PHYSICAL REVIEW D 98, 126014 (2018)

Complexity growth of rotating black holes with a probe string
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We study the effect of a probe string to black hole complexity according to the complexity equals action
conjecture. Our system contains a particle moving on the boundary of black hole spacetime. In the dual
description this corresponds to the insertion of a fundamental string on the bulk spacetime. The total action
consists of the Einstein-Hilbert term and the Nambu-Goto term. The effect of this string is expressed by the
Nambu-Goto term. Focusing on the Nambu-Goto term, we analyze the time development of this system.
Our results show some interesting properties of complexity. This gives us a useful hint for defining

complexity in quantum field theories.
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I. INTRODUCTION

The concept of computational complexity was originally
known in quantum information theory [1-7] or computer
science [8,9]. This concept gave us a new physical quantity
to study gravitational physics. An important goal of quantum
gravity is to reveal the inside of the black hole horizon or the
information problem with black holes [10-19]. A candidate
for its solution is firewalls [20-22]. Complexity is realized as
an important quantity for studying the structure of black hole
spacetime—the Einstein-Rosen bridge [23-31], which is a
structure of connecting two external black holes thought to
be equivalent to an entangled pair of particles (ER = EPR)
[32]. Specifically, complexity is thought to be a good tool of
diagnosing the existence of firewalls [31]. Because of these
motivations, complexity has been studied in many recent
works [25,33-43].

The definite approach for quantifying complexity is still
unknown. So to define complexity in quantum field theory
is a theme of recent research [44—49]. In the perspective
of quantum information theory, complexity is roughly
defined as the number of necessary gates which operate
to produce the target state from the reference (initial) state.
The tensor network is frequently used in a quantum system
[50-55], and it is used for describing the wormhole
structure [56]. Then it seems to be a good approach for
defining complexity. There is also a geometric approach
for defining complexity [57]. A geometric approach is
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suggested to introduce Finsler geometry on quantum space
[58-63]. In this approach complexity is determined by the
geodesic on the quantum space.

The holographic duality [64] has been an important
principle in recent research. According to this principle,
complexity is expected to have a holographic dual in the
gravity theory. That relation between a gravity theory and a
quantum field theory has been a recent active research
theme [65-71]. The complexity-action (CA) conjecture
[72,73] is the most reliable candidate for this duality. This
conjecture suggests a relation between computational
complexity and the gravitational action which is evaluated
in a specific region of spacetime called a Wheeler-DeWitt
(WDW) patch. CA conjecture has been tested in various
spacetime settings [74-95]. Complexity growth of some
kinds of black holes, especially Kerr-AdS ones, are
calculated in Ref. [96]. In general there is a divergence
of action. Treating the boundary terms of the gravitational
action and its renormalization is one of the important
problems in proving this conjecture. For this purpose the
Neumann boundary term for gravity [97] and other sol-
utions have been considered so far [78,98—105]. That
conjecture in the time dependent system [74,106—111] is
our main interest here. In Ref. [109] especially, the
counterpart in a field theory is discussed for Finsler
geometry and the Fubini-Study metric.

Some of the property of complexity is found in recent
works. For example, it has a good analogy with entropy in
thermodynamics: it satisfies the second law of thermo-
dynamics [112]. The time development of complexity
satisfies the Lloyd bound [73,113,114]. Specifically, in
Ref. [114] complexity in the process of the formation of
the black holes is discussed. Furthermore, interestingly,
Ref. [115] revealed that complexity has a nonlocal

property.
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The analysis of complexity using a probe is a useful
methodFor example, in Ref. [116] complexity growth in a
system with flavor branes is studied, and a nonlocal operator
in a Bafiados-Teitelboim-Zanelli (BTZ) black hole is studied
in Ref. [117]. And also complexity of a particle falling in the
Poincaré-AdS boundary is studied in the probe approxima-
tion in Ref. [118]. In this paper we use this kind of method.
Our probe is a fundamental string. The Einstein-Hilbert
action of various kinds of spacetime is calculated in many
works. On the other hand we study the effect of the probe
string here. The total action of this system is the sum of the
Einstein-Hilbert action and the Nambu-Goto (NG) action of
the string. The NG action is also obtained by integrating over
the WDW patch. The motivation for studying such an effect
is found in Refs. [119-125], where energy loss of the
charged quarks is calculated by considering a drag force
caused by the string motion.

In a previous paper [126] we studied the effect of the
probe string moving on the AdS;,; black hole spacetime.
What I have found about complexity so far is as follows:

(i) Complexity basically grows as the black hole mass

becomes larger.

(i) Butin the vicinity of light speed complexity shows a

specific behavior.
(iii) Complexity is smaller as the probe string moves
faster.
The most notable result is the last one. I think it can be
stated that a fast moving object decreases the growth of the
complexity. This result may serve as a hint for finding the
definition of complexity in quantum field theory. In this
paper we try to find new properties of complexity by
studying the effects of the probe string on a more broad
type of black hole.

