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We report a study of the decay D° — K%z~ eTv, based on a sample of 2.93 fb~! e* e~ annihilation data
collected at the center-of-mass energy of 3.773 GeV with the BESIII detector at the BEPCII collider. The total
branching fraction is determined to be B(D? — K°z~etv,) = (1.434 4 0.029(stat.) + 0.032(syst.))%,
which is the most precise to date. According to a detailed analysis of the involved dynamics, we find this
decay is dominated with the K*(892)~ contribution and present an improved measurement of its branching
fraction to be B(D® — K*(892)~e*v,) = (2.033 4 0.046(stat.) + 0.047(syst.))%. We further access their
hadronic form-factor ratios for the first time as ry = V(0)/A;(0) = 1.46 £ 0.07(stat.) £ 0.02(syst.) and
r, = A,(0)/A,(0) = 0.67 & 0.06(stat.) £ 0.01(syst.). In addition, we observe a significant Kz~ S-wave

component accounting for (5.51 + 0.97(stat.) + 0.62(syst.))% of the total decay rate.
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I. INTRODUCTION

The studies on semileptonic (SL) decay modes of charm
mesons provide valuable information on the weak and
strong interactions in mesons composed of heavy quarks
[1]. The semileptonic partial decay width is related to the
product of the hadronic form factor describing the strong-
interaction in the initial and final hadrons, and the Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements |V | and
|V.q|, which parametrize the mixing between the quark
flavors in the weak interaction [2]. The couplings |V .| and
|V.q4| are tightly constrained by the unitarity of the CKM
matrix. Thus, detailed studies of the dynamics of the SL
decays allow measurements of the hadronic form factors,
which are important for calibrating the theoretical calcu-
lations of the involved strong interaction.

The relative simplicity of theoretical description of the SL.
decay D — Krme'v, [3] makes it a optimal place to study the
K7 system, and to further determine the hadronic transition
form factors. Measurements of Kz resonant and non-
resonant amplitudes in the decay D™ — K~zn"e'v, have
been reported by the CLEO [4], BABAR [5] and BESIII [6]
collaborations. In these studies a nontrival S-wave compo-
nent is observed along with the dominant P-wave one.
A study of the dynamics in the isospin-symmetric mode
D" - K%~ e*v, will provide complementary information
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on the K system. Furthermore, the form factors in the D —
Ve'wv, transition, where V refers to a vector meson, have
been measured in decays of D* — K*¢*y, [4-6], D —
petv, [7] and D — we*v, [8], while no form factor in
DY — K*(892)~e*v, has been studied yet. Therefore, the
study of the dynamics in the decay D° — K*(892)~e*w,
provides essentially additional information on the family of
D — Ve'v, decays.

In this paper, an improved measurement of the absolute
branching fraction (BF) and the first measurement of the
form factors of the decay D° — K°z~e*v, are reported.
These measurements are performed using an e*e™ anni-
hilation data sample corresponding to an integrated lumi-
nosity of 2.93 fb~! produced at /s = 3.773 GeV with the
BEPCII collider and collected with the BESIII detector [9].

I1. BESIIT DETECTOR AND MONTE CARLO
SIMULATION

The BESIII detector is a cylindrical detector with a solid-
angle coverage of 93% of 4z. The detector consists of a
Helium-gas based main drift chamber (MDC), a plastic
scintillator time-of-flight (TOF) system, a CsI(TI) electro-
magnetic calorimeter (EMC), a superconducting solenoid
providing a 1.0 T magnetic field and a muon counter. The
charged particle momentum resolution is 0.5% at a trans-
verse momentum of 1 GeV/c. The photon energy reso-
lution in EMC is 2.5% in the barrel and 5.0% in the end-
caps at energies of 1 GeV. More details about the design
and performance of the detector are given in Ref. [9].

