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It was previously argued that generalized uncertainty principle (GUP) with a positive parameter removes
the Chandrasekhar limit. One way to restore the limit is by taking the GUP parameter to be negative. In this
work we discuss an alternative method that achieves the same effect: by including a cosmological constant
term in the GUP (known as “extended GUP” in the literature). We show that an arbitrarily small but
nonzero cosmological constant can restore the Chandrasekhar limit. We also remark that if the extended
GUP is correct, then the existence of white dwarfs gives an upper bound for the cosmological constant,
which—while still large compared to observation—is approximately 86 orders of magnitude smaller than
the natural scale.
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I. GENERALIZED UNCERTAINTY PRINCIPLE
AND WHITE DWARFS

The generalized uncertainty principle (GUP) is a quan-
tum gravity inspired correction to the Heisenberg’s uncer-
tainty principle, which reads (in the simplest form)

ΔxΔp ≥
1

2

�
ℏþ αL2

pΔp2

ℏ

�
; ð1Þ

where Lp ¼ 1.616229 × 10−35 m denotes the Planck
length, and α is the GUP parameter typically taken as an
Oð1Þ positive number in theoretical calculations, i.e., one
expects that the GUP correction becomes important at the
Planck scale. GUP is largely heuristically “derived” from
Gedanken-experiments under a specific quantum gravity
theory (such as string theory [1–4]), or general consid-
erations of gravitational correction to quantum mechanics
[5–8]. GUP is useful as a phenomenological approach to
study quantum gravitational effects. From phenomenologi-
cal point of view, the GUP parameter can be treated as a
free parameter a priori, which can be constrained from
experiments [9–12]; α as large as 1034 is consistent with the
standard model of particle physics up to 100 GeV [9], while
a tunneling current measurement gives α ≤ 1021 [13]. See
also [14–16].
It turns out that GUP has a rather drastic effect on white

dwarfs. This is somewhat of a surprise, since we do not

usually expect GUP correction to be important for scale
much above the Planck scale. A standard—though hand-
wavy—method to obtain the behavior of degenerative
matter is to consider the uncertainty principle ΔxΔp ∼ ℏ,
and then take Δx ∼ n−1=3, where n is the number density
n ¼ N=V ¼ M=ðmeVÞ of the white dwarf (here modeled as
a pure electron star), where N is the total number of
electrons, whereas V, M are, respectively, the volume and
the total mass of the star, andme the electronmass. Then, the
total kinetic energy in the nonrelativistic case is

Ek ¼
NΔp2

2me
∼

M
5
3ℏ2

2m
8
3
eR2

; ð2Þ

where R is the radius of the star. Equating this with
the magnitude of the gravitational binding energy
jEgj ∼GM2=R, one obtains the radius as a function of
the mass:

R ∼
ℏ2

2m
8
3
eGM

1
3

: ð3Þ

Thus the more massive a white dwarf is, the smaller it
becomes. A similar derivation using the relativistic kinetic
energy, and assuming that the momentum dominates over
the rest mass of the electrons, allows one to obtain the
Chandrasekhar limit up to a constant overall factor (see
[17] for details). That is, the ultrarelativistic curve is a line
given by M ¼ MCh, where MCh is the Chandrasekhar*ycong@yzu.edu.cn
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mass. Modulo some numerical constant that cannot be
determined from this simple method, it is1

MCh ∼
1

m2
e

�
ℏc
G

�3
2

≈ 1.24 × 1037 kg: ð4Þ

If GUP is used in place of the standard uncertainty
principle, then one finds a surprising and disturbing result:
the Chandrasekhar limit disappears. More specifically, for
the nonrelativistic curve, it no longer goes like R ∼M−1=3

for large values of the mass, instead R eventually grows
with M. The ultrarelativistic curve does not yield the
Chandrasekhar limit: while the curve RðMÞ tends to the
original line M ¼ MCh as M → Mþ

Ch, it is no longer
bounded above when M increases. This means that white
dwarfs can in principle gets arbitrarily large (for any M,
there exists a nonzero R that satisfies the equilibrium
equation between degenerate pressure and gravity; this is
true for nonrelativistic case too), consistent with the
previous results obtained in [19] using a more rigorous
method (see also [20–22]). In Fig. 1, we show the generic
behavior of the ultra-relativistic white dwarf radius-mass

relation, in the Planck units, i.e., G ¼ c ¼ ℏ ¼ 1 (and
so me ¼ 4.1854 × 10−23).
Here we summarize the main issues and caveats dis-