This paper is organized as follows. In Sec. II we begin
with calculating the effect of the probe string on the AdS
black hole. This is a higher-dimensional generalization of the
previous work. We first compute the general n-dimensional
case and reproduce the (4 4 1)-dimensional results. And
then (3 + 1)- and (5 + 1)-dimensional results are also found.
In Sec. III we study the NG action of a string moving in
three-dimensional black hole spacetime. In this section a
new parameter—angular momentum—is introduced. This
black hole is the BTZ black hole [127]. The angular
momentum will show an interesting phenomena which is
not found in our previous work. In Sec. IV the angular
momentum is added to the AdS black holes. This is the Kerr-
AdS black hole. Their complexity growth is studied in
Ref. [96]. The drag force of the four-dimensional Kerr-AdS
black hole is studied in Ref. [128]. In their case, the drag
force is located in the boundary of the AdS. In our case, on
the other hand, we take into account the inner part of the
black hole horizon. We review this analysis and also study
the five-dimensional case. In the final section, Sec. V, we
summarize our results and remark on new insights about
them. After that some future directions are suggested.

I AdS,,; BLACK HOLES

In this section we study the cases of an AdS black hole in
an arbitrary dimension. The n = 3 case will reproduce a
previous work [126]. Here we consider noncharged black
holes. This metric is

dr?
dsiys, , = —f(r)dr* + 0 +r?dQ, ;. (1)
8 2GM ¥
flr)y=1- —
(r) (n—1)Q,_; rm2 f%\ds
B rfn‘z_l_ r?
e '/ﬂzzxds’
162GM
n—2 2
R eI @)

The volume of the (n — 1)-sphere is Q,_; = 22"/%/T'(n/2).
In each dimension the relation between r,,, and mass is from
2 =162GM/((n —1)Q,_;). For later use, we write
them here explicitly in four, five, and six dimensions:

M
3+ 1)-dim: r, :822—2:21\4, (3a)

16zM\ 1/2 SM\ 1/2
= — , 3b
() = (%)

4zM\ /3 3M\ /3

D-dim: ry = (22) 7 = (22) 7.
(54 1)-dim: ry <Q4> <2ﬂ> (3¢)

As before we assume that the string moves a great circle
on S"~! subspace. Then the induced metric of this part is the
same as before dQ,_; = d¢*>. We take the world sheet
parameter as (21)

(44 1)-dim: ry

t=r, r=o, ¢ = vt + (o).

As before we scale r so that 45 = 1. In the following ¢,
rm» M, and the world sheet coordinate o are rescaled in the
same way. Then £ 45 disappears in the expression, and the
metric is rescaled to the original one times #3,5. The

induced metric is
dsidsmind = (=f(o) + 6*v?)d7?

+ (J% ¥ 625'(0)2> do* + 2020¢ (0)dedo.

Flo)=1- (’m> e (4)

o

The NG action is obtained by integrating over the WDW
patch,
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dSNG

_ 7, / dor/~gma(®)

-7, [" dﬂ S AL

=t A dG*CAdS(n+1)’ (5)

where the horizon ry, is determined by f(r) = 0. Here we
comment on the horizon. By differentiating f(r),

f(r)=(n-=2) "m +2r;

rn—l

n>3, (6)

we find that f(r) is a monotonically increasing function.
This fact and that this function takes a negative value near
r = 0 mean that the equation f(r) = 0 certainly has only
one positive solution.

EOM and its solution—The equation of motion for &
gives

7 f(0)¢ (o)
6% /f(o +o-2f<o>:/<a>2>' 7

‘Zf(\/l

From this equation the constant Cce is defined as follows,

a’f(0)¢ (o)
SR AR 8
‘CAdS(n—H)/Ts ( )
by solving it for & (o),
N o*f(o) - 020'4
YO0\ e - ?)

The constant ¢, is determined in the same way as before
from the real valued condition. The zero of the numerator
gives the equation

flo)=1*’6>=0= (1 —v*)6" + 06" 2 =172 =0. (10)

The function on the left-hand side is a monotonically
increasing function of ¢ (assuming that n > 3) and takes a
negative value at ¢ = 0. Then this function has only one
solution for ¢ > 0. We call it o: (1 —v?)ol} + of2 —

=2 = 0. Since the denominator becomes zero at the same
Value of 6, 6 = oy, the constant c; is determined:

0 = onf(on) = ¢; = voy — ¢3, see=voy.  (11)

In the above the second equality is derived from numerator
condition (10). We assumed that c; is positive. We obtain

C n=2 —v7o"
o

Action—The NG action is obtained by integrating over
the WDW patch:

(o) =

rL2
f(o) = v*o"
_/ doLags(n1) = / \/"zf(g )= ot

(13)

This form is a general form for n > 3. In the following we
focus concretely on four, five, and six dimensions.

A. AdS;, case
In (3 4+ 1) dimensions Eq. (13) is

() — ce of (o) — v’
) =25 0)\ of (o) - o)
fo) =1 —%m+ 2. (14)

By construction the numerator and the denominator have
the common factor. Then the expression can be simplified:

of(0) = v26° = (onf(on) — v’0})
= (0= on)(1+ (1= 1)(c* + oyo + o)),
of (o) = v’o}y/o — (ouf(on) — v}
= (0 —on)(1 + (6* + ono + o) + v’/ (o0ow)).

Then the development of the NG action is

1 dSyg
T, dt

(6* + ooy + 0%)

/ 1+ 1 —2?) 2
0? + ooy + o) + v’oi /o

/ dg\/l—v )(6® + opo?) + (1 = v?)oh + 1)6.

