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Form factors of D decays into J©¢

= 2+ tensor mesons are calculated in the light-cone sum rules

approach up to twist-4 distribution amplitudes of the tensor meson. The masses of the tensor mesons are
comparable to that of the charm quark mass m,; therefore, all terms including powers of my/m, are kept
out in the expansion of the two-particle distribution amplitude (T'|g;,(x)g25(0)|0). Branching ratios of the
semileptonic D — Tup, decays and nonleptonic D — TP(P = K, z) decays are taken into consideration.

A comparison is also made between our results and predictions of other methods and the existing
experimental values for the nonleptonic case. The semileptonic branching ratios are typically of the order of
1073, and the nonleptonic ones show better agreement with the experimental data in comparison to the

Isgur-Scora-Grinstein-Wise predictions.

DOI: 10.1103/PhysRevD.99.013001

I. INTRODUCTION

Analysis of heavy meson decays to the light ones is a
useful tool to explore the Cabibbo-Kobayashi-Maskawa
matrix and CP violations. The D-meson decays occurring
by ¢ quark decay (in the quark level) are placed in the
above-mentioned processes.

In the semileptonic decays, the form factors determine
the nonperturbative effects. The form factors of the semi-
leptonic decays of charmed meson Dy to scalar, pseudo-
scalar, or vector mesons have been estimated by various
approaches. In Refs. [1,2], the light-cone sum rule (LCSR)
approach has been used to study the D — z(K)£v decays.
The form factors of the nonleptonic D — z(K, K*)¢v
transitions have been evaluated by the lattice QCD method
in Refs. [3-5], while the semileptonic processes D —
7, p, K and K* have been investigated by the heavy quark
effective theory in Ref. [6]. The semileptonic decays D ;) —
fo(K3)¢v, Dy = a(K)¢v, and D) — K*(p, ¢)£v have
been studied in the framework of the three-point QCD sum
rules (3PSR) [7-14]. The semileptonic decays of D to the
light axial vector mesons involving K, a,, f(1285) and
f1(1420) have been studied via the 3PSR approach [15,16].

For the tensor meson, as the final state, the form factors
have been calculated in the Isgur-Scora-Grinstein-Wise
(ISGW) quark model and its improved version, the
ISGW2 model in Refs. [17,18]. The observed J¢ =
2" tensor mesons are isovector meson a,(1320), iso-
doublet state K3(1430), and isosinglet mesons f,(1270)
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and f4(1525). a,(1320) is a (du) state, and K,(1430) is a
(sit) state, while the wave functions of f, and f} are
defined as their mixing angle:

1 -
f2(1270) = 7 (uit 4 dd) cos 0y, + s5sin 6y,
1 -
15(1525) :%(uﬁ—kdd) sin@y, — s5cosfy,. (1)

Since zz(KK) is the dominate decay of f,(f%) (for more
information, see Ref. [19]), the mixing angle should be
small, and it has been reported ¢, = 7.8° [20] and ¢, =
(9 £ 1)° [19]. Therefore, f,(1270) is primarily a (ui +
dd)/~/2 state, while f5(1525) is dominantly (s3) [21].

In this paper, the form factors for the D decays into light
tensor mesons (7) in the LCSR approach are calculated. In
this method, the operator product is expanded near the light
cone, while the nonperturbative hadronic matrix elements
are parametrized by the light-cone distribution amplitudes
(LCDAs) of the tensor meson.

The paper is organized as follows. In Sec. I, by using the
LCSR, the form factors of D — T¢v, decays are derived.
In Sec. III, the numerical analysis of the LCSR for the
form factors is presented, and the branching ratio values
of the semileptonic and nonleptonic decays are evaluated.
A comparison is also made between our results and the
predictions of other methods and experimental data in this
section.

II. D - T FORM FACTORS IN THE LCSR

In the LCSR method, to calculate the D — T transition
form factors, first, the correlation function
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m,(p'.q) =i / d*xe'™(T(p', )| T{ji"(x)jp(0)}[0),  (2)

where jp = igysc is the interpolating current for the D
meson and with ¢ = u (s) for D° (D) and g = d for D,
respectively, is considered. Moreover, in Eq. (2), j},m =
q'v,(1 —ys)c is the interaction current in which ¢’ = d for
the D° — a, transition and ¢’ = s for D°(D}) — K;(f5)
decay. In addition, /2" (Dt — f,) = ji"(D? - a3).

