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The growth of the “size” of operators is an important diagnostic of quantum chaos. Susskind conjectured
that the holographic dual of the size is proportional to the average radial component of the momentum of
the particle created by the operator. Thus the growth of operators in the background of a black hole
corresponds to the acceleration of the particle as it falls toward the horizon. In this paper we will use the
momentum-size correspondence as a tool to study scrambling in the field of a near-extremal charged black
hole. The agreement with previous work provides a nontrivial test of the momentum-size relation, as well
as an explanation of a paradoxical feature of scrambling previously discovered by Leichenauer. Naively
Leichenauer’s result says that only the nonextremal entropy participates in scrambling. The same feature is
also present in the Sachdev-Ye-Kitaev (SYK) model. In this paper we find a quite different interpretation of
Leichenauer’s result which does not have to do with any decoupling of the extremal degrees of freedom.
Instead it has to do with the buildup of momentum as a particle accelerates through the long throat of the
Reissner-Nordström geometry. We also conjecture that the proportionality factor in size-momentum
relation varies through the throat. This result agrees with direct calculations in SYK.
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I. INTRODUCTION: TWO PUZZLES

All horizons are locally the same; namely they are
Rindler-like.1 Therefore one might expect their properties
as scramblers and complexifiers to be universal. For
example, the rate of growth of complexity for all neutral
static black holes scales as2

dC
dt

∼
S
Rs

; ð1:1Þ

where S and Rs are the entropy and Schwarzschild radius of
the black hole [1]. Similarly there is a universal formula for
the scrambling time [2],

t� ¼
β

2π
log

S
δS

; ð1:2Þ

where δS ¼ δE=T, and δE is the energy of the initial
perturbation.
It is therefore surprising that charged black holes behave

differently. For charged black holes, Eqs. (1.1) and (1.2) are
modified to [1,3]

dC
dt

∼
S − S0
Rs

ð1:3Þ

t� ¼
β

2π
log

�
S − S0
δS

�
: ð1:4Þ

Here Rs is the area radius of the horizon (otherwise known
as rþ) and S0 is the entropy of the extremal black hole with
the same charge.
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1Extremal black holes are an exception. In this paper we
consider the limit in which the nonextremality parameter
ðrþ − r−Þ=rþ is arbitrary but fixed as rþ becomes large. In this
limit the horizon is Rindler-like.

2In this paper there are many undetermined numerical coef-
ficients, partly because they depend on precise definitions that we
leave unspecified. For example the definition of complexity is
ambiguous up to a numerical factor. Our convention will be to use
the symbol ∼ to mean “equal up to a numerical factor.” By and
large additive numerical ambiguities of order unity, such as in the
definition of scrambling time, will be ignored.
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If instead of using Schwarzschild time t we use dimen-
sionless Rindler time, defined by

τ ¼ 2πt
β

; ð1:5Þ

then Eqs. (1.2) and (1.4) take an especially simple form: for
uncharged black holes

τ� ¼ log
S
δS

; ð1:6Þ

and for charged black holes, described by the Reissner-
Nordström (RN) metric,

τ� ¼ log
ðS − S0Þ

δS
: ð1:7Þ

Exactly the same features, namely Eqs. (1.3) and (1.4),
also hold for the black holes described by the Sachdev-Ye-
Kitaev (SYK) model. Because the SYK model is a precise
quantum mechanical system, we can hope to track down
the microscopic origin of this behavior.
A simple explanation would be that the extremal degrees

of freedom (d.o.f.) are somehow decoupled from the
chaotic behavior, leaving only the nonextremal component
to actively “compute.” But given the fact that all horizons
are Rindler-like, it is difficult to understand why this should
be so.
We will propose an interpretation of Eqs. (1.3) and (1.4)

that has nothing to do with any decoupling of extremal
d.o.f. Horizons do indeed have universal computational
properties in which all S d.o.f. actively compute. Neutral
and charged black hole horizons compute in exactly the
same way.
For simplicity, in this paper we will work with asymp-

totically flat black holes. Our results would apply equally to
black holes of small or intermediate size in AdS.