3+ oo’ + (6§ + 1)o + v?o3
(15)

By numerical calculation this action can be expressed
as a function of M and ». Recall that the black hole
mass is given by Egs. (14) and (3). The result is shown in
Figs. 1 and 2.
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FIG. 1. AdS;.;: Action growth vs string velocity.

Figure 1 shows the velocity dependence. As usual
this dependence takes a maximum when the string is
stationary.

Figure 2 shows the mass dependence. There are notable
behaviors here. One is a peak at lower mass. The other is a
phase transition. For slower strings its effect increases
according to mass increasing. But for fast strings, espe-
cially near light speed, it changes to a decreasing function
of the mass.

dSne _ o (1H V1 + 4r2 (1= 0v?)\ /2
= —I
dt : 2

x E

0.35
0.30
3
>
3+ 0.25 — v=0.96
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T 0.20 - v=0.97
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Black hole mass

FIG. 2. AdS;,: Action growth vs black hole mass.

B. AdS,, case
When n = 4, Eq. (13) becomes

1 dS r 1 —1v?)(c? 2 1
1 NG:/hda U=v)lo bow) Tl )
T, dt 0 o”+op+1

As studied in Ref. [126], this integral is performed with an
elliptic integral. We show here the result again:

wesin 1[Gl VAR DO =02 NP\ ((1-27) ¢
l (1 =202) + /1 +4r%(1 = 0% ’ 1+ /1 +45(1=27)

1 +4rr2n(1 - UZ)) ]/2] ’ (17)

where r,, is related to the black hole mass by 4r2, = 32M/(3x), as noted in Eq. (3). The velocity dependence and the mass
dependence are shown in Figs. 3 and 4. It reproduces the results in the previous work [126].

C. AdS;s, case

In the (5 + 1)-dimensional case Eq. (13) is, explicitly,

T, dt

This integral is also performed by the numerical calculation
method. The velocity dependence and the mass dependence
are shown in Figs. 5 and 6. Remarkable points of these
plots are as follows.

For Fig. 5, the curve of the velocity dependence is gentler
compared to the four- and five-dimensional cases (Figs. 1
and 3). Compared with the lower-dimensional cases, the
effect of the probe string decreases slower at higher
velocity. Specifically, it does not reach zero at the light

1 dSxg _ [n,  [(6® + oo+ o) + (1 = v?)(c" + on0’ + 0ho” + oo + oyy)
T. o o (c* 2 1 3 2 2 . 3 i 2.4
0 6% + oyo + ofy) + (6* + oyo® + 6}6* + 630 + ofy) — v¥o}

(18)

[
velocity, while it becomes zero in the BTZ black hole case
(see Figs. 7 and 8). We can say that the effect on complexity
becomes insensitive as the dimensionality is higher. It can
also be seen from the fact that the maximum value is lower
than the AdS;,; and AdS,,, cases.

For the mass dependence shown in Fig. 6, the maximum
at the vicinity of light speed disappears here. This is now a
monotonically increasing function of mass in all regions of
mass and velocity.
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FIG. 3. AdS,.;: Action growth vs string velocity.
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AdSs.,: Action growth vs string velocity.

We expect that this behavior is a general tendency in
higher than six dimensions. That is, the dependence
between different masses and velocities becomes smaller
in higher dimensions.
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FIG. 6. AdSs,: Action growth vs black hole mass.
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FIG. 7. BTZ: Action growth vs fixed string velocity
J/M =0.9.
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FIG. 8. BTZ: Action growth vs fixed string velocity
J/M = -0.2.

III. BTZ BLACK HOLES

We consider the string moving in the BTZ black hole
spacetime. The butterfly effects caused by a small
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perturbation on an asymptotic region in this black hole is
studied in Ref. [129]. In this section we study the effect of
the string moving on this spacetime geometry. The BTZ
black hole is (2 + 1)-spacetime specified as

2
dsiy, = —f(r)di* +%+ r <d¢ 3 dt>2,
AdS
(PR -r)
O (19

The parameters r, are the inner and the outer horizon,
which are related to black hole mass M and angular
momentum J by

M= (r3 +712)/ s J=2rir [Crss. (20
We rescale r(gq) = F(new)?aas and for r. and 7 in the
same way. This simplifies the expression and the metric
becomes the original one times ¢3 ;5. One edge of the string

moves with velocity v. We parametrize the world sheet as
follows:

t=r,

¢ = v+ (o). (21)

r=o,

Since we use here the £ 45 = 1 unit, the angular velocity of
the string w is @ = v/ g5 = v. The induced metric is

dSZBTZind == <f(‘7) - <UU - r;r_) 2) dr*

+ <J% + 02.»:’(6)2) do*

+2 <1)O' - %) o& (o)drdo, (22)

flo) = > — (23)

The Nambu-Goto Lagrangian is given by the determinant
of this metric,

= 062’02—L va—i ’
cBTZ—TS\/Hf() ¢or 1 (10-5) @9

where angular momentum is rescaled as J(1q)/'aqs = J-
EOM and its solution—By the equation of motion,

di <JM> =0, =

[:BTZ/TS

f(0)a*¢ (o)

Log/Te 2

oy~ Ce |o'f(0) = (vo® = J/2)?
5()—02f(6)\/ 77l0) =2 . (26)

