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The onset of quantum chaos in quantum field theory may be studied using out-of-time-order
correlators at finite temperature. Recent work argued that a time scale logarithmic in the central
charge emerged in the context of two-dimensional conformal field theories, provided the intermediate
channel was dominated by the Virasoro identity block. This suggests a wide class of conformal field
theories that exhibit a version of fast scrambling. In the present work we study this idea in more
detail. We begin by clarifying to what extent correlators of wave packets built out of superpositions of
primary operators may be used to quantify quantum scrambling. Subject to certain caveats, these
results concur with previous work. We then go on to study the contribution of intermediate states
beyond the Virasoro identity block. We find that at late times, time-ordered correlators exhibit a
familiar decoupling theorem, suppressing the contribution of higher dimension operators.
However this is no longer true of the out-of-time-order correlators relevant for the discussion
of quantum chaos. We compute the contributions of these conformal blocks to the relevant
correlators and find they are able to dominate in many interesting limits. Interpreting these results
in the context of holographic models of quantum gravity, sheds new light on the black hole
information problem by exhibiting a class of correlators where bulk effective field theory does not
predict its own demise.
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I. INTRODUCTION

It has been suggested that quantum theories of gravity
exhibit a property known as fast scrambling, where a
generic quantum state exhibits global thermalization in a
time scale that is logarithmic in the system size [1]. It is
interesting to explore this idea in the context of holographic
theories of gravity dual to conformal field theories, where
one may try to extract constraints on the class of conformal
field theories with gravity duals.
One simple way to quantify this notion of scrambling is

to consider the norm (or equivalently the square) of the
commutator of a pair of Hermitian operators V and W at
different times. For the purposes of the present paper, we
will also consider the system at finite temperature, with an
inverse temperature β. This leads to a relation with out-of-
time-order correlators

−h½Vð0Þ;WðtÞ�2iβ ¼ hVð0ÞWðtÞWðtÞVð0Þiβ
þ hWðtÞVð0ÞVð0ÞWðtÞiβ
− hWðtÞVð0ÞWðtÞVð0Þiβ
− hVð0ÞWðtÞVð0ÞWðtÞiβ: ð1Þ

For sufficiently late times, the first two terms are simply
the time-independent disconnected diagram hWWiβhVViβ,
while the last two terms are genuine out-of-time-order
correlators. For the 2D conformal field theories of interest
here, these correlators may be computed by continuing the
Euclidean four-point function through the second Riemann
sheet [2], as we describe in detail later. These terms vary as
a function of t, unlike the disconnected terms, and from
them a scrambling time scale may be extracted. In the
following section we describe in more detail the depend-
ence of this time scale on the chosen operators. Briefly, one
wishes to choose operators that exhibit the longest scram-
bling time scale, so one may use this commutator compu-
tation as a proxy for asking that the longest time scale a
generic state scrambles. There may of course exist special
choices of operators with much shorter scrambling times,
and likewise special choices with much longer times, such
as those that commute with the Hamiltonian.
In order to study these out-of-time-order correlators at

finite temperature in conformal field theory (CFT) we will
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begin with the Euclidean theory on S1 ×R. The correlators
in this theory may be obtained by a conformal mapping from
the complex plane. The circle direction is to be periodically
identified with period β and corresponds to the imaginary
time direction. The spatial direction is then necessarily of an
infinite extent. For the purposes of the present paper we will
study four-point correlators of primary operators, as well as
correlators of wave packets of such operators. Four-point
functions of primaries are expressed in the so-called con-
formal blocks of the theory. In general, these conformal
blocks are not known beyond infinite series expansions.
However there has been much progress in the literature on
obtaining asymptotic expansions of these conformal blocks
in a variety of limits, and wewill make extensive use of these
results in the following [3].
In holographic theories, the graviton mode is dual to the

stress energy tensor of the CFT, which in turn is a Virasoro
descendant of the identity operator. Long distance bulk
physics should be dominated by the propagation of this
mode, so the limit where the identity block dominates the
conformal block is of particular interest. Assuming the
identity Verma module dominates the conformal block of
the four-point function (as well as assuming a large central
charge and large external conformal weight hw) [2]
obtained a scrambling time logarithmic in the central
charge c of the CFT,