A GEANT4-based [10] simulation package, which includes
the geometric description of the detector and the detector
response, is used to determine signal detection efficiencies
and to estimate potential backgrounds. The production of
the w(3770), initial state radiation production of the y(2S)
and J/y, and the continuum processes e*e~ — 77~ and
ete” = qq (g = u, d and s) are simulated with the event
generator KKMC [11]. The known decay modes are generated
by EVTGEN [12] with the branching fractions set to the
world-average values from the Particle Data Group [13],
while the remaining unknown decay modes are modeled by
LUNDCHARM [14]. The generation of simulated signals
D’ — K%z=e*v, incorporates knowledge of the form fac-
tors, which are obtained in this work.

III. ANALYSIS

The analysis makes use of both “single-tag” (ST) and
“double-tag” (DT) samples of D decays. The single-tag
sample is reconstructed in one of the final states listed in
Table I, which are called the tag decay modes. Within each
ST sample, a subset of events is selected where the other
tracks in the event are consistent with the decay
D" — K%z~ e*v,. This subset is referred as the DT sample.
For a specific tag mode i, the ST and DT event yields are
expressed as

TABLE I. The selection requirements on AE, the signal region
in the My distribution, and the background-subtracted ST yields
Ngr in data for each of the three tag decay modes.

Decay Signal region

mode AE (GeV) (GeV/c?) Ngr (x10%)
Kz~ [-0.025, 0.028] [1.860, 1.875] 540.2 £ 0.8
Ktn—z~zt [-0.020, 0.023] [1.860, 1.875] 701.1 + 1.7
K*tn~z® [—0.044, 0.066] [1.858, 1.875] 10359+ 1.3

Nip = 2N popoBiressy., Npyy = 2N popo B By €pyr.

where N o is the number of D°DP pairs, B and By are
the BFs of the D° tag decay mode i and the D° SL decay
mode, €&y is the efficiency for finding the tag candidate,
and €y is the efficiency for simultaneously finding the tag
DO and the SL decay. The BF for the SL decay is given by

NDT NDT

BSL:ZNi X ebr/elr  Ner X €51
iVsT X €pr/€st  NsT X €5

(1)

where Npr is the total yield of DT events, Ng is the total
ST yield, and egp = (D ;Nip X €hp/€kr)/> ;Nir is the
average efficiency of reconstructing the SL decay, weighted
by the measured yields of tag modes in data.

Selection criteria for photons, charged pions and charged
kaons are the same as those used in Ref. [15]. To
reconstruct a 7° candidate in the decay mode 7° — yy,
the invariant mass of the candidate photon pair must be
within (0.115,0.150) GeV/c?. To improve the momentum
resolution, a kinematic fit is performed to constrain the yy
invariant mass to the nominal z° mass [13]. The y? of this
kinematic fit is required to be less than 20. The fitted z°
momentum is used for reconstruction of the D° tag
candidates.

The ST D° decays are identified using the beam con-
strained mass,

Myc =/ (V5/2)? - [P . (2)

where p 50 is the momentum of the D° candidate in the rest
frame of the initial e™ e~ system. To improve the purity of
the tag decays, the energy difference AE = /s/2 — Epo
for each candidate is required to be within approximately
430, around the fitted AE peak, where o,g is the AE
resolution and Ejo is the reconstructed D° energy in the
initial eTe~ rest frame. The explicit AE requirements for
the three ST modes are listed in Table I.

The distributions of the variable Mpc for the three ST
modes are shown in Fig. 1. Maximum likelihood fits to the
My distributions are performed. The signal shape is
derived from the convolution of the MC-simulated signal
template function with a double-Gaussian function to
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FIG. 1. The Mpc distributions for the three ST modes. The
points are data, the (red) solid curves are the projection of the sum
of all fit components and the (blue) dashed curves are the
projection of the background component of the fit.

account for resolution difference between MC simulation
and data. An ARGUS function [16] is used to describe the
combinatorial background shape. For each tag mode, the
STyield is obtained by integrating the signal function over
the DY signal region specified in Table I. In addition to the
combinatorial background, there are also small wrong-
sign (WS) peaking backgrounds in the ST D° samples,
which are from the doubly Cabibbo-suppressed decays
of D> K7z", Katz® and K ztztz~. The
D° —» KYK~n", K% — ntn~ decay shares the same final
states as the WS background of D° — K=z*z*z~. The
sizes of these WS peaking backgrounds are estimated
from simulation, and are subtracted from the correspond-
ing ST yields. The background-subtracted ST yields are
listed in Table I. The total ST yield summed over all three
ST modes is Ngp = (2277.24+2.3) x 10°, where the
uncertainty is statistical only.

