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In neutrino experiments, neutrino energy reconstruction is crucial because neutrino oscillations and
differential cross-sections are functions of neutrino energy. It is also challenging due to the complexity in
the detector response and kinematics of final state particles. We propose a regression convolutional neural
network (CNN) based method to reconstruct electron neutrino energy and electron energy in the NOvA
neutrino experiment. We demonstrate that with raw detector pixel inputs, a regression CNN can reconstruct
event energy even with complicated final states involving lepton and hadrons. Compared with kinematics-
based energy reconstruction, this method achieves a significantly better energy resolution. The
reconstructed to true energy ratio shows comparable or less dependence on true energy, hadronic energy
fractions, and interaction modes. The regression CNN also shows smaller systematic uncertainties from the
simulation of neutrino interactions. The proposed energy estimator provides improvements of 16% and
12% in RMS for νe CC and electron, respectively. This method can also be extended to solve other
regression problems in High Energy Physics, taking over kinematics-based reconstruction tasks.
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I. INTRODUCTION

Energy reconstruction plays a key role in high energy
physics (HEP), as it converts detector unit readout into
kinematics of interactions. In a HEP analysis, event and
particle types are usually identified first and then recon-
structed energies are assigned to individual final state
particles and the overall event via the energy reconstruction
process. Based on these energies, physical phenomena can
be studied as functions of overall energy and internal
kinematics of an event. In neutrino physics, energy recon-
struction is essential and challenging for the neutrino
oscillation studies. Traditionally, particle energies are recon-
structed by adding up or fitting to the hits on detector readout
units, and event energy is reconstructed as a function of
particle energies in the event. In this paper, a deep-learning
based method for energy reconstruction of neutrino oscil-
lations will be discussed. The method directly uses detector
hits as inputs without intermediate steps.
Neutrino oscillations are so far the only experimental

observation beyond the standard model since its develop-
ment about 30 years ago. Neutrinos are very elusive since
they only interact via the weak nuclear force. They have
three active flavor states νe, νμ, and ντ. Each is a different
superposition of three mass states ν1, ν2, and ν3. Neutrinos
can oscillate between flavor states. The relationship
between flavor and mass states, and the oscillation between
flavors are commonly described by the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix [1].
Two fundamental questions of interest are remaining to

be determined by studying neutrino oscillations. First, what

is the CP phase δ? The CP phase δ relates to the difference
in oscillation behavior between neutrinos and antineutri-
nos. CP violation in the lepton sector holds implications for
matter-antimatter asymmetry in the Universe through lepto-
genesis. Second, what is the mass ordering (m3 > m1;2 or
m1;2 > m3) between neutrinos? The mass hierarchy pro-
vides key information for future searches of the neutrino-
less double beta decay. Observing the neutrinoless double
beta decay would imply that the neutrino is a Majorana
particle meaning it is its own antiparticle. The mass
hierarchy will also constrain the so far undetermined
absolute neutrino masses.
Aiming to solve these two questions, current and future

neutrino oscillation experiments focus on electron neutrino
appearance (νμ → νe). Neutrino oscillation can be mea-
sured by sending a beam of neutrinos of one flavor through
a detector. Oscillated neutrinos arriving in the detector will
be of a different flavor than the one generated from the
beam. Observed neutrino interactions need to be tagged by
their flavors. Importantly, the energy of the incoming
neutrino needs to be well reconstructed as the νμ → νe
oscillation probability changes as a function of neutrino
energy.
One of the challenges is thus a good estimation of

electron neutrino energy. The accuracy of neutrino energy
reconstruction influences how precisely neutrino oscilla-
tion parameters can be estimated. An electron neutrino can
only be identified in charged current (CC) interactions
where the electron neutrino converts into an electron. The
νe − CC events are characterized by an electron along with
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other potential activity produced by hadrons. Traditionally,
the reconstructed neutrino energy is calculated as a function
of electron and hadron visible energy deposits. However,
the estimation of the energy with the kinematics based
method is complicated by missing energy in dead material,
nonlinear detector energy responses, invisible energy and
identities (mass) of hadrons, and overlaps between electron
and hadron showers.
To address these issues, the neutrino energy can be

