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Circuit complexity in fermionic field theory
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We define and calculate versions of complexity for free fermionic quantum field theories in 1 + 1 and
3 + 1 dimensions, adopting Nielsen’s geodesic perspective in the space of circuits. We do this both by
discretizing and identifying appropriate classes of Bogoliubov-Valatin transformations, and also directly in
the continuum by defining squeezing operators and their generalizations. As a closely related problem, we
consider cMERA tensor networks for fermions: viewing them as paths in circuit space, we compute their
path lengths. Certain ambiguities that arise in some of these results because of cutoff dependence are

discussed.
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I. INTRODUCTION

The formation of black holes via gravitational collapse in
anti—de Sitter space is expected to be dual to thermalization
in the dual conformal field theory. This leads one to think of
a thermal Conformal Field Theory (CFT) state as a
gravitational configuration that can be approximated by
an eternal black hole. If this is so, one needs to have a CFT
explanation for the fact that the Einstein-Rosen bridge (or
wormbhole) that shows up inside the horizon of an eternal
black hole is a time-dependent configuration, and that its
“size” increases towards the future. It has recently been
proposed by Susskind and others [1] that the quantity one
should compare against the size of the Einstein-Rosen
wormbhole is the “complexity” of the CFT state: the idea
being that the complexity of a state can increase even after
it has thermalized in some appropriate sense.

The trouble however is that the definition of complexity
is often very murky. Loosely it captures the number of gates
required to prepare a state. One way to make things a bit
more concrete is to consider “circuit complexity,” where
one assigns complexity to quantum states as follows. First
one picks a reference state and a set of unitary operators that
are called gates. Then the complexity of any particular state
is captured by the minimal number of gates that one must
act with on the reference state in order to get to that
particular state. This is believed to be a fairly reasonable
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definition of complexity, even though clearly it involves
some arbitrary choices: what is a good reference state?
What are good choices for the gate unitaries?...." For our
purposes in this paper, it is worth noting that this mini-
mization of the number of gates can be reinterpreted a la
Nielsen as a geodesic length minimization in the space of
circuits [3].

To make a sensible holographic definition of complexity
from the CFT, one needs to generalize these constructions
in three substantive ways. First, we need a definition that
generalizes these issues to the setting of quantum field
theory rather than in the setting of qubits and 0+ 1-
dimensional quantum mechanics, as is usual. Second, since
at least in known concrete examples of holography the
boundary theory has a gauge invariance, it seems necessary
that we will need to define complexity in the context of
gauge theories, in particular non-Abelian gauge theories.
Third, perhaps after some field theory constructions have
been undertaken for the free theory, one would need to
come up with a way to make such a definition viable, for
strongly coupled theories. After all, weakly coupled gravi-
tational physics is captured by a strongly coupled field
theory.

Recently, two related but different attempts at the first of
these problems was made in the context of scalar field
theories in [4,5]. In this paper, we will consider both these
approaches and adapt and generalize these approaches to
include various classes of fermionic field theories. One of
our motivations for this undertaking is the recent emer-
gence of a class of strongly coupled fermionic gauged
quantum mechanical theories called Sachdev-Ye-Kitaev
(SYK)-like tensor models, as well as their generalizations
to higher dimensions which are bona fide field theories.

'Note also that this definition is usually implemented in
discrete qubit systems and often with discrete time evolution [2].
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Of course, this paper does not deal with neither gauge
theories nor strongly coupled systems: it should be viewed
as a preliminary exploratory attempt. We hope that our
explicit calculations will be useful in shedding some light
on the questions at the intersection of holography and
complexity, and perhaps in sharpening them.

The structure of the calculation in [4] was to discretize
spacetime and then work effectively with quantum
mechanical wave functions for the discretized oscillators.
By working with a class of Gaussian wave functions that
interpolated between the decoupled reference state and the
true ground state (chosen as the target state) they were able
to define complexity for the state by minimizing the
Nielsen-like path length in the space of unitaries that did
such an interpolation. Since we are working with fermions,
an analogue of the Gaussian wave function will involve
Grassmann variables and will be too awkward for many
purposes. But we will see that it is easy enough to work
directly with (finite dimensional) fermionic Hilbert spaces
that contain the reference and target states, and that they
lead to natural notions of circuit length minimization. The
slight subtlety due to fermion doubling in the lattice will not
affect the main points we make. As a result we find an
expression for the complexity, which is controlled by the
formula in (2.17), and which shows up in various guises in
the various cases we consider. This fermionic form is
distinct from the form of complexity in [4], where the
analogous expression is a log instead of our arctan.