cussed in [17]: we find the absence of a Chandrasekhar
limit disconcerting, since it seems that an arbitrarily small
GUP parameter α can give rise to a huge effect in white
dwarfs. Astrophysical observations have indicated that
white dwarfs in fact do obey the Chandrasekhar limit
[so-called “super-Chandrasekhar” white dwarfs are also of
OðMChÞ] [23,24]. There are other possible explanations as
to why despite allowed by the GUP, huge white dwarfs (one
might call them “white giants”) are nevertheless absent,
notably the interior structures of white dwarfs might have
other effects that dominate over that of GUP. Furthermore,
one has to be more careful about the R −M diagram, since
the “bounce” and “growth” part of the curve might be under
the line R ¼ 2GM=c2 (i.e., smaller than the Schwarzschild
radius) for sufficiently small value of α, indicating that
these parts are irrelevant since black holes already formed.
However, as mentioned in [17], whether this happens
would require a more detailed study involving a GUP-
corrected fully general relativistic description of the white
dwarfs to be consistent. In addition, in view of how
surprising GUP correction could be, we do not have full
confidence that black hole formation criterion is also not
modified. Therefore we reserve this possible resolution for
future work.2 In any case, our present proposal is more
straightforward, in the sense that the Chandrasekhar limit is
restored explicitly.
In [17], a simple resolution was suggested: take the GUP

parameter α to be negative. Such a choice seems rather odd
at first glance—uncertainty reduces as one approaches the
Planck scale, so physics becomes more classical—but is
nevertheless in agreement with some models of quantum
gravity [25,26]. In this work we propose another possible
resolution, which allows α to be positive, by taking into
consideration the inclusion of a nonzero cosmological
constant in the GUP (hereinafter, extended generalized
uncertainty principle, or “EGUP”). We further show that
the Chandrasekhar limit is protected by an arbitrarily small
positive cosmological constant. This is satisfactory since
our actual Universe is best described by the concordance
ΛCDM model with exactly such a cosmological constant.
As a bonus, this approach yields an upper bound for the
cosmological constant, which although is still many order
of magnitude higher than the observed value, is consid-
erably smaller than the “natural” value from quantum field
theoretic estimate.

FIG. 1. The mass-radius relationship of an ultrarelativistic
white dwarf with GUP correction. Without GUP correction, it
is simply the Chandrasekhar limit shown by the vertical dotted
line. However, if α > 0, the curve deviating away from the
vertical line can eventually “bounce” and then grows unbounded
in size. Here we have set G ¼ c ¼ ℏ ¼ 1. We have furthermore
set α ¼ 1 in this example.

1The actual value is somewhat smaller,

MCh ¼
ω0
3

ffiffiffiffiffi
3π

p

2

�
ℏc
G

�3
2 1

ðμemHÞ2
≈
5.76
μ2e

M⊙;

where μe denotes the mean molecular weight per electron, while
mH the mass of hydrogen atom, and M⊙ the solar mass. The
constant coefficient ω0

3 ≈ 2.0182 is obtained via the Lane-Emden
equation. See, e.g., Eq. (43) of [18]. For μe ¼ 2, this yields the
familiar MCh ¼ 1.44 M⊙, i.e., about 2.86 × 1030 kg.

2Such a possibility is indeed quite intriguing, since it suggests
that much like how general relativity tends to “censor” naked
singularities and closed timelike curves behind black hole
horizons, “unwanted novel features” of GUP might also be
“censored.”

YEN CHIN ONG and YUAN YAO PHYS. REV. D 98, 126018 (2018)

126018-2



II. THE EXTENDED GENERALIZED
UNCERTAINTY PRINCIPLE

To best way to understand EGUP is to start from
Hawking temperature of a black hole. In the case of
asymptotically flat Schwarzschild black hole, there is a
heuristic way to derive the Hawking temperature up to a
constant factor: consider the uncertainty in the position of
the Hawking particle being emitted around the black hole,
Δx ∼ GM=c2. The Heisenberg’s uncertainty principle gives
Δp ∼ ℏ=Δx ¼ ℏc2=GM, then one relates the temperature
to momentum via E ¼ pc ¼ kBT. One thus obtains the
Hawking temperature T ∼ ℏc3=kBGM [27].
The GUP correction leads to a modification to Hawking

temperature, which is derived by repeating the calculation
with GUP in place of Heisenberg’s uncertainty principle
[27]. However, one notes that the above mentioned heu-
ristic approach to derive the standard Schwarzschild black
hole temperature does not extend straightforwardly to other
more complicated black hole spacetimes. In particular,
it does not work for Schwarzschild-de Sitter (dS) or
Schwarzschild anti-de Sitter (AdS) black holes, which
have in addition to the mass, a length scale L, associated
with the cosmological constant via the relation Λ ¼ �3=L2

in 4-dimensions.
It was proposed in [28] that Heisenberg’s uncertainty

principle can be modified to include the cosmological
constant term, to the form called “extended uncertainty
principle” (EUP),