According to the general philosophy of the LCSR, the
correlation functions of Eq. (2) can be obtained in two
ways: the physical or phenomenological side and the QCD
or theoretical ones. The form factors can be obtained by
using the dispersion relation to link these two parts.

Let us first consider the physical part of Eq. (2). By
inserting a complete set of hadrons with the same quantum
numbers of the D meson between the currents and isolating
the pole term of the lowest D meson, correlation function is
obtained as

(T(p". A)Lji"(0)ID(P))(D(p) L (0)]0)

H,u(p/’p): m%_pz
1 [ ph(s)
- ds, 3
oo f P 3)

where the first term in Eq. (3) represents the ground-state
D-meson contribution and the second term describes the
contributions of the higher states and continuum, while p,’j
is the spectral density for these states. These spectral
densities are approximated by evoking the quark-hadron
duality ansatz as

Pi(s) = P (5)0(s = o), (4)

where sy is the continuum threshold chosen near the
squared mass of the lowest D-meson state. It follows from
Eq. (3) that to calculate the form factors of the B - T
transition the matrix elements (7'(p’, )|/ (x)|D(p)) and
(D(p)|j},(0)]0) are needed. The first matrix element is
defined in terms of the form factors as [22-24]

(T(p", )i (x)|D(p))

. 2V(q?) w \
= _lmeﬁmﬂeg p*p” —Al(flz)e/(mD + my)
A q2 .
+ AL (i gyp k),
mD + mT
e*’l.q
+2mr g () - Aol ) (5)

with

mp+m mp—m
As(?) = 2L A(¢*) -—2—TA,(¢») and
3(9°) 2y 1(¢%) 2 2(¢%) an
A3(0) = Ay(0), (6)

where ¢ = p — p/, e} = €, p*/mp. Moreover, In Eq. (5),
V,A;(i =0,..,3) are the form factors of D — T transition.
For simplicity, the following definitions are used:

2
Vi) =~ ) 4 (2) = () mp ),
D T
Al?) = 2L ) =2 () - o)

(7)

On the other hand, the second matrix element in Eq. (3) is
defined in terms of the D-meson leptonic decay constant
and mass as

. f Dm%)
D(p)|jt = JD7D
DO =, ZE- (8)
Using Eqgs. (4), (5), (7), and (8), these hadronic represen-
tation can be obtained for IT,(p, p'):

fDmD 1 . 2 *Up
V(g?e, e pPpPp,
mc+mqm%)_p2{ (@)euwape;” PP P,

+ Al e + A(@)eza p (p + P,

L [ pP(s)
2\ oA a H
+As(?)erpat P’ au} +;[O el
9)

To obtain the theoretical part of Eq. (2) in the LCSR
approach, the 7 product of currents should be expanded

near the light cone x? ~ 0. After contracting the ¢ quark
field,

Hﬂ(p/’ p) =

M,(p.q) = - / e (T(p' )7 (x)y,(1 - 75)
x 5 (x.0)733(0)]0). (10)

where S¢(x,0) is the full propagator of the ¢ quark, is
obtained. In this paper, just the free propagator is consid-
ered as

Sc(x’o):/<d4k pmits KM (11)

2r)* K? —m?2

Using the Fierz rearrangement formula in Eq. (10), it
follows that in order to calculate the theoretical part,
the matrix elements of the nonlocal operators between
T-meson and vacuum states are needed. Two-particle
distribution amplitudes for the tensor meson 7 are given
in Refs. [25,26],
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N *ﬁ A
(T Dana(a(0)0) = - [ duelw{frm%{/“”"” () = 2 g (u)