A. Complexity growth

The explanation of (1.3) for the rate of complexity
growth is simple. For near-extremal black holes, the
entropy above extremality is linear in the temperature T

S − S0
S

∼ rþT; ð1:8Þ

where rþ is the area radius of the outer horizon. Thus we
may write (1.3) in the form

dC
dt

∼ TS: ð1:9Þ

We can get more insight into the meaning of (1.9)
by replacing the usual Schwarzschild time t by the

dimensionless Rindler time τ ¼ 2πt
β (i.e., the hyperbolic

angle), which gives

dC
dτ

∼ S: ð1:10Þ

Equation (1.10) expresses a universal property of horizons,
charged and uncharged: they all compute at a rate ∼ one
gate per Rindler time per bit of entropy. All d.o.f.
participate; extremal d.o.f. do not decouple.

B. Scrambling

The explanation of (1.4) is not so simple. It will occupy
the rest of the paper. Here is a quick summary of the method
we will employ:
The basic tool is the size-momentum relation introduced in

[4]. A perturbation can be applied to a black hole by acting
with an operator W. With time the operator evolves to the
“precursor”WðtÞ ¼ eiHtWe−iHt. In a holographic theory an
operator like WðtÞ can be characterized by its size—a
measure of the average number of fundamental d.o.f. making
up the operator (see [5] and references therein).3 Initially this
number may be small, of order unity.4 Subsequently the size
grows, reaching its saturation value at the scrambling time.
The saturation value is the entropy of the black hole.
If we denote the size at time t by sðtÞ then the scrambling

time is determined from

sðt�Þ ∼ S: ð1:11Þ

The action of the operatorW is to create a particle at the
boundary (to be defined) of the black hole geometry.
The particle wave packet can be tracked as it falls toward
the horizon. The size-momentum relation is a duality
between the size of the precursor and the average radial
momentum of the in-falling wave packet of the particle.
By calculating the momentum we also calculate the size
and this allows us to implement (1.11) in an efficient
manner.
In [4] this method was used to calculate the scrambling

time for the case of a Schwarzschild black hole in
asymptotically flat space. Here we use the same method,
with one new twist, to calculate the scrambling time for
charged black holes in asymptotically flat space. The result
not only agrees with (1.4) but it does so while assuming that
all d.o.f.—not just the nonextremal d.o.f.—participate in
the scrambling dynamics.

3The definition and calculations of size in [5] are appropriate to
the infinite temperature limit. In this paper our definition of “size”
involves a thermal averaging. See Sec. V.

4It is expected that a simple operator such as an SYK fermion
has a size equal to 1.
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II. GEOMETRY OF CHARGED BLACK HOLES

Consider the 3þ 1-dimensional Reissner-Nordström
black hole,

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΩ2

fðrÞ ¼
�
1 −

rþ
r

��
1 −

r−
r

�
: ð2:1Þ

The inner (−) and outer (þ) horizons are at r� ≡ GM�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2M2 −GQ2

p
, and the Hawking temperature is

T ¼ 1

4π

�
rþ − r−

r2þ

�
: ð2:2Þ

All Reissner-Nordström black holes must have Q2 ≤ GM2

and r− ≤ rþ, and when these inequalities are saturated
the black hole is said to be “extremal.” In this paper, we
will be interested in near-extremal black holes, so that
rþ − r− ≪ rþ. In this limit, the temperature is small
(β ≫ rþ) and the near-horizon region develops a long
“throat.”

A. The geometry of the throat

The exterior of a near-extremal black hole can be divided
into three regions, as in Fig. 1.