predicted directly from images of interactions. These
images provide additional information on interaction
details such as trajectories and energy deposit patterns of
electrons and hadrons. Deep learning and deep convolu-
tional neural network methods are a natural choice for
processing data produced by complex detectors in high
energy physics [2–5] and have demonstrated success in
classification problems in collider and neutrino experi-
ments. NOvA has pioneered this deep learning technique in
flavor tagging problems and has used it to produce
oscillation physics results [6,7]. CNN based event identi-
fication and reconstruction have also been investigated in
other neutrino experiments [8–12]. In this work, we
propose to develop a regression CNN based method to
precisely reconstruct electron neutrino energy and electron
energy in the NOvA neutrino experiment. Neutrino inter-
actions at NOvA typically involve multiple final state
particles with complicated kinematics. The convolutional
filters in CNNs can extract a richer set of features of these
events than the sum of energy deposits. For example, two
neutrinos could deposit almost exactly the same amount of
energy in the detector and convolutional neural network
features learned from event topologies could be used to
make a more refined prediction on the true neutrino energy
than the kinematics based method.
Reconstruction of individual final state particle energy in

an interaction is a basic task of energy reconstruction.
Specifically, these particle energies are used to study the
kinematics, such as the momentum and energy transfer, in
neutrino interactions. To demonstrate that the regression
CNN can also reconstruct single particle energy, a similar
method to the electron neutrino energy estimator is used to
estimate electron energy. This estimator can be used for cross-
section measurements and shower reconstruction study.

II. THE NOvA EXPERIMENT

NOvA uses an intense neutrino beam and sends it
through sensitive, fine-grained detectors for long periods
of time. The NuMI (Neutrinos at the Main Injector) muon
neutrino beam is produced at Fermilab, Illinois. Aimed at
3.3 degrees downward, the beam travels 810 km through
the earth to the 14 kilotons far detector (FD) in Ash River,
Minnesota [13]. The far detector measures electron neu-
trinos oscillated from muon neutrinos in the beam. The
NOvA experiment has the longest beam-detector distance
in the world which maximizes the matter effect and allows a

measurement of the neutrino mass ordering. Additionally, a
330 ton functionally identical near detector at Fermilab
measures unoscillated beam neutrinos and estimates back-
grounds and signals at the far detector. Both detectors are
located 14 milli-radians off the centerline of the neutrino
beam. This allows the detectors to capture a narrow energy
spectrum of neutrinos at approximately 2 GeV. This is the
energy at which the oscillation probability from a muon
neutrino to an electron neutrino is expected to be at its peak.
The NOvA detectors are constructed in layers of alter-

nating vertical and horizontal PVC cells; activities in the
cells are recorded in a top view and a side view. There are
344 064 cells in the far detector and 18 000 cells in the near
detector. In the far detector, each cell is 3.9 cm wide, 6.0 cm
deep and 15.6 m long. The cells are made of highly
reflective plastic filled with liquid scintillator. The scintil-
lation light produced by neutrino interactions in the
detectors is collected by a wavelength shifting fiber
connected to an avalanche photodiode installed on one
end of each cell. The readouts from these photodiodes are
converted to calorimetric energy for physics analyses.

III. METHODS

A. Simulated data sample

1. Simulation

The standard NOvA simulation is used to generate
training and validation samples for the regression CNN.
The simulation of NuMI neutrino beam is described in
Ref. [14]. The beam is simulated by GEANT4 [15] and
corrected according to external thin-target hadroproduction
data with the PPFX tool [16]. The flux shape of the NuMI
neutrino beam at NOvA is referred to as the regular flux in
this paper. Since NOvA is an off-axis experiment, the
neutrino spectrum at the NOvA far detector from the NuMI
flux peaks at about 2 GeV, close to the νμ → νe oscillation
maximum. Since there are few low energy neutrino
(<1 GeV) events in the NOvA FD Monte Carlo sample
with the regular NuMI flux, the regression CNN νe energy
trained with it has a significant true energy dependence (see
Sec. IV). To minimize the dependence of estimated neu-
trino energy on true neutrino energy in the νe energy
training, a flat neutrino flux shape is used to generate the far
detector νe CC Monte Carlo sample to train the regression
CNN for νe energy reconstruction. In the case of electron
shower energy estimation, electrons from the regular flux
νe CC far detector Monte Carlo sample are used in the
electron energy regression CNN training and its validation.
At NOvA, interactions of neutrinos on nuclei are