ΔxΔp ≥
1

2

�
ℏþ β

ℏðΔxÞ2
L2

�
; ð5Þ

so that the heuristic method can be applied, mutatis
mutandis, to derive the correct black hole temperature
(up to a constant). To achieve this, the parameter β has to be
chosen as �3, for AdS and dS, respectively. So unlike α,
the value of β is known from theoretical consideration.
Although one can consider freeing up β to be arbitrary to
explore the parameter space, in this work we fix it to be −3
for dS space. In the limit Λ → 0, or equivalently L → ∞,
we recover the asymptotically flat result.
In this work, in view of our interest concerning white

dwarfs in the actual Universe, we shall focus on positive
cosmological constant only.3

Having obtained the EUP, one could then consider the
correction term from quantum gravitational effect and
therefore ends up with the EGUP

ΔxΔp ≥
1

2

�
ℏþ α

L2
pðΔpÞ2
ℏ

þ β
ℏðΔxÞ2
L2

�
: ð6Þ

The motivation to extend the uncertainty principle in the
aforementioned manner is somewhat unconvincing—it

makes the assumption that the heuristic method for deriving
Hawking temperature is applicable to Schwarzschild-(A)dS
black hole, and then deduce the form of the uncertainty
principle that is required to make this works. May one be
carrying the heuristic method too far? There are other
“derivations,” such as considerations of the symmetry of
phase space [30], gedanken experiment on measurement
taken in background with nonzero cosmological constant
[30], as well as heuristic derivation using quantum mechan-
ics formulated in de Sitter and anti-de Sitter space [31,32].
(Note, however, that the sign of β is argued to be the other
way round in [30].) An attempt to rigorously derive the
EUP can be found in [33]. In this work we will take EGUP
as given, and explore its consequences to white dwarfs.
One might object that the uncertainty principle is

fundamental and should not be modified depending on
background spacetime. However, mathematically, the
uncertainty principle concerns Fourier transforms of func-
tions, which is nontrivial on curved manifolds. From the
mathematical perspective, we should expect some kind of
modification to the uncertainty principle due to space-
time curvature (see, e.g., [34,35]). Since curvature, being
a geometric quantity, cannot be transformed away via a
coordinate change even at a point, being locally Minkowski
does not get rid of the correction term, though it could be
miniscule. EUP is therefore not without a basis.
It is worth mentioning at this point that angular momen-

tum Lz and angular coordinate ϕ, do not satisfy the usual
uncertainty relation ΔϕΔLz ≥ ℏ=2 (see, e.g., [36,37])
due to the periodicity of ϕ. If we consider a unit circle
as a quotient of a line S1 ≅ R=Z, in a compact spatially
1-dimensional universe, locally an observer does not know
the global topology, but nevertheless ΔxΔp would be
modified in the same manner and therefore takes the form

ΔxΔp ≥
ℏ
2
½1 − CðΔxÞ2�; ð7Þ

where C is a constant, argued to be 3=π2 in [36,37]. Since
the (global) spatial section of de Sitter space is a 3-sphere, it
is not surprising that EUP takes a similar form (though such
a comparison is clearly only suggestive—the size of S3 in
de Sitter space changes with time, but the constant β in EUP
is fixed. It might be interesting to further investigate this
analogy further, however.)

III. HOW COSMOLOGICAL CONSTANT
PROTECTS CHANDRASEKHAR LIMIT

Since the approach is rather qualitative, we dropped the
factor of 1=2 for convenience in Eq. (6) and consider
instead

ΔxΔp ∼ ℏþ α
L2
pΔp2

ℏ
þ β

ℏðΔxÞ2
L2

; ð8Þ

3It is conceivably possible that fundamentally the cosmological
constant in our Universe is negative, with the current accelerating
expansion caused by other field, such as the quintessence [29].
However, the effective cosmological constant is still positive.
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which yields

Δp ∼
ℏΔx
2αL2

p

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4αL2

p

�
β

L2
þ 1

Δx2

�s #
: ð9Þ

Following the method in [17] summarized in Sec. I, we
found that, for the nonrelativistic case, EGUP-corrected
white dwarfs satisfy

M
5
6 ∼

ℏR
3
2

2
ffiffiffiffiffiffi
2G

p
αm

2
3
eL2

p

2
41 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4αL2

p

�
β

L2
þ M

2
3

m
2
3
eR2

�vuut
3
5:
ð10Þ

The minus sign in front of the square root sign is fixed by
requiring that in the large L and small α limit, we recover
the standard Heisenberg’s uncertainty principle [17]. In this
work we will not show the plot for this case because it turns
out to be essentially indistinguishable from the β ¼ 0 case
when L is large. With the value of L corresponds to the
cosmological constant in our Universe (see below), the
curve turns over at around M ∼ 5 × 1079, which is way
above the Chandrasekhar limit (which is restored, as shown
below), and thus this turn-over is irrelevant.
For the ultrarelativistic case, again following [17], we

obtained

M
4
3 ∼

c4R2

2αm
2
3
eG2

2
41 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4Gℏα
c3

�
β

L2
þ M

2
3

m
2
3
eR2

�vuut
3
5: ð11Þ

From now onwards, we set G ¼ c ¼ ℏ ¼ 1. There are two
solutions to Eq. (11):