On the continuum side, we will find that a construction
entirely parallel to that of [5] for scalars is possible for
Dirac fermions in 1 + 1 dimensions. The strategy of using
squeezing operators and their generalizations as entangler
operators turns out to be a viable strategy for fermions as
well. Our analysis of the 1+ 1-dimensional continuum
Dirac case works entirely parallel to the results for the
scalar in [5]. Instead of the metric on the hyperbolic plane,
we discover the metric on a CP! sphere, and instead of an
SU(1, 1) isometry, we find an SU(2). We further generalize
our approach to Majorana theory in 1 4 1 dimensions, as
well as to massive and massless Dirac theories in 3 + 1
dimensions. In all these cases we are able to identify
convenient squeezing operators that take us to natural target
states that approximate the ground state.

In the final section before the conclusion, we discuss the
cMERA tensor network for fermions, as an alternate path in
the space of unitaries. We first do this for 1 + 1 dimensions
and then move on to 3 + 1 dimensions (where we introduce
anew cMERA-like path), both in the massive and massless
cases. In both cases we find that as the cutoff tends to
infinity, the state tends to the ground state. Since when the
cutoff is finite the target state for the cMERA is not quite the
target state of the previous paragraph (even though they
both tend to the ground state as A — o0), it is not possible
to meaningfully compare the lengths of the paths at finite
cutoff by looking at their leading divergences. This leads us

to a discussion of the meaning of a cutoff dependent
quantity like the complexity, and to speculations on the
possibility that subleading terms in complexity could be of
physical interest, in analogy with (holographic) entangle-
ment entropy. In particular, these UV divergences could be
reinterpreted as AdS IR divergences in a holographic
context. It must be born in mind here that we are dealing
with free quantum field theories in our work.

In a concluding section we make various speculative
comments. In particular, we discuss the possibility of doing
similar calculations for gauge theories and perturbative
string theory. Especially since the world sheet theory is free
after gauge fixing, the latter is tractable and is currently
under investigation. We also briefly allude to some issues
which were suppressed in the main text, the choice of
metric and penalty factors in Nielsen’s geometric definition
among others. Various Appendices contain some review
material as well as technical details.

II. LATTICE OF FERMIONIC OSCILLATORS

Lets us start with the Dirac Lagrangian in d + 1
spacetime dimensions:

L="%(iy.0—m)¥. (2.1)
The conjugate momentum is
oL
= =i 2.2
a0 22
and the Dirac Hamiltonian is
H = / dx[— 110, 4 T, (2.3)

We regulate it by placing it on a lattice with lattice spacing &
and the Hamiltonian becomes

H= Zéd [—i‘i’(ﬁ)zi:y" (lp(ﬁ i xé) — T(ﬁ))

+ m‘i’(ﬁ)‘l’(ﬁ’)} .

(2.4)

The x; here are “unit™ vectors along the axes of the
(d-dimensional) lattice. The summation over i is only over
the spatial directions, and therefore range over d values.
By introducing @ = 6m and Q = §%~! we can bring it to
the form

> [—iQ‘i’(ﬁ)Zyi(‘I’(ﬁ + &) = W) + w@(ﬁ)wﬁ)} .

n

(2.5)

*The quotes around the unit emphasize that the length of the
vector is the lattice spacing.
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Note that this is a system of coupled fermionic oscillators,
but since the coupling is quadratic, we can solve the system
completely by identifying the normal modes. We will see
various versions of this general idea throughout this paper.