simulated by GENIE [17], and detector responses are then
simulated by GEANT4. The customized NOvA detector
simulation chain is described in [18].
To study the νe interactions in the far detector

Monte Carlo, we generate νe interactions with energies
taken from the νμ flux distribution. After that, no neutrino

BALDI, BIAN, HERTEL, and LI PHYS. REV. D 99, 012011 (2019)

012011-2



oscillations are applied to the training samples. This is
equivalent to assuming all muon neutrinos oscillate to
electron neutrinos in the far detector. To study realistic
energy reconstruction performances from different energy
estimators, the real νe appearance signal in the far detector
can be obtained by applying realistic oscillation weights to
this sample.
The simulation produces image pairs of the entire

detector. As explained in Sec. II the two images correspond
to cells in the top view (X-view) planes and side view
(Y-view) planes of the detector. The images have a size
896 × 384 (horizontal × vertical), where each pixel corre-
sponds to the energy deposited in the corresponding
detector cell. The horizontal coordinate (0-895) of a pixel
represents the plane index of the detector cell and the
vertical coordinate (0-383) represents the cell index in that
plane. Since X-view planes and Y-view planes are
assembled alternatively, all pixels with odd (even) plane
indices are set to zero for X-view (Y-view). The neutrino
flavor and the type of interaction are tagged by the true
neutrino interaction information in GENIE.

2. Reconstruction

The overall reconstruction process at NOvA is described
in [19]. First, different neutrino interactions captured in the
same pair of detector views are separated [20]. Cell hits are
clustered by space and time. This separates neutrino
interactions caused by beam neutrinos from cosmic ray
neutrinos in a time window. The procedure collects cell hits
from a single neutrino interaction (slice). The slices then
serve as the foundation for all later reconstruction stages.
We will refer to one slice as neutrino interaction from
here on.
For each neutrino interaction, the vertex is then identi-

fied. The vertex is where the neutrino interacts with the
detector material. All particles created in the interaction
originate at the vertex. In order to reconstruct the vertex
position, a modified Hough transform is used to fit straight-
lines to cell hits. Then the lines are tuned in an iterative
procedure until they converge to the image’s reconstructed

vertex [21–25]. The cell closest to the reconstructed
interaction vertex in each view is chosen as the reference
cell in our pixel maps. We will refer to the reference cell as
the reconstructed vertex from here on.
Since the size of the neutrino interaction is much smaller

than the entire detector, the image can be cropped. An
image can be cropped by considering the number of pixels
that are occupied in all four directions from the recon-
structed vertex. To determine a window size the distribution
of electron neutrino interactions is inspected. The cropped
image contains 30 pixels to the left and 120 pixels to the
right of the vertex. In the vertical-direction, 70 pixels above
and below the vertex are included. This produces images of
151 × 141 pixels in each view. On average, 99.5% of the
hits are contained in a cropped image.

3. The electron neutrino data set

True neutrino information is used to select νe CC events
from all neutrino interactions. To to speed up the processing
time, a loose preselection is applied to remove events with
long prongs or too many hits. The preselection requires the
number of occupied cells in the neutrino interaction to be
less than 200. Additionally, the length of the longest prong is
required to be less than 500 cm. Prongs are collections of cell
hits with a start point and direction, which are reconstructed
based on distances from hits to the lines associated with each
of the particles that paths emanating from the reconstructed
vertex [21–25]. The pre-selection keeps most of the electron-
neutrino appearance signal while rejecting a large fraction of
background events with long muon tracks. No requirements
are applied to calorimetric energy or reconstructed neutrino
interaction identities.
We use 0.98 million simulated samples of electron

neutrino interactions as the electron neutrino data set.
Each sample consists of a pair of images from the two
detector views, the reconstructed vertex and the simulated
truth of electron neutrino energy. We split the data set into a
training sample with 0.75 million events and a validation
sample with 0.23 million events. One example pair of
images from the training data set is shown in Fig. 1.