(i) The innermost region is the Rindler or near-horizon
region where the geometry closely resembles the
Schwarzschild black hole with the same entropy. It is
defined by

rþ < r≲ 2rþ − r− ð2:3Þ

0 < Δρ≲ rþ; ð2:4Þ

where Δρ ¼ R
dr=

ffiffiffiffiffiffiffiffiffi
fðrÞp

is the proper distance
from the outer horizon. The gravitational field

[i.e., the proper acceleration α ¼ ∂r

ffiffiffiffiffiffiffiffiffi
fðrÞp

required
to remain static at fixed r] grows rapidly near the
horizon. While the quantity ð1 − rþ

r Þ−1 varies signifi-
cantly in the Rindler region, ð1 − r−

r Þ−1 is essentially
constant.

(ii) The next region out is the throat, defined by

2rþ − r− ≲ r≲ 2rþ ð2:5Þ

rþ ≲ Δρ≲ rþ log

�
rþ

rþ − r−

�
: ð2:6Þ

The throat is long and of approximately constant
width (it resembles AdS2 × S2) and the gravitational
field is approximately constant. We have ð1 − r−

r Þ−1 ∼
ð1 − rþ

r Þ−1 and both vary significantly through the
throat. The throat ends at r ¼ 2rþ which wewill soon
see is the location of a potential barrier which
separates the throat from the Newtonian region.
The throat is unique to charged black holes; it is
absent from the Schwarzschild black hole.

For most purposes the geometry in the throat can be
approximatedby the extremal geometrywith rþ ¼ r−.

(Later we will comment on the relation between
near-extremal RN black holes and the SYK model.
For now we note that the dynamical boundary of the
AdS2 dual of SYK should be identified with the end
of the RN throat adjacent to the Newtonian region
at r ¼ 2rþ.)

(iii) Outermost is the Newtonian region, where
ð1 − r−

r Þ−1 ∼ ð1 − rþ
r Þ−1 ∼ 1.

B. The black hole boundary

Black holes in flat space evaporate but the rate is
extremely slow, and for many purposes can be ignored.
The reason that the rate is so slow is that the black hole is
effectively in a reflecting box. The box is the potential
barrier that quanta experience as they try to escape the near-
horizon region. Even the S-waves are inhibited by a barrier.
For a Schwarzschild black hole the barrier height is about
equal to the temperature and there is significant leakage,
but for a near-extremal RN black hole the barrier height is
much higher than the temperature. The barrier provides a
natural boundary of the black hole region and may be
thought of as the holographic boundary in a quantum
description.
For the spherically symmetric field mode, the potential

barrier takes the form [6]

VðrÞ ¼ ∂rðf2Þ
4r

: ð2:7Þ
For a RN black hole, Eq. (2.1) then gives

VðrÞ ¼ ∂rðf2Þ
4r

¼ rþðr − rþÞ3
r6

: ð2:8Þ
FIG. 1. The three regions outside a near-extremal charged black
hole. Unlike for uncharged black holes, there is now a “throat”
separating the Rindler and Newtonian regions.

FALLING TOWARD CHARGED BLACK HOLES PHYS. REV. D 98, 126016 (2018)

126016-3



The barrier is well localized at the end of the throat near
where it meets the Newtonian region. The width in proper
distance is of order rþ and for near-extremal RN it is much
narrower than the length of the throat.
The potential at the top of the barrier is

V top ¼
�

1

8rþ

�
2

: ð2:9Þ

(Note that the potential has units of momentum squared.
In rolling down the potential a massless particle would gain
a momentum

ffiffiffiffiffiffiffiffi
V top

p
.)

We can consider the top of the potential barrier to be the
boundary of the black hole. It occurs at

r ¼ 2rþ ≡ rb: ð2:10Þ
Here the subscript b stands either for barrier or boundary.
It will be convenient to define a radial proper-length

coordinate ρ measured from the black hole boundary,

ρ ¼
Z

rb

r

dr0ffiffiffiffiffiffiffiffi
fðr0p Þ : ð2:11Þ

At the boundary ρ ¼ 0 and at the beginning of the
Rindler region ρ ¼ rþ log ðβ=rþÞ.