R1;2ðMÞ ≔
ffiffiffi
2

p

2

�
L2M

4
3m

4
3
e − L2M

2
3 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F ðα; β;M; LÞp
βm

2
3
e

�1
2

;

ð12Þ

where

F ðα; β;M; LÞ ≔ L4ðMmeÞ83 − 4L2ðMmeÞ83αβ
− 2L4M2m

4
3
e þ L4M

4
3: ð13Þ

To check whether there is a Chandrasekhar limit, it suffices
to plot the functions R1;2ðMÞ, which is shown in Figs. 2 and
3. For the plots, we set β ¼ −3 and L ¼ 7.31926 × 1060.
The value of L follows from solving 3=L2 ¼ Λ, taking the
“observed” Λ ¼ 5.6 × 10−122 in the Planck units
(1.1056 × 10−52 m−2 in SI unit). We also take α ¼ �1.
One observes that whether the GUP parameter α is

negative or positive essentially does not affect the results.
This is because in Eq. (13), the coefficient for the terms (in
the given order) are respectively, of the order 10183, 1063,

10213, 10243. Thus, the coefficient of the term that contains
α is very small compared to the rest. Numerically the sign
of α, for α not too large (see Discussion), is therefore not
important. Both the curves R1ðMÞ and R2ðMÞ are bounded
byM ¼ MCh, so no white dwarfs above the Chandrasekhar
limit can exist. R2ðMÞ behaves drastically different from
R1ðMÞ, this means that one could in principle check which
solution is physical by comparing with observations, by
looking at the masses of ultrarelativistic white dwarfs.
It does seem that R1ðMÞ is more physical since it is a

“small deviation” from the α ¼ β ¼ 0 case. In contrast,
R2ðMÞ develops a high peak for nonzero values of α and
βð<0Þ, no matter how small, but R2ðMÞ≡ 0 if α ¼ 0, so
the limit is not smooth. On this ground one might argue that
R2 is a spurious, unphysical, solution. Note anyway that
R2ðMChÞ ¼ ð1=3Þð33

4α
1
4

ffiffiffiffi
L

p
=meÞ, which is a huge number,

despite it seems to go to zero in Fig. 3, due to the scale
involved. What happens is that the curve terminates
at M ¼ MCh.
To prove that neither R1 nor R2 can exceed the

Chandrasekhar limit, we first note that4 F ≥ 0. Since the
denominator of R1;2ðMÞ is negative (∵β ¼ −3), in order

FIG. 2. The mass-radius relationship of an ultrarelativistic
white dwarf with EGUP correction, R1ðMÞ. Without EGUP
correction, it is simply the vertical Chandrasekhar limit. The
effect of EGUP is to cause sufficiently small white dwarfs to
deviate away from the Chandrasekhar limit, but note that no star
can exist above the limit. Red curve and blue curve correspond to
α ¼ 1 and α ¼ −1 respectively, they pretty much coincide with
each other.

4The term involving β is positive, the remaining terms are

positive because ðMmeÞ83þM
4
3 ≥ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMmeÞ83M4

3

q
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4m8=3

e

q
¼

2M2m4=3
e by the “AM-GM” inequality.
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for R1ðMÞ to be real, one must have the numerator to be

negative as well. This implies that M
4
3m

4
3
e −M

2
3 must be

negative (necessary but not sufficient to guarantee a
solution). That is, M < MCh. Increasing L has the effect
of decreasing the cosmological constant, but this makes F
even larger. Therefore an arbitrarily small positive cos-
mological constant would protect the Chandrasekhar limit.
However, the fact that L is finite is essential for this to work,
since otherwise R1;2ðMÞ → 0 in the limit L → ∞ for fixed
β ≠ 0. In fact, we have seen that having GUP-correction
only will remove the Chandrasekhar limit. The case for
R2ðMÞ can be similarly argued.
Finally, we remark on the bound of the cosmological

constant. For white dwarfs to exist, we see from Eqs. (10)
and (11) that we need to impose

Λ <
M

2
3

R2m
2
3
e

≲ 1

M
4
3
⊙m

2
3
e

¼ 10−36; ð14Þ

where in the second inequality, we bound the white dwarf
size by the crude estimate R ∼M, as indicated by obser-
vations,5 and then using the solar mass as an estimate,
M⊙ ∼ 1038 in Planck units (the electron mass is
me ∼ 10−23). The cosmological constant Λ is therefore

much smaller than the “natural” inverse Planck length
squared (¼1 in Planck unit that we employed).
Therefore if we accept EGUP as a correct description of

Nature, then the existence of white dwarfs in the Universe
is consistent with—in fact it requires—a small cosmologi-
cal constant, although the bound is still large compared to
the observed magnitude of 10−122. (We assumed the white
dwarf to be a pure electron star, but the order of magni-
tude estimate will not change by much in a realistic
white dwarf.)