Candidates for the SL decay D° — K%z7e*v, are
selected from the remaining tracks recoiling against the
ST D° mesons. The K meson is reconstructed as a K9. The
K% mesons are reconstructed from two oppositely charged
tracks and the invariant mass of the K§ candidate is
required to be within (0.485,0.510) GeV/c?. For each
Kg candidate, a fit is applied to constrain the two charged
tracks to a common vertex, and this Kg decay vertex is
required to be separated from the interaction point by more
than twice the standard deviation of the measured flight
distance. A further requirement is that there must only be
two other tracks in the event and that they must be of
opposite charge. The electron hypothesis is assigned to the
track that has the same charge as that of the kaon on the tag
side. For electron particle identification (PID), the specific
ionization energy losses measured by the MDC, the time of
flight, and the shower properties from the electromagnetic
calorimeter (EMC) are used to construct likelihoods for
electron, pion and kaon hypotheses (£,, £, and Lg).
The electron candidate must satisfy £, > 0.001 and
L./(L,+ L, + Lg) > 0.8. Additionally, the EMC energy
of the electron candidate has to be more than 70% of the

track momentum measured in the MDC (E/p > 0.7¢). The
energy loss due to bremsstrahlung is partially recovered by
adding the energy of the EMC showers that are within 5° of
the electron direction and not matched to other particles
[17]. The pion hyphotesis is assigned to the remaining
charged track and must satisfy the same criteria as in
Ref. [15]. The background from D° — K°z*7z~ decays
reconstructed as D° — K%z~e*v, is rejected by requiring
the K°z~e' invariant mass (Mgo,,+) to be less than
1.80 GeV/c?. The backgrounds associated with fake pho-
tons are suppressed by requiring the maximum energy of
any unused photon (E, ,,) to be less than 0.25 GeV.
The energy and momentum carried by the neutrino
are denoted by E, and P, respectively. They are
calculated from the energies and momenta of the tag (Epo,
Ppe) and the measured SL decay products (Eg =
Ego+ E,- + E,+, Ps. = Pgo + P~ + D.+) using the rela-
tions Eps = \/5/2 — Eg and ﬁmiss = 5D° - ﬁSL in the
initial eTe~ rest frame. Here, the momentum ppo is

given by Ppo = —Pug/(V/5/2)? —m%o, where P, is
the momentum direction of the ST D° and mpo is the

nominal D° mass [13]. Information on the undetected
neutrino is obtained by using the variable U, defined by

Umiss = Emiss — |ﬁmiss|' (3)

The U, distribution is expected to peak at zero for signal
events.

Figure 2(a) shows the U, distribution of the accepted
candidate events for D° — K%z~ e*v, in data. To obtain the
signal yield, an unbinned maximum likelihood fit of the
U niss distribution is performed. In the fit, the signal is
described with a shape derived from the simulated signal
events convolved with a Gaussian function, where the
width of the Gaussian function is determined by the fit. The
background is described by using the shape obtained from
the MC simulation. The yield of DT D° — K'z~e",
events is determined to be 3131 & 64(stat.). The back-
grounds from the non-D° and non-K? decays are estimated
by examining the ST candidates in the My sideband,
defined in the range (1.830,1.855) GeV/c?, and the SL
candidates in the Kg sidebands, defined in the ranges
(0.450,0.475) GeV/c? or (0.525,0.550) GeV/c? in data,
respectively. The yield of this type of background is
estimated to be 19.4 + 5.3. After subtracting these back-
ground events, we evaluate the number of the signal DT
events to be Nppr = 3112 + 64(stat.).