(p'x)? 2(px)?
exlxt ﬂx” xP 1 1
— Y wol _ u <P pyo,, -~ T
< ) X p (p )C) )V gv(u) + zeﬂvpay &, x/)’p XYs p/ ga(u):|
: v byl — by e P xP
1 1 6” ( ﬂ[}x pIJ € x p/l) T o (p/l pl/ )ng/)ﬁx X T
—— O] h
g | AL () + e W
2 2 my 7 my 2
+ o (e pxlx, — e3P x,) mh?(u) + 8;Dx”x”EhST(u)] + O(x )}5{1, (12)
I
where x? # 0 and u @) 1 ®y(v
0 v u v
g = + D (u) —2g,(u),
9( ) 93( ) ||( ) 9( ) [ (I)H(U) I @Mv)
_ 1 _ go(u)=2a | dv———=+2u | dv———=,
hy(u) = h(u) =@ (u),  ha(u) = hs(u) = Py (). 0 v u v
3 w @ (v) /1 D, (v)
h =—(2u-1 dv——— dv——=|,
(13)  hy(u) =5 (2u )</0 v—" v
- . . u @ 1 ()
In Eq. (12), @ and'dh are the% twist-2 functions; g,,, g,, h;, hy(u) = 3 1_4/ dv L_(U) n u/ dv 1(v) ’ (15)
and A, are the twist-3 functions; and g3 and h; are of 0 v u v
twist 4. The leading-twist @ ; can be expanded as [26]
u ) = 6u(l —u a 3/2 ’ 14 where p is the normalization scale, # =1—u, and
() ( ; (- l ©) (14) & =2u— 1. Also, using the equation of motion given in
Ref. [27], we can express the twist-4 DAs.
and twist-3 LCDAs are related to twist-2 ones through the Two-parton chiral-even light-cone distribution ampli-
Wandzura-Wilczek relations, tudes of a tensor meson are given by
|
1 . g*’l x% xﬁ g*)‘ X m2 e* xa xﬂ
_ iun'x af a T af
(0020 02 0)10) = Fym [ auerors{ 5 0 r ) + o gt ) -, T 0.
/ - 2 ! iup'x 1 FPO gg(u)
<T(P’/1)|‘]1(x)}’u75512(0)|0> = frmz A due™? €uvapX D€ X5 W’ (16)

and the chiral-odd LCDA is

~ : ! iup'x *A *A 1
(002001 0900200)0) = =ispmy [ aues™{fegoen, = st f] @) + (i, = pi)

2 p 2 T
ngOllfx x mr « * h3 (u)
(p/x)3 htT(u) +7[€yéx Xy — Evéx X ] (p,x)z > (17)

where f is scale independent and f7 is a scale-dependent decay constant of the tensor meson 7', as defined in Ref. [26].

Now, two-parton distribution amplitudes should be inserted in Eq. (10), and traces and integrals should be calculated.
Finally, the coefficients of the corresponding structures from both phenomenological and theoretical sides of the correlation
functions are equated, and the Borel transform is performed with respect to the variable p? as

) 1 (=1 e_%
B M) (7 =y = T O "

the sum rules are obtained for the form factors describing D — T decay. For instance, the form factor A;(g?) is obtain as
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(i\T 7 ()T
a fr [V @ 5, (u) L h Sy(u) 1
A =——— —T/ du—=|=31u+33( 1+ = —s(u) _ ik / du—3 ——lems®
l(q ) my + mp {mr u . 8M2 e * ]‘42 ¢ meT up uu2M2 M2 2 ¢
1 (ii))T 25 (u) ] [—g@T(M) —|—lg<i)T(u) +8 m2 _(iii)T}
1 —s(u v 274 uM? 93 —s(u
+8f%mT/u0duu;M2[u—4+ Ye }e (>+meL,/u0du Ve M e~
! hgi)T ) { gii)T m2]
+fJT-mTA0 dume U—f%mTAO dum [5+W]e U}, (19)

where

1
w0 =5 [\ (50 = = )7 + 4 (m2 = ¢7) = (s0 = m - )],

2m7y
2 2
_mT(mc+mq) m—lz) _ 1 2 Fa2 772
a = Fomn enr,  s(u)= Ve [mg + uamz. — ug*],
. 2 2 me 2”72
O1(u) = —+mzu+q°(u—2), 6y(u) =, T

The explicit expressions for the other form factors are presented in the Appendix.

III. NUMERICAL ANALYSIS

In this section, our numerical analysis of the sum rules for
the form factors and branching ratios is presented. In the
calculation of the form factors V and A;(i = 0, 1,2), masses
are taken in GeV as m, = 1.28 £0.03, mp = 1.86,
mp+=1.86, mp+ =1.96 [28]. For the s and d quark at u =
1 GeV, we take m, = (3.5-6) MeV and m, = (10473%) MeV
[29]. For D° D*, and D,-meson decay constants, the
results of the QCD sum rule as fp0 = fp+ = (210.25 +
11.60) MeVand f, = (245.70 £ 7.46) MeV [30] are used.