IV. DISCUSSION

It was previously found in the literature that GUP with
positive parameter α (representing an additional uncertainty
due to quantum gravity correction) has the unfortunate
effect of removing the Chandrasekhar limit, and therefore
seemingly suggests that white dwarfs can be arbitrarily
large. Other effects such as black hole formation and
realistic astrophysics of stellar structures could prevent
this from actually happening. However, it would be more
satisfactory to restore the Chandrasekhar limit completely
within GUP physics. One way to achieve this is by taking α
to be negative, as proposed in [17].
In this work, we show that by considering the so-called

extended GUP, an inclusion of an arbitrarily small but
nonzero cosmological constant protects the Chandrasekhar
limit. This is satisfying since our Universe is undergoing an
accelerated expansion, with Λ > 0 being the simplest
underlying explanation; and ΛCDM concordance model
remains strong in light of recent observations [38]. See
[39,40] for reviews and discussions on cosmological
constant. There are objections that the smallness of Λ
implies that it is “unnatural” (see, however, [41]). Indeed
the smallness of the cosmological constant is precisely the
reason why both signs of α are allowed in our work. It is
interesting that GUP removes the Chandrasekhar limit no
matter how small αð> 0Þ is, while EGUP restores the limit
no matter how small Λ is.
Observationally, white dwarfs are rarely observed to be

above the Chandrasekhar limit, although some “super-
Chandrasekhar” white dwarfs are known to exist [23,24].
Nevertheless even these rare ones are very close to the
Chandrasekhar limit. This is the reason we feel that any
modification to the uncertainty principle should not com-
pletely remove the Chandrasekhar limit. Although choos-
ing the GUP parameter to be negative achieve this purpose,
it nevertheless is not satisfactory for two reasons: firstly,
while this is compatible to some quantum gravity scenarios
in which physics becomes classical again at the Planck
scale, it is incompatible with string theory and general
considerations of gravitational correction to quantum
uncertainty [8]. Second, and most importantly, GUP itself
has not taken into consideration the fact that our Universe is
de Sitter-like, which requires a geometric modification
in addition to quantum gravitational correction, of the

FIG. 3. The mass-radius relationship of an ultrarelativistic
white dwarf with EGUP correction, R2ðMÞ. The cyan curve
and magenta curve correspond to α ¼ 1 and α ¼ −1 respectively,
but just like for R1ðMÞ, the curves essentially coincide. The
curves have a different shape compared to R1ðMÞ, but they are
nevertheless bounded by the Chandrasekhar limit. Despite
appearance due to the scale involved, the curves do not tend
to zero as M → M−

Ch, but rather terminate on M ¼ MCh with a
finite value. These solutions are likely to be unphysical, see text
for discussions. We include them here for completeness.

5It also follows from R > 2M of the Schwarzschild limit,
relaxed to within Oð1Þ in coefficient in view of possible GUP
effect on black hole formation criterion.
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uncertainty principle. While seemingly ad hoc, this is
supported by the fact that the uncertainty principle is based
on Fourier transform, which is nontrivial on nonflat back-
ground. In view of these two reasons, it is satisfying that by
considering the effect of cosmological constant one can
protect the Chandrasekhar limit (with minor modification),
while also allows a wide range of values of both positive
and negative GUP parameter.
While the aim of this work is mainly theoretical, let us

comment on the observational implications. As mentioned
by Moussa in [20], the current observation indicates that
some white dwarfs have smaller radii than theoretical
predictions [42–44]. If we only consider GUP correction,
then this favors a negative GUP parameter α since positive
α leads to larger white dwarf for a given mass, not smaller.
When we take into account EGUP, whether α is positive or
negative does not give noticeable difference when jαj is
small. Turning this around, one immediately realizes that
the model can be constrained from observations, at least in
principle. In Fig.(4), we plotted log½R1ðMÞ� as function of
white dwarf mass for jαj ¼ 1, the curves are still not
distinguishable.
However, as one increases the magnitude of α, the curves

for positive and negative α gradually separate at around
jαj ∼Oð10110Þ, which are more visible in a log-scale plot,
see Fig. 5. The curve corresponds to α > 0 now turns
around, whereas that of α < 0 is an increasing function of
the mass. Similar to asymptotically flat case (i.e., pure GUP
case), negative α corresponds to larger white dwarfs for
any given mass. In fact, as jαj increases, the curve of
log½R1ðM; α < 0Þ� rises, while the curve of log½R1ðM;
α > 0Þ� gradually “shrinks” toward the left. This is con-
sistent with the known result for GUP, since in that case the