The detection efficiency eg is estimated to be
(9.53 £0.01)%, and the BF of D° — K%z~ e*w, is deter-
mined as B(D® - K°z~e*v,) = (1.434 £ 0.029(stat.)) %.
Due to the double tag technique, the BF measurement is
insensitive to the systematic uncertainty in the ST effi-
ciency. The uncertainties due to the pion and electron
tracking efficiencies are estimated to be 0.5% [18] and the
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FIG. 2. (a) Fit to U, distribution of the SL candidate events.

Projections onto five kinematic variables (b) Myo,-, (c) ¢°,
(d) cos8,, (e) cos @0, and (f) y for D* - Kz~ e*v,. The dots
with error bars are data, the red curve/histograms are the fit
results, and the shadowed histograms are the simulated back-
ground.

uncertainties due to their PID efficiencies are estimated to
be 0.5% [18], where the tracking and PID uncertainties are
conservatively estimated to account for the possible
differences of the momentum spectra in Ref. [18]. The
uncertainty due to the K° reconstruction is 1.5% [15].
The uncertainty due to the E/p requirement is 0.4% [6].
The uncertainty associated with the E, ,,,, requirement is
estimated to be 0.4% by analyzing the DT D°D° events
where both D mesons decay to hadronic final states. The
uncertainty due to the modeling of the signal in simulated
events is estimated to be 0.8% by varying the input form
factor parameters by 16 as determined in this work. The
uncertainty associated with the fit of the U, distribution
is estimated to be 0.7% by varying the fitting ranges and the
shapes which parametrize the signal and background. The
uncertainty associated with the fit of the My distributions
used to determine Ngt is 0.5% and is evaluated by varying
the bin size, fit range and background distributions. Further
systematic uncertainties are assigned due to the statistical
precision of the simulation (0.2%), the background sub-
traction (0.2%), and the input BF of the decay K g - ata
(0.1%). The systematic uncertainty contributions are

summed in quadrature, and the total systematic uncertainty
on the BF measurement is 2.2% of the central value.

IV. D’ - K2~ e*v, DECAY RATE FORMALISM

The differential decay width of D — K%z~ e*v, can be
expressed in terms of five kinematic variables: the square of
the invariant mass of the K%z~ system mZ, _, the square of
the invariant mass of the e*v, system (g?), the angle
between the K° and the D° direction in the K°z~ rest frame
(0zv), the angle between the v, and the D° direction in the
etv, rest frame (0,), and the acoplanarity angle between
the two decay planes (y). Neglecting the mass of e™, the
differential decay width of D° — K%z7e*v, can be
expressed as [19]

G%‘ | VL‘S ‘2
(4m)Sm?>

DO
dmf-(%, dq*d cos Ogod cos 0,dy, (4)

dSF: X/}I(m?—(%,, q279[_(070671>

where X = pgo,-mpo, f=2p*/mygo,-, and pgo,- is the
momentum of the Kz~ system in the rest D° system and
p* is the momentum of K° in the K%z~ rest frame. The
Fermi coupling constant is denoted by G. The dependence

of the decay density 7 is given by

T =1, +T,c0820, + I3sin’0, cos 2y + L, sin26, cos y
+Z5sinf,cosy + Zgcos, +Z;sinf, siny
+ Tgsin 20, siny + Tosin6, sin 2y, (5)

expressed in terms of three form factors, F ;5. The form
factors can be expanded into partial waves including
S-wave (Fg), P-wave (F;;) and D-wave (F,), to show
their explicit dependences on Gzo. Analyses of the decay
Dt - K*tzn~etv, by using much higher statistics per-
formed by the BABAR [5] and BESIII [6] collaborations
do not observe a D-wave component and hence it is not
considered in this analysis. Consequently, the form factors
can be written as

f31’

