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Bulk mesons propagating in chiral and gluon condensates, in a gravitational background, are scrutinized
in holographic soft wall AdS/QCD models, involving deformed dilatonic backgrounds. The configura-
tional entropy of the a1 axial vector, the ρ vector, and the f0 scalar meson families is then computed. Two
types of informational entropic Regge trajectories are then obtained, where the logarithm of the meson
configurational entropy is expressed in terms of both the experimental meson mass spectra and their
excitation number as well. Therefore, the mass spectra of the next generation of elements in each meson
family, besides being predicted as eigenvalues of Schrödinger-like equations, are estimated with better
accuracy and are discussed.
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I. INTRODUCTION

The Shannon’s information entropy paradigm resides in
encoding information in stochastic processes [1]. The
configurational entropy (CE) is a quantity that implements
the information entropy as a measure that logarithmically
evaluates the number of bits needed to designate the
organization of a system. In particular, the CE compre-
hends the information compression into the configuration
of wave modes in a physical system [2,3]. Among the so-
called configurational information measures [4], the CE
encompasses the informational quantification of the spa-
tial complexity of a localized system [5,6]. The wave
modes and particle excitations that are correlated to
critical points of the CE have been shown to be more
dominant or abundant among all other modes and, hence,
more detectable or observable in nature [7–9]. The CE
plays a relevant role in the study of phase transitions,
which are also driven by critical points of the CE, under-
lying diverse physical systems [5,6,10,11]. A meticulous
overview of the information entropy formalism can be seen
in Ref. [12].
Quantum chromodynamics (QCD) governs the strong

interactions among gluons and quarks. The AdS/QCD

holographic setup presents an AdS5 bulk,
1 wherein gravity

that is weakly coupled emulates the dual setup to the 4d
(conformal) field theory (CFT), which is strongly coupled
on the AdS5 boundary. In the duality dictionary, physical
fields in the AdS5 bulk are dual objects to 4d operators of
QCD [13]. It is worth mentioning that the bulk fifth
dimension is nothing more than the energy scale of the
theory. Confinement can then be implemented either by a
Heaviside cutoff in the bulk—the hard wall [14,15]—or
by a dilatonic field, which accomplishes a smooth cutoff
along the AdS5 bulk—the soft wall model [16,17]. From a
phenomenological point of view, the quark-gluon plasma
(QGP), the mesonic mass spectra and their Regge trajec-
tories [18,19], and other quantities were derived, using the
holographic soft wall AdS/QCD, being precisely corrobo-
rated by experimental data [20]. Soft wall AdS/QCDmodels
implement the (chiral) symmetry breaking [21,22] and
confinement as well [17,23–25]. In particular, mesonic
phenomenology can thus be allocated into the soft wall
AdS/QCD. Throughout this paper, although QCD is driven
by a SU(3) gauge symmetry, one can supersede it by a
SUðNcÞ group. Hence, the so-called ’t Hooft large-Nc limit
[26] plays an important role on the soft wall.
In the context discussed above, the CE has been recently

promoted to a relevant setup in the context of holographic
AdS/QCD models. Besides probing important informa-
tional aspects of the AdS/QCD, the CE also supports some
foundations to better understand mesonic states in QCD
phenomenology. Some of the existing experimental data
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regarding meson families and glueball states were cor-
roborated by the CE, which points into the direction of the
most abundant and dominant physical states in QCD, in an
intense research program. In fact, holographic AdS/QCD
models were first scrutinized, in the CE framework, in
Refs. [7–9]. This subject was recently extended to baryons
and exotic states in Ref. [27]. Mesonic excitations with
lower s-wave resonances were proved, in Ref. [7], to
present dominance over their higher s-wave counterparts.
Thereafter, the CE paradigm was employed to scrutinize
scalar glueball states in Ref. [8], corroborating with lattice
and experimental data [20]. In addition, the CE of dynami-
cal AdS/QCD with tachyonic potentials improved our
understanding about meson phenomenology in Ref. [28].
Moreover, the CE that underlies bottomonium and
charmonium states at zero temperature supports the exper-
imental rareness of quarkonia states with higher masses, as
discussed in Ref. [9]. The finite temperature case was then
implemented in Ref. [29], with unexpected and relevant
new features of quarkonia. Finally, QGPs with topological
defects were also explored in the CE setup [30]. The CE
also improved the understanding of the AdS/QCD light-
front wave function, where the color-glass condensate
regime was used to study mesons in Refs. [31–34]. With
the CE tools, heavy ion collisions were also studied [35].
Furthermore, aspects of the CE unraveled prominent
features of the gravity side of AdS/QCD and related
phenomena. The Hawking-Page phase transition was
studied in Ref. [11] in the context of the CE. Posterior
to the influential works [36,37], graviton condensates were
explored by the CE, in the AdS=CFT membrane paradigm
[38]. The CE apparatus was further employed in field
theory, in various contexts [39–42]. Here we aim to take
one big step further, besides corroborating the experimental
data of the a1 axial vector, the ρ vector, and the f0 scalar
meson families. Using both the quadratic and deformed
dilatonic backgrounds, informational entropic Regge tra-
jectories are derived, relating the logarithm of the CE to the
n excitation number of mesonic states, for each one of the
meson families. The meson mass spectra are well known
to be predicted in the soft wall AdS/QCD, with good
accuracy. In fact, for both the dilatonic backgrounds, the
equations of motion (EOMs) of a graviton-dilaton-gluon
action are equivalent to Schrödinger-like equations, whose
eigenvalues consist of the meson squared mass spectra.
Their eigenfunctions represent the mesonic states and
excitations, for the a1 axial vector, the ρ vector, and the
f0 scalar meson families. The CE for these meson families
are also computed with respect to the meson family mass
spectra, revealing a second type of informational entropic
Regge trajectory. Hence, one can extrapolate the meson
mass spectra from these informational entropic Regge
trajectories, also predicting the mass of the next generation
of elements in each meson family, corresponding to higher
n excitation numbers, with good accuracy. The masses of