FIG. 1. Electron neutrino image pair example.
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In Fig. 2 (left) we show the spectrum of cell energy deposits
in cell hits from a subset of the flat flux training sample.
Figure 2 (right) shows the spectrum of true νe energy from
the subset of the flat flux training sample. One can find
that there are enough events in the low νe energy region
(<1 GeV) for training. As a comparison, in Fig. 3 the cell
hit energy deposits and νe energy from the regular flux νe
FD Monte Carlo sample are shown. Since NOvA is an off-
axis experiment, the νe energy in the FD is bell-shaped
peaking around at 2 GeV, and there are few events below
1 GeV for training.

4. The electron shower data set

Electron shower images are created from electron neu-
trino interactions by reconstructing the pixels corresponding
to the electron shower and setting cell energy values for all
other pixels to zero. We select electron showers from νe CC
FD Monte Carlo events by matching the reconstructed
shower direction to the true particle direction.
The creation of electron shower pixel maps starts with

prongs. First, the shower core is defined based on the prong
direction provided by the prong cluster. Then signal hits
are collected in a column around this core. The electron

deposits energy through ionization in the first few planes
before it starts multiple scattering. In order to capture all
deposits from the electron shower, the region correspond-
ing to multiple scattering is enlarged. We require the radius
to be twice the cell width for the first 8 planes from the start
point of the shower. For the following planes, we require
the radius to be 20 times the cell width [26].
Electrons from the regular flux νe CC FD Monte Carlo

sample are used for training. One example pair of images
from the training data set is shown in Fig. 4. We use 660k
simulated samples of electron showers as the electron
shower data set. Each sample consists of a pair of images,
the reconstructed vertex and the true electron energy. We
split the data set into 610,000 training samples and 50,000
validation samples. In Fig. 5 (left) we show the spectrum of
cell energy deposits from a subset of the regular flux training
sample. Figure 5 (right) shows the spectrum of true electron
shower energies from the subset of training sample.

B. Neural network architecture

The electron neutrino energy model and electron shower
energy model are equal in architecture but weights are not
shared across the two predictors. The neural network input
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FIG. 2. Distributions of input cell energies (left) and true electron neutrino energies (right) from a subset of the flat flux training
sample.
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FIG. 3. Distributions of input cell energies (left) and true electron neutrino energies (right) from a subset of the regular flux training
sample.
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consists of two matrices of shape (151,141) which re-
present the pixel values of the images and the cell indices
for each view given by the reconstructed vertex. The output
is one positive real-valued number. Inputs and outputs for
each model are illustrated in Fig. 6.

The neural network architecture is modified from the
architecture used by NOvA’s CVN event classifier [6]. This
architecture is optimized from the convolutional neural
network GoogLeNet [27] developed for image recognition.
In addition, NOvA’s CVN utilizes a siamese network

FIG. 4. Electron shower image pair example.
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FIG. 5. Distributions of input cell energies (left) and true electron energies (right) from a subset of the regular flux training sample.
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FIG. 6. Diagram of electron neutrino energy predictor (left) and electron shower energy predictor (right). Triangles represent neural
networks.