t� ¼
β

2π
log

c
hw

; ð2Þ

suggesting (at least if the result can be continued to values
hw of order 1) that conformal field theories exhibit a version
of fast scrambling. Closely related calculations were also
performed in [4–6] using the vanishing of the mutual
information to define the scrambling time. Potentially, this
is a more sensitive diagnostic, since it avoids having to try
to choose a “generic” primary operator wave packet, as we
discuss below (see also [7]). Modulo this subtlety, the
results in the end agree, assuming domination of the
identity block. In a similar vein, [8] computed the entan-
glement entropy in holographic CFTs (i.e., those with
c ≫ 1) and obtained a similar time scale logarithmic in the
central charge, although with the additional assumption of
weak coupling.
In this paper we will study the issue of scrambling in

more detail. One immediate issue is that primary operators
on their own do not exhibit the time scale (2), but rather a
thermalization time scale of order β or less. However the
class of states obtained by acting on the thermal state with a
primary is not necessarily a good representative of a generic
state, so this is not an immediate contradiction. To proceed
we fold the primary operators into wave packets and
consider optimizing the shape of the wave packet to obtain
the longest thermalization time. When this is done, we find
a time scale resembling (2) does indeed emerge. Next we
examine the contribution of Verma modules with higher

conformal weights to the four-point function.While we find
the time-ordered four-point functions respect the familiar
decoupling theorems and can be ignored with respect to the
identity block, this is no longer true of the out-of-time-order
correlators needed to compute (1). We compute the con-
tributions of these higher intermediate states and find these
can indeed dominate the commutator evenwhen all the time-
ordered correlators have a sensible holographic description
in terms of bulk low energy effective field theory. This
implies that many of the bulk observables, defined over
finite ranges of time, that one might use to probe the black
hole information problem, are not accessible using low
energy effective field theory. In this sense effective field
theory does not predict its own demise.

II. SCRAMBLING AND CFT CORRELATORS

We consider a thermal system described by a conformal
field theory living on a spatial real line x with imaginary
time −it periodically identified with a period β. We can
map this spatially infinite thermal system to a CFT defined
on the complex plane z via the exponential map

z ¼ exp

�
2π

β
ðxþ tÞ

�
:

We are interested in computing the 4-point functions that
appear in (1) so to this end we consider four pairwise local
operators, inserted at distinct spatial positions as in Fig. 1.
We therefore have, after conformal mapping,

z1 ¼ e
2π
β x1

z2 ¼ e
2π
β x2

z3 ¼ e
2π
β ðx3þtÞ

z4 ¼ e
2π
β ðx4þtÞ;

where we are interested in the limit x1 → x2, x3 → x4 to
reproduce the desired commutator.

FIG. 1. The configuration of four pairwise identical local
operators, themselves separated by large t.
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The spacetime dependence of the conformal blocks
appearing in the 4-point function will only depend on
the cross-ratio z ¼ z12z34=z13z24 (and z̄) which is easily
shown to be

z ¼
sinh ðπβ ðx1 − x2ÞÞ sinh ðπβ ðx3 − x4ÞÞ

sinh ðπβ ðt − x1 þ x3ÞÞ sinh ðπβ ðt − x2 þ x4ÞÞ
:

As discussed in the Appendix we rescale the 4-point
function by the coincident 2-point functions, to scale out
the operator norm. The rescaled correlators then depend
only on the cross-ratios as in (A4).
As an example, let us consider the identity conformal

block in a large c limit, where the V and W operators have
conformal weights hv and hw respectively. The large c limit
is to be taken with hw=c fixed, and hv ≪ c fixed. The
conformal block F ðzÞ in this limit is computed in [3,9]

z2hvF ðzÞ ≈
�
zαwð1 − zÞðαw−1Þ=2
1 − ð1 − zÞαw

�
2hv

; ð3Þ

with αw ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 24hw=c

p
. The real-time out-of-time-order

correlator is obtained by continuing this block to the second
Riemann sheet as described in [2] and the leading con-
tribution to the rescaled commutator is

z2hvF ðzÞ ≈
�
e−πiðαw−1Þzαwð1 − zÞðαw−1Þ=2

1 − e−2πiαwð1 − zÞαw
�
2hv

∼
�

1

1 − 24πihw
cz

�
2hv

: ð4Þ

Let us take a limit where ϵ12 ¼ x1 − x2 and ϵ34 ¼ x3 − x4
are much smaller than β, and without a loss of generality set
x1 ¼ 0. The cross-ratio is then approximately