III. SIZE-MOMENTUM RELATION

By the “size” of a particle we mean the average number
of elementary operators making up the precursor. In [5] the
average was over an infinite temperature ensemble, but in
this paper we are interested in low temperatures. The study
of low temperature size and operator growth is not well
developed but we will assume that these concepts can be
generalized appropriately.
By the radial momentum of a particle we mean the

momentum that an observer at rest would see as the particle
passed her. We imagine a particle passing an observer
suspended at some distance ρ from the boundary. The
momentum measured by that observer is called P. We will
generally assume that it is relativistic. Classically it is easy
to track since the mechanism for its growth is ordinary
blueshift. Quantum mechanically we will assume that the
average momentum of the wave packet follows the classical
trajectory.
In [4] it was conjectured that the average momentum P at

time t is dual to the size of the precursor WðtÞ. By time we
mean the ordinary Schwarzschild time, not the proper time
of the particle.
The conjecture that size and average momentum are

dual to one another requires us to specify a proportionality
factor with dimensions of length. In [4] (the case of
Schwarzschild black holes) the proportionality factor
was taken to be the Schwarzschild radius, or what is the
same thing, the thermal length β,

size ∼ RsP ∼ βP: ð3:1Þ

Although this identification is adequate for estimating
the scrambling properties of Schwarzschild black holes,
there are reasons to believe that the correct connection
between size and momentum is more complicated, and that
it involves not only the momentum but also the position of
the particle. To see why this is so let us first consider two
situations involving infalling particles at the same location,
but of different momentum. If it is not obvious it will soon
become clear that the operator that creates the higher
momentum particle has the larger size.
But now consider the opposite case: two particles of the

same momentum but at different radial locations. It is well
known that the deeper into the bulk the particle is, the more
complex the operator must be that creates it. Complexity
and size are closely related and it should not be surprising
that the operator creating the deeper particle has larger size.
Therefore we should expect that size is a function of both
the radial momentum and the radial location of the particle
created by WðtÞ. This will involve the concept of a local
energy scale that varies significantly throughout the long
throat of the near-extremal RN black hole. For the
Schwarzschild black hole there is no throat.

A. The local energy scale

This paper is about near-extremal Reissner-Nordström
charged black holes in asymptotically flat space. It is well
known that the throat geometry of such black holes is
AdSð2Þ × Sð2Þ. As with all AdS geometries, AdS(2) has a
scaling symmetry, in this case associated with the long
throat. To see this, we consider black holes with a fixed
total charge Q, i.e., we fix the ground state entropy

S0 ¼ πr2e
G ¼ πQ2. At finite temperature the excess entropy

above the extremal value is given by

S − S0 ¼
πr2þ
G

− πQ2

¼ 4πS
rþ
β

≈ 4πS0
rþ
β
; ð3:2Þ

and it follows that d logðS − S0Þ ≈ −d log β
rþ
, where in the

differential here we hold the ground state entropy fixed.
Earlier we saw that for a near-extremal black hole with
β ≫ rþ the proper length of the throat is ρðTÞ ≈ rþ log β

rþ
,

and we can thus reexpress (3.2) as

d logðS − S0Þ ¼ −d
�
ρ

rþ

�
: ð3:3Þ

As we lower the temperature, the throat gets longer.
Assuming T1 < T2 ≪ 1

rþ
, we have

SðT1Þ − S0
SðT2Þ − S0

¼ exp

�
−
ρðT1Þ − ρðT2Þ

rþ

�
: ð3:4Þ
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We see that each time the length of the throat increases by
rþ, S − S0 is decreased by a factor of e−1.
We can understand this from another point of view.

Consider a near-extremal black hole at some low temper-
ature T ≪ 1

rþ
. From the holographic bound [7], the number

of d.o.f. necessary to completely describe the region within
radius r is given by its transverse area AðrÞ ¼ 4πr2. We
start from the outer end of the throat r ¼ 2rþ, where the
area equals Amax, and then the area decreases as we move
into the throat. The pattern of decrease becomes clear when
we use the variable ΔAðrÞ≡ AðrÞ − A0 rather than the area
itself. Here A0 ≡ 4πGQ2 is the horizon area of the extremal
black hole carrying the same charge. The decrease in the
transverse area as we go into the throat is then given by