For this function to give the real values, the numerator and
the denominator in the square root must have the same
zero point. This condition leads that the denominator is
zero when

M —vJ
=0k i=—— 27
C=On= T 2 (27)
This determines the integration constant as
ce = |vof — J/2|. (28)

Then the square root of Eq. (26) is factorized by (¢ — oy):

c 1—v))(6* +03)— (M—vJ
5/(6) =— ¢ ( )( 5 2H) ( ) (29)
o°f(o) o°+oy—-M
From the relation (25) the Lagrangian is
L 1 —1v%)6?
BTZ _ g 1; )o . (30)
T o +og—M

Action—The development of the Nambu-Goto action is
obtained by integrating this Lagrangian over the WDW
patch,

— =Vv1 d
Ts dt / G\/ 2 +0' -
=|ry —vr_| = |r_—ory|. (31)
In our scaling, M=7r2+r2J=2r,r_, ri=

1(VM +1J + /M —1J). We express the above action by
the parameter M and J:

1dSxg 1
T, dt 2

((1 —o)WWM+ T+ (1 +v)\/M——J)

_%’(1_1]) M+J—(1+0) M—J’. (32)

This plot is shown in Figs. 7, 8, 9, and 10.

According to the results in the previous work [126],
complexity growth is expected to take the maximum when
the string is stationary. So it seems to be meaningful to see
the dependence of the relative velocity between the black
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FIG. 9. BTZ: Action growth vs black hole angular momentum/
mass.
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FIG. 10. BTZ: Action growth vs black hole mass (small mass
region).
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FIG. 11. BTZ: Action growth vs string velocity (relative

velocity = 0).

hole and the string. That dependence of the relative velocity
is shown in Figs. 11 and 12. As expected, this tendency is
seen in these plots. That is, the effect on complexity takes

=] \
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Z 0.5 A1 M=2
© M=3
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v (= BH J/M+0.5)

FIG. 12. BTZ: Action growth vs string velocity (relative
velocity = 0.5).

the maximum when the relative velocity is zero for rotating
black holes. The effect is larger for larger black holes in the
AdS, case [126].

Figures 7 and 8 show the velocity dependence for
different angular momentums J/M. In Fig. 7 the peak
position is shifted because of the black hole rotation. In
Fig. 8, since the black hole rotates in the opposite direction
to the string, the peak is shifted to the opposite side. Not
only is the peak position shifted, we can also see that the
peak value becomes smaller for a large shift. Note that in
this case the effect of the probe string is exactly zero when
the string motion reaches light speed.

Figure 10 also shows that the effect of the string is
smaller for fast moving strings. And this is a monotonically
increasing function of the black hole mass. It can be
thought that this is because complexity defines how
complex the physical system is. Then a larger system
may have more information.

IV. KERR-AdS BLACK HOLES

In this section we consider the Kerr-AdS black holes
which are black hole solutions with angular momentum.
A general higher-dimensional solution is known, and that
holographic correspondence is studied in Refs. [130,131].

A. Four-dimensional Kerr-AdS black holes

We consider here AdS black holes with angular momen-
tum. The Einstein-Hilbert action of these black holes is
studied in Ref. [96]. We study an effect of the probe
string here. In the Boyer-Lindquist coordinates the four-
dimensional Kerr-AdS black hole is given by

A asin®6 2 p? p?
ds?,, = ——|dt— d drr +1-ae?
PKad P < = ¢> +Ar T Ay

Apsi 29 2 2 2
+ 200 (adr—r ta d¢> (33)

2 =

p =
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A, Aysin’0 2) p? p?
= -5 -——5—a* |d* +—dr’ + —d¢*
(/)2 /)2 Ar A9
al, sin? 0 — a(r? + a®)Aysin® 0
) -
(r* + a*)?Agsin® 0 — a*A, sin* 0

= dep?,
P2

dtde

(34)
where

A, = (P +a?)(1+r?/Rys) — 2mr,

Ay =1 —a*cos*0/ 3 i,

= _ 2,2
E=1-a"/C}

p* = r? + a*cos0.

The physical mass and the angular momentum are M =
m/(GyE) and J = ma/(GNE). The above metric is related
to the AdS coordinates @ [see also Eq. (4.11) of Ref. [132] ]
as follows. Put the AdS boundary coordinates as ¢ and Q,
and they are related by ® = ¢ + Q. In this coordinate the
first and last terms of Eq. (33) are, at 0 = /2,

2 Q 2
—Pe2 [dt—§d¢] :—rzf;\gsKl—“T>dt—§dcp] ,

1 r? 21 r’Q r? 2

In order for these terms to give the form of the AdS metric
at r - oo, the cross terms from these terms should cancel.
Then the parameter Q is determined:
¢ =@ —at’ st (35)
We consider a string moving in this spacetime. In the
following we use the rescaled coordinates such that
Cags = 1. We assume that the string moves on the great
circle of the subspace S?: that is, @ = /2. We parametrize
the string world sheet as'
t=r, r=o,

d =Vr+&(o). (36)

Taking into account the relation (35), the above is

t=r1, r=o, ¢ =(V-a)r+E&(o) =vr+ (o).