z ≈
π2

β2
ϵ12ϵ34

sinh2 ðπβ ðtþ x3ÞÞ

provided we stay away from lightlike separations where
x3 → −t. As we see the conformal block on the second
sheet has a simple limit as ϵ12 and ϵ34 → 0, when z → 0,
corresponding to the actual computation of the commutator

z2hvF ðzÞ ≈
�

cz
24πihw

�
2hv

: ð5Þ

The exponential decay of this quantity indicates the
commutator between V and W becomes large after a time
of order

t ¼ β

4πhv
ð6Þ

showing rapid thermalization of primary operators on a
time scale much shorter than (2).
However the interesting physical question is whether

generic states exhibit some notion of quantum scrambling
on a longer time scale. To explore this question in the
current context of CFT 4-point functions, we can then try to
build more generic deformations of the thermal density
matrix by acting with primary operators folded into wave
packets with some characteristic spatial size L. Computing
the 4-point function of these wave packets, one can attempt
to vary L to maximize the convoluted amplitude, then ask
what thermalization time scale emerges.
Concretely, we convolute the function (4) with spatial

Gaussian wave packets with width L. For some choice of
initial time t0 as shown in Fig. 2 we choose to optimize L to
maximize the absolute value of the convolution. The
convolution may then be well approximated by setting
z ¼ 1. At later times, we keep the size L of the wave

FIG. 2. (Left) Plot of the absolute value of the principal sheet rescaled identity block, which has a cusp at z ¼ 1. Due to the cusp the
convolution of the rescaled identity block is dominated by its value near z ¼ 1. (Right) We work in the regime of t > β and smear the
operators within the light cone in order to avoid the light cone singularity of the conformal cross-ratio z. We fix the value of L by
maximizing the smeared cross-ratio at an initial time t0 to find L ≈ β and use this (fixed) L to compute the saddle point of z at late-time.
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packets fixed in the ðx; tÞ coordinates and note that the
convolution at later times is again dominated the a
particular value of the cross ratio, that we compute below.
For the physical problem at hand, we choose to avoid the

light cone singularities indicated in Fig. 2, which are
present in any amplitude derived using primary operators,
and reflect the causal properties of the commutator, which
bounds the range of interesting values of L. We also note
the final answer for z at the saddle will depend on t0.
However since the dependence on t0 is rather trivial, we
choose to simplify the presentation by extrapolating it to 0.
For simplicity let us set x1 þ x2 ¼ x3 þ x4 ¼ 0, and we

will build Gaussian wave packets in the variables x1 − x2 ¼
lv and x3 − x4 ¼ lw. Using a leading order saddle point
approximation to the convolution integral, it suffices to
study the saddle point value of the cross ratio. Therefore, to
fix L in terms of z, we consider the integral

zðt; LÞ ¼ 4

πL2

Z
t−ϵ

0

dlvdlwe−ðl
2
vþl2wÞ=L2

×
sinh ðπβ lvÞ sinh ðπβ lwÞ

sinh ðπβ ðt − lv
2
þ lw

2
ÞÞ sinh ðπβ ðtþ lv

2
− lw

2
ÞÞ ; ð7Þ

where the limits of the integral indicate that we are staying
within the light cone when doing the smearing. As we
have explained in the previous paragraph, this formula is
justified because the exponential variation of z with lv, lw is
much more rapid than power law variation of the conformal
block with z, so analyzing the convolution of z alone is
sufficient to determine lv and lw and subsequently L. The
integrand has lightlike poles; however for suitable values of
t and L these contributions to the smeared conformal block
can be made negligible. In this limit, the integrand can be
well-approximated by simply

zðt;LÞ≈ 4

πL2

Z
t−ϵ

0

dlvdlwe−ðl
2
vþl2wÞ=L2

2sinhðπβ lvÞsinhðπβ lwÞ
coshð2πβ tÞ

;