For the tensor mesons, the relevant parameters are pre-
sented in Table I. All of the masses presented in Table I are
chosen from Ref. [28], while the decay constants f7(f7 ) and

the Gegenbauer moments a%”w 1 are taken from Ref. [21].

A. Analysis of the form factors

In this subsection, our numerical analysis of the form
factors is presented. The sum rules for the form factors

TABLE I. Masses, decay constants, and Gegenbauer moments
for tensor mesons. The decay constants and Gegenbauer mo-
ments are given at the scale 4 = 1 GeV.

contain two parameters: namely, Borel mass squares M?
and continuum thresholds s,;. Our results should be
independent of these parameters since M? and s, are not
physical quantities. In this paper, the value of continuum
threshold is used as sy € [6,8] GeV? [15]. To carry out
numerical calculations, a region of M? must be obtained,
and the suitable region has two conditions. First, the
nonperturbative terms must remain subdominant by the
lower bound of M?; and second, the higher bound must
decrease the contributions of the higher states and con-
tinuum. In Fig. 1, the M? dependence of the form factors
Ai(g*> =0) and Ay(g*> = 0) is presented for D°(D]) —
a,(f%) transition, at three different values of the threshold
so = 6 GeV?, sy = 6.5 GeV?, and s, = 7 GeV?, with red,
black, and blue lines, respectively. In this figure, the relative
change in the value of the form factors at g*> = 0 is also
displaced at the shaded interval of the Borel parameter.
Our numerical analysis reveals that for 3 GeV? < M? <
5 GeV? all of the form factors show good stability.

Now, the ¢*> dependency of the form factors can be
carried out. First, the values of the form factors at q2 =0
are estimated. In Fig. 2, our results for V,A;(i = 0, 1,2) of
D — T¢v, decays in ¢g*> = 0 are presented. Moreover, this

T a, K; fa 1 figure contains the predictions of the covariant light-front
Mass (GeV) 1.32 142 127 152 model (LFQM) and improved version ISGW quark model
fr (MeV) 107 + 6 118+ 5 102 + 6 126 + 4 approaches [18,31]. The results of the other a.ppro.aches are
fr (MeV) 105421 77414 117+25 65+ 12  rescaled according to Eq. (5). The errors in Fig. 2 are
a(lH 0 5/3 5/3 5/3 5/3 estimated by the variation of the Borel parameter M? and

the decay constants f; and f7.
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FIG. 1. The form factors A,(0) and Ay (0) for the D°(D]) — a,(f}) transition on M? at three values of the threshold s,. The the
relative change in the value of the form factors at the shaded interval of the Borel parameter is displaced in every plot.

Figure 3 depicts the twist-2,3 and twist-4 contributions in
the form factor formula A;(¢?) and V(g?) for D° - a,
decay. Similarity, as shown in this figure, for all of the form
factors, the most contribution is related to the twist-2 DAs,
while the twist-4 DAs have the least contribution.

To extend the present result to the whole physical region,
m2 < ¢* < (mp — mr)?, we use the parametrization of the
form factors with respect to g as

F(0)

= , (20)
1+ aq*/m3, + pq*/mj,

F(q?)

where F(0) denotes the value of the form factor at
¢* =0. In addition, @ and pB are the corresponding
fitting coefficients listed in Table II for different form
factors. The dependence of the fitted form factors V, A;(i =
0,1,2) on ¢ for D — T transitions is shown in Fig. 4.

B. Differential branching ratio
for the semileptonic decays

Now, we would like to evaluate the branching ratio
values for the D — T¢v, decays. The expressions of the
differential decay width are given as

dl; (D — T¢v 1 1
oD > 173) 3 ) _ o2 = (2¢* + m2)hg(q*) + z Am2A}(q%) |
dq 9 3
dl' (D — T¢v) , (2¢% +m?2) 5 VA |?
a7 o 3 (mp +mp)Ai(q°) F o——— V(g*)| | (21)

013001-5



S. MOMENI, R. KHOSRAVI, and S. GHAZIASGAR

PHYS. REV. D 99, 013001 (2019)

DO — az D Oﬁ K ;
} —e— This work } —e— This work
2 4 } ® LFQM 5 ® LFQM
e o ’ *  ISGW . E * ISGW
e o ° § L
0 * e ® 0 1 e ¢ o
22 -2 1
4 } 47
V(0) A (0) A (0) Ay(0) V(0) Ay (0) A (0) A, (0)
D> 5 D; —>f ’2
4 6
—e— This work —e— This work
® L[FQM |4 ® LFQM
2 } } * ISGW } ® ISGW
o E 2 1 o
. . ¢
[ ] L] °
0 o ° o ©® . U ¢ ° °o o
24
-2 1 } 4
-6
) V(0) Ay(0) A (0) A, (0) V(0) Ay (0) Ay (0) A, (0)