the first mesonic excitations of the next generation, in each
meson family, are then estimated and discussed. This article
is organized as follows: Section II is devoted to briefly
reviewing the soft wall AdS/QCD framework, mainly
emphasizing the standard quadratic dilaton model. The
mass spectra of the ρ vector, the a1 axial vector, and the f0
scalar mesonic states are revised. Section III is dedicated to
introducing the chiral and gluon condensates, with a two
flavor system in the graviton-dilaton-gluon setup, for both
the quadratic and deformed dilatonic fields. In Sec. IV, the
CE is computed for the a1 axial vector, the ρ vector, and the
f0 scalar meson families, as a function of the n excitation
number. Hence, informational entropic Regge trajectories
are read off from these calculations, showing a relation
between the logarithm of the CE, for all regarded meson
families, and their n excitation modes. In addition, the
meson mass spectra for higher excitation numbers can also
be extracted from a second kind of informational entropic
Regge trajectory, which relates the logarithm of the CE and
the meson mass spectra, for each meson family. Hence, the
mass spectra of higher n excited mesonic states, in each
meson family, are estimated with good accuracy. In Sec. V,
our concluding remarks, outlook, and perspectives are
drawn.

II. SOFT WALL ADS/QCD

The AdS5 vacuum bulk has a 4d boundary that supports
gauge theory; it is conformally invariant, emulating the
standard QCD when Nc ≫ 1. The boundary conformal
symmetry can be broken, making QCD describe the
confinement. In this regime, gravity in the bulk is dual
to the QCD at the boundary. A straightforward way to break
the boundary symmetry is, for example, to endow the AdS
bulk with a dilatonic field. Since QCD approximately
recovers conformal symmetries in a high energy regime,
then the pure AdS bulk must prevail in the ultraviolet (UV)
regime. Meson families can be emulated in the holographic
soft wall AdS/QCD [17,43] and in its extended versions
[21,24,44,45], including the dynamical models [28,46–49]
and scalars and vector mesonic states [50]. The Regge
trajectories for excited light-flavor mesons were originally
derived in Ref. [17], on a soft wall model endowed with a
quadratic dilaton, ΦðzÞ ¼ μ2z2, where μ introduces an
energy scale in QCD [51]. The AdS5 background bulk
metric is expressed, in conformal coordinates, as

ds2 ¼ gmndxmdxn ¼ e2AðzÞðημνdxμdxν þ dz2Þ; ð1Þ

for the warp factor AðzÞ ¼ − logðz=lÞ, where ημν denotes
the 4d space-time metric components and l is related to the
bulk curvature radius. Other warp factors, extending the
soft wall AdS/QCD, were used in Refs. [47,48,52]. From
here on, m, n, q denote bulk indices, running from 0 to 4,
where xm ¼ ðxμ; x4Þ, for xμ denoting 4d space-time
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coordinates and x4 denoting the bulk coordinate. Light-
flavor mesonic excitations are represented by bulk XðzÞ
fields, which are objects dual to the quark-antiquark
operator, with associated mass mX, and governed by the
action [17]

S ¼ −
Z

e−ΦðzÞ ffiffiffiffiffiffi
−g

p
TrLd5x; ð2Þ

where

L ¼ DmXDmXþm2
XXmXm þ Nc

48π2
ðF2

R þ F2
LÞ; ð3Þ

where the Am
L and Am

R gauge fields drive the SUð2ÞL ×
SUð2ÞR chiral flavor symmetry of QCD. Each SU(2), with
ffb=2g (b ¼ 1, 2, 3) generators, corresponds to one quark
flavor. The left and right gauge field strengths, respectively,
read

Fmn
L;R ¼ ∂ ½mAn�

L;R − i½Am
L;R; A

n
L;R�; ð4Þ

where Am
L;R ¼ Ama

L;Rfa. The covariant derivative is explicitly
given by DmX ¼ ∂mX − iAm

LXþ iXAm
R. The XðzÞ field

incorporates the S (scalar) and P (pseudoscalar) fields
as [19]

XðzÞ ¼ ðSþ ξðzÞÞ exp ðiPbtbÞ; ð5Þ

where ξðzÞ is a vacuum expectation value that breaks chiral
symmetry [19]. To describe the vector and axial vector
mesons, the left, AL, and right, AR, gauge fields can be split

into the vector (V) and axial vector (A
∘
) fields as [19]

Vm ¼ ðAm
R þ Am

L Þ=2; ð6aÞ

A
∘ m ¼ðAm

R − Am
L Þ=2; ð6bÞ

yielding the respective gauge field strengths,

Fmn
V ¼ ∂ ½mVn� − i½Vm; Vn�; ð7Þ

Fmn

A
∘ ¼ ∂ ½mA

∘
n� − i½A∘

m
; A
∘ n�: ð8Þ

With respect to the vector V and axial vector A
∘
fields, the

soft wall Lagrangian (3) reads

L ¼ DmXDmXþm2
XXmXm þ Nc

24π2
ðF2

A
∘ þ F2

VÞ; ð9Þ

for Dm¼∂mXþiðXVm−VmX−AmX−XAmÞ. The EOM
for the ξðzÞ field then reads

ξ00ðzÞ þ ð3A0ðzÞ −Φ0ðzÞÞξ0ðzÞ −m2
XðzÞe2AðzÞξðzÞ ¼ 0:

ð10Þ

In the standard soft wall model, ΦðzÞ ¼ μ2z2 [17], and
Eq. (10) has the solutions

ξðzÞ ¼ c1z3 exp ðz2=2ÞIðzÞ þ c2G20
12

�
−z2

���� 1

1=2; 3=2

�
;

ð11Þ

with IðzÞ ¼ I0ðz22 Þ þ I1ðz22 Þ, where InðzÞ denotes the first
kind of modified Bessel function, and the second term is the
Meijer function of f1; 2; 2; 0g order. We denote by vn the
functions that describe the ρ vector mesons, and by an
those that represent the a1 axial vector mesons, whereas
the sn denotes the functions that comprise the f0 scalar
mesons. For the vector (ρ), axial vector (a1), and scalar (f0)
meson families, for n ¼ 1; 2;…, the meson spectra in the
standard soft wall AdS/QCD model are ruled by the
following EOMs2:

�
−

d2

dz2
þ VsðzÞ

�
snðzÞ ¼ m2

nsnðzÞ; ð14Þ

�
−

d2

dz2
þ VρðzÞ

�
vnðzÞ ¼ m2

nvnðzÞ; ð15Þ

�
−

d2

dz2
þ VaðzÞ

�
anðzÞ ¼ m2

nanðzÞ; ð16Þ

where the Schrödinger-like potentials are, respectively,
given by

2At this point, a clarifying note relative to Eq. (14) from
Ref. [17] is necessary. For mode functions vnðzÞ identified by
the quantum mechanical wave functions, ψnðzÞ, i.e., vnðzÞ ¼
expðz2=2Þz1=2ψnðzÞ, in the literature, one frequently notices that
n ¼ 1 refers to the ground state of the quantum system (to be a
clear reference to the hydrogen atom quantum mechanics, a
standard notation in the literature). Therefore, the right expression
for ψnðzÞ (a corrected one from Ref. [17]) should be given by

ψnðzÞ ¼ e−z
2=2zmþ1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn − 1Þ!

ðmþ n − 1Þ!

s
Lm
n−1ðz2Þ; ð12Þ

such that Iψ ≡ R∞
0 dzψ�

nðzÞψnðzÞ reads

Iψ ¼ 2n!
ðmþ n − 1Þ!

Z
∞

0

dze−z
2

z2mþ1Lm
n−1ðz2ÞLm

n−1ðz2Þ

¼ 2n!
2ðmþ n − 1Þ!

Z
∞

0

dre−rrmLm
n−1ðrÞLm

n−1ðrÞ ¼ 1; ð13Þ

so as to have n ¼ 1 for a typical ground state (corresponding to
the hydrogenlike radial quantum number).
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VsðzÞ ¼
ðΦ0ðzÞ − 3A0ðzÞÞ2 − 1

4
−m2

Xe
2AðzÞ; ð17Þ

VρðzÞ ¼
ðΦ0ðzÞ − A0ðzÞÞ2 − 1

4
; ð18Þ

VaðzÞ ¼
ðΦ0ðzÞ − A0ðzÞÞ2 − 1

4
þ 48π2

Nc
e2AðzÞξ2ðzÞ: ð19Þ

The potentials (17)–(19), respectively, determine the
mass spectra of the a1, ρ, and f0 meson families, as
(squared) eigenvalues in Eqs. (14)–(16). The experimental
data for the a1 axial vector, the ρ vector, and the f0 scalar
mesons are shown in Fig. 1. One should also notice that the
ρ states depicted in Fig. 1 regard the ρð770Þ, ρð1450Þ, and
ρð1700Þ as confirmed vector meson states in PDG, where
between 500K and 1.98M events have been run. On the
other hand, the ρð1570Þ, ρð1900Þ, ρð2150Þ, and ρð2270Þ
are not established particles yet; therefore, they are omitted
from the summary table in PDG [20]. In fact, ρð1570Þ may
be an Okubo-Zweig-Iizuka–violating [53] decay mode of
the ρð1700Þ state. Together with ρð1900Þ, ρð2150Þ, and
ρð2270Þ, they are listed in Ref. [20] as light unflavored
mesons, with just 54 events already run. In addition,
f0ð500Þ, f0ð980Þ, f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ are
established scalar meson particles plotted in Fig. 1, whereas
f0ð2020Þ, f0ð2200Þ, and f0ð2330Þ scalar mesonic states
are still left out of the summary table in PDG. Finally, the

a1ð1260Þ, a1ð1420Þ, and a1ð1640Þ axial mesons have
been experimentally confirmed, whereas the a1ð1930Þ,
a1ð2095Þ, and a1ð2270Þ axial vector mesonic states are
also omitted from the summary table in PDG [20], with just
a few events registered.