(37)

We defined the shifted velocity as v := V — a, which is used
in the following calculation, while the original V is the
string velocity. Let us define a function

A(o) = A (r=0)= (6> +a®)(1 +6*) —2mo. (38)

'In this section we use the capital letters ® and V for the
boundary coordinate and the string velocity. These are shifted
because of the rotation of the black hole.

The induced metric is

a2 = (A a_ zﬂw
KAd4ind 2 o2 o2 =
2 2\2 2
2 (0" + azlz a A) de
o2
6? (6% 4 d?)? - ad’A
+ (K 44 62)32 5’2> do*
2¢&
+ % <(1(A - (62 + az))
2 L 2V _ 2A
Lo ta)—a >drda. (39)
We define the functions for simplicity:
F:=A—(6*+a?), G = (6* + a*)* — a’A. (40)
Its determinant is
A a*> _avF G
_ 2
— det[gka4ind] = <P —3T 2;@ —v 6232>
62 G 12 G 2
x (A + 2_25’2> +0'sz (aF+ v§>
(41)
Further we define
A a av F G
Ho) == g 22" gz
2
I(o) = <aF + 11:) (42)

EOM and Lagrangian—The Lagrangian and the equa-
tion of motion is

Ly s o’ G 5/2 12
— H _ o 12 —I s
T, N 0?5? &) s

1 OLxas . f//(0452)

— = *HG + 1] =:c;. 43

Ts 861(6) £KA4/TS [6 * ] “ ( )

Solving it for (o), we obtain

¢ = et il (44)
T (6’HG + 1)(6*HG + I — c}o'E?)

We impose the reality condition as before. We need to find
the zero of
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A - (6 + a?) (6> +a*)> —a®?A  denominator must be zero, coincidentally. This condition
= - =2 determines the integration constant c;:

_ A(a)<1 —a—:)z— (a—@)z. (45)

—

6*H = A —a*=2av v?

0=1(oy)* = 2%}l (on), ~.c;E>=I(oy)/oy. (46)

We denote this solution as ¢ = oy. Actually 6°H(c) =0
has a wunique solution in the positive region. The  Substituting this constant into the above, we obtain
|

o) — o c*H(c)/A(0)
£(0) = ceo’E \/ (6*H(6)G(0) + 1(0))(c*H(6)G(0) + 1(c) — I(oy)c* /ok)’ (47)

and the Lagrangian The first two figures, Figs. 13 and 14, show the string
velocity dependence for different masses. Figure 13 is the
Liaa [02 HG + 1] result for a = 0.1. The peak position is shifted to the right
T =y} '(0) side. Figure 14 is, on the other hand, the result for a black
s o= hole with an angular momentum of the opposite direction
_ [(6°H(0)G (o) + 1(0))6*H(5)/A(0) (48)
~\ ?H(0)G(0) + I(0) — I(on)o* [}y S I
M=4
Action—The outer and the inner horizon are the smaller 201 m:z
and larger solutions of A,(r) = 0, respectively. The integral M=7
in the WDW patch is 5 151 M=8
:
L + dg,CKA‘l_ 1.0 1
S r_
0.5 -
/M 4 c*H(0)(6°H(0)G(o) + (o))
= (o} .
. VA (PH()Go) + 1(0) ~ 1on)o*/oh)

49 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
( ) String velocity

The numerical calculation gives the results shown in FKi 1;2 Kerr-AdSs,;: Action growth vs string velocity
Figs. 13, 14, 15, and 16. (a=—02).

2.5

2.04

=E=E2EXXEXEXEXE
| R T
0N U AW

1.59

dSKA4/dt
dSKA4/dt

1.0 A

0.5 A1

0.0 T T T T T T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -04 -03 -02 -0.1 0.0 0.1 0.2 0.3 0.4

String velocity JM

FIG. 13. Kerr-AdS;,;: Action growth vs string velocity FIG. 15. Kerr-AdS;,;: Action growth vs black hole J/M
(a =0.1). (m =5).
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0.5519 —— Vv=c*0.95
— V=c*0.96
0501 — v=c*0.97
—— V=c*0.98
0.45
V=c*0.99
5 0.401
g 0.35
©
0.30
0.25
0.20

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
BH mass

FIG. 16. Kerr-AdS;,,: Action growth vs black hole mass
(a =0.1).

a = —0.2. The peak position is shifted to the other side.
This behavior is consistent with the property that complex-
ity is larger as the probe string motion slows down. That is,
the effect takes the peak value when the relative velocity
|

between the string and the black hole is zero. Not only that,
but the peak value also decreases as the shift becomes
larger, similar to the BTZ black hole case.

Figure 15 is the dependence of the angular momentum
per black hole mass. This figure also shows that the effect
on complexity is smaller as the string moves faster. And it
also shows the tendency for complexity to be larger when
the relative velocity is smaller because in this plot the string
velocity is positive and the effect of complexity is larger in
the positive region of the graph.

Figure 16 shows the mass dependence. As usual this is a
increasing function of black hole mass. The faster string
gives a small effect on complexity. But there is an unusual
behavior in the small mass region where the extremum
value appears.