IMPROVED ENERGY RECONSTRUCTION IN NOvA WITH … PHYS. REV. D 99, 012011 (2019)

012011-5



structure [28]. The siamese network structure consists of
two identical subnetworks whose outputs are merged to
produce the final output. Each subnetwork processes an
image from one view. Weights are not shared between the
subnetworks to provide independent information aggrega-
tion in each view. The subnetworks are constructed from
convolutional layers and pooling layers.
Convolutional layers apply a weight matrix in a sliding

window fashion to the input image. This allows computing
the same feature at different locations in the input image
producing an output referred to as a feature map. Using
multiple weight matrices allows learning a variety of features
from the input images. Stacking these convolutional layers
makes it possible to learn higher level features with each
additional layer. Pooling layers take a featuremap and reduce
its dimensionality. This is done by tiling the feature map and
reducing each tile to its maximum or average. Pooling layers
are normally used between convolution layers. The convolu-
tional layers in our network are basedon the Inceptionmodule
introduced by Ref. [27] as part of GoogLeNet.
GoogLeNet is the winner of the ImageNet Large Scale

Visual Recognition Competition 2014 [29] and state-of-
the-art for convolutional neural networks with pixelmap
inputs. Therefore, it is a good choice for our task. In
particular, GoogLeNet uses the Inception module to effi-
ciently extract features of different sizes from the input.
This increases its modeling capacity without a significant
increase in the computational cost.
Each subnetwork here is constructed from a sequence of

Conv-MaxPool-Conv-Conv-MaxPool layers followed
by two Inception modules [27]. The Inception module is a
specific configuration of convolutional layers built to
simultaneously extract features of different dimensions.
The features are then concatenated and pooled. Each
convolutional layer and Inception module has 32 filters
in the networks used. In the experiments, using additional
Inception modules does not improve model performance.
This is expected because the images here are sparse relative
to natural images.
In the NOvA far detector, the scintillation light produced

by neutrino interactions in each 15.5m-long detector cell is
collected by the wavelength shifting fiber and read from
the avalanche photodiode installed on one end of the cell.
The attenuation of the scintillation light signal is a function
of the distance from the interaction point to the readout
photodiode, so the number of photoelectrons on the photo-
diode depends on the location of the interaction point. The
readout threshold for each cell is a fixed number of photo-
electrons, so the distribution of the cell energy deposit in
each cell after the readout threshold cut is impacted by the
position of the interaction with respect to the readout. This
position dependence cannot be recovered by the cosmic
attenuation calibration, which corrects the position depend-
ence of the average number of photoelectrons for each cell
using the minimum ionizing peak (MIP) position of cosmic

muon hits. To consider this position effect in cell energies,
we use the reconstructed vertex positions in the two views as
neural network inputs. In our neural network architecture,
after the inception modules and an average pooling layer, the
output is flattened and concatenated with the reconstructed
vertex position. A linear regression follows which produces
the network output, the electron neutrino energy.

C. Neural network training

Neural networks for supervised learning are trained by
defining a differentiable loss function L between neural
network outputs fWðxiÞ and target values yi. Here, W
represents the weights of the neural network and xi is the
neural network input. The loss function represents the metric
by which the neural network accuracy is assessed. During
training the neural network weights W are iteratively
updated to minimize L using its gradient and a step size α.
Typically these updates are computed over mini-batches

of size n which make up a partition of the total training data
set. Iteration over all minibatches constitutes one epoch.
Training parameters such as the step size α and the batch size
n are referred to as hyperparameters must be selected before
training and possibly tuned using the loss function on the
validation data set. We utilize the hyperparameter optimi-
zation software SHERPA [30] which implements a number of
hyperparameter optimization strategies and visualization
tools. By automating the task, this software significantly
speeds up the computationally expensive of finding optimal
hyperparameters.
Unlike classification problems such as image recognition

and particle identification, the target value yi for the output
(energy) of our regression neural network is a continuous
variable varying over events. This requires the definition of
an appropriate loss function for the task of the regression
neural network. The goal is to minimize the standard
deviation of a Gaussian fit to the peak of the histogram
given by the energy resolution Ereco−Etrue

Etrue
on the test set.