FIG. 2. The values of the V(0), A;(0) in comparison with the predictions of the other approaches, such as LFQM and ISGW.

|—A1—Twist72—Twistf3| —— V —— Twist =2 —— Twist — 3

y o —_
0.8 7\ 0.8 1

o o
Z 06 =067
2

0.4 0.4

0.21 0.21

0- T T 0- T T
0 0.05 0.10 0 0.05 0.10
q*(Gev?) q*(Gev?)

FIG.3. A, and V form factor of D® — a, transition on g>. The contributions of twist-2,3 and twist-4 functions in these form factors are
displaced with blue, red, and yellow lines, respectively.
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TABLE II.
form factor.

The values of the parameters F(0), a, and /3 for each

Form factor F(0) «  p Form factor F(0) a f

yD'=a; 254 171 046 yb°—~k; 298 1.80 0.58
A?“»az 121 261 422 40~k 081 2.60 443
1
Ag‘baz -2.85 3.12 2.75 Af“’@ -3.89 277 181
AODO—“lz 1.80 2.56 2.75 (L;%K; 298 1.80 0.58
VD= f 321 2.04 081 yP'= 231 1.68 042
AP, 0.48 2.86 6.54 A?*—*fz 1.38 2.62 4.14
1
A?ﬁ—% —4.65 291 1.94 A?*—*fz -2.32 332 3.35
AOD.?—N"; 1.20 2.73 2.83 Aé’*—n"z 1.92 2.58 2.85
—V A=A A
1.51
R
5
OT 0.51
a2
=
> 07
05 _ _ e ————
0 Oll 012 0I3
q*(GeVv?)
— V- Al__A2_'_A0|
1.5 1
— 1- ----------------------------
S
T T e
+
A 0.5
<
>
0
—0.5 - r T T
0 0.1 0.2 0.3

q*(GeVv?)

where m, represents the mass of the charged lepton and L,
+ denotes the helicities of the tensor mesons. The other
parameters are defined as

- G%’|Vq’c|2\//13(m2D’m%’q2) D — < m%)

256m3man’q?

() = 5 [(n% 2= ) mp + m)AL ()
- ﬁAz(Qz)] . (22)

The differential branching ratios of the D — Tub,
decays are plotted on ¢> in Fig. 5, in which we take
|Veal = (022 £0.00), |V =(098=+0.01) and m, =
105.65 MeV [28]. In this figure, the black, blue, red,

v A——h-—A)

0.10

q’(Gev?)

— VA=A A

_l .

FIG. 4. The form factors V,A; on g*> for D — T decay.
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dq2

q*(Gev?)

FIG. 5. Differential branching ratios of the D — Tup, as functions of q°.

and yellow lines show dBr ./ dq?, dBr;/dq?*, dBr,/dq?,
and dBr_/dq?, respectively. Integrating Eq. (21) over ¢* in
the whole physical region and using the total mean lifetime
tpo =041, 7p+ =1.04, and 7, =0.50 ps [28], the
branching ratio values of these decays are obtained as
presented in Table III.

TABLE III. Branching ratios of D — Tub, obtained in this
work. Br;, Br, and Br_ stand for the portion of the rate with a
longitudinal polarization, positive helicity, and negative helicity
of the 7 meson, respectively. The error comes from the variation
of form factors.

Decay [Br, Br, Br_ Brigu] X 10°

D0—>a2m7” 1.23+0.44 0.06+0.01 0.21+0.06 1.50£0.51

D°— Kiup, 2.35£0.83 0.09£0.03 0.41£0.15
Df — foup, 1.5240.73 0.02+0.01 0.22+0.07
D* — foup, 637+2.55 0.40+0.19 1.08+0.39

2.85+£1.01
1.76+0.81
7.85+3.13

C. Nonleptonic decays

Finally, we want to evaluate the branching ratios for the
nonleptonic D — TP(P = K, r) decays. For these decays,
the factorizable amplitude has the expression [32]

G
X(D - TP) = l\/—gch’V;quP‘e;upﬂpy[Al (m%’)
+ (mp = mp) Ay (mp) + mp Az (mp)]
= €, P"'pP*M(D - TP), (23)

where g, = s(d) for P = K(x). Also, fp is the P meson
decay constant, and A;(i = 1,2,3) is defined in Eq. (7).
The decay rate is given by

(D - TP) = pe <@>2|M(D—>TP)

2
12zm7z \mr

2o (24
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TABLE IV. The values of A,(i =1,2,3) for D - TP(P =

K, r) transition at g> = m3.