ð8Þ

taking t ≫ β. This has saddle points when

lv tanh

�
lvπ
β

�
¼ πL2

2β
;

and likewise for lw. The positive solutions are to be taken
corresponding to the limits of integration in (7). If we then
ask that the resulting amplitude (4) is maximized in
magnitude, we find that we must choose L ∼ β near
t ¼ t0 ≳ β. Alternatively, one can see this by numerically
evaluating the integral (8) in the regime we are interested in
and see that zðt; LÞ is maximized near L ∼ β for an initial
time t0 ≳ β (see Fig. 3). Keeping the wave packet size fixed
in ðx; tÞ coordinates, and extrapolating t0 to zero, leads to
the saddle point value for general t

zsad ∝ sech

�
2π

β
t

�
≈ e−2πt=β; ð9Þ

up to constant factors of order 1.
Let us now return to the example of the identity

conformal block continued to the second Riemann sheet
as considered in [2]. In this case, the saddle point
approximation to the (rescaled) convoluted block function
is for sufficiently late times

z2hvF ðzÞ ≈
�

1

1 − 12πihw
c e

2π
β ðt−xÞ

�
2hv

; ð10Þ

where we have restored dependence on the spatial sepa-
ration x of the centers of the wave packets, and inserted the
saddle point approximation value for z (9) for t ≫ β. It is
helpful to plot this for sample parameters as in Fig. 4. As
t − x increases from 0 to

t� ¼
β

2π
log

c
ffiffiffiffiffiffiffiffiffiffi
log 2

p

12πh1=2v hw
; ð11Þ

the conformal block decreases in magnitude by a factor of
about 1=2. This thermalization time may be viewed as a
proxy for the true scrambling time of the system and shows
the distinctive appearance of the logarithm of the system
size. Ideally one would want to argue this formula con-
tinues to hold as hv and hw become of order 1, but it is not
yet possible to prove this. We note there are minor
disagreements with the formula presented in [2]. We note
Fig. 4 also shows in the late-time limit the asymptotic form
(5) is applicable and the time scale for variation is the much
shorter time (6).
The correlator of the wave packets is given by (10)

provided one steers clear of the light cone singularities in
(7) which render the approximation (9) invalid. This is a
signature that even the wave packets of primaries are not

FIG. 3. Numerical integral of zðt0; LÞ coshð2πt0=βÞ in the
regime t0 ⪆ β, where we have set β ¼ π. We see that the integral
is maximized near L ∼ β and evaluates to the cusp value of z ¼ 1.
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ideal representatives of a generic state and retain regions of
spacetime where thermalization has not yet occurred,
outside the light cone of the wave packet. Nevertheless
for the present purposes, the reduced state inside the light
cone appears to be well-thermalized according to the
correlators, so this procedure should yield a good measure
of the global scrambling time. Again it remains to be seen
whether (11) holds in the case of physical interest where hv,
hw are of order 1.

III. HIGHER WEIGHT INTERMEDIATE STATES

We now turn our attention to the contribution of higher
weight intermediate states to the out-of-time order corre-
lators and will find the surprising result that these may
dominate over the identity block in the late-time limit.
Again we will assume we are taking c ≫ 1 with hw=c fixed
and hv ≪ c fixed. In addition we will generalize from the
identity block to an intermediate channel with conformal
weight hp fixed as c → ∞.
Our starting point is the formula for the conformal block

at next-to-leading order in this large c expansion of [9]

F ðzÞ

¼F 0ðzÞ
�
1−ð1−zÞαw

αw

�
hp

2F1ðhp;hp;2hp;1−ð1−zÞαwÞ;

ð12Þ
where 2F1ðα; β; γ; zÞ is the Gauss hypergeometric function.
As we have mentioned in the Introduction section, the late-
time behavior of the out-of-time-ordered correlator is given
by analytically continuing the rescaled conformal block to
the second Riemann sheet. More concretely, this means that
we will circle z around the branch cut z ¼ 1 of the rescaled
conformal block z2hvF ðzÞ (see Fig. 5) where in this process
ð1 − zÞαw will gain an additional phase factor: ð1 − zÞαw →
e2πiαwð1 − zÞαw . As is pointed out in [2], this second sheet
expression of the identity block gives the scrambling time
scale t⋆ ∼ log c.