A. A toy model

The above form of the Hamiltonian suggests that we

should study a set of coupled oscillators of the form
H=o(V\?, +¥P,%,) +iQ¥Pp (¥, -¥,). (2.6)

The basic idea is this: we wish to consider the simplest
oscillator system which has a coupling analogous to the
discretization (2.5) of the field theory. A candidate is the
system with two lattice points parallel to the work for
scalars considered in [4]. But if we work with d + 1-
dimensional Dirac fermions, the coupling term will force us
to consider the d spatial directions. We wish to avoid this
technical complication, and therefore in writing the above,
we have restricted ourselves to a 1 + 1-dimensional theory.
After we gain some intuition by working with this system,
we will consider more general cases. In particular, we will
see that the above Hamiltonian (2.6), when interpreted as a
theory for Majorana fermions, is essentially a precise
parallel to the bosonic two oscillator case discussed in
[4]. We have adopted the notation p* for gamma matrices in
two dimensions in this subsection.

In two dimensions, gamma matrices allow a purely
imaginary representation in which the spinors can be taken
as Majorana. The gamma matrices take the form

0 —i 0 1
0_ 1 _ _
g (i 0>’ g (i 0)

The general Majorana spinor in two dimensions ¥; (here i
is part of the name of the spinor and not a spinor index) can

be written as
- ()
Vi

where the y are real Grassmann variables. This means that
our minimal Hamiltonian (2.6) is made of four real
Majorana fermions and takes the form

(2.7)

(2.8)

H =2io(yiy7 +yyv3) +iQyiy; —yivwy).  (2.9)
Note that the Hamiltonian is real (Hermitian) because the
fermions are Majorana and anticommute. Now we will
rewrite this Hamiltonian in a form that is useful for future
generalizations.”

3Note that because the fermions are Majorana, we can use
Hermitian conjugation and transposition interchangeably.

We will define complex Grassmann variables b; and bj,

vi—iwi e vt vl
V2 ’ V2
and quantize by imposing the anticommutation relations
{bi,bj-} = 0;;, see Appendix A for our conventions on
fermionic oscillators. The Hamiltonian takes the form

b, = (2.10)

H = w|b],b)] + w[b}, b)) — iQ(b]b] + byby).  (2.11)

To bring this to the diagonalized normal mode form, we use
the standard technology of Bogoliubov-Valatin (B-V)
transformations (see Appendix B for a self-contained
review). The result is

H = A[b}, by] + A[b). by). (2.12)
where
A= % Ve + Q2. (2.13)
The b’s and b’s are related by
by = nb, + ipb], by = nb, — iph}, (2.14)

where p and 7 are given in Eq. (2.16).

B. Complexity of the toy model ground state

A B-V transformation matrix that does the job of
diagonalizing the Hamiltonian in the previous section is

0 nn ip O
0 0 —i
A 7l (2.15)
—ip 0 0 g
0O ip n O

where

w 1 w
- - T - _+7.
g V2 V4w + Q2 ! V2" Vae? 1 @
(

This form suggests that we define
1 ran-! Q
r=—tan”' | —
2 2w)’

p =sinr,

N[ =

2.16)

(2.17)

so that

and 7 =cosr. (2.18)

To define complexity, we need to define a reference state
from which we reach the target states via appropriate
unitary transformations. A natural reference state is to
choose |00), defined via
fori=1,2,

b;|00) = 0, (2.19)
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and the target state which is the ground state of our theory is
defined by

b;|00) =0, fori=1,2. (2.20)
From the B-V matrix, it follows that
100) = cos r|00) + isinr|11). (2.21)

To go from the reference state to the target state by a unitary
transformation, we first write the states in matrix form with
the basis |ij). The unitary transformation is a 4 x 4 unitary
matrix:

cosr
0
0

isinr

= U (2.22)

= el -

eV cos pcost + ie” sin@sinp

ie”Y cos psint — e” cos @ sinp

. . 4
The ranges of the various coordinates are

v,0,7€(0,2z), and pe[0,7z/2]. (2.25)

For finite value of the parameter along the path, the state
will be

¥(0)) = U(o)|R), (2.26)

where |R) is the reference state. This means that in the

explicit matrix above, we treat p, 7, 8, y as functions of o.
We can view this unitary as a path-ordered exponential

U(o) = Peli V'O (2.27)

if we write’

Y!(5)0, = (8,U(s)) U (s). (2.28)

Here the O; are the generators of U(2), and they can be
taken as

*We will work with y € [—7, 7) when we want to go across the
y = 0 point without changing charts.