B. Five-dimensional Kerr-AdS black holes

The (4 + 1)-dimensional Kerr-AdS black hole is
described by (see Refs. [131-134])

A, asin’0 bcos?0 2 Apsin?d r?+a? 2 Aycos’d r? + b? 2
dsgps = —— <dr ———dp - — d¢2> +—— <adr -— d¢]) = <bdl 7 d¢2>
P Za =p P =a P =b
2 2 2 2 0 2\cin? 2 1 p2)enc2 2
p P 1+r b(r- + a”)sin“0 a(r~ 4+ b*)cos“0
odr + A d6* + 2 <abdt - % depy — (Eb) dy ) (50)
[
where A, 2 2
dSgasa = — 2 dt — E_d¢l + dr
p*(r) = r* + a*cos*6 + b?sin®0, 1 2a? 2
Lo avi2 0 p2y2 toa\adt=g A ) (522)
Ar(r):ﬁ(r +a*)(r*+b7)(r'+1)-2m, r =a
Ay(0) = 1 — a*cos’d — b*sin’0), Ay = (P +d)(?+1)-2m. (52b)

—
—

E,=1-da®  E,=1-5

The parameters here are related to the physical mass and the
angular momentum as follows [133]:

3zm ma;m

CaE(1+ )

(51)

We study the a # 0 case and the b # 0 case separately.
These correspond to black holes rotating around different
axes with coordinates ¢b; and ¢,. As before, we assume that
the string moves in the great circle: 6 = z/2.

1. a # 0 case

First we consider the case in which only a is nonzero.
In this case the string rotates around the same axis to the
black hole:

This looks like the same form as the four-dimensional
Kerr-AdS case except that the function A ,.(r) is replaced by
A,,(r) (the second term does not depend on r). We need
the same shift (35) to relate the velocity parameter v to the
string velocity V: v =V — a. The parametrization of the
string world sheet is

t=r, r=o, ® =Vr+ (o). (53)

EOM and its solution—The calculation of the induced
metric and the NG action are performed in the same way as
the Kerr-AdS;, | case. So the Lagrangian is the same form
as Eq. (48) except that A(r) is replaced by A,:

Crass _ %«#H(«r)c(a) 1) H(0)/Bulo) (o

T 0*H(0)G(0) + I(0) — I(on)c*/of;
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where
A,(0) = (6> +a*)(c* + 1) =2m, (55a)
F(o) = Ay(0) = (0® + @),
G(0) := (6% + a*)* — a®A (o), (55b)
A,o) a® _av G(o)
H =l 22
(o) c c B, 0?5’
2
I(0) := (aF(a) + U:) (55¢)
The inner and outer horizons are determined by
Ara(rj:) =0. (56)

Action—The action integrated over the WDW patch is

dSng _ /h do (6’H(6)G(0) + 1(0))o*H(6)/ A (0)
dt . 0*H(0)G(o) + 1(6) — I(oy)c*/of;

(57)

This integration is performed by the numerical calculation.
The result shows the string velocity dependence, the black
hole angular momentum dependence and the mass
dependence.

The velocity dependence is shown in Figs. 17 and 18. We
can see as usual that the effect on complexity is larger for a
larger mass and the effect is at maximum when the string
is stationary. But the difference for different values of
parameter a disappears.

The angular momentum per unit mass (a =J/M)
dependence is shown in Fig. 19. Similar to the velocity
dependence, a sharp slope tends to disappear. There is a

204 —

1.81

N = = O &

1.6 1

TXXEXZX

1.4

1.2 A

dSKA5/dt

1.0

0.8 A

0.6

0.4 T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 050 0.75 1.00
String velocity

FIG. 17. Kerr-AdS4,: Action growth vs velocity (a = 0.1).

= =
o [ee]
ETTXXX

N2 B2 O

dSKA5/dt
_oe
N

=
o
|

0.8 1

0.6 1

0.4 T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
String velocity

FIG. 18. Kerr-AdS4,: Action growth vs m (a = —0.2).

universal behavior—the effect of the string is small when
the relative velocity is large.

The mass dependence is shown in Fig. 20. Basically the
effect increases according to the black hole mass, but this

0.95{ — V=0.90
— V=091
0.90 -
G
)
g 0851
[%2]
©
0.80 -
0.75
-0.04 -0.02 0.00 0.02 0.04
Ja/M

FIG. 19. Kerr-AdS,,: Action growth vs black hole J,/M
(m =5).

0.80 A

dSKA5/dt

<) o o
o 9 <
5] o o

0.60

0.55 A

2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Black hole mass

FIG. 20. Kerr-AdS,,: Action growth vs black hole mass
(a =0.1).
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changes to the decreasing function once the string velocity
exceeds the threshold (it is almost light speed, ~0.98c¢).