While this quantity cannot be directly optimized the
absolute scaled error loss provides an appropriate surrogate
for the task. The training loss function is then given by:

LðW; fxi; yigni¼1Þ ¼
1

n

Xn

i¼1

����
fWðxiÞ − yi

yi

����: ð1Þ

Traditional loss functions for regression problems are the
mean squared error 1

n

P
n
i¼1ðfWðxiÞ − yiÞ2 or the mean

absolute error 1
n

P
n
i¼1 jfWðxiÞ − yij. The former is often

used due to its relationship to the log-likelihood when the
data distribution is assumed to be normal, its strict con-
vexity, the fact it can be decomposed into variance and bias,
and many other desirable properties. In our case, however,
the mean squared error is suboptimal, because its derivative
with respect to W is 1

n

P
n
i¼1 2ðfWðxiÞ − yiÞ δfWðxiÞ

δW . This
increases proportionally with the distance of the predicted
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value from the truth. In other words, outliers will have
increased impacts during gradient descent. In the training
for neutrino energy, the events with large invisible energy
due to dead material and hadronic interactions should not
have much larger impacts than those whose visible energy
is close to the true energy, so we choose the absolute error
instead of the squared error in the loss function.
Furthermore, the original CVN/GoogLeNet are designed
and trained for classification tasks, we optimized training
hyperparameters for the regression task.
Input image pixels are typically normalized to increase

numerical stability and gradient quality. Here most image
pixels are zero and the nonzero ones tend to be small.
We apply three normalization methods: mean zero unit
variance standardization, log transformation, and constant
scaling. The three methods produce similar results. There-
fore, a constant scaling factor of 100 is chosen after visual
inspection of the input spectrum for νe [Fig. 3 (right)] and
electron [Fig. 5 (right)].
The models are trained with stochastic gradient descent.

The hyperparameter search yields as best hyperparameters:
(1) a batch size of n ¼ 32; (2) an initial learning rate of
5 × 10−4 with an exponential learning rate decay per batch
of 1 × 10−5; and (3) a momentum of 0.7. Models are trained
for 100 epochs, or until the validation loss does not increase
by at least 0.001 for 5 epochs. The weights from the epoch
with the best validation loss are kept.
Regularization techniques are also explored using ran-

dom search implemented in SHERPA. Regularization refers
to a set of methods that reduce modeling capacity to prevent
fitting to noise in the training set (overfitting). Here, the
model training is optionally regularized with L2-penalty on
all convolutional layer weights and on the fully connected
layer weights. L2-penalty also referred to as weight-decay
which adds the term λjjWjj22 to the loss function
LðW; fxi; yigni¼1Þ. The added term prevents weights from
getting too large and thus reduces modeling capacity.
Random search was applied to the L2-penalty multiplier
λ over a range of 1 × 10−5 to 1 × 10−7. To increase the
robustness of learned features, dropout [31,32] was also
applied to the fully-connected layer. Dropout is a technique
that randomly sets hidden layer units to zero with a given
dropout-probability during the training. In the hyperpara-
meter search, we let the dropout-probabilities range from
0 to 0.4. The best performing model found from random
search had λ ¼ 0 and zero dropout-probability. While
dropout and L2-penalty tend to be useful for classification
there is an intuitive explanation as to why those methods
decrease performance in our regression problem. In the
case of classification, outputs do not directly depend on the
magnitude of the neural network outputs since the outputs
are normalized by the sum of all outputs. In regression, the
output of the neural network has to exactly match the target
value, which can take a wide range of values. If hidden
layer units are randomly dropped as in dropout, this

estimate may significantly change depending on what units
are dropped. Similarly, L2-penalty may prevent weights
from adopting the magnitude required by the scale of the
targets of the prediction.
For the training and validation of the neural network, all

models are implemented in Keras [33] with Tensorflow
backend.

IV. RESULTS

We use a simulated test data sample independent of the
training and validation samples in Sec. III to test the physics
performance of the trained neural networks. The test νe
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CC sample is produced with the same simulation and
reconstruction method as the training sample. Simulation
and reconstruction at NOvA are described in Sec. III A. The
test sample has a regular flux. In order to mimic the real
neutrino energy spectrum in the NOvA FD, we apply the
neutrino oscillations to each FD MC sample by event
weighting. To mimic overall energy resolution of the νe
oscillation signal while keeping independent from specific
CP and mass order choices, oscillation probabilities are
calculated from the first-order terms in the full oscillation
formula. The values of oscillation parameters are chosen to
be sin2θ23 ¼ 0.5, sin22θ23 ¼ 1,Δm2

32 ¼ þ2.35 × 10−3 eV2

and sin2 2θ13 ¼ 0.1.