This equation is the analogue of the time-dependent Schro-
dinger equation, written in a form that is usually written when one
solves it via time-ordered exponentials. The left-hand side is the
analogue of the Hamiltonian. So the solution, (2.27), can be
directly exported here by analogy. To write (2.28), we merely
note that since the right-hand side is made from a general U(2)
matrix, the left-hand side must be writable in terms of the
generators of U(2) whose coefficients we call Y.

Notice that the middle two components of the state vector
are zero for both reference and target state. If these two
components are changed along the path then we need to
bring them back down to zero, when we get to the target
state. So it stands to reason that (for appropriately defined
Euclidean notions of distance in the space of unitaries) this
would only increase the length, so we restrict ourselves to
the path which only changes the first and fourth compo-
nents. These transformations clearly fall inside a U(2)

group:

Ccos 1
{_ , r} - U(2X2>{ } (2.23)
isinr 0

Now U®*?) is a 2 x 2 unitary matrix. After extracting a
U(1) phase e” and writing the remaining SU(2) as an S°,
we can parametrize a general U(2) matrix as

e cos@sinp + ie” cospsint
p " } . (2.24)

e cos pcost — ie” sin@sinp

Using
Tr(0,0,) = =26, (2.30)
we can extract the velocities via
Yi(s) = —%Tr[(asU(S))(U"(S)Oz)} (2.31)

Using these, we define the length of the path (using a
Euclidean Metric) as

DM:Ameﬂmwmy

The path taken by the states will be a curve in y, p, 7, 6
coordinates. The Y/’s will be linear in derivatives of them.
Explicitly calculating this metric, we find the natural metric
on U(1) x SU(2):

(2.32)

ds* = sin®(p)d6* + dp* + cos*(p)de® + dy*.  (2.33)
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Extremizing this length gives us the geodesic equations
yll — 0
p"" —sin p cos p@? + sin p cos pr’> = 0
7/ —=2tanpp't’ =0

0" +2cotpdp =0, (2.34)

where the derivatives are with respect to the curve param-
eter. Looking at the metric it is evident that 8—% % % are the

killing vectors. Using these one sees that

sin’p@ = const
(2.35)

y' = const, cos’pt’ = const,

are the constants of motion. It is easy to check that this
same result can be obtained by directly integrating the
relevant equations of motion.

Now we can use the boundary conditions to solve the
system. Demanding

(2.36)

(y(s = 0). pls = 0).z(s = 0).8(s = 0)) = (0.0,0.6).
(2.37)

Furthermore, we know that

lwr) = U(s = 1)|R).

Here |yy) is the target state (and our target state is the
ground state). A 2 x 2 unitary matrix that takes the
reference state to the target state is of the general form

(2.38)

cosr isinre }

Us=1)= .
( ) [ isinr cosre
cos re?’2  jsinre /2

e~ [

] (2.39)

isinre'®/2  cos re=i/?

for some arbitrary ¢ € [—z, z). This translates to the end
point boundary condition in terms of coordinates

(s =1).p(s = 1),2(s = 1),0(s = 1)) = (y1, 1,71, 01),

(2.40)
where
i =—¢/2, T =1r P =q¢/2, 0, =n/2—r.
(2.41)

Because the metric is Euclidean, one can convince oneself
that the distance with the above initial and final boundary

conditions is globally minimized for ¢ = 0,° and the
corresponding geodesic is given by

p(s) =0,

0(s) = unfixed. (2.42)

The length of this minimum path can be directly calculated
and the result is

DlU] = A dst, = r:%tan‘l @)) (2.43)

This minimum length is the complexity of the target state.

In the analogous discussion in [4], the generators (the M’
in their notation) used were nonstandard and that resulted in
a more complicated form of the metric and resulting
geodesic equations. To solve the geodesic equations, more
Killing vectors were identified. Here on the other hand, we
explicitly see the S* x R form of the metric, and we only
needed to use the obvious Killing vectors to find the
explicit solution.