III. TWO FLAVOR SOFT WALL ADS/QCD IN
GRAVITON-DILATON-GLUON BULK

A two flavor soft wall AdS/QCD can be then considered,
where a dilatonic background field is assumed in a chiral
and gluon condensate background, with gravity [25]. For
the pure gluon system, the scalar glueball CE was already
studied in Ref. [8]. In addition, Ref. [19] used two types of
dilaton background fields, yielding the glueball spectra in
full compliance with lattice data, namely,

Φ1ðzÞ ¼ μ2Gz
2; ð20Þ

Φ2ðzÞ ¼ μ2Gz
2 tanh

�
μ4G2z2

μ2G

�
: ð21Þ

The dual dimension-2 (dimension-4) gluon condensate has
a μG (μG2) energy scale. The Φ1ðzÞ dilatonic field in
Eq. (20) yields the meson spectra and also implements
the quarks confinement [17]. It is the object dual to the
gluon condensate with dimension-2, meaning the Bose-
Einstein condensate consisting of strongly coupled paired
gluons [16,21,45]. The Φ2ðzÞ dilatonic field in Eq. (21), at
the UV regime, behaves as limz→0Φ2ðzÞ ¼ μ4G2z4, being
dual to a gluon condensate that has dimension 4 [54]. At the
IR regime, limz→∞Φ2ðzÞ ¼ μ2Gz

2. A graviton-dilaton-gluon
bulk action can be expressed as a sum of an Einstein-
Hilbert action for pure gravity in the bulk, an action for
gluons written with respect to the Φ dilaton field, and an
action for two flavor bulk mesons on a dilatonic back-
ground. This last part of the action implements the
dynamics of the ξðzÞ scalar field in Eq. (5). The effective
graviton-dilaton-gluon bulk action reads [19]

S ¼ κ25

Z ffiffiffiffiffiffi
−g

p
e−2Φf½R=4þ gmn∂mΦ∂nΦ − VgðΦÞ

−4λe−Φðgmn∂mξ∂nξþ VðΦ; ξÞÞ�gd5x; ð22Þ
where λ denotes a general coupling, and Vg denotes the
gluon system potential. The action (22) yields the following
EOM:

−3A00 þ 3A02 þ 2Φ00 − 4A0Φ0 − 2λeΦξ02 ¼ 0; ð23aÞ
8Φ00 þ24A0Φ0−16Φ02−6λξ02eΦ

−3
∂
∂Φðλe7Φ=3VðΦ;ξÞþVgðΦÞÞe−4Φ=3þ2A¼ 0; ð23bÞ

−ξ00 þ ðΦ0 − 3A0Þξ0 þ e2A
∂2VðΦ; ξÞ
∂ξ∂Φ ¼ 0: ð23cÞ

FIG. 1. Experimental mesonic states mass spectra, as a function
of the n excitation number. The orange points represent the
f0ð500Þ, f0ð980Þ, f0ð1370Þ, f0ð1500Þ, f0ð1710Þ scalar mesons.
The f0ð2020Þ, f0ð2200Þ and f0ð2330Þ states, omitted from the
summary table in PDG, are simbolyzed by triangles (“Δ”). The
blue points depict the ρð770Þ, ρð1450Þ, ρð1700Þ vector meson
states, whereas the ρ0ð1450Þ, ρð1570Þ, ρð1900Þ, ρð2150Þ and
ρð2270Þ are depicted by circles (“∘”). The black points represent
a1ð1260Þ, a1ð1420Þ, a1ð1640Þ axial vector mesons and the
a1ð1930Þ, a1ð2095Þ and a1ð2270Þ, omitted from the summary
table in PDG, are depicted by empty boxes “□”. All the
experimentally established states have error bars [20].
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In what follows Nf stands for the number of flavors. In
the UV regime, Refs. [19,55] show that limz→0ξðzÞ ¼
mqτz
2

þ σ
2τ z

3, where mq is the quark mass, σ denotes the
string tension gluing the quark-antiquark condensate, and

τ2 ¼ N2
c

4π2Nf
, with Nc ¼ 3 andNf ¼ 2. Reference [19] scruti-

nized the heavy quark potential under the graviton-
dilaton-gluon background (22), showing that the potential
in (22) and (23c) reads VðΦ; ξÞ ≈ ξ2Φ2, limz→∞A0ðzÞ ¼ 0,
and limz→∞AðzÞ ¼ a, for a constant. For both the Φ1ðzÞ
and Φ2ðzÞ, respectively in Eqs. (20) and (21), the param-
eters μG ¼ 0.43 ¼ μG2 were adopted in Ref. [19], in order
to fit the meson spectra data with good accuracy to
experimental data. In addition, σ≊5.841 × 106 MeV and
mq ¼ 5.81 MeV, for the Φ1ðzÞ quadratic dilaton, whereas
σ≊4.484 × 106 MeV and mq ¼ 8.38 MeV, for the Φ2ðzÞ
deformed dilaton. Numerical analyses of Eqs. (23a)–(23c)
in Ref. [19] yield the solutions for ξðzÞ, for both the
dilatonic backgrounds, in Figs. 2 and 3, in full compliance
with the UV and the IR regimes for the dilaton fields in
Eqs. (20) and (21).

IV. INFORMATIONAL ENTROPIC REGGE
TRAJECTORIES AND MESON

MASS SPECTRA

The meson spectra were computed for the Φ1ðzÞ and
Φ2ðzÞ dilaton backgrounds in Ref. [19]. Replacing Eqs. (20)
and (21), and the scalar field ξðzÞ in Eqs. (23a)–(23c), one
can derive the AðzÞwarp factor. To obtain the S scalar meson

mass spectra, the following action was employed in
Ref. [19]:

Ss ¼ κ

Z
e−Φ

ffiffiffiffiffiffi
−g

p ð∂mS∂mSþ 2S2Φ2Þd5x; ð24Þ

where ∂mS∂mS ¼ ∂zS∂zSþ ∂μS∂μS and κ ¼ −2 Nf

Ncl3
. The

EOM for the S scalar is given by Eq. (14), however with
the Schrödinger potential