ΔAðρÞ
ΔAð0Þ ¼ exp

�
−

ρ

rþ

�
; ð3:5Þ

where ρðrÞ is the proper distance from the boundary. The
exponential behavior continues until we reach the Rindler
region. The area itself does not decrease very much along
the throat since 4πr2þ < AðrÞ < Amax ¼ 16πr2þ, but the
difference in area varies a great deal since at low temper-
atureΔAðrþÞ ≪ ΔAmax. As we move in the radial direction
inside the throat, the quantity that scales with a well-
defined scaling dimension is ΔA. This is to be compared
with the vacuum AdS case, where the scaling variable is the
total area A. The proper length of the throat measured in
units of rþ gives the number of e-foldings that ΔA
decreases by from ΔAmax to ΔAðrþÞ and this number
diverges as the black hole approaches extremality. A
corresponding scaling symmetry is found at low temper-
ature in the SYK model [8].
As in all theories with AdS symmetry the concept of a

local energy scale is a familiar feature [7]. At the AdS
boundary the energy scale diverges. It decreases as one
moves deeper into the bulk. In AdS at a fixed value of lads
the local energy scale at radial coordinate r can be defined
as the temperature of a black hole whose horizon is at the
radial coordinate r.
Applying the same logic we may define the local energy

scale along the throat to be the temperature T̃ of a “virtual”
black hole whose Rindler region begins at distance ρ from
the boundary. If ρ denotes the start of the Rindler region of
an actual black hole then T̃ðρÞ is the temperature of the
black hole, i.e., T̃ðρÞ ¼ T. Using the fact that the length of
the throat for a black hole of temperature T is

Δρ ¼ rþ log β=rþ

we may write

β̃ðρÞ ¼ rþeρ=rþ ð3:6Þ
where β̃ ¼ 1=T̃. At the outer boundary of the throat,

ρ ¼ 0 → β̃ ¼ rþ; ð3:7Þ

in the Rindler region,

ρ ¼ rþ log β=rþ → β̃ ¼ β: ð3:8Þ

Thus we see that T̃≡1=β̃ varies a great deal throughout the
throat.
Our proposal for generalizing (3.1) is to simply replace

(3.1) by

size ∼ Pβ̃ðrÞ; ð3:9Þ

in which size depends on both momentum and position.
This may simply be expressed as size equals momentum
measured in units of the local energy scale.
Using (3.6) the size-momentum relation takes the

explicit form

size ∼ rþeρ=rþP: ð3:10Þ

The reason that (3.1) was sufficient for Schwarzschild
black holes is simply because β̃ does not vary much
between the boundary and the horizon.

B. The local energy scale and the surface gravity

In Eq. (3.9), we conjectured that size and momentum are
related by the position-dependent factor β̃ðrÞ. We defined
the (inverse) local energy scale β̃ðrÞ as the temperature that
a black hole of the same charge would have if its mass were
such that the event horizon lay at that value of r. In this
subsection we will present an alternative perspective on
the quantity β̃ðrÞ by providing a more directly physical
definition.
First consider the gravitational field, defined as the

proper acceleration required to remain static

g ¼ αj_r¼ _Ω¼0 ¼ ∂r

ffiffiffi
f

p
: ð3:11Þ

As we approach the black hole the gravitational field gets
ever stronger, but it does not do so steadily. Instead, as we
discussed in Sec. II A, g is gently increasing in the
Newtonian region (due to the inverse square law), then
constant in the throat (g ∼ 1=rþ), then rapidly increasing in
the Rindler region [g ∼ 1=ðβ ffiffiffi

f
p Þ], becoming infinite at the

event horizon.
On the other hand, the redshift factor

ffiffiffiffiffiffiffiffiffi
fðrÞp

steadily
decreases as we approach the black hole. Far from the black
hole it is of order one, in the throat it falls exponentially,
and then in the Rindler region it falls even faster, approach-
ing zero at the event horizon.
The local energy scale is the product of these two factors,