TABLE V. Branching ratios for various D — TP(P = K, x)
decays.

(D, T, P) Ay (m3p) Az (mp) As(mp)
(D% ar, K*) —3854+0.09 -088+024 353243907
(D0 K xt) -261+£075 -1.16+0.30 1.51 +£23.05
(Df fhat)  —1.64+031 —-1314+034  3.41+66.80
(Dv ,fz,K+) -139£025 -1.21+£0.29 0.13 £4.54
(DY, fo,mn") —4254+0.62 —0.72+0.18 41.05+37.29

where p,. is the c.m. momentum of the tensor meson in the
rest frame of the D meson. For estimating the branching
ratios of the nonleptonic D — TP decays, the values of
A;(i =1,2,3) at ¢*> = m3 are needed. For 7 and the K
meson, the masses are chosen in giga-electron-volts as
myr = 0.139 and mg+ = 0.493 [28]. The results are
presented in Table IV. Inserting these values in Eq. (24)
and using |V, = (0.97 +£0.00), |V, = (0.22 £ 0.00),
frr = (130£0.26) MeV, and fg+ = (156 £ 0.49) MeV,
the values for the branching ratio of nonleptonic decays are
obtained as presented in Table V. In comparison, the
experimental values and IGSW results are also included
in this table. This table shows that for the D° — a,K+,
D® - Kz, and DT — fon" cases our results for the
|

(T

V() =5 o) {=fome [ s e e

1 h(zll)T 1 1 h
L, W ‘“")‘gf*””[ W

16 1 h(ii)T

7 (iii)T

@ — gl 4 22 gl ()]

IGSW  This work  Experimental
Decay (32] [33-35]
Br(D° = a,K*) x 10+ 005 7.06+144  7.0+43
Br(D° - Kint) x 10 0.10  3.94+0.54 2.0%7
Br(Df - fon")x10° 1.6 4.58+0.42
Br(D} — f4KT) x 10° 49  692+2.94
Br(D — fort)x 10>  0.02 286+0.68  0.9+0.1

branching ratios are in good agrement with the experi-
mental results.

In summary, the D — T¢D, decays in the LCSR
approach up to the twist-4 LCDAs of the T tensor meson
were considered. Using the transition form factors of the
D — T, the semileptonic branching ratios for £ = u and
the nonleptonic ones for D - TP(P = K, n) decay were
analyzed. For the nonleptonic case, a comparison of the
results for the branching ratios with the IGSW approach
and existing experimental results was also made.

APPENDIX: FORM FACTOR EXPRESSIONS

In this Appendix, the explicit expressions for the form
factors of D — T decays are given:

1o el L
)—|—4fT/ duW(2u—7)€_ —8meT
Uy
=(ii)T
et 10)e O~ by [ = e
2/ T u M
Uy

e—s) _

Ay (q) = ay(mr + mD){mec/ du

374
o uwM

2f% ld <’”)T 39 4+ 4u 82(u)
+ meTA U——7 M |: + M
(iii)T
1 1 g —s(u 1
—ngm%mC AO dume (u) + 2f%mT AO du

(

17 1, o7
fr/ du L g0
8mT 1o u M
(i)T
S
“) 4~ meT/ du——— e
Uy

)

i)

u*M?>

17f+
o 1711

(ii)T (ii)T m2
2 1[99 + g0 ++(4-2u)itg
aq 93
Ao(ﬁlz) = A3(q2) - 72;7% {mec/ du H WM ®
U
1 h(m)T
“) +2f%mTA du—t s { 31—

()T
1 L hy S1(u)] _y 1 I g
+Zf%mTl0dum(2—u)[l— e ()—ngm%mCAOdu 3

1 W7
X / duﬁe‘s
w UM

3M?

e=s() }

1
+2fFmy / du
o wM*

8m7~

(4 - 2u)] s(u)

(iii)T<2 —u) v
u*M° ¢
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