VsðzÞ¼
1

4
ðΦ0−3A0Þ2þ3

2
ð3A00−Φ00Þ

−
�
2A0−

Φ0

2
þ Φ0

2ð1þΦÞ
�
ð3A0−Φ0Þ

þ
�
A0−

3

2
Φ0−

Φ0

2ð1þΦÞ
�
logð2ξ0Þ0 þξ000

ξ0
ð25Þ

instead. The mass spectra for the f0 scalar meson family is
then obtained, and it is listed in the second and third rows of
Table I, respectively, for the quadratic [Eq. (20)] and the
deformed [Eq. (21)] dilaton fields. This is accomplished by
solving Eq. (14) with the potential in Eq. (25), using the
boundary condition limz→∞sn

0ðzÞ ¼ 0 and snð0Þ ¼ 0, with
parameters mq ≈ 9 MeV and μ ≈ 429 MeV. The first col-
umn replicates the mass spectra in the PDG 2018 for
f0ð500Þ, f0ð980Þ, f0ð1370Þ, f0ð1500Þ, f0ð1710Þ, as well
as for the f0ð2020Þ, f0ð2200Þ, and f0ð2330Þ scalar mesonic
states, which are still omitted from the summary table in
PDG (few events registered [20]). For deriving the mass

spectra for the ρ meson family, for κ ¼ Nf

2g2
5
Ncl3

, the action

SV ¼ −κ
Z

e5A−Φgμν∂mV
⊺
μ∂mV⊺νd5x ð26Þ

1 2 3 4 5
z

0.1

0.2

0.3

0.4

(z)

FIG. 2. The ξðzÞ field, in the quadratic dilatonic background (20).

1 2 3 4 5
z

0.1

0.2

0.3

(z)
(z) = G

2 z2

FIG. 3. The ξðzÞ field, in the deformeddilatonic background (21).

TABLE I. The experimental and predicted mass spectra for f0
scalar mesons, in both the quadratic (20) (second column) and
the deformed (21) (third column) dilaton profiles, respectively
along the rows, for the f0ð500Þ, f0ð980Þ, f0ð1370Þ, f0ð1500Þ,
f0ð1710Þ, f0ð2020Þ, f0ð2200Þ, and f0ð2330Þ mesons. The
modes indicated by asterisks are confirmed states in PDG,
whereas the others have not been experimentally confirmed
yet [20].

f0 scalar meson mass spectra

n
Experiment
(MeV)

MassΦ1ðzÞ
(MeV)

MassΦ2ðzÞ
(MeV)

1* 563þ58
−69 420.9 186.9

2* 990� 20 1042.6 1077.8
3* 1400� 40 1369.5 1434.0
4* 1504� 6 1625.0 1684.5
5* 1723þ6

−5 1842.4 1889.7
6 1992� 16 2035.7 2067.4
7 2189� 13 2211.9 2233.8
8 2337� 14 2374.8 2391.8
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is employed, where V⊺
m denotes the transverse components

in Eq. (17). The normalizable solutions vn of the associated
EOMs (15) and (18) are obtained as Kaluza-Klein modes
for discrete values of the 4d momentum q2 ¼ m2

n. The
boundary fields vn [cf. Eq. (15)] play the role of external
sources, coupled to the QCD current densities. The ρmeson
familymass spectra can then be obtained fromEq. (15) with
the boundary condition vnð0Þ ¼ 0, limz→∞vn

0ðzÞ ¼ 0. The
mass spectra are shown in the second and third rows of
Table II, respectively, for quadratic [Eq. (20)] and deformed
[Eq. (21)] dilaton fields [19]. The first column in Table II
corresponds to the experimental data in Fig. 1. Similarly to
the ρ mesons, the an axial vector mesonic excitations
[cf. Eq. (16)] describe the a1 axial vector meson family,
whose mass spectra can be obtained from the modes of the
axial gauge field (6b) in the bulk. The quadratic terms in the

transverse component of the axial vector A
∘ m

(6b), denoted

by A
∘ ⊺
, are used to construct the action

S
A
∘ ¼ k

Z
e5A−Φ

�
∂mA

∘ ⊺
μ∂mA

∘ ⊺μ þ 4g25ξ
2

l2
A
∘ ⊺
μA
∘ ⊺μ�

d5x; ð27Þ

where g25 ¼ 4π2Nf=Nc. The bulk effective mass in (27) is
generated by the Higgs mechanism, with the X scalar
field encoding the chiral symmetry breaking [56]. The
EOMs that drive the axial vector mesonic states can be
written as Eqs. (16)–(19), with boundary conditions
Elimz→∞a0

nðzÞ ¼ 0 and anð0Þ ¼ 0. The mass spectra of
the a1 axial vector meson family are shown in the second
and third rows of Table III, respectively, for quadratic
[Eq. (20)] and deformed [Eq. (21)] dilaton fields. The first
column in Table III represents the experimental data [20].
For the a1ð1260Þ, a1ð1420Þ, and a1ð1640Þ axial mesons

experimentally confirmed, as well as for a1ð1930Þ,
a1ð2095Þ, and a1ð2270Þ, the axial vector mesonic states
are omitted from the summary table in PDG [20] (few events
registered). Now, in order to compute the CE for the f0, the
ρ, and the a1 meson families, one first considers a localized,
Lebesgue-integrable ϵðzÞ energy density, associated with
each meson family. In general, given an arbitrary
Lagrangian L, the energy-momentum tensor reads