2. b #0 case

Next let us consider the b # 0 case. In this case the string
moves in the axis to the black hole. The metric becomes

rr + b?

dszKASb o bzd + A, dr?
(1 — b2)2—|— bzgz(l +7?) s
rr+b

Ay = (P +b>)(r2+1)=2m,

Since E, = 1, from Eq. (51) the angular momentum per
black hole mass is

(59)

J, 2 b
M3

b -
1+7r
We choose the same parametrization as before:

T =1, r=o, ¢, = vt + (o). (60)
Note that the above metric is already in the AdS form. Then
one does not need to shift the velocity (35) to relate the
string velocity to the parameter » (V = v). The induced

metric is

d 2
dSiash:ing = —f(0)de® + ]% + o (vdr + €do)?;
2
f(G) =1 +02—ﬁmbz,
= (1(0) = )i+ (s ) de?
+ 2062 drdo. (61)

EOM and its solution—This induced metric is the same
form as the AdS,, | (4) case except that the function f (o) is
replaced. Then the equation of motion is now obtained only
by replacing the old f(s) with the new one,

o Ce Lxase  ce o’ f(o) —v’c*
5(6)762][(0') T, 70'2f(6) Zf(G)—Cf

2
f6)=1+c —ﬁmbz. (62)

The reality condition in the square root should be imposed.
The numerator is

0=1+(1-v%)6*>-2m/(c* + b*)

= (1 =v?)o* + (1 + (1 — v*)b?*)o* + b> —2m = 0.
(63)
Since (l +(1- )bz) +4(1 = v¥)(2m - b?) =
(1-(1-w ) 2?2+ 8m(1 —1?) >0, this equation cer-

tainly has real solutions. oy denotes a positive one of them:

1 1 —v?)b?
G%Z_M

-

From the condition for the denominator, the constant c; is
determined as ¢z = of;f (o). The Lagrangian becomes

b2+ 8m(1—1?).  (64)

o*f (o) — v*e*

Cas _ \/
Ts O'zf(d) - Glz-lf(GH)

= 0\/(02

The horizon is determined by

(1=v*)(c* +of +b*)+ 1
+b*)(6? + o + 1) = 2mb? /(6% + b?)’

(65)

Arb<r) =0

1+5 1 1/2
.‘.rh:<— . +§\/(1—b2)2+8m) . (66)

Action—Then the development of the NG action
obtained by integrating over the WDW patch is

dSNG

1—v )(o®+oh+Db*)+1
" doo 2 /(2 2
(6® +b?) (6> + o + 1) —2mb?*/ (6} + b?)

/ (1-v?)(c* +of+b*)+1
a—|—b2 2+ ok +1)=2mb? /(o3 + b*)

(67)

Figures 21, 22, 23, and 24 show the result of the numerical
calculation.

The velocity dependence is shown in Figs. 21 and 22. As
usual, the effect on complexity takes the extremum when
the string is stationary. There is abnormal behavior in the
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FIG. 21. Kerr-AdS,,: Action growth vs velocity (b = 0.1).
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FIG. 22. Kerr-AdS,,: Action growth vs velocity (b = —0.2).
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1.06 v=0.94
=
2
51.04
o
<
8 1.02 A
1.00
———
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FIG. 23.

Jo/M

Kerr-AdS,, : Action growth vs velocity (b = 0.1).

vicinity of light speed. It tends to increase a bit in the
maximum of the velocity. Because of the reality condition
the velocity cannot reach light speed. This restricted region
becomes narrow with an increase in the absolute value of b.
This is a new phenomena that we found.

1319 — v=08s5
— v=0.86
— v=0.87
1219 — v=0.88
v=0.89
5 v=0.90
:\: 1.1 4 /
(%2}
T
<
(2]
T
1.0
0.9 1
5 10 15 20 25 30

Black hole mass

FIG. 24. Kerr-AdS,,;: Action growth vs black hole mass
(b =0.1).

The dependence on the angular momentum is shown in
Fig. 23. Since the string rotates in a different axis, the
relative velocity never becomes zero. Then this behaves
very differently than the previous ones.

Figure 24 shows the mass dependence. The difference
between different velocities ceases, and there is no
extremum point in this case. While in the small mass
region fast strings give a large effect, in the large mass
region the slower strings have a larger effect, as usual.

V. DISCUSSION

A. Summary

We have seen the effect of the probe string in BTZ,
AdS;. |, AdS,., AdSs,, and Kerr-AdS black hole space-
time. The previous work [126] revealed the effect of the
probe string in different masses and string velocities. We
could confirm this result and that is a universal behavior in
more broad type of black holes. More specifically, com-
plexity shows different behavior according to the string
velocity, the black hole mass, and the spacetime dimension.
Let us summarize these factors and their physical inter-
pretation here.

Velocity dependence—A stationary string gives the
maximal complexity growth. Complexity decreases as
the probe string moves faster. This seems to contradict
the physical intuition because complexity measures
how difficult it is to create the target state from the
initial state, which is usually stationary. The same
phenomenon was also found in the previous work
[126]. Then we can conclude that this is a universal
property of complexity.

The position of the maximum is shifted in the rotating
black hole. This is thought to be derived from the relative
velocity between the string velocity and the black hole
angular momentum. That is, the effect on complexity is
larger when the relative velocity is smaller. The maximum
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value also decreases as the maximum point moves from
the center by this shift. Near light speed there is also
an interesting phenomena in the mass dependence, as
stated below.

Let us note that the universal property of complexity
stated above does not stem from the time delation of
relativistic phenomena. Figures 7, 8, 13, and 14 show
the peak position shifts according the relative velocity
between the black hole and the probe string. Since we
calculated the NG action on the rest flame, the peak
locates at v = 0 if this behavior stems from the time
dilation. We can also see that if this behavior derives from

the Lorentz factor v 1 — v, it does not behave linearly as
the BTZ cases (Figs. 7 and 8).

Mass dependence—Complexity basically tends to
increase according the mass. This can be thought that this
is because complexity defines how complex the physical
system is.

