -Ww; 0

with the normalization of the hypercharge operator ¥ =

2./5/3T%*. In practice, we have used the Mathematica
package FEYNARTS [45] and FEYNCALC [46]. Both allow
to keep the summations over the SU(3) indices as implicit,
so A* is truly input as the 3 x 3 matrix of Eq. (A2). Once all
the relevant pieces of the Lagrangian are encoded, it is then
a simple matter to extract the Feynman rules and export
them to FEYNARTS. Let us now review the Lagrangian
terms of relevance to us.

1. Gauge interactions

The gauge self-couplings derive from the Yang-Mills
kinetic term

c
I

— 1 G4 Ga-Hv 1
- 4

4w W W= =

2

+igs Gl (XL (=T%)Xim + Y (=T4)YE) +

1 1
[’gauge = _E <AWA””> = _ZA;‘DAA’W? (A4)
with the field strength
A,=0,A,-0,A,—ig[A, A
= (0,A) — 0,A; + gf"PCAZAD)TA. (AS)

The SU(5) structure constants are defined as [T4, T8] =
ifABCTC. An explicit calculation shows that there are 68
nonzero fABC, plus antisymmetric permutations of the
indices. Among them there are the nine f9¢ of SU(3)
and the single 7% of SU(2), which reproduce the QCD
and electroweak self-interactions. All the other nonzero
structure constants are f45¢ with A,B = 12,...,23 and
C=1,...,11,24. In other words, they involve twice the
leptoquark fields, as can be expected since these particles
are charged under the three SM gauge groups. The same g5
occurs for all the interactions between gauge bosons. In
explicit form,

1 ; v 4 v
suge = =5 (OuAL = O,A,) (P A” — OPAY) + 4igsA, A, (DAY — O AY) = 2g3A, A, [A¥, A”])
1
W, W — 2 B, B

1 4 1 . .
=5 (DX = DX[) (DX = D*X ) = (D, Y, = DY) /(D*Y™ = DY)

. Js

V2

(WYX + W XrYyT)

V15

+ ig—25 W3 (XX = YiFYE) +igs e B (XX + YY)+ O((X, Y)Y,

(A6)

where the weak and strong field strengths are understood to contain their respective non-Abelian terms, as

Gy, = 9,Gji = 0,G¢ + gs [ GLGS — G, T = 9,G4T = 8,G4T* — igs[G)T?, GT,
W3 = 9,Wj, — ,W; + igs(Wy W, — WiWwy),

Wi = 0,Wi, — 0, W', + gse WL Wk —

Wi = 9,Wi = 9,W} +igs(WyW; = WiWw,),

W = 9,W; — 8,W; + igs(WiW; — Wy W3).

The covariant derivative D* = 9#1 — igsT*AX acting on the twelve leptoquarks living in the B3®2) 53 representation is

: . , 1 : 1 . 5 .
(D)X = 0,Xi" —igs (Xi*(—Tj.i)G; + WXt + — WY +y>B X;+>,

(D) = 0,7 — igs (Y#(—T,%)G;:

where y =/3/5 is the hypercharge normalization.
Finally, O((X, Y)*) denotes quartic interactions among X
and Y gauge bosons which are of no interest for our
purpose. It is interesting to remark that the SM gauge
invariance is satisfied separately for the X, Y kinetic terms

A7

2 \/j 6 H ( )

—lW3Y"++LW‘Xi++y§B Yir (A8)
o KTV \/§ utv 6 Hv )

|
(thanks to the covariant derivatives), the magnetic inter-
actions (the B,,X*X* and similar), and the O((X,Y)*)
interactions. At the level of the SM, the strength of the
magnetic and O((X,Y)* interactions are thus uncon-
strained, and these could even be absent. On the contrary,
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here their relative strengths is fixed by the underlying
SU(5) gauge invariance. The situation is similar in the
SM, with the relative strength of the (D,W; —D,W,)
(D*W=" — D*W~*#) and F,,W,fW™" interactions fixed by
the underlying SU(2), ® U(1), symmetry.

2. Scalar interactions

In the present work, we are only interested in the initial
breaking stage

SU(5) — SU(3)e @ SU2), ® U(1)y.  (A9)

For that, we need a scalar in the adjoint representation,
H,, = V2H,T,. Note that H,; = I:IL, since the adjoint is
a real representation, and further assuming a Hpy — —Hy,
symmetry to get rid of cubic interactions, the most general
Lagrangian is

2

1A q LK
Lcatar = E <D;4H24DﬂH24> + E <H%4> -

a

(3,7 -2 ().