Tmn ¼ 2ffiffiffiffiffiffi−gp
�∂ð ffiffiffiffiffiffi−gp

LÞ
∂gmn

− ∂xq
∂ð ffiffiffiffiffiffi−gp

LÞ
∂ð∂gmn∂xq Þ

�
: ð28Þ

The ϵðzÞ energy density corresponds to the T00ðzÞ compo-
nent of (28), respectively, for the f0 meson family (24), for
the ρ meson family (26), and for the a1 meson family (27).
The Fourier transform ϵðkÞ ¼ R

R ϵðzÞe−ik·zdz, with respect
to the z dimension that defines the energy scale in AdS/
QCD, is then employed to define the modal fraction [3,6]

ϵðkÞ ¼ jϵðkÞj2R
R jϵðkÞj2dk : ð29Þ

It is a correlation probability distribution that quantifies
how much a k wave mode contributes to the power
spectrum, associated with the energy density. The CE,
then, measures the information content of the spatial profile
that characterizes the energy density ϵðzÞ, with respect to the
Fourier wave modes. The CE is defined by [3,6]

S½ϵ� ¼ −
Z
R
ϵ⋄ðkÞ log ϵ⋄ðkÞdk; ð30Þ

for ϵ⋄ðkÞ ¼ ϵðkÞ=ϵmaxðkÞ. After numerical calculations, the
CE is obtained as a function of the n excitation number,
1 ≤ n ≤ 8, for the a1 axial vector, the ρ vector, and the f0
scalar mesons. The results are listed in Tables IV and V,
respectively, for the quadratic and deformed dilatonic field
backgrounds. In both Tables IV and V, respectively along

TABLE II. The experimental [20] and predicted mass spectra
for the ρ vector meson family, in both the quadratic [Eq. (20)] and
the deformed [Eq. (21)] dilaton profiles, respectively along the
rows, for the ρð770Þ, ρ0ð1450Þ, ρð1450Þ, ρð1570Þ, ρð1700Þ,
ρð1900Þ, ρð2150Þ, and ρð2270Þ mesons. The modes indicated
by asterisks are experimentally confirmed states, whereas the
others are omitted from the summary table in PDG [20].

ρ vector mesons mass spectra

n
Experiment
(MeV)

MassΦ1ðzÞ
(MeV)

MassΦ2ðzÞ
(MeV)

1* 775.26� 0.25 727.8 753.9
2 1350þ40

−50 1134.6 1133.8
3* 1465� 25 1426.0 1430.0
4 1570� 98 1534.1 1537.9
5* 1720� 20 1664.5 1667.9
6 1909� 30 1873.6 1875.4
7 2149� 17 2061.9 2063.7
8 2265� 40 2233.6 2234.6

TABLE III. The experimental [20] and predicted mass spectra
for a1 axial vector mesons, in both the quadratic [Eq. (20)] and
the deformed [Eq. (21)] dilaton profiles, respectively along the
rows, for a1ð1260Þ, a1ð1420Þ, a1ð1640Þ, a1ð1930Þ, a1ð2095Þ,
and a1ð2270Þ mesons. The modes indicated by asterisks are
confirmed states in PDG [20].

a1 meson mass spectra

n
Experiment
(MeV)

MassΦ1ðzÞ
(MeV)

MassΦ2ðzÞ
(MeV)

1* 1255þ13
−23 1064.9 1117.5

2* 1414þ15
−13 1364.4 1624.1

3* 1654� 19 1561.7 1623.0
4 1930þ30

−70 1845.8 1878.6
5 2096� 138 2059.0 2082.5
6 2265� 50 2242.0 2262.7
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the rows, the first column is depicted for the ρ vector meson
family, identifying the vn eigenfunctions in Eq. (15) as
v1¼ρð770Þ, v2 ¼ ρ0ð1450Þ, v3 ¼ ρð1450Þ, v4 ¼ ρð1570Þ,
v5 ¼ ρð1700Þ, v6 ¼ ρð1900Þ, v7 ¼ ρð2150Þ, and v8 ¼
ρð2270Þ. The second columns in Tables IV and V are
composed of the an eigenfunctions in Eq. (16), describing
the a1 axial vector meson family by the identification a1 ¼
a1ð1260Þ,a2 ¼ a1ð1420Þ,a3 ¼ a1ð1640Þ,a4 ¼ a1ð1930Þ,
a5 ¼ a1ð2095Þ, and a6 ¼ a1ð2270Þ. The mesonic excita-
tionsa7 anda8 are solutions of the EOM (14), for n ¼ 7 and
n ¼ 8, not detected yet. In addition, the third columns in
Tables IVand V show the f0 scalar meson family, described
by the sn wave eigenfunctions of Eq. (14). They read
s1¼f0ð500Þ, s2¼f0ð980Þ, s3¼f0ð1370Þ, s4¼f0ð1500Þ,
s5 ¼ f0ð1710Þ, s6 ¼ f0ð2020Þ, s7 ¼ f0ð2200Þ, and s8 ¼
f0ð2330Þ. First, analyzing the quadratic dilatonic potential
in Eq. (20), one takes the CE for the ρ, a1, and f0 meson
families listed in Table IV. Computing the logarithm of the
CE for each nmode for the threemeson families leads to the
result depicted in Fig. 4, whose numerical interpolation
provides the first type of informational entropic Regge
trajectories. For the ρ vector, the a1 axial vector, and the f0

scalar meson families, respectively, the informational
entropic Regge trajectories are the dotted lines in Fig. 4.
Their explicit expressions are, respectively,

logðCEρðnÞÞ ¼ 1.6123nþ 2.4594; ð31Þ

logðCEa1ðnÞÞ ¼ 1.6632nþ 4.1923; ð32Þ

logðCEf0ðnÞÞ ¼ 1.6907nþ 0.0150; ð33Þ
within 0.9%, 1.2%, and∼1.7% standard deviations, respec-
tively. Now, with the computed CE for the ρ, a1, and f0
meson families in theΦ2 dilaton background (21), listed in
Table V, one can also calculate the logarithm of the CE, for
each n excitation mode. Figure 5 shows the corresponding
results for each meson family, wherein linear regression
yields the second type of informational entropic Regge
trajectories. The explicit expressions for each informational
entropic Regge trajectory are numerically obtained by
interpolation of the data in Table V. The obtained linear
regressions, respectively for the a1 axial vector, the ρvector,
and the f0 scalar meson families, read

TABLE IV. The CE for the ρ vector, the a1 axial vector, and the
f0 scalar meson families, in the Φ1ðzÞ ¼ μ2Gz

2 quadratic dilaton
soft wall model.