C. Squeezing operators as gates

In this section, we will present an alternate approach for
discussing complexity, which has a natural role in the
continuum case. We will define an entangling operator K,
which is also known as squeezing operator in some
contexts:

K = bbbl — byby = BB} — b, b, . (2.44)
The first equality can be viewed as the definition of the
operator, the second equality is the result of a calculation,
where we have used the definition of the tilde’d operators
via the B-V transformation from the previous subsection.

It is also useful to define a unitary

U = e kr, (2.45)
where r € R. The target state |0 0) can be reached from the
reference state [00) via

|00) = U|00) (2.46)
for some appropriately chosen r. It is easy to see this via a
similarity transformation of b; using U that gives b;:

UTEI U= eiKrl;le—iKr
1

Bt b

. i
:bl—lrb;—abl_F%

= by cosr —ib}sinr. (2.47)

®Note that when this happens, € is no longer determinate,
including at the boundaries.
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Setting U *h,U = b,, we see that the transformation U does
indeed take the reference state to the target state that we
have worked with in the previous sections if we take the
value of r to be what we found before.

Now let us consider an arbitrary path generated by the
squeezing operator which takes the reference state to some
more general target state:

[¥(0)) = U(0)|00) = e K¥(@)|00),  (2.48)
such that
(0) = 0= [¥(0)) = [00)
Y(1) =r = |[¥(1)) =[00) (2.49)

We evaluate the length of this path using the Fubini-Study
(FS) metric and minimizing it to get the complexity. In
other words, the allowed circuits we are considering are the
ones generated by K.

The Fubini-Study metric’ is

dss(0) = doy/|0,|¥(0)) 2 ~ | (¥(0)|0,[¥(0)) 2. (2.50)

The circuit length of a path traced by intermediate states
|¥(0)) = U(0)|00) is

£(|%(0))) = / " dsps (o). (2.51)

i

The complexity is the length of minimal path:

C = min £(dsgs) = mln/ do+\/(0,Y(5))*. (2.52)
{r(s)}

This gives the geodesic to be a straight line path. Under a
simple affine parametrization ¢ the geodesic is

Y(o) = or. (2.53)

The complexity for the target state is the length of this

straight line path
1
—/ doy\/(r)* =r.
0

This matches with the complexity derived in the previous
section. The idea here is that the unitary transformation was
generated by one generator K, the squeezing operator. We
interpret the squeezing operator as creating entanglement
between the two oscillators, and we use this as another

(2.54)

"Note that the Fubini-Study metric is in the Hilbert space,
while the distance we calculated in the previous subsection is in
the space of unitaries.

approach to the definition of complexity. In the present
case, we see that the two approaches match.

D. 1+ 1-dimensional Majorana on a lattice

So far we have considered just a pair of fermionic
oscillators, albeit with a coupling that was motivated by
our eventual interest in field theory. Now we will consider
discretized versions of the field theory, and consider full
lattices, with periodic and antiperiodic boundary conditions.
We will work with Majorana fermions for concreteness.

The Hamiltonian of 1 + 1-d Majorana theory in terms
of the complexified variables is (see Sec. IIIE for a
derivation):

H= / dx(—i%0, ¥ — (910, + m[¥, ). (2.55)

By placing it on a circular® lattice with lattice spacing J, the
Hamiltonian for N oscillators is

N-1 T
H = 5 _ian ( n+l = n) lI]T (LIIIL+1
6 o

)

_|_

m[W¥}, w). (2.56)

We can quantize by imposing the anticommutation rela-
tions

(v, ¥} =6, {¥,.¥,}=0={¥. ¥} (257
The Hamiltonian will be written as
N-1
H=> (0¥, ¥,] —i(¥, ¥, +¥I¥], ). (2.58)
n=0

where @ = md. We will look at the lattice with periodic
(Ramond) and antiperiodic (Neveu-Schwarz) boundary
conditions.