curve for α > 0 only exist in the region beyond the
Chandrasekhar limit [17].
Observational data of white dwarfs can therefore in

principle be used to constrain the sign of α if α is large
enough. In practice there are difficulties: since not all white
dwarfs are ultrarelativistic, a more rigorous analysis
employing standard Lane-Emden equation will be required
to produce the relativistic curves for observational fitting.
Even theoretically, jαj ∼Oð10110Þ is already questionable,
since terrestrial experiments suggest that α is much smaller
(e.g., tunneling current measurement yields α ≤ 1021 [13]),
though in such experiments only GUP correction with
positive α was considered. In other words, it seems likely
that our results cannot provide a better constraint on α,
although it certainly is in agreement with terrestrial experi-
ments. This provides an independent consistency check on
GUP physics. Other white dwarf physics, such as Type Ia
supernovae, could potentially yield new constraints in the
future. However our model, which assumes a pure electron
star, is too crude to investigate such possibilities.
Finally, we argue that the existence of white dwarfs in

our Universe puts an upper bound on the value of Λ, which
we estimated to be 10−36. The bound is not sharp, and still
far larger than the observed value of 10−122, but it is some
86 order of magnitude improvement compared to the
“natural” scale of Λ expected from quantum field theory.
Nevertheless, this improved bound does not explain the
origin of the cosmological constant, nor does it explain why
the actual observed value is so small [45], but perhaps it
could offer a piece of the puzzle to solve these problems in
the future.

“Its smallness is not petty; on the contrary, it is
profound.”–Jan Morris

FIG. 4. The mass-radius relationship of an ultrarelativistic
white dwarf with EGUP correction, log½R1ðMÞ�. Red curve
and blue curve correspond to α ¼ 1 and α ¼ −1 respectively,
they are still indistinguishable even in log plot. The dashed
vertical line corresponds to M ¼ MCh.

FIG. 5. The mass-radius relationship of an ultrarelativistic
white dwarf with EGUP correction, log½R1ðMÞ�. Solid curves
are for α > 0 and dashed curves are for α < 0. The curves, from
top to bottom, correspond respectively to α ¼ −10113, −10112,
−4 × 10110, 4 × 10110, 10112, 10113, respectively. The dashed
vertical line corresponds to M ¼ MCh.

YEN CHIN ONG and YUAN YAO PHYS. REV. D 98, 126018 (2018)

126018-6



ACKNOWLEDGMENTS

Y. C. O. thanks the National Natural Science
Foundation of China (Grant No. 11705162) and the
Natural Science Foundation of Jiangsu Province
(No. BK20170479) for funding support. Y. C. O. also
thanks Nordita, where part of this work was carried out,

for hospitality during his summer visit while partici-
pating at the Lambda Program. The authors thank
members of Center for Gravitation and Cosmology
(CGC) of Yangzhou University (http://www.cgc-yzu
.cnhttp://www.cgc-yzu.cn) for various discussions and
supports.

[1] G. Veneziano, A stringy nature needs just two constants,
Europhys. Lett. 2, 199 (1986).

[2] D. J. Gross and P. F. Mende, String theory beyond the
planck scale, Nucl. Phys. B303, 407 (1988).

[3] D. Amati, M. Ciafolini, and G. Veneziano, Can spacetime be
probed below the string size?, Phys. Lett. B 216, 41 (1989).

[4] K. Konishi, G. Paffuti, and P. Provero, Minimum physical
length and the generalized uncertainty principle in string
theory, Phys. Lett. B 234, 276 (1990).

[5] M. Maggiore, A generalized uncertainty principle in quan-
tum gravity, Phys. Lett. B 304, 65 (1993).

[6] M. Maggiore, Quantum groups, gravity, and the generalized
uncertainty principle, Phys. Rev. D 49, 5182 (1994).

[7] F. Scardigli, Generalized uncertainty principle in quantum
gravity from micro-black hole Gedanken experiment,
Phys. Lett. B 452, 39 (1999).

[8] R. J. Adler and D. I. Santiago, On gravity and the uncer-
tainty principle, Mod. Phys. Lett. A 14, 1371 (1999).

[9] D. Gao and M. Zhan, Constraining the generalized un-
certainty principle with cold atoms, Phys. Rev. A 94,
013607 (2016).

[10] Z.-W. Feng, S.-Z. Yang, H.-L. Li, and X.-T. Zu, Con-
straining the generalized uncertainty principle with the
gravitational wave event GW150914, Phys. Lett. B 768,
81 (2017).

[11] P. Bosso, S. Das, and R. B. Mann, Potential tests of the
generalized uncertainty principle in the advanced LIGO
experiment, Phys. Lett. B 785, 498 (2018).

[12] D. Gao, J. Wang, and M. Zhan, Constraining the generalized
uncertainty principle with the atomic weak-equivalence-
principle test, Phys. Rev. A 95, 042106 (2017).