Φ1ðzÞ ¼ μ2Gz
2

n ρ mesons CE a1 mesons CE f0 mesons CE

1 32.8 338.2 3.26
2 307.2 1.612 × 103 34.81
3 2.108 × 103 1.027 × 104 222.4
4 9.832 × 103 5.804 × 104 913.1
5 4.902 × 104 2.421 × 105 4.723 × 103

6 2.092 × 105 1.614 × 106 2.688 × 104

7 7.721 × 105 1.057 × 107 1.571 × 105

8 3.423 × 106 2.762 × 107 5.241 × 105

TABLE V. The CE for the ρ vector, the a1 axial vector, and the

f0 scalar meson families, in the Φ2ðzÞ ¼ z2 tanhðμ
4

G2
z2

μ2G
Þ deformed

dilaton soft wall model.

Φ2ðzÞ ¼ μ2Gz
2 tanhðμ4G2z2=μ2GÞ

n ρ mesons CE a1 mesons CE f0 mesons CE

1 28.05 587.51 4.28
2 547.49 2.621 × 103 44.32
3 2.223 × 103 1.518 × 104 288.31
4 1.016 × 104 7.142 × 104 1.528 × 103

5 5.966 × 104 2.982 × 105 8.984 × 103

6 3.417 × 105 1.728 × 106 5.347 × 104

7 2.017 × 105 7.135 × 106 2.491 × 105

8 5.822 × 106 3.231 × 107 1.167 × 106

FIG. 4. Logarithm of the configurational entropy of mesons, the
families of ρ, a1, and f0 mesons, in the quadratic dilaton soft wall
model.

FIG. 5. Logarithm of the configurational entropy of the families
of ρ, a1, and f0 mesons, in the deformed soft wall AdS/QCD.
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logðCEρðnÞÞ ¼ 1.8497nþ 1.7763; ð34Þ

logðCEa1ðnÞÞ ¼ 1.5623nþ 4.9425; ð35Þ

logðCEf0ðnÞÞ ¼ 1.7624nþ 0.2112; ð36Þ

within ∼0.6%, ∼1.4%, and ∼1.7% standard deviations,
respectively. For the ρ, a1, and f0 meson families, one can
hence realize a scaling law, relating the logarithm of the CE
and thenmeson excitationmodes. Figures 4 and 5 show that
there are informational entropic Regge trajectories, imple-
menting a relation between the logarithm of the CE and the
n excitation number, for both the quadratic and deformed
dilatonic potentials. The original Regge trajectories in the
soft wall AdS/QCD regard the relationmn ∼ n, for the light-
flavor meson mass spectra. One can then emulate them in
the information entropic context. In fact, one can calculate
the logarithm of the CE for eachmeson family, as a function
of themesonmass spectra, experimentally detected. Inwhat

follows, the Φ2ðzÞ ¼ z2 tanhðμ
4

G2
z2

μ2G
Þ deformed dilaton in the

soft wall AdS/QCD model is employed, as it better
describes the meson mass spectra. The results are plotted
in Fig. 6. The informational entropic Regge trajectories, as a
function of the meson mass m (MeV), are, respectively,
listed as follows:

logðCEρðmÞÞ ¼ 0.0067m − 1.9651; ð37Þ

logðCEa1ðmÞÞ ¼ 0.0069m − 2.2184; ð38Þ

logðCEf0ðmÞÞ ¼ 0.0062m − 2.2013; ð39Þ

within ∼2.6%, ∼2.1%, and ∼2.5% standard deviations,
respectively. The informational entropic Regge trajectories
in Eqs. (37)–(39) provide another very interesting aspect of
the CE that underlies the meson families. Instead of comput-
ing the meson family mass spectra, solving Eqs. (14)–(16),
one can extrapolate the interpolation lines (34)–(36) to
compute the CE for the meson families, at least for the n
mesonic excitations such that n > 8 for the ρ and f0 families
and such that n > 6 for the a1 family.
In the following discussion of the informational entropic