A. νe-CC neutrino energy

The proposed regression CNN energy estimator is
compared with two methods used in previous NOvA νe
analyses: calorimetric energy estimation and kinematics-
based energy estimation. Used as the νe CC energy in
NOvA’s first νe oscillation analysis in 2016 [34], the
calorimetric energy estimator takes the sum of the cali-
brated calorimetric energy in each cell for an event and
multiplies the sum by a scale factor. The scale factor
corrects for the dead material in NOvA detectors and
missing energy taken by undetected particles. It is esti-
mated via simulated neutrino events. The kinematics-based
energy estimator is based on the method used in NOvA’s νe
analysis in 2017 [35] (kinematic energy). This estimator is
based on a quadratic function of the reconstructed electro-
magnetic and hadronic energy. The electromagnetic energy
component is estimated by the sum of calorimetric energies
from the electron and photons. The hadronic energy is
estimated via the sum of calorimetric energies from hadrons
such as pions, kaons, and protons. The electron, photons,
and hadrons are identified by a deep-learning based particle
identification algorithm called prong CVN [36]. Parameters

of the quadratic function are also determined using simu-
lated data.
The true and reconstructed νe CC energy in the FD,

weighted by the oscillation probabilities, are shown in
Fig. 7. The off-axis spectrum convoluted with the oscil-
lation probability makes the νe-CC energy spectrum peak at
around 2 GeV.
The overall performance is illustrated in Fig. 8. Shown

are histograms of (Ereco − EtrueÞ=Etrue, the ratio of the
difference between reconstructed and true νe CC energy
over true neutrino energy in the calorimetric energy range
of 0–5 GeV. The neural network energy is the one with the
best resolution. Gaussian fits to ðEreco − EtrueÞ=Etrue dis-
tributions provide relative resolutions of 8.9% (CNN
energy), 10.1% (linematic energy) and 10.2% (calorimetric
energy), respectively. The relative resolution is defined as
the ratio of the standard deviation to the peak value in a
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Gaussian fit. Relative RMSs (the ratio of RMS to mean) are
11.1% (CNN energy), 13.2% (kinematic energy) and
13.6% (calorimetric energy).
Figure 9 shows means and RMSs of ðEreco − EtrueÞ=Etrue

in each 1-GeV-wide true energy bin. Both kinematic energy
and CNN energy estimators are determined from the NOvA
FD νe CC signal sample with oscillated energy spectrum,
peaking around 2 GeV. As shown in Fig. 9 (left), the energy
scale of the three estimators shows no significant biases
with respect to the true neutrino energy, and the regression
CNN has better energy resolutions.
The standard training sample of the described regression

CNN νe energy estimator uses a flat flux. We also train the
regression CNN using the regular flux with the peak around
2 GeV to understand the effect of the training energy
spectrum on the linearity of the energy scale. The flat flux
sample and the regular flux sample are defined in Sec. III C.
Energy scales for neutrino energy based on the flat flux

training and regular flux training are shown in Fig. 10. One
can find that the energy scale from the flat flux training has
less biases over true neutrino energy. The flat flux training,
therefore, represents the preferred training mode to gen-
erate the regression CNN for the neutrino energy recon-
struction.
Figure 11 shows estimator performance by interaction

mode. νe CC interactions can be classified as quasielastic
(QE), resonant (RES), and deep-inelastic scattering (DIS)
modes. In a QE event, the nucleon (p or n) recoils
quasielastically from the scattering electron, and the elec-
tron, because of its small mass, takes the majority of the
incident neutrino energy. Hadronic energy portions and
hadron multiplicities vary in these three modes. For the
RES mode, the nucleon is excited into baryonic resona-
nces and decays to hadrons, so more neutrino energy is
transferred into the hadronic system. In DIS events, the
nucleon is smashed into several hadrons, requiring even
larger neutrino energy transfer to the hadronic system.