2
(A10)
|

a rja 1 0
TinG - —HB(sij

V15
Hy, = Hy — HY, = V2 %HQ

L gyt
_ZHY

7

the Higgs boson masses are found to be
2 _AM2 52 2 _n,2 2
MH"W_4MHZ_5b1}5’ MHB—Zﬂ , MHS}.Y_O'

Note that the \/§ is conventional; it ensures a correctly
normalized kinetic terms given the Lagrangian in Eq. (A10).
Additional couplings involving three and four scalars
are derived from the potential, with the former all propor-
tional to vs.

To get the scalar couplings to gauge bosons, it then
suffices to expand the covariant derivative, with for the
adjoint representation,

D'Hyy = 0"Hyy — igs[A¥, Hyy)

= 0"Hyy — igs[A¥, Hpg] — igs[A#, HY,|.  (AI3)
This gives
1 _ _ 1
3 (D, HpyD"Hyy) — 3 (0,Hp40"Hyg) + Linass
+ Liix + Loauge-Higes- (Al14)

The L. couplings are just the leptoquark mass terms,

The breaking of the SU(5) symmetry arises when H,4 gets
its vacuum expectation value (0|H,4/0) ~ vs > 0, which
happens for u> > 0. There are two classes of minima,
depending on the sign of b. First, it is possible to find
values of p, a, and b < 0 such that the minimum is of the
form (0|H,4|0) = diag(v, v, v, v, —4v). This corresponds
to SU(5) —» SU(4) ® U(1). The second class occurs for
b >0 and is such that (0|Hp|0) commutes with the
SU(3)¢, SU(2),, and U(1), generators:

_ 1 .
Hg" = <O|H24|O> zﬁvsdlag(l, 1, 1,—3/2,—3/2)
24 2 4
=T VISATE. =S

(Al1)

The value of v5 is found by requiring that this is a global
minimum of the potential, which asks for 15a + 7b > 0.

Plugging this constraint in the scalar potential and
writing

1 i— 1 i—
vtk v
sHiy + 5= Hy S Hy , (A12)
1 - 1773 3 0
7§HW _EHW"'TBHB
1
Emass = 59§<[Aw H(2)4] [A”’ H(2)4]>
25 2,2 (yi+yi—p i+ yi—u
=B Rk vy, (A1)

so Myy = 5¢gsvs/4. The L, piece induces mixings
between the X* and Y* gauge bosons and their associated
WBG bosons,

Liix = —igs([Ay H3,]0"Hay)
= iMyyXiOHY + iMyy Vi 0"HY" + He. (Al6)

The other couplings involve gauge and scalar bosons,

‘Cgauge—Higgs = _i95<[A;u H24]6”H24>
- 9§<[Aw Hg4] [A¥, Hy,l)
2
g
- 35 (A, Hy[A¥, Hygl). (A17)
The explicit forms can easily be worked out and will not be
given here. Remark though that because all the SM gauge
bosons disappear from [A,,HY,], Laau only couples
scalars to the massive gauge bosons, with couplings
proportional to their mass.
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3. Gauge-fixing and ghost interactions

The next step to quantize this theory is to fix the gauge, and add the corresponding ghost terms. The general ansatz in
linear R; gauge is to define the constraint in terms of the WBG as

0  HY iHi
G = V20,A" + My, | —iHY 0 0
—iH)" 0 0

VAT Gy = \[20B,5, 0K + iy Hi;

MY + iEMyyHY

= OX - iEMyyHY W+ \/%aﬂBﬂ HW; ; (A18)
i+ i+ _
MY — iEMyyHY, *Wy — 5 0'W, +5=0"B,
so that
1o 1 k+ _ 1 k+ _ k+12
ng:_27§<G>:_E|8”X” —lfoyHX | —E|8”Y” _léMXYHY | (Alg)
! U+ |2 1 HA3)2 1 “ 2 1 a2
—E\a Wil —2—5(3 W) —2—5(3 B,) —2—5(8 Gi)*. (A20)

Since in practice, all our computations are done in the
’t Hooft-Feynman gauge, a common parameter £ is intro-
duced for all the gauge bosons. Obviously, the parameters
for G4, B, W, and W;; can be all different since they appear
only in the respective propagator and not in any of the
vertices. For X/ and Y/, not taking a common parameter
would make life more complicated since those two form an
SU(2), doublet. When the first line is expanded, the terms
linear in My precisely cancel those in L., while those
quardratic imply M7 = EM%y as usual. Remember that
WBG do not get any mass term from the scalar potential.