A remarkable phenomenon occurs in the vicinity of light
speed. In the lower dimension, AdS;,; and AdS,;, the
dependence on black hole mass has the maximum point
for near light speed strings. That maximum disappears for
higher dimension, as shown in the AdSs,  -dimensional
case (Fig. 6).

In lower dimension, AdS,, <5, the mass dependence can
be a decreasing function of mass for a near light speed
string.

Dimensionality dependence—As the spacetime dimen-
sion becomes higher, the peak of the dependence on the
string velocity becomes smooth. Specifically, in the three-
dimensional case, the velocity dependence in BTZ black
holes forms a broken line. As the dimensionality becomes
higher, this slope tends to become gentle.

We can conclude that the effect of the probe string
becomes insensitive in higher dimensions. It can be
intuitively explained as follows. Although the Nambu-
Goto action is proportional to the two-dimensional world
volume in whole spacetime, we restrict the motion of the
string in the S' subspace of a specific plane. In order to
remove this restriction, we investigate in Sec. IV B 2 the
case where string moves around a different axis to the black
hole angular momentum. As expected, a new phenomena
was found. That is, the dependence on the string velocity
does not decrease near light speed (see Figs. 21 and 22).
Furthermore, the difference of the dependence on mass
in various string velocities disappears in this case (see
Fig. 24).

Maximum value—According to the results in Sec. II
(Figs. 1, 3, and 5), the plots of the velocity dependence not
only become smoother, but their maximum value also looks
to decrease. Let us confirm that this behavior is universal.
We focus on AdS,,, | black holes. We know already that the
effect of the string is maximum when the string velocity is
zero. For v = 0 the Lagrangian (13) is unity. The integral
depends only on the horizon:

L pds(nr1)

TS = TIp. (68)

The horizon ry, is determined by [see the metric function (2)]

167z
O = g 1 -_—_ 2
f(r) (n_ I)Q'n—l rn—2+r
—n/2+11—* 2
=4 - —8ﬂ 1<n/ >M =0. (69)
n—

The maximum value of the NG action in diverse dimensions
is plotted in Fig. 25.

There is a difficulty in the charged case, as I explain later
of Eq. (72). But only the maximum value can be obtained in
the same way as the uncharged case. We focus on the
extremal black holes. The Lagrangian is again unity, and
the action is equal to the horizon. This horizon is deter-
mined in the same way by

P4 rn—2 _
r

OB Gy - EY —o. o
n—1 ‘

Given a charge, the extremal mass is determined by setting
the minimum value of the left-hand side of Eq. (70) at zero.
The dimensionality dependence of the maximum value of
the NG action for extremal black holes is plotted in Fig. 26.
In this plot we see that the maximum value decreases
at lower dimensions. Furthermore, the minimum point
approaches ten dimensions for sufficiently large charges.

B. Future direction

In this work we considered the effect of the probe
string. That corresponds to the introduction of a kind of
nonlocal operator—a Wilson loop. We first expect the
generalization of the dimension. Several higher-
dimensional local operators can be added. Specifically,

2.50 A — M=0.5
— M=15
2.25 1 — M=25
5 — M=35
g 2:00 M=4.5
%)
S 1.75 M=5.5
g M=6.5
E 1.50 A M=7.5
€ 1251 M=
5 - — M=95
s
= 1.007 \/
0.75 - /
050 T T T T T T
4 6 8 10 12 14
Dimension(n)
FIG. 25. Maximum of the action growth in diverse dimensions

(uncharged case).
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FIG. 26. Maximum of the action growth in diverse dimensions
(charged case).

the codimension local operator, the interface, is an inter-
esting object. This local operator realized in a system
consisting of two kinds of branes—D3 and D5. Since
complexity is known to have a nonlocal property, it must be
useful to use such operators to study the property of
complexity. Some interesting properties of the nonlocal
operators in BTZ black holes are already found in
Ref. [117], and complexity growth of the defect theory
is studied in Ref. [135]. One suggestion is to study the
effect of these nonlocal operators on the diverse kinds of
black holes.

In Eq. (1) we restrict the case to uncharged AdS black
holes. The growth of the Einstein-Hilbert action for the
charged case is studied in Ref. [136]. I would like to study
the nonlocal operators in these kinds of black holes. The
adding of the charge is important future work since it is
related to checking whether the complexity growth satisfies

the Lloyd bound [73,113]. But in this case a difficulty
occurs. The metric function in this case is

dr?
ds? =—f(r)dt* + —+r’dQ,_,, (7la
AdS, ( ) f(l") 1 ( )
£r) 87 2GM  GQ? r?
r P F— F—
(n—1)Q,_, \ rm2 ! fids
rn—2 r2
=1 —_ 71b
rn—2 + f?\ds ( )
167GM 872G Q>
n=2 . 7777 =1, T 71
e Y Thone, U1

The condition for the numerator of Eq. (10) is changed
by adding a new term,

(1-v?)o" +o" 2 —ri 24+ ri7 o =0. (72)

The left-hand side of this equation is no longer monoton-
ically increasing. If this function has real solutions, there
are two solutions at least (including multiple ones). So the
same procedure cannot be used since we need to determine
the constant c; in the denominator of Eq. (9) using the
unique solution of the above equation.
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