To continue the conformal block (12) to the second sheet
we use the hypergeometric function identity [10]

ΓðhÞ2
Γð2hÞ 2F1ðh; h; 2h;wÞ

¼
�X∞

k¼0

2ðhÞ2kðψðkþ 1Þ − ψðhþ kÞÞ
k!2

ð1 − wÞk
�

− logð1 − wÞ2F1ðh; h; 1; 1 − wÞ

valid for j1 − wj < 1, where ðhÞk is the Pochhammer
symbol, and ψðaÞ is the digamma function. We note that
the infinite sum involving the digamma functions is
analytic in j1 − wj < 1 and so is the hypergeometric
function 2F1ðh; h; 1; 1 − wÞ on the right-hand side of the
above identity. Both of these have trivial behaviors on the
second Riemann sheet. The only nonanalytic part is
logð1 − wÞ, which when continued to the second sheet
gives an additional term 2πiαw: logð1−wÞ→ logð1−wÞþ
2πiαw since as we have pointed out above 1−w¼ð1− zÞαw
becomes e2πiαwð1 − zÞαw ¼ e2πiαwð1 − wÞ on the second
sheet. The first term in logð1 − wÞ þ 2πiαw then combines

FIG. 4. Plot of function jz2hvF ðzÞj ¼ jFðzðtÞÞj ¼ 1=j1 − 12πihw exp ð2π=βðt − log c − xÞÞj2hv , where c ¼ 107, hv ¼ 100, hw ¼ 10,
β ¼ 2π and x ¼ 0. Here t� ¼ 7.7 according to (11). In the right panel, a plot of ReFðzðtÞÞ is shown.

FIG. 5. Analytic continuation of the rescaled conformal block,
where we circle around the branch cut z ¼ 1 to get to the second
Riemann sheet.
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with the infinite sum to give the original principal sheet
expression back. We conclude that continuing to the second
Riemann sheet gives the original principal sheet hyper-
geometric function plus an additional term proportional to
2πiαw, namely

F IIðzÞ¼F 0;IIðzÞ
�
1−e−i2παwð1− zÞαw

αw

�
hp

×

�
2F1ðhp;hp;2hp;1−e−i2παwð1− zÞαwÞ

þ2πiαw
Γð2hpÞ
ΓðhpÞ2

2F1ðhp;hp;1;e−i2παwð1− zÞαwÞ
�
;

ð13Þ

where as usual the functions on the right-hand side of (13)
are to be evaluated on the principal sheet. Expanding for
small hw=c and z ≪ 1 leads to

F IIðzÞ ∼ F 0;IIðzÞ
�
z − πihw

6c

αw

�hp

×

�
1þ i tanðπhpÞ − 2π2iz1−2hp

×
Γð2hpÞ

Γð2 − 2hpÞΓðhpÞ4 sinð2πhpÞ
�
:

This ends up being dominated by the last term in the third
factor and in fact grows at late times. Even at early times
(z near 1) the last term in (13) dominates over the other term
in the third factor for hp > 1. The second factor in (13)
rapidly approaches a constant much smaller than 1.
The upshot is the identity block dominates for a finite

period of time; however after

t� ≈
β

4π
log

�
c
hw

�
; ð14Þ

the higher weight intermediate states take over. This late
time sum over intermediate states apparently diverges when
considered term by term. This would lead one to conclude
the commutator grows initially while dominated by the
identity block, but then may again decrease at later times,
indicating a lack of true scrambling in the conformal field
theory.
One possible way to avoid this conclusion is to demand

an infinite tower of higher weight intermediate primaries,
such that the apparently divergent sum might be resummed
to a finite answer. To address this question would require
additional specification of the conformal field theory being
considered, so we do not consider it further in the
present work.
For conformal field theories with holographic anti–de

Sitter gravity duals, the implication of the higher

intermediate channels is that the bulk effective field theory
breaks down when it is used to compute out-of-time-
ordered correlators at finite time. On the other hand, there
is no indication of such a breakdown when time-ordered
CFT correlators are computed (see also [11,12]), which
correspond to the boundary S-matrix of the bulk theory. To
see this we simply note that as higher dimensional
operators in CFT2 correspond to interactions of increasing
mass scale in three-dimensional anti-de Sitter spacetime
(AdS3), domination of all intermediate channels with
dimension hp ≥ 1 means that there would be a dual set
of an infinite sequence of interactions in the gravitation
theory in AdS3. If these high scale interactions affect the
infrared physics of the theory, then the standard decoupling
theorems of effective field theory such [13] break down.
Now the usual measurements we perform can be