The goal of the nonlinear gauge fixing of Ref. [57] is to
maintain the unbroken gauge symmetries as explicit. This
requires general covariant derivatives in the constraints
involving the massive gauge bosons. To be able to
interpolating between the linear and nonlinear gauge, we
introduce the parameters ag, oy, @z and use

» ' - 1o
aﬂXItj - aﬂXll‘+ _ lgS <aGX{/+(_T;Z1)Gz 4 awiW2X1l,+

1 . 5 .
+aWﬁW;YL+ —|—aBygBﬂXL+>, (AZI)
. . ; 1 .
Y — QY —igs (aGY#(—T;%,.)G;’ —ay Wiy
1 —yi+ 5 i+
+GW%W”XD +aBygB”YD . (AZZ)

|

Plugging this in L, generates new contributions t0 Ly,
and Lgyyee-Higgs- At this stage, one of the interest of this
gauge becomes apparent. The gauge and gauge-WBG
Lagrangian of the previous section must be invariant under
the SM gauge symmetry. This means that among the WBG-
gauge-gauge interactions, there are precisely those needed
to promote the derivatives in L, to covariant ones. But
then, having covariant derivatives in Ly cancels them out.
As aresult, when o; = 1, the A — A — WBG couplings get
much simpler.

To this constraint corresponds the ghost Lagrangian

) cB.
1=0

To get the variation of G* under a gauge transformation, we
first need that of the fields, expressed in the same physical
basis as the gauge bosons and WBG scalars. For the gauge
fields, the variation under a gauge transformation is

5GA

Eghost = AT ((_95)

1 1
SAF = —Dﬂ)» = —O'N — i[A¥, D],
gs 9s

(A24)
where the physical basis parameters are defined from A =

JATA in full analogy to the gauge bosons. In explicit form,
reconstructing the individual field transformation,
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1 , L o L i
5G4 = g—amg + fPGuAG + i(XTTEA = A TEXW + YTy =24 TEYD), (A25)
5
1 ; ; L ityie i—yi -
Wi = gaf%;‘v + WAy, — iWiAy, + 7 YD —a7Xxih), W, = (W), (A26)
1 P L o
W5 = ;aﬂﬁsv + WAy, — iWi Ay + > (A X = AL X — A YD + AR Y, (A27)
1 n LS ityie _ i i+ i+yi- _ ji-yit
5B, :ga s+ 5(,1)( X = Ao X+ Y =AY, (A28)

i
V2
8Xi = (XL, (A29)

i

j 1 i ; a (a a 1a i i i i i /5 i i
SXit = gaﬂﬂ{ — (KT TE,GE = XKTT928) + —= (AL YiE = 25 W) + 5 (A XEr =28 W3) + 3 \/;(XBXj - 2B,),

i ! i ; Ly i+ - i i i i3S i i
SYI = — M +i(ANT T4,GE — YRI T 08) + — (A XiH = A W3) — = (A3, Y — 20 W3) + = \ﬂ(/lg Yit —2y'B,),
s V2 2 2V3
SYim = (sYih)T. (A30)

Similarly, the transformation of the scalar fields in the adjoint representation SH* = fABCH®)C can be obtained in matrix
form

g6H,y = i[A, I:124] — 6Hyy = i[A, Hyy| + i[A, H(2)4]-

We only need the transformation rule of the WBG, since the other scalar fields will not be introduced in the gauge
constraints:

L P i i 5 s
5H52L = —lH§+Tzi/1% + 721;71'1’; + 5/1?)‘/['15? + 5 \/;/IBH?L + lZ 1)5/13(+
] . ] . /5 .
+ gkt Te He — éHW’; - éH%,/l?“ - % \/;HB/%(*, (A31)

. i . i /5 . 5 .
AyHY — EA%VH’Y+ +3 \/gxlgH'; +ig vsAV + KT HYE

V2

i T AU A S
- \/EH;V/I;(++2H%V/1Y+—2\/3HB,1;. (A32)

SHY = —iHY Te.2¢. +

Note that these transformation rules imply that only the ghost fields associated to the massive gauge bosons couple to all the
Higgs bosons, as expected from the absence of direct couplings of the scalar fields to SM gauge bosons.