1. Ramond boundary condition
The Ramond boundary condition is imposed by
¥Y,.~v=Y,. (2.59)

The discrete Fourier transform for this boundary condition
is

—
=
L

(2.60)

*We use the word circular to refer to both periodic and
antiperiodic boundary conditions simultaneously.
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and the inverse discrete Fourier transform is

N-1
P=—) e FY,. (2.61)
X
From the sum rule of nth roots of unity
1 V=
Sp = Z n(k+#) (2.62)
=0
one can show that the anticommutation relations
translate to
(PP} =60 {P.P}=0={¥.¥.}. (2.63)

One can check that the Fourier transformed variables also
satisfy a Ramond-like boundary condition in Fourier space:
lP/H—N - \Pk' (264)

Using all of these, the Hamiltonian in terms of the Fourier
transformed variables can be written as

N—1
H=3_ (“’[‘I’Z’ ¥yl - i<\PkT—k6’_zﬁlk + W W) )
k=0

(2.65)

Since the range of k is periodic, we can use ¥_;, = ¥y_; to
bring this to a more convenient form:

N—-1
H= <w[‘y,t,lpk] - i<‘{‘k‘PN_ke el e ))
k=0
(2.66)

This form can be directly translated to the normal modes by
an adaptation of our earlier B-V construction. We can see
that the oscillators at k and N — k are getting mixed,
independently from the rest of the oscillators. The ground
state will be the tensor product of the ground state of each
such pair, together with the ground states of the unpaired
oscillators at the boundary. The pairing is different for N
odd and even, so we will do these two cases separately.

The reference state is defined as W;|R) = 0 which is the
same thing as ¥,|R) = 0 for n,k € [0, N — 1]. This state
has no entanglement between any two oscillators on the
lattice.

When N is odd, rewriting the Hamiltonian in the paired
form yields

2

H = ¥ ]+ 3 (¥, + 0l¥ Wy

=~

2

k
+ ZSin% (Wil - W, k)) (2.67)

This can be written as

N-1
2

H=) H;+wol¥, ¥ (2.68)

=~

where H), is the Hamiltonian for the two oscillators ¥, and
Wy for k € [1,%5Y. Defining b, = ¥, and by = ¥y_;

_2rk
H, = o[b].b)] + o[b]. by] + ZSm% (b1b5 = byby).

(2.69)
After B-V transformation
by = pb, + b}, by =nb| —pby.  (2.70)
Here
\/—\/a) V2 + @) + s
\/wa)— VT + @?) + s 2.71)

\/j\/s + w?

where s = sin<£* 2” . The ground state is defined by
b;]00) = 0 for i e {1,2}. Writing
00) = a;;]ij), (2.72)

where now i, j € (0, 1), using B-V transformations we can
show that the ground state takes the form

00) = ag|00) + ay[11) (2.73)
with ay; = a;o = 0. Furthermore
PRoo = 1A (2.74)
and
| + ey | = 1. (2.75)

So here also the U(4) — U(2) reduction (analogous to the
minimal oscillator toy model) happens. The transformation
from reference state to target state for all N oscillators
together can therefore be viewed as an element of

UQ2)®'7. (2.76)

This is a tensor product of ¥ factors of U(2) because N21
pairs of oscillators are getting mixed at a time when N is
odd. The complexity for the ground state of the
Hamiltonian in (2.68) is then immediately calculated to be
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(2.77)

where

(2.78)

1 [1 2rk
rk:—itan wsm ~ ) )

Similarly when N
form is

is even the Hamiltonian in paired

= w[¥}. W] + 0¥ N’

+ZHk,

with the H; here being the same as in the odd case The
only difference is that in the even case there are & 5 2 pairs
and so the transformation from reference state to target state
for all N oscillators can be taken to be in

(2.79)

U(2)®7. (2.80)

The complexity for the ground state of the Hamiltonian in
(2.79) is now

(2.81)

where r; is the same as in (2.78).

2. Neveu-Schwarz boundary condition

Let us now impose a Neveu-Schwarz boundary con-
dition,
Y, v =-Y,, (2.82)

on our Majorana lattice. The discrete Fourier transform for
this boundary condition is

Nl oinger
¥, Z
k=0

and the inverse transform

NZ o)

n=0

wl_.