β̃ðrÞ−1 ¼
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
gðrÞ ¼

ffiffiffiffiffiffiffiffiffi
fðrÞ

p ∂r

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
¼ 1

2
∂rfðrÞ:

ð3:12Þ
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In the throat, g is constant, whereas
ffiffiffi
f

p
is decreasing, so the

product is decreasing, β̃−1 ∼
ffiffiffi
f

p
=rþ. In the Rindler region,

the growth of g cancels the fall in
ffiffiffi
f

p
and so the local

energy scale is constant β̃−1 ∼
ffiffiffi
f

p
=ðβ ffiffiffi

f
p Þ ∼ 1=β.

A box may be held fixed near a black hole by
suspending it from a rope, though this only works if
someone is holding on to the other end. Physically, the
local energy scale β̃−1 is the force that must be exerted on
the boundary end of the rope to stop a unit-mass box
falling into the black hole (ignoring the weight of the rope
itself). Famously, this force is approximately constant for
boxes in the Rindler region and approaches the surface
gravity as the box approaches the event horizon,
κ ∼ limr→rþ β̃

−1ðrÞ. Since it is the surface gravity that
controls the Hawking temperature, this explains the
connection to the definition of Sec. III A.

IV. THE SCRAMBLING TIME

The following facts can be verified by explicit calculation.
(1) As an infalling lightlike trajectory, beginning at the

boundary at t ¼ 0, passes through the throat the time
and the value of β̃ are related by

β̃ ¼ tþ rþ: ð4:1Þ
(2) A massless particle inserted at the boundary (top of

the barrier at ρ ¼ 0) at t ¼ 0 will quickly attain a
momentum 1=rþ. From (3.7) the initial value of β̃
satisfies β̃ ¼ rþ and the initial size is

sð0Þ ¼ 1: ð4:2Þ
In the Appendix we show that as it passes through
the throat the momentum linearly increases,

P ¼ 1=rþ þ t=r2þ: ð4:3Þ
Using (4.1) we may write this in the form

P ¼ β̃=r2þ: ð4:4Þ
(3) Combining (4.4) and (4.1) and using size ∼ β̃P gives

a quadratic growth for size as the particle traverses
the throat,

sðtÞ ∼ Pβ̃ ¼ ðtþ rþÞ2
r2þ

: ð4:5Þ

(4) The particle arrives at the Rindler region after time β.
At that point the size is

sðβÞ ∼ β2

r2þ
: ð4:6Þ

Equation (4.6) may be regarded as the initial condition
when the particle enters the Rindler region. In the Rindler
region the growth of the momentum is exponential [4] and
the energy scale hardly varies. Thus as the particle passes
through the Rindler region the size grows according to

sðτÞ ∼ β2

r2þ
eτ: ð4:7Þ

To find the scrambling time we set the size equal to the
black hole entropy,

β2

r2þ
eτ� ∼ S ð4:8Þ

giving

τ� ¼ log

�
S
r2þ
β2

�
; ð4:9Þ

or using (1.8),

τ� ¼ log

�
ðS − S0Þ

rþ
β

�
: ð4:10Þ

The final step is to use the first law of thermodynamics to
relate rþ=β to the increase of entropy due to the extra
energy when the particle is absorbed into the black hole.
Thus

τ� ¼ log
ðS − S0Þ

δS
; ð4:11Þ

which exactly matches (1.7).
To summarize, the scrambling time for a near-extremal

Reissner-Nordström black hole is smaller than might have
been expected: it is proportional to log fðS − S0Þ=δSg
rather than log fS=δSg. One possible explanation would
have been that the extremal entropy is somehow frozen out
of the scrambling process. But our analysis suggests a
different reason. We saw that a particle falling through the
throat is rapidly accelerated, so that its initial size is boosted
by a factor β2=r2þ by the time it enters the Rindler region.
This reduces the time required for the size to grow to S. We
therefore claim that the correct explanation for the reduced
scrambling time of a charged black hole is not that the
extremal d.o.f. decouple, but instead that the size of an
operator grows rapidly at early times, so by the time it starts
its exponential growth the size is already large. The success
in explaining the reduced scrambling time of charged black
holes provides a nontrivial confirmation of the connection
between size and momentum.