Once G is expressed in the physical basis [as in Eq. (A18) for the linear gauge], the physical gauge parameters identified
from A, and ghost matrices defined in full analogy as

a .a _ _1 B 1 i- 1o i-
Tiic _\/l—ch(sl] 3 CX 7€y
— A _ 1 gt L3 4 3 A F
c=c T = 5 Cx 2Cw T 5568 5 Cw , (A33)
1 gt A= —1ea3 3
7Y 75w 2CW+2\/ECB

one can proceed by computing —v/2gs (¢" 8G) and replacing each A by the corresponding ghost, i.e., g — cp, A& = c&,
etc. Given the many possible couplings once a nonlinear gauge fixing is imposed, the final expression are very lengthy and
will not be written down here. Let us just remark that only the ghosts associated to the leptoquarks get massive,
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Lanos = €G (=0)cg + cp(=0)cp + ¢y (=07)cly + ey (=0)cyy + ey (=07)ciy

+c§T (=07 = EMEy)cx + e (=07 = EM3y) ey + ¢ (=07 — EM%y)cy + ¢ (=0% — EM%y)cy

+ Leev + Lecn + Leevy-

Still, the SM ghosts get new interactions with pairs of
heavy states (one ghost, one gauge boson). Note also that
Lccyy derives entirely from the nonlinear gauge fixing.

APPENDIX B: CASIMIR INVARIANTS OF
STANDARD LIE ALGEBRAS

The structure constants of a simple Lie algebra are
defined as [T, T%] = if*°T§, with T% the generators in
the representation R. The quadratic and cubic Casimir
invariants are defined in terms of the fully symmetrized
trace over two and three generators

1

5 STR(TRT}) = Te(TRTR) = L(R)d™.

(B1)

1 1 1
§STr(T§T§;T§) = ETr(Tig{Tb JTe)) = Z13(R)dabf.

(B2)
In terms of these two invariants, we can reduce the trace
over three generators as

1 1
TH(TRTATR) = STe(Th. ThITR) + A Te (T ThITR)
I;(R il,(R
_ 3(4 )duhc + #qubc‘ (B3)

The quadratic invariant defines a metric in the generator
space. Tr(T&T%) being positive definite, it is always
possible to choose a basis for the generators so that
d® = 5. By convention, the generators are further
normalized so that I,(F) = ¢, with F the defining repre-
sentation of dimension N(F) =N and the constant ¢

_ (N(A)Iz(R) _I(A)
B N(R) 6

(A34)

usually set to 1/2 or 1. Note also that once d*® = 5%,
T Ty becomes proportional to the identity, with TR Tk =
(N(A)I(R)/N(R))1yr)xnr) Where N(R) denotes the
dimension of the representation R, while A stands for the
adjoint representation.

The totally symmetric tensor d*¢ is normalized such that
I;(F) =1 for unitary groups. It is absent for orthogonal
groups, except for SO(6) isomorphic to SU(4). When
defined, the coefficient I3(R) is often called the anomaly
coefficient of the representation R.

1. Quartic symmetric symbol

To compute traces over four generators, we need to
extend the basis to include the quartic symmetric symbol
and its associated invariant (for more information, see
Ref. [35]). Itis not immediately given by the fully symmetric
trace over four generators because the symmetrized product
of two second-order symmetric symbols is an invariant
symmetric tensor with four indices. Specifically, the most
general decomposition is:

1 :
aSTr(T‘{zT’l’{Ti{Tﬁ)
:14(R>dabcd+A<R)(5ab50d+5a65bd+5ad5b6). (B4)

The constant A(R) is a matter of convention, while d**°“ is
normalized by fixing 1,(F) = ¢ for some chosen constant c.
To fix A(R), we choose to define the tensor d*¢¢ as

where we have used e fibc = [,(A)s%, fabefabe = I,(A)N(A). Hence, d,,d,,d***¢ vanishes provided

orthogonal to the lower rank invariants, i.e., such
that ddbdcddabaj =0:
|
1
14(R)d pd qd>! = EéabécdSTr(TﬁT{’{TﬁTﬁ) — 8upBea\(R)(606°0 + 5967 4 54167)
1
= Tr(T{TETRTS) + 5Tr(Tg1 [Th, T&]T%) — A(R)(2 + N(A))N(A)
)Iz(R)N(A) —A(R)(2+ N(A))N(A), (B5)
NA)L(R) I(A)\ I(R) (B6)
N(R) 6 2+ N(A)