Regge trajectories (34)–(36), the notation mα;n means
the mass of the nth meson in some α-meson family
(α ¼ ρ; a1; f0), corresponding to the element in the respec-
tive meson family with n excitation number. Considering the
experimental value of the ρ vector meson family, although
there is no mesonic excitation vn in the ρ meson family
higher than n ¼ 8, experimentally detected, the informa-
tional entropic Regge trajectory in Fig. 6 deploys a reliable
method for predicting themass of thevn vector meson states,
for n ≥ 9. Although the explicit calculation by Eq. (15), with
potential (18), is already known to produce the mass spectra
of the ρ vector meson family as a function of the n excitation

number, here the masses of the v9 and v10 elements in the ρ
meson mass family can be inferred. In fact, for n ¼ 9,
Eq. (34) yields logðCEρÞ ¼ 18.423. Replacing this value in
the informational entropic Regge trajectory (37), one obtains
themassmρ;9 ¼ 2878 MeV, for thev9 mesonic state in the ρ
meson family. The standard deviations for Eqs. (34)–(37)
give the reliable range 2813 MeV≲mρ;9 ≲ 2945 MeV for
the v9 vector meson state. Similarly, the v10 vector meson
excitation has mass mρ;10 ¼ 3098 MeV. Considering the
standard deviations for Eqs. (34)–(37), the range 3042≲
mρ;10 ≲ 3153 MeV is a reliable one. One can further
extrapolate the mass spectra for the vn vector mesonic
excitations for n ≥ 11; however, the standard deviations
are larger, the higher then excitationnumber is.Analogously,
the a1 axial vector meson family can be analyzed. The
masses of the a7 and a8 can then be inferred, using the mass

FIG. 6. Logarithm of the configurational entropy of the ρ
(blue), a1 (orange), and f0 (green) meson families, as a function
of their mass spectra. The respective informational entropic
Regge trajectories are also plotted.
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spectra of the experimentally detected mesons in this family,
with Eq. (35)–(38). In fact, for n ¼ 7, Eq. (35) yields
logðCEa1Þ ¼ 15.878. Replacing this value in the informa-
tional entropic Regge trajectory (37), one obtains the mass
ma1;7 ¼ 2567 MeV for the a7 mesonic state in the a1 meson
family. The standard deviations for Eqs. (35) and (38) give
the reliable range 2491 MeV≲ma1;7 ≲ 2637 MeV for the
a7 axial vector meson state. Similarly, the a8 vector meson
excitation has mass ma1;8 ¼ 2782 MeV. The standard devi-
ations for Eqs. (34) and (37) yield the range 2708≲
ma1;8 ≲ 2869 MeV. One can further infer the mass spectra
of the an vector mesonic excitations for n ≥ 9. Finally, the
masses of the next generation of f0 scalar mesons can be
predicted. Employing Eq. (36) for n ¼ 9 implies that
logðCEf0Þ ¼ 16.073. Now, one can substitute this value
into Eq. (39), yielding the mass of the s9 element in the f0
meson family, mf0;9 ¼ 2905 MeV. The standard deviations
for Eqs. (36)–(39) give the reliable range 2806 MeV≲
mf0;9 ≲ 2996 MeV for the s9 scalar mesonic excitation.
In addition, similar calculations yield the s10 scalar meson
excitation mass, mf0;10 ¼ 3189 MeV. The standard devia-
tions related to Eqs. (34) and (37) imply the range 3094≲
mρ;10 ≲ 3301 MeV for thes10 scalarmeson. One can further
extrapolate the mass spectra of the sn scalar mesonic
excitations for n ≥ 11; however, the standard deviations
increase as the n excitation number gets higher.

V. CONCLUDING REMARKS AND
PERSPECTIVES

The CE was computed for the a1 axial vector, the ρ
vector, and the f0 scalar meson families for two dilatonic
backgrounds in a graviton-dilaton-gluon background. Two
types of informational entropic Regge trajectories were
derived for each meson family. The first one consists of the
CE in terms of the meson n excitation number, described
by Eqs. (34)–(36) and illustrated in Figs. 4 and 5, for both
quadratic and deformed dilatonic profiles. The second type
of informational entropic Regge trajectory relates the
logarithm of the CE to the experimental mass spectra of
the meson families in Eqs. (37)–(39), respectively shown in
the plots of Fig. 6. Consequently, the meson family mass
spectra were extrapolated from these informational entropic
Regge trajectories. A range for the mass spectra of mesons
with higher n excitation numbers, in each meson family,
was then estimated with good accuracy. The first two

elements of the next generation, in each meson family, were
studied and discussed.
The prediction of the meson mass spectra through

Eqs. (14)–(16), although also taking experimental param-
eters to fit the meson mass spectra, is a theoretical
prediction that already matches experimental data, as
shown in Ref. [19] and illustrated in Tables I–III. The
very essence of the procedure throughout Sec. IVestimates
the mass spectra of the next generation of mesons by the
informational entropic Regge trajectories based on the mass
spectra of the already detected mesons. Indeed, the first
types (34)–(36) of informational entropic Regge trajecto-
ries express the CE once the n excitation number is fixed.
With the obtained value of the CE, Eqs. (37)–(39) then
determine the values of the masses of the next generation
of mesonic states in each ρ, a1, and f0 family. Since the
informational entropic Regge trajectories are determined by
the experimental meson mass spectra, this procedure can
determine at least the next two elements in each meson
family with good accuracy. The eventual detection of these
new mesonic states shall contribute to more experimental
points in the plots of Fig. 6, improving the fitting of
Eqs. (37)–(39).
We can further regard pseudoscalar mesons whose CE

may also be computed. However, their Lagrangian involves
a pseudoscalar field that is coupled to a φ scalar field that
defines the parallel axial vector [complementary to the

transverse to the A
∘ ⊺
μ field in (24)] as ∂μφ. Hence, the derived

coupled system of EOMs involves awkward Schrödinger-
like potentials, turning the CE computation into a difficult
task, which is unsolved up to now. In addition, as the soft
wall AdS/QCD model corresponds to the D3-Dq, system,
extensions involving Dp-Dq models [57] may also be
accomplished, although it is far beyond the scope assumed
here. Finite temperature effects in the soft wall AdS/QCD
may also be implemented; their initial results using the CE
apparatus were introduced in Ref. [58] for quarkonia.
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