well-approximated by transition amplitudes, built out
of time-ordered correlators which may be computed as
within effective field theory. It is only the particular set of
observables corresponding to out-of-time-order correlators
or norms of commutators that exhibit this peculiar behavior.
For the black hole information problem this would seem to
imply that contrary to expectations, commutators that
measure limits on the causal propagation of information
are indeed observables sensitive to the ultraviolet structure
of the theory, as long hinted at in perturbative string theory
computations [14,15].
Another consequence of this result is that thermalization

of the operators we have considered may not actually
happen. In light of our previous discussion, this may simply
mean such smeared primaries are still not good represent-
atives of generic states, and instead one would need to
consider commutators of much more general operators to
see the correct time scale for global thermalization or
quantum scrambling.
Finally, [4,5] commented on the stringy effects in these

out-of-time-ordered correlators and argued using pertur-
bative bulk string theory computations that correct to the
scrambling time become appreciable in a time of order
β=2π log c in broad agreement with our result (14).
However their main conclusion was the stringy correc-
tions serve to only lengthen the scrambling time, pre-
serving quantum chaos. In the context of the present
work, such a conclusion would require additional
assumptions, such as a large gap in the spectrum of
primary operators, ensuring the intermediate states dis-
cussed here are not present.

IV. INTERMEDIATE CHANNELS WITH hp ≫ c

So far we have only considered intermediate channels
with fixed hp ≪ c. It is also instructive to perform the same
analysis for intermediate channels with hp ≫ c where the
limit is hp → ∞ with c=hp, hv=hp and hw=hp fixed and
small. For this we consider Eq. (16) in [16],
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F ðzÞ ¼ ð16qÞhp− c
24z

c
24
−2hvð1 − zÞ c

24
−ðhvþhwÞ

× θ3ðqÞc2−8ðhvþhwÞHðc; hp; hi; qÞ: ð15Þ

where the nome q ¼ eiπτ is related to the cross-ratio z by

τ ¼ i
K0ðzÞ
KðzÞ ¼ i

Kð1 − zÞ
KðzÞ ;

where KðzÞ is the complete elliptic integral with parameter
[17] z. Here H is a function that is 1þOð1=hpÞ and

θ3ðqÞ ¼
X∞
n¼−∞

qn
2

: ð16Þ

Equation (15) has a branch cut at z ¼ 1 from the 1 − z
factor which will lead to the same analytic behavior for
the intermediate case hp ≪ c, which we have previously
considered. To see this we expand the nome q around z ¼ 0
to obtain

q ¼ eiπτ ¼ z
16

þ z2

32
þ � � � :

As θ3ðqÞ is regular near q ¼ 0, we see that on the principal
sheet F ðzÞ goes to zero as z → 0. Therefore the heavy
intermediate channels are perfectly suppressed on the first
Riemann sheet. Crossing the branch cut z ¼ 1 from above,
the complete elliptic function KðzÞ picks up an additional
imaginary part [18],

lim
ϵ→0þ

Kðzþ iϵÞ ¼ KðzÞ þ 2iKð1 − zÞ:

Analyticity implies that on the second Riemann sheet the
nome is now

q ¼ exp

�
−

πKð1 − zÞ
KðzÞ þ 2iKð1 − zÞ

�
¼ exp

�
−

π
KðzÞ

Kð1−zÞ þ 2i

�
:

To expand this expression near z ¼ 0, we use

KðzÞ
Kð1 − zÞ ≈

π

4 log 2 − log z
þO

�
z

log2 z

�
;

so that

q ≈ e
iπ
2
þ π2

4 log z: ð17Þ

We then need to expand (16) near q ¼ i. The expansion
near q ¼ 1 is

jθ3ðqÞj ≈
����

ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p
����;

but we can obtain the expansion near q ¼ i by using the
relation

jθ3ðqÞj ¼
����

ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffi
log q

p θ3ðe
π2

logqÞ
����

and substituting in (17) to give θ3ðqÞ near q ¼ i as

jθ3ðqÞj ≈
����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 log z

p
ffiffiffi
π

p
����: ð18Þ

Assembling the various factors, we find again a dramatic
enhancement of the higher weight channel on the second
Riemann sheet arising from the behavior (18), compared to
the behavior on the principal sheet. However when we
compare to the hp ¼ 0 expression of the previous section,
the zc=24 factor of (15) dominates for small z sowe conclude
they do not dominate vs the identity channel [again modulo
restrictions on the operator couplings Cp of (A2)].