A(R) = (

This convention ensures d*’“? has no left-over part proportional to the quadratic symbol. This is particularly convenient
because 1,(R) then vanishes for all R of SU(2) and SU(3). Remember that a tensor d**“? such that d,;,d.;d**? = 0 does
not exist for SU(N < 3). For N =2, 3, A(F) = 1/24 and
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STe(T§TRTETE) =760 50 4 5ee5hd + 5debe.,

(B7)
This formula also provides a useful identity for the SU(3)
structure constant:

1 1
47STr(Tg Té} Tng) — E Z fuxlxthx2x3fcx3x4fdx4xl
. "perm(a,b,c,d)

:%(5ah5cd +6ac5hd +5ad5bc), (Bsa)
since A(8) = 3/4.

The formula Eq. (B4) is valid for all unitary and
orthogonal algebras, except for SO(8). Indeed, the N-
dimensional Levi-Civita symbol is an invariant for SO(N),
and when N is even, it is possible to construct out of it a
symmetric symbol with N /2 indices. To see this, remember
that the adjoint A of SO(N) is obtained as the antisym-
metric tensor product of the defining N-dimensional
representation F, A = F ®, F. Thus, the SO(N) gener-
ators can be labelled by antisymmetric combinations
|

of two indices i, j = 1, ..., N. If we denote a = (i, j), with
a=1,...,N(N—1)/2, then

@% AN = I,[gi]...iN’ (B9)
with 7 some constants, is a totally symmetric invariant
tensor with N/2 indices. This explains one aspect of the
isomorphism SO(6) ~ SU(4). None of the orthogonal
algebras have a genuine d**¢ symbol, but the extra invariant
tensor @ of SO(6) corresponds to the d*’¢ symbol of
SU(4). For SO(8), ®¢<d is an additional quartic symbol,
orthogonal to both tensor structures in Eq. (B4). Thus, the
totally symmetric trace over four SO(8) generators projects
not just on two but three tensor structures.

2. Fourth-order trace reductions

Any trace over four generators can be reduced and
expressed entirely in terms of the invariant tensors. For
instance, for SU(N) and SO(N # 8), we can write

1 1 1 1
4—!STr(T§T§T§ Tg) = gTr(T‘I‘{T%T%Tﬁ) + gTr(T;; ToTETS) + gTr(T;; TRTRTE)

1 1 1
+  THTRTRTRTR) + ( THTRTRTRTR) + ( Tr(TRTRTRTR)

2 3 2
= Tr(T4THTeTS) + ci FleeTr(TETRTS) + gl FeTr(TRTeTS) + gl FPeTH(TETETR)

1 1
+el FeTH(TETRTy) + 6l fleeTe(TETETR)

I;(R)

. I,(R
— TI'(T%T%T%T%) 4 (fdcedabe 4 fcbedaed 4 fdbedace) 4 21<2 )fabefcde

8

L(R) L(R)

_ fadefbce + facelfbde.

4 12

Or, introducing the quartic invariant:

(B10)

I;(R
TI’(T“RT%T%T%) — 14(R)dahcd —i 3( ) (fdcedube + fchedaed +fdhedace)

8
_L(R)

(fabefcde _ 3fadefbce + facefbde) + A(R)(éabacd + 5ac5bd + 5ad5bc>.

12

(B11)

As special cases, we can set I3(R) = 0 for SO(N # 6), I[4(R) = 0 for SU(3), and I,(R) = I3(R) = 0 for SU(2). Note that
the last two terms can be brought to a simpler though less symmetric form using the Jacobi identities:

fcdedabe +fadedbce +fbdedace =0,

fabefcde _ facefbde + fadefbce =0.

(B12)

(B13)

Other identities sometimes useful in the computation of triangle graphs are:

1
fadefheffcfd =+ 5 Iz(A)fahC,

(B14)
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dadefbeffcfd —

The first identity derives from Tr(T47T57T¢)

— L (A)d*.
51a(A)d

: (B15)

= Tr(T4[T%.T4])/2 since (T4)" = —T4 for a real representation.