(2.83)

(2.84)

Although ¥, satisfies the Neveu-Schwarz boundary con-
dition, W, satisfies an analogue of the Ramond boundary
condition in Fourier space:

lPk+N - lPk' (285)

The Hamiltonian takes the form

=

H (a)[lP:g’\P ] (lP ‘Pn+1+lP lPrH»l))

(=}

=

=

+ ) —2ai(k+} 2ai(k+))
= (a)[‘Pk,‘I‘k]—l(‘I’k‘P_k_le N +1P \P —k— 16 N ))
k=

(=]

(2.86)
Using periodicity in k, we can use
Vojo1 = Wnogei (2.87)
to rewrite the Hamiltonian as
N-1 —2mi(k+ %)
H=) (o [lpk’lyk] — (Y Wy e 7
k=0
gt 2ri(k+1)
+W Wy e (2.88)

When N is even, the Hamiltonian in the paired form is

——1
H = Z( ‘P}plPk +w[lPN 1— kleN 1- k]

2
+ 2sin {N (k + 2)] (‘P;‘I‘}L\,_k_l - ‘Pk‘I‘N—k—l)>

-1
H,. (2.89)

=0

I
oz

kel

As in the Ramond case, this can again be interpreted as a
pairwise mixing Hamiltonian, and the corresponding term
of the Hamiltonian is H}. At each k, defining b; = ¥} and
b, = Wy_;_; (the index k is suppressed in the operators b),

Hy = [b}, b)] + 0[b3, by

2 .
+ 2s1n[N <k + 2)} (b1 = byby).  (2.90)

Comparing with the Ramond case, the only difference is
that k there is replaced by k + % here. Following a similar
approach one can show here too that the U(4) —» U(2)
reduction happens. The transformation from the reference
state to the target state for all N oscillators is in U(2)®?
The complexity for the ground state of the Hamiltonian in
(2.89) is

(2.91)

where
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(2.92)

I (1. (2« 1
rk:—itan L5 k+§ .

Similarly when N is odd the paired form of the
Hamiltonian is

H=oY_ ¥Yu]+Y H.
T =

N-2
2

(2.93)

with the same H, as in the even case (for the Neveu-

Schwarz boundary condition). This time there are % pairs

and so the transformation from the reference state to the

target state for all N oscillators is in U(2)®7. The
complexity for the ground state of the Hamiltonian in
(2.93) is

(2.94)

where r;, is the same as in (2.92).

III. CONTINUUM FIELD THEORY

Everything we did so far was by discretizing spacetime
into a lattice. This was the strategy adopted for the scalar
case in [4], and what we have shown is that a similar
strategy works (modulo minor—for our purposes—subtle-
ties like fermion doubling) for fermions as well. Now we
will work directly in the continuum case following the
corresponding approach for scalars undertaken in [5]. The
idea here is basically a generalization of the squeezing
operator approach we discussed in passing in the lattice
case. We can reach from an unentangled reference state |R)
to the entangled target state |¥) via a unitary transformation

W) = pe L G0t Ry, (3.1)
where in many cases, we will find that the G(5) can be
realized via an appropriate squeezing operator, which
creates quantum entanglement below some UV cutoff scale
A. Here ¢ parametrizes our path such that at 6 = ¢; we have
our reference state |[R) and at ¢ = o, we get the target state
|¥). The path ordering P is not required for commuting
generators G(o), as will often be the case if we manage to
find appropriate squeezing operators. We will begin with
Dirac fermions in 1 + 1 dimensions, which is a standard
context where the cMERA tensor network is discussed
[6,7], with an eye towards our discussions in the next
section.

A. Dirac in 1+1 dimensions

We consider the Dirac Hamiltonian in 1 + 1 dimensions
given by

H= / dx[—iPy 0, ¥ + mPY]. (3.2)

Here ¥ = (¥,,¥,)" is the two component complex
fermion and y' = o3 and y* = ic,. By a Fourier transform

dk
= [y,
V2r

we can write the Hamiltonian as

¥i(x) (k)e™

H= / dk[kW] (k)P (k) + kW) (k)¥, (k)
+ mW] (k)W) (k) — mW (k)W (k)]. (3.3)

The canonical anticommutators in momentum space
become

{W1