[13] S. Das and E. C. Vagenas, Universality of Quantum Gravity
Corrections, Phys. Rev. Lett. 101, 221301 (2008).

[14] M. Khodadi, K. Nozari, A. Bhat, and S. Mohsenian, Probing
planck scale spacetime by cavity opto-atomic 87Rb inter-
ferometry, arXiv:1804.06389.

[15] K. Nozari, M. Khodadi, and M. A. Gorji, Bounds on
quantum gravity parameter from the SU(2) NJL effective
model of QCD, Europhys. Lett. 112, 60003 (2015).

[16] A. F. Ali, S. Das, and E. C. Vagenas, A proposal for testing
quantum gravity in the lab, Phys. Rev. D 84, 044013 (2011).

[17] Y. C. Ong, Generalized uncertainty principle, black holes,
and white dwarfs: A tale of two infinities, J. Cosmol.
Astropart. Phys. 09 (2018) 015.

[18] S. Chandrasekhar, On Stars, Their Evolution and Their
Stability, Angew. Chem. 23, 678 (1984).

[19] R. Rashidi, Generalized uncertainty principle and the
maximum mass of ideal white dwarfs , Ann. Phys. (Am-
sterdam) 374, 434 (2016).

[20] M. Moussa, Effect of generalized uncertainty principle on
main-sequence stars and white dwarfs, Adv. High Energy
Phys. 2015, 343284 (2015).

[21] A. F. Ali and A. N. Tawfik, Effects of the generalized
uncertainty principle on compact stars, Int. J. Mod. Phys.
D 22, 1350020 (2013).

[22] A. Mathew and M. K. Nandy, Effect of minimal length
uncertainty on the mass-radius relation of white dwarfs,
Ann. Phys. (Amsterdam) 393, 184 (2018).

[23] D. A. Howell et al., The type Ia supernova snls-03d3bb
from a super-Chandrasekhar-mass white dwarf star, Nature
(London) 443, 308 (2006).

[24] I. Hachisu, M. Kato, H. Saio, and K. Nomoto, A single
degenerate progenitor model for type Ia supernovae highly
exceeding the Chandrasekhar mass limit, Astrophys. J. 744,
69 (2012).

[25] P. Jizba, H. Kleinert, and F. Scardigli, Uncertainty relation
on world crystal and its applications to micro black holes,
Phys. Rev. D 81 (2010) 084030.

[26] B. J. Carr, J. Mureika, and P. Nicolini, Sub-planckian black
holes and the generalized uncertainty principle, J. High
Energy Phys. 07 (2015) 052.

[27] R. J. Adler, P. Chen, and D. I. Santiago, The generalized
uncertainty principle and black hole remnants, Gen. Relativ.
Gravit. 33, 2101 (2001).

[28] M.-i. Park, The generalized uncertainty principle in
(A)dS space and the modification of hawking temperature
from the minimal length, Phys. Lett. B 659, 698 (2008).

[29] B. McInnes, Quintessential maldacena-maoz cosmologies,
J. High Energy Phys. 04 (2004) 036.

[30] C. Bambi and F. R. Urban, Natural extension of
the generalised uncertainty principle, Classical Quantum
Gravity 25, 095006 (2008).

[31] S. Mignemi, Extended uncertainty principle and the geom-
etry of (anti)-de sitter space, Mod. Phys. Lett. A 25, 1697
(2010).

[32] S. Ghosh and S. Mignemi, Quantum mechanics in de sitter
space, Int. J. Theor. Phys. 50, 1803 (2011).

[33] R. N. Costa Filho, J. P. M. Braga, J. H. S. Lira, and J. S.
Andrade, Extended uncertainty from first principles,
Phys. Lett. B 755, 367 (2016).

[34] A. Golovnev and L. V. Prokhorov, Uncertainty relations in
curved spaces, arXiv:quant-ph/0306080.

GENERALIZED UNCERTAINTY PRINCIPLE AND WHITE … PHYS. REV. D 98, 126018 (2018)