Specializing to SU(N), there is another way to derive the fourth-order symmetric symbol. First, remember that,

1 I;(F)
T¢Th = —I,(F)6% 3 dbeTs I F)fabeTs. Bl16
F*F N 2( ) +412(F) F+ 2( )f ( )
With this, we can derive
41,(F)? I5(F)? 1 1
Tr Ta Tb Tc Td 2 5ab5cd dabedcde — _5ab50d _ dabedcde_ B17
{TeTEHTETE] = 22 Y In® TR (B17)
On the other hand, this trace can be computed using the general reduction in terms of invariant, giving
1
TE{TETRHTETEY) = 4La(F)dd 4 S L(F)(Fo0e 0 4 fo ) 4 AN(F)(65°0 + 56" 4 516%).  (BIS)
Combining the two,
I;(F)? I,(F F
14(F)dahcd — Ldahedcde _ £ (facefbde + fadefhce) A(F) (5ah6cd + 5ac5hd + 5ad5ln) 47 ( ) 5ah5cd (B19)
161,(F) 12 N

With the convention I4(F) = 1, this identity permits us to compute the quartic symbol d***¢ directly out of the lower-rank
invariants. We can now check that for N = 3, I,(F) = 1/2, I;(F) = 1, I,(F) = 0 and A(F) = 1/24,

1
0= _dabedcde _
8

1
ﬁ (facefbde + fadefbce) _

1
24 (5a65bd 5ab5c‘d 4 5ad5bc>’ (BZO)

which gives back the identity in Eq. (24). For N = 2, I,(F) = 1/2, I3(F) = I,(F) = 0, A(F) = 1/24, we recover the usual

reduction formula for the Levi-Civita tensor:

1
0= — ﬁ (8aceghde + Eadeghce)

3. Casimir invariants for simple groups

Thanks to the orthogonality condition adopted to fix
A(R) [34], the usual formula can be employed to get
the explicit values of the invariant I,(R) for various
representations,

IH(R) = (_1>n1n(RT>’ (B22)
I,(Ry ® Ry) = [,(Ry) +1,(Ry), (B23)

I,(R; ® Ry) = I,(R)N(Ry) + I,,(Ry)N(R,)
= Zln(Ré)’ (B24)

with n = 2, 3,4 and where R; ® R, = ) ,R/. Altogether,
these relations are more than sufficient to derive the
Casimir invariants for any of the standard Lie algebra.

1
_ 6ac5bd _
2

280b5ed 4 gadsbe). (B21)

We give in Tables V-VII their values for the first few
representations of some unitary and orthogonal algebras of
rank r <5, along with A(R). We also checked these
numbers by computing I,34(R) directly using explicit
matrix representations for the first few representations
of each algebra. These numbers are compatible with the
explicit formula in terms of Dynkin indices given in
Ref. [34], up to the normalization conventions.

The normalization of the generators adopted for SO(N)
algebras in Tables VI and VII is not standard but physically
inspired. Specifically, the invariants of an algebra M can be
expressed in terms of that of its subalgebra N. For instance,
if a representation R, branches into the sum of represen-
tations Ry, we have the simple sum rule:

In(RM) =1 Z

RyCcRy

I,(Ry). (B25)
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TABLE V. First few representations of SU(N), N = 2, 3, 4, 5, labelled by their Dynkin index, and their dimensions, quadratic, cubic,
and quartic Casimir invariants, together with A(R) as given by Eq. (B6).