(6)

where Fi;, F, and Fj3; are related to the helicity
basis form factors Hy_(g*) [19,20]. The helicity form
factors can in turn be related to the two axial-vector
form factors, A(q?) and A,(q?), as well as the vector
form factor V(g?). The A; ,(¢*) and V(g?) are all taken as
the simple pole form A;(g*) = A;,(0)/(1 — ¢*/M?3) and

1 1
.7:.1:.7'-10+.7:.11COS91‘(0, .7:2:%.7:21, F3:7§
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V(g*) =V(0)/(1 — ¢*/M%), with pole masses My =
MD;(lf) =2.1121 GC\]/C2 [13] and MA = MD}‘(]*) =
2.4595 GeV/c? [13]. The form factor A;(g*) is common
to all three helicity amplitudes. Therefore, it is natural
to define two form factor ratios as ry = V(0 ) 1(0) and

= A,(0)/A,(0) at the momentum square g> = 0.

The amplitude of the P-wave resonance .A(m) is
expressed as [5,6]

mg = mi,, = imol(mgo,-) B(pg)”
where B(p) = 1+1R2 - with R =3.07 GeV~! [6] and
o
[(mgo,-) = To(5: )3 2100— [%}2, where p; is the momen-

tum of K at the pole mass of the resonance m,, and

a = \/3zBx/(piTo), By = B(K*(892)~ — K’z™).

The S-wave related F, is described by [5,6]

where the term Ag(m) corresponds to the mass-dependent
S-wave amplitude, and the same expression of Ag(m) =
rSP(m)ei‘Ss(’”) as in Refs. [5,6] is adopted, in which

P(m) =14 xri) with x= m and 8g(m) =

mgo +my
Sy with cot(dge) = 1/(agsep”) + bspap”/2.

An unbinned five-dimensional maximum likelihood fit
to the distributions of m o, g%, cosB,:, cos Oy, and y for
the D°— Kz=e*v, events within —0.10 < Uy <
0.15 GeV is performed in a similar manner to Ref. [6].
The projected distributions of the fit onto the fitted
variables are shown in Figs. 2(b—f). In this fit, the
parameters of ry, r,, my, [y, rg and aé@G are float, while

r(Sl) and bé,/éo are fixed to 0.08 and —0.81 (GeV/c)~! due
to limited statistics, respectively, based on the analysis
of DT - K"n~e'v, at BESIII [6]. The fit results are
summarized in Table II. The goodness of fit is estimated

TABLE II. The fit results, where the first uncertainties are

statistical and the second are systematic.

Variable Value

M (392 (MeV/c?) 891.7 +0.6 +0.2
(GeV) —-11.21£1.03 +1.15

a;/éG (GeV/c)™! 1.58 £0.22 +0.18

ry 1.46 £0.07 + 0.02

7 0.67 +0.06 £+ 0.01

by using the y?/ndof, where ndof denotes the number
of degrees of freedom. The y? is calculated from the
comparison between the measured and expected number
of events in the five-dimensional space of the kinematic
variables mgo-, g%, cos@,:, cos 0o, and y which are
initially divided into 2, 2, 3, 3, and 3 bins, respectively. The
bins are set with different sizes, so that they contain
sufficient numbers of signal events for credible y* calcu-
lation. Each five-dimensional bin is required to contain at
least ten events; otherwise, it is combined with an adjacent
bin. The y? value is calculated as

Nyin (n(;ata _ nfit)2
)(222 l fit — 9)

i 1

where Ny, is the number of bins, nd*@ denotes the
measured number of events of the ith bin, and nft denotes
the expected number of events of the ith bin. The ndof is
the number of bins minus the number of fit parameters
minus 1. The y?/ndof obtained is 96.3/98, which shows a
good fit quality. The fit procedure is validated using a large
simulated sample of inclusive events, where the pull
distribution of each fitted parameter is found to be con-
sistent with a normal distribution.