V. CONCLUSIONS

In this paper we discussed the issue of smearing local
operators in a thermal CFT and its connection with
quantum scrambling. We pointed out that the correct
scrambling time should be identified with operators that
maximize the time scale of the variation of the out-of-time
ordered correlator, which may occur well before the
asymptotic late-time limit. We then examined a somewhat
independent issue, that the higher intermediate states with
0 < hp ≪ c can have large out-of-time ordered correlators.
We discussed the implication of this statement, which is
that in the AdS3 gravity dual the UV dynamics and IR
dynamics is no longer decoupled when these observables
are computed. This lack of decoupling appears even when
the usual time-ordered correlators or transition amplitudes
satisfy the standard decoupling lore. When applied to
scattering in AdS3 black hole backgrounds this implies
that the commutators that lead one to conclude information
is lost semiclassically are in fact not computable without a
full specification of the ultraviolet physics of the theory.
The ordinary bulk effective field theory does not predict its
own demise when computing these observables.
As for the appearance of a scrambling time of the form

(2) we have found a variant of this expression (11) valid
when the identity block dominates. The expression
involves a term of the form β=2π log c, but other significant
terms are also present. If other intermediate primaries
appear, with conformal weights fixed in a large c limit,
they will dominate the late-time behavior and may com-
pletely spoil thermalization. It will be very interesting to
extend the range of validity of these expressions to
determine whether there exist a class of 2D conformal
field theories that may be viewed as fast scramblers at a
finite temperature.
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APPENDIX: CORRELATORS AND
CONFORMAL BLOCKS

Conformal blocks are usually written in terms of 4-point
functions after a global SLð2; CÞ conformal transformation
has sent generic points in the complex plane to the values 0,
z, 1, ∞. Here we briefly unpack the relation between these
conformal blocks and 4-point functions for general zi.
A canonical form for the 4-point function at general zi in

the complex plane is [20]

�Y4
i¼1

OiðziÞ
	

¼ fðz; z̄Þ
Y
i<j

z
−ðhiþhjÞþh=3
ij

Y
i<j

z̄−ðh̄iþh̄jÞþh̄=3;

ðA1Þ
where zij ¼ zi − zj, the cross-ratio z ¼ z12z34=z13z24 and
h ¼ P

i hi. The conformal block on the other hand is
usually defined [21] for the special choice zi ¼ 0, z, 1, ∞.
To define the correlator as the point z4 moves to infinity we
must rescale by a factor of z2hw4 ,

lim
z4→∞

z2hw4 z̄2h̄v4

�Y4
i¼1

OiðziÞ
	

¼
X
p

C12pC34pF ðp; zÞF̄ ðp; z̄Þ:

ðA2Þ

Comparing the two formulae yields

lim
z4→∞

z2hw4 z̄2h̄v4

�Y4
i¼1

OiðziÞ
	����

z1¼0;z3¼1;z2¼z

¼ fðz; z̄Þð1 − zÞh=3−h2−h3zh=3−h1−h2
× ð1 − z̄Þh̄=3−h̄2−h̄3 z̄h̄=3−h̄1−h̄2

¼
X
p

C12pC34pF ðp; zÞF̄ ðp; z̄Þ; ðA3Þ

and we see the canonical form of the 4-point function
involves a nontrivial rescaling of the conformal block by a
function of the cross-ratio.
Later when we study the commutator of two operators, V

and W as a function of time, it will be convenient to factor
out the norm of the operators. To accomplish this we
compute

hVðz1ÞVðz2ÞWðz3ÞWðz4Þi
hVðz1ÞVðz2ÞihWðz3ÞWðz4Þi

¼ z2hv z̄2h̄v
X
p

C12pC34pF ðp; zÞF̄ ðp; z̄Þ ðA4Þ

using (A1) and (A3). Now the expression for general zi is a
function only of the cross-ratios. Finally we note that in
performing a coordinate transformation to a different coor-
dinate system, each correlator of primaries transforms by

�Y
i

OðxiÞ
	

¼
Y
i

�∂z
∂x

�
hi

z¼zi

�∂z̄
∂x̄

�
h̄i

z̄¼z̄i

�Y
i

OðziÞ
	
;

and these factors cancel in the expression (A4).
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