126018-7

http://www.cgc-yzu.cnhttp://www.cgc-yzu.cn
http://www.cgc-yzu.cnhttp://www.cgc-yzu.cn
http://www.cgc-yzu.cnhttp://www.cgc-yzu.cn
http://www.cgc-yzu.cnhttp://www.cgc-yzu.cn
http://www.cgc-yzu.cnhttp://www.cgc-yzu.cn
https://doi.org/10.1209/0295-5075/2/3/006
https://doi.org/10.1016/0550-3213(88)90390-2
https://doi.org/10.1016/0370-2693(89)91366-X
https://doi.org/10.1016/0370-2693(90)91927-4
https://doi.org/10.1016/0370-2693(93)91401-8
https://doi.org/10.1103/PhysRevD.49.5182
https://doi.org/10.1016/S0370-2693(99)00167-7
https://doi.org/10.1142/S0217732399001462
https://doi.org/10.1103/PhysRevA.94.013607
https://doi.org/10.1103/PhysRevA.94.013607
https://doi.org/10.1016/j.physletb.2017.02.043
https://doi.org/10.1016/j.physletb.2017.02.043
https://doi.org/10.1016/j.physletb.2018.08.061
https://doi.org/10.1103/PhysRevA.95.042106
https://doi.org/10.1103/PhysRevLett.101.221301
http://arXiv.org/abs/1804.06389
https://doi.org/10.1209/0295-5075/112/60003
https://doi.org/10.1103/PhysRevD.84.044013
https://doi.org/10.1088/1475-7516/2018/09/015
https://doi.org/10.1088/1475-7516/2018/09/015
https://doi.org/10.1002/anie.198406791
https://doi.org/10.1016/j.aop.2016.09.005
https://doi.org/10.1016/j.aop.2016.09.005
https://doi.org/10.1155/2015/343284
https://doi.org/10.1155/2015/343284
https://doi.org/10.1142/S021827181350020X
https://doi.org/10.1142/S021827181350020X
https://doi.org/10.1016/j.aop.2018.04.008
https://doi.org/10.1038/nature05103
https://doi.org/10.1038/nature05103
https://doi.org/10.1088/0004-637X/744/1/69
https://doi.org/10.1088/0004-637X/744/1/69
https://doi.org/10.1103/PhysRevD.81.084030
https://doi.org/10.1007/JHEP07(2015)052
https://doi.org/10.1007/JHEP07(2015)052
https://doi.org/10.1023/A:1015281430411
https://doi.org/10.1023/A:1015281430411
https://doi.org/10.1016/j.physletb.2007.11.090
https://doi.org/10.1088/1126-6708/2004/04/036
https://doi.org/10.1088/0264-9381/25/9/095006
https://doi.org/10.1088/0264-9381/25/9/095006
https://doi.org/10.1142/S0217732310033426
https://doi.org/10.1142/S0217732310033426
https://doi.org/10.1007/s10773-011-0692-3
https://doi.org/10.1016/j.physletb.2016.02.035
http://arXiv.org/abs/quant-ph/0306080


[35] T. Schürmann, Uncertainty principle on 3-dimensional
manifolds of constant curvature, Found. Phys. 48, 716
(2018).

[36] D. Judge, On the uncertainty relation for Lz and ϕ, Phys.
Lett. 5, 189 (1963).

[37] D. Judge, On the uncertainty relation for angle variables, II
Nuovo Cimento 31, 332 (1964).

[38] P. A. R. Ade et al. (Planck Collaboration), Planck 2015
results. XIII. Cosmological parameters, Astron. Astrophys.
594, A13 (2016).

[39] S. M. Carroll, The cosmological constant, Living Rev.
Relativity 4, 1 (2001).

[40] J. Solà, Cosmological constant and vacuum energy: Old and
new ideas, J. Phys. Conf. Ser. 453, 012015 (2013).

[41] E. Bianchi and C. Rovelli, Why all these prejudices against
a constant?, arXiv:1002.3966.

[42] G. J. Mathews, I.-S. Suh, B. O’Gorman, N. Q. Lan,
W. Zech, K. Otsuki, and F. Weber, Analysis of white
dwarfs with strange-matter cores, J. Phys. G 32, 747
(2006).

[43] A. Camacho, White dwarfs as test objects of
Lorentz violations, Classical Quantum Gravity 23, 7355
(2006).

[44] J. L. Provencal, H. L. Shipman, D. Koester, F. Wesemael,
and P. Bergeron, Procyon B: Outside the iron box,
Astrophys. J. 568, 324 (2002).

[45] S. Weinberg, The cosmological constant problem, Rev.
Mod. Phys. 61, 1 (1989).

YEN CHIN ONG and YUAN YAO PHYS. REV. D 98, 126018 (2018)

126018-8

https://doi.org/10.1007/s10701-018-0173-0
https://doi.org/10.1007/s10701-018-0173-0
https://doi.org/10.1016/S0375-9601(63)96283-2
https://doi.org/10.1016/S0375-9601(63)96283-2
https://doi.org/10.1007/BF02733639
https://doi.org/10.1007/BF02733639
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.12942/lrr-2001-1
https://doi.org/10.12942/lrr-2001-1
https://doi.org/10.1088/1742-6596/453/1/012015
http://arXiv.org/abs/1002.3966
https://doi.org/10.1088/0954-3899/32/6/001
https://doi.org/10.1088/0954-3899/32/6/001
https://doi.org/10.1088/0264-9381/23/24/009
https://doi.org/10.1088/0264-9381/23/24/009
https://doi.org/10.1086/338769
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1103/RevModPhys.61.1