Figure 11 shows ðEreco − EtrueÞ=Etrue in these categories
individually. The CNN energy scale shows a better reso-
lution and consistency among the interaction modes.
Systematic uncertainties in the energy reconstruction

from the simulation of neutrino interactions are evaluated
by using the reweighting knobs built into GENIE [37].
Each reweighting knob computes a weighting factor that
can be applied to MC events to vary normalization and/or
shape of a specific type of interaction. In general, these
GENIE reweighting knobs deal with systematic uncertain-
ties from modeling of cross sections, the hadronization, and
final state interactions. The reweighting knobs used in this
GENIE uncertainty study are similar to NOvA’s oscillation
analysis Ref. [14]. We vary each reweighting knob byþ 1σ
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and − 1σ, where the size of the systematic variation σ is the
recommendation from the GENIE and NOvA authors,
based on surveys of interaction models and existing
experimental results. Both the background yield in the
signal region before the background correction and the
background correction factor determined by the Data-MC
difference in the sideband are redetermined in the
reweighted background MC.
The overall performance with GENIE systematic shifts

is illustrated in Fig. 12. Shown are histograms of
ðEreco − EtrueÞ=Etrue, the ratio of the difference between
reconstructed and true νe CC energy over true neutrino
energy in the calorimetric energy range of 0–5 GeV. The
systematic errors of ðEreco − EtrueÞ=Etrue are 0.2% (CNN
energy), 0.6% (kinematic energy) and 0.9% (calorimetric
energy), respectively. The systematic errors of the relative

RMSs are 0.3% (CNN energy), 0.4% (kinematic energy)
and 0.4% (calorimetric energy). Systematic errors of mean
and RMS in each energy bin are shown in Fig. 13. The
regression CNN shows smallest systematic uncertainties
from the simulation of neutrino interactions.

B. Electron shower energy

The reconstructed electron shower energy given by the
regression CNN (CNN energy) is compared to the sum of
the calibrated calorimetric energies (calorimetric energy) in
electron showers. In a simulated νe CC event, the most
energetic shower matched to a true electron is chosen as the
electron shower sample. The neutrino oscillation weights
are applied to the νe CC events. True electron energy and
reconstructed electron shower energy distributions in the
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FD are shown in Fig. 14. The CNN electron shower energy
is closer to the true electron energy than calorimetric
energy. Overall ðEreco − EtrueÞ=Etrue for electron showers
are shown in Fig. 15, with relative Gaussian resolutions of
8.2% (CNN energy) and 9.6% (calorimetric energy) and
relative RMS of 13.4% (CNN energy) and 15.2% (calo-
rimetric energy). Means and RMSs of ðEreco − EtrueÞ=Etrue
in each 1-GeV-wide true electron energy bin, and histo-
grams of ðEreco − EtrueÞ=Etrue in different interaction
modes are shown in Fig. 16 and 17. One can find that
the CNN energy has better resolutions. The bias in CNN
electron energy at low energies is caused by the small
proportion of low energy electrons in the regular flux
sample used for training.

V. SUMMARY

We developed regression CNNs with direct pixel-level
inputs for electron neutrino energy and electron shower
energy reconstruction. This is an early effort and proof-of-
concept of using CNNs to solve regression problems such as

energy reconstruction, vertex reconstruction, and track
parameter determination in HEP. It was found that the
absolute scaled error provides a useful neural network loss
function when the goal is to optimize energy resolution
histograms as commonly used in HEP. We also describe the
best training parameters found from hyperparameter search
for this regression task. This work demonstrates that energy
reconstruction tasks can be simplified without elaborate
energy scale calibration and model-dependent fits. The
performance of the CNN energy reconstruction was verified
for different energy bins, different hadronic energy fractions
and different interaction modes. In all cases, the regression
CNN energy achieves superior performance compared
with kinematics based energy reconstruction methods.
The regression CNN also shows smaller systematic uncer-
tainties from the simulation of neutrino interactions.
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