SU(2)
R (D (2) 3 ) () (6) @) (®) ) (10)
N 2 3 4 5 6 7 8 9 10 11
I, 1/2 2 5 10 35/2 28 42 60 165/2 110
SU(3)
R (10) (20) a1 (30) 21 (40) (05) (13) (22) (60)
N 3 6 8 10 15 15 21 24 27 28
I, 1/2 5/2 3 15/2 10 35/2 35 25 27 63
I; 1 7 0 27 14 77 -182 —64 0 378
A 1 17 3 33 29 371 539 235 81 441
24 24 4 3 6 24 2 2 4 3
SU(4)
R (100) (010) (200) (101) O11) (020) (003) (400) (201) (210)
N 4 6 10 15 20 20/ 20" 35 36 45
I, 1/2 1 3 4 13/2 8 21/2 28 33/2 24
I3 1 0 8 0 -7 0 =35 112 21 48
1, 1 —4 12 8 -11 -56 69 272 57 24
A 29 1L 23 40 1313 128 1211 56 1639 176
316 102 34 51 816 51 272 3 272 17
SU(5)
R (1000) (0100) (2000) (1001) (0003) (0011) (0101) (0020) (2001) (0110)
N 5 10 15 24 35 40 45 50 70 75
I, 1/2 3/2 7/2 5 14 11 12 35/2 49/2 25
I; 1 1 9 0 —44 -16 -6 -15 29 0
1, 1 -3 13 10 82 -2 -6 -55 79 =70
A 47 83 17 125 1841 1903 167 1589 11123 1075
1560 520 120 156 390 780 65 31 1560 156
TABLE VI. First few representations of SO(N), N = 5,7, 9, 10, labelled by their Dynkin index, and their dimensions, quadratic, and

quartic Casimir invariants, together with A(R) as given by Eq. (B6). The cubic invariant vanishes for all these algebras.
The normalizations of the generators and of the quartic symbols is fixed in terms of that adopted for SU(N) algebras, using
Eq. (B25). The SO(4) and SO(6) algebras are not included since they are isomorphic to SU(2) ® SU(2) and SU (4), respectively. Note
that the normalizations does not necessarily match, with for example 1,(SU(4)) = I,(SO(6)) but I,(SU(4)) = —21,(S0(6)).

S0(5)

R (10)
N 5
I, 2
A 8
SO(7)

R (100)
N 7
I 2
A 13
S0(9)

R (1000)
N 9
A&
50(10)

R (10000)
N 10
I, 1
A 19

282

(01)
4
1/2
-1/2
1

-1
43
552

(0001)
16

(00001)
16
2
-2

103
564

(02)
10
3
-6

ool

(010)
21
5
)

125
138

(0100)
36
7

2

245
228

(01000)
45
8

4

160
141

(20)
14
7

26

21
3

(200)
27
9
30

111
46

(2000)
44
11

34

17
228

(20000)
54
12
36

104
47

(11)
16

6
6

|3

(002)
35
10

—-16
155
69

(0010)
84
21

—18
329
76

(00100)
120
28

—-16
770
141

(03)
20
21/2
—69/2

133
32

(101)
48
14

10

889
276

(0002)
126
35

=50
1855
228

(00002)
126
35

=50
2345
282

(30)
30
27

162

153
8

(300)
77
44

220

1474
69

(1001)
128
32

16

376
57

(10010)
144
34

14

3791
564

(12)
35
21
-6

v
8

(110)
105
45

42

35
46

(3000)
156
65

286

5395
228

(00011)
210
56

—68
1792
141

(04)
35’
28

-132

35
2

(011)
112
46

—46
187
12

(1100)
231
77

106

5005
228

(30000)
210
77

322

7007
282

21)
40
29

91

261
16

(003)
112
54

-126
2007
92

(0101)
432
150

—54
850
19

(11000)
320
96

144

1168
47
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TABLE VIL

First few representations of SO(8), labeled by their Dynkin index. Because of the invariance of the eight-dimensional

Levi-Civita tensor, this algebra has a second quartic invariant tensor. Its normalization is fixed to make manifest the relationship between
the values of both quartic Casimir invariants, and corresponds to 7 = —1/8 in Eq. (B9). A second feature of SO(8) is its triality
symmetry: dimensions and quadratic Casimir invariants are the same under permutations of the first, third, and fourth simple root. Both
quartic Casimir invariants vanish when summed over representations linked by the permutation symmetry [34]. This means in particular
that they vanish identically for the 28, 300, and 350.

SO(8)
8(1,.A=1,1/12) 112(1,, A = 54,45/2) 224(I,, A = 100, 115/3) 28(1,,A = 6,1)
(1000)  (0001)  (0010)  (2000)  (0002)  (0020)  (1002)  (1020)  (2001) (0100)
I, 2 -1 -1 252 ~126 ~126 —40 —40 212 0
I, 0 -1 1 0 ~126 126 ~128 128 —44 0
35(1,, A = 10,7/3) 160(1,, A = 60, 19) 300(7,. A = 150, 65)
(2000)  (0002)  (0020)  (1100)  (0101)  (0110)  (0012)  (0021)  (2010) (0200)
I 32 ~16 -16 72 -36 -36 ~172 -172 212 0
I, 0 ~16 16 0 —36 36 -84 84 44 0
56(1,, A = 15,13/4) 294(1,. A = 210, 133) 567(1,. A = 324,162) 350(1,, A = 150,55)
0011)  (1001)  (1010)  (4000)  (0004)  (0040)  (2100)  (0102)  (0120) (1011)
I, -18 9 9 1344 —672 —672 864 —432 —432 0
I, 0 9 -9 0 —672 0 —432 432 0

where 7 is a constant reflecting the normalization con-
vention adopted for the generators of M and N. In Table VI,
we chose to fix # = 1. For example, the generators in the
defining representation of SO(10) are normalized so that

1,(10)5010) = 1,(8)SU5) 4 [,(5)U0) =1, (B26)

since 10 — 5+ 5. Similarly, the normalization of the
quartic symbol of SO(10) is then fixed by imposing
1,(10)5°00) = 27,(5)SU0G) = 2. This makes sense physi-
cally if one thinks of a field in a given SO(10)
representation circulating in some loop. Our normaliza-
tion conventions make the matching of this amplitude to
that computed in terms of the fields of the subalgebra
most transparent. Note that the generators and quartic
symbols of all SO(N) algebras are fixed once that of
SO(10) is, since SO(N) C SO(N + 1). Further, we also
checked that these conventions are compatible with
SO(3)®S0(7)cS0O(10) and SO(4) ® SO(6) C SO(10),
with SO(4) ~SU(2) @ SU(2).

Other relations between the invariants of an algebra and
that of its subalgebras are given in the text, see in particular
Eq. (53) which gives I,(Ry) in terms of I,_;(Ry),
Eq. (53) which fixes I4(Ry) in terms of I,(Ry),
or Eq. (48) which gives I,(Ry;) in terms of the U(1)
charges of the R, states. To close this section, let us give a
few illustrations for these relations.

Consider first the reduction of SU(2) down to the U(1)
subgroup of SU(2) generated by T>. Since there is no
quartic invariant for SU(2), Eq. (48) is easy to check. The
fundamental SU(2) representation corresponds to two

complex states of charge |T3| = 1/2, so we can identify
2(1/2)* = 3A5Y(2)(2) since ASU(?)(2) = 1/24. Similarly,
the complex adjoint representation of SU(2) contains
two states of unit charge, hence 2 = 3ASY(?)(3), and the
isospin 3/2 decomposes into four states such that
2((1/2)* + (3/2)%) = 3A5Y(2)(4), which give back the
correct values ASU(?)(3) =2/3 and ASU®)(4) = 41/12.
The same exercise can be repeated for SU(3), for which the
absence of the quartic invariant ensures that Tr((T3)*) =
Tr((T%)*) if T3 and T® are the conventional Cartan
generators (equal to half the corresponding Gell-Mann
matrices in the fundamental representation). To apply the
same method for SU(5), we need to first fix two free
parameters. Specifically, we start from

3A(R) + d™,(R) = 6 gt
q,€R

(B27)

The value of d**** and the U(1) generator normalization
0 [which was coincidentally equal to one in the
previous SU(2) example] need to be fixed. If we identify
T* as the hypercharge generator in the subalgebra
SU3) ® SU(2) ® U(1) c SU(5), we can use the branch-
ing rules [60]

5=(3.1), + (1.2)_,. (B28a)

10=3,1),+(3,2)_, +(1,1),  (B28b)

and these two constants are fixed as
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{ 1,(5)d*@ +3A(5) = 6(2 x 3* +3 x 2%)
1,(10)de®® + 3A(10) = 5(6* + 3 x 4* +3 x 2 x 1)
5 =1/607,
- { / (B29)
deaea — _5/156
One can then check that the I, for the other SU(S)
representations are correctly reproduced.
The same branching rules can be used in connection with
Eq. (53), which we write as

Ly(Ry) =n Z qa(Ry)I(Ry).

(B30)

The subalgebra needs not be maximal so we consider
U(1) ® SU(3) c SU(5). Using the values quoted in
Table V, the first rule of Eq. (B28) translates into
IiU(S)(S) = 2771§U(3)(3) and fixes # = 1/2. Then, we can
check that this equation is valid for all the other SU(5)
representations listed in Table V.
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