The fit fraction of each component can be determined
by the ratio of the decay intensity of the specific
component and that of the total. The fractions of S-wave
and P-wave (K*(892)7) are found to be fg_yae = (5.51 £
0.97(stat.))% and  fg (302~ = (94.52 £ 0.97(stat.))%,
respectively.

The systematic uncertainties of the fitted parameters and
the fractions of S-wave and K*(892)~ components are
defined as the difference between the fit results in nominal
conditions and those obtained after changing a variable or a
condition by an amount which corresponds to an estimate
of the uncertainty in the determination of this quantity. The
systematic uncertainties due to the E, ,,x and E/ p require-
ments are estimated by using alternative requirements of
E,max <0.20 GeV and E/p > 0.75, respectively. The
systematic uncertainty because of the background fraction
(f) is estimated by varying its value by £10% which is the
difference of the background fractions in the selected ST
AE regions between data and MC simulation. The sys-
tematic uncertainties arising from the requirements placed
on the charged pion, the electron and the Kg are estimated
by varying the pion/electron tracking and PID efficiencies,
and K(S) detection efficiency by £0.5%, +0.5% and +1.5%,
respectively. The systematic uncertainty due to neglecting a
possible contribution from the D-wave component is
estimated by incorporating the D-wave component in
Eq. (6). The systematic uncertainties in the fixed param-
eters of r(SI) and bé,/é(; are estimated by varying their
nominal values by £1o. All of the variations mentioned
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TABLE IIl. Systematic uncertainties (in %) of the fitted parameters.

Parameter E, max E/p f Tracking&PID D-wave rél ) bé/ éG Total
Mg 892y 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.02
Lk (892)- 0.52 0.95 0.23 0.04 0.12 0.08 0.12 1.12
rs 4.45 1.85 2.58 0.24 0.76 8.57 1.26 10.27
aé{éG 7.66 3.52 1.36 0.26 0.87 0.11 7.78 11.59
ry 0.34 0.83 0.37 0.57 0.12 0.29 0.42 1.21
r 0.95 0.27 0.30 0.02 0.27 0.03 0.60 1.22
Sk (392) 0.52 0.22 0.28 0.03 0.10 0.07 0.16 0.66
S s—wave 8.89 3.81 4.72 0.54 1.81 1.09 2.54 11.27

above will result in differences of the fitted parameters ACKNOWLEDGMENTS

and the extracted fractions of S-wave and K*(892)~
components from that under the nominal conditions.
These differences are assigned as the systematic uncertain-
ties and summarized in Table III, where the total systematic
uncertainty is obtained by adding all contributions in
quadrature.

V. SUMMARY

In summary, using 2.93 fb~! of data collected at /s =
3.773 GeV by the BESIII detector, the absolute BF of D%—
K°z=e*v, is measured to be B(D’ — K’z etv,) =
(1.434 + 0.029(stat.) 4= 0.032(syst.))%, which is signifi-
cantly more precise than the current world-average
value [13]. The first analysis of the dynamics of D° —
K°z~e*w, decay is performed and the S-wave component is
observed with a fraction fg_yave = (5.51 +0.97(stat.)+
0.62(syst.))%, leading to B[D® — (K°z~) ety =
(7.90 + 1.40(stat.) 4= 0.91(syst.)) x 107%.

The P-wave component is observed with a fraction of
[k 302~ = (94.52 £0.97(stat.) & 0.62(syst.))% and the
corresponding BF is given as B(D’ — K*~efv,) =
(2.033 + 0.046(stat.) + 0.047(syst.))%. It is consistent
with, and more precise than, the result from the
CLEO collaboration [21]. In addition, the form factor
ratios of the D° — K*(892)"e*v, decay are determined
to be ry=1.46=+0.07(stat.) = 0.02(syst.) and r, =
0.67 £ 0.06(stat.) = 0.01(syst.). They are consistent
with the measurements from the FOCUS collaboration
[22] using the decay D° — K%z~ ", within uncertainties,
but with significantly improved precision.
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