V. COMMENT ABOUT GR=QM AND SYK

The real justification for the rules we have postulated
must be microphysical. Thus we turn to the SYKmodel [8],
a model which has many feature in common with near-
extremal black holes, but which has a precise microphysical
description. The similarities between the two are well
known and include the following:

(i) The overall energy scale J of SYK corresponds to
the RN parameter 1=rþ.
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(ii) The dynamical boundary of SYK (described by the
Schwarzian theory) corresponds to the boundary of
the RN black hole, i.e., the top of the barrier where
the throat meets the Newtonian region.

(iii) Acting with a single boundary fermion operator in
SYK adds an energy J. This fits nicely with the fact
that adding a particle at the top of the RN potential
barrier adds energy 1=rþ.

(iv) A single boundary fermion operator in SYK has size
1, corresponding to our assumption that the initial
size of the particle at the top of the barrier is also 1.

(v) Until now it has not been possible to directly
compare the results of size-momentum duality with
calculations in the SYK theory, the reason being that
the only calculations of size growth were at infinite
temperature [5]. However one of us (Streicher) and
Xiaoliang Qi have recently carried out a finite
temperature calculation using the out of time order
correlation function method [9].
Here we will just quote the result,

sðtÞ ¼ 1þ 2

�
Jβ
π
sinh

�
πt
β

��
2

: ð5:1Þ

We see that the initial size satisfies sð0Þ ¼ 1, and
that it grows quadratically as s ¼ J2t2, in agreement
with (4.5). By t ¼ β the size has grown to approx-
imately J2β2 and from thereon it grows exponen-
tially as in (4.7). There appears to be close
agreement between the SYK model and our analysis
based on size-momentum duality.

Finally we note that Eq. (1.4) was derived for the SYK
model [8] on purely quantum mechanical grounds, without
any assumption of a dual geometry. It is extremely interesting
that a whole class of very generic quantum systems repro-
duces a formula whose interpretation is both geometric and
gravitational: the existence of a long throat (geometry)
through which a particle will accelerate as it falls toward
the horizon (gravity). This is another example of “GR ¼
QM,” i.e., the view that the origins of gravity are to be found
in the generic behavior of complex quantum systems [10].
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APPENDIX: PARTICLE EQUATION OF MOTION

The radial part of the metric (2.1) may be written in the
form

ds2 ¼ −fðrÞdt2 þ dρ2: ðA1Þ

The Lagrangian for a point mass moving in this metric is

L ¼ −m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ − _ρ2

q
: ðA2Þ

The canonical momentum conjugate to ρ is

P ¼ ∂L
∂ _ρ ¼ m_ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrÞ − _ρ2
p : ðA3Þ

The conserved Hamiltonian is

H ≡ P_ρ − L ¼ mfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ − _ρ2

p : ðA4Þ

The force on the particle is

F ¼ ∂L
∂ρ ¼ −

m∂ρf

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f − _ρ2

p ¼ −
m∂rf

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f − _ρ2

p dr
dρ

¼ m∂rf

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f − _ρ2

p ffiffiffi
f

p
: ðA5Þ

Using (A4) we get

F ¼ ∂rf
2

ffiffiffi
f

p H: ðA6Þ

So far this is general. Now plugging in the metric (2.1)
(we use the extremal form with rþ ¼ r−) the force is
given by

F ¼ rþH
r2

: ðA7Þ

In the long throat r is almost constant and equal to rþ.
Furthermore, a particle dropped from the top of the
potential barrier has (conserved) energy H ¼ 1=rþ. It
follows that the force on the particle as it traverses the
throat is constant and equal to

F ∼
1

r2þ
: ðA8Þ

Finally we use the equation of motion dP=dt ¼ F to find,

jPj ¼ t
r2þ

þ const ðA9Þ

in agreement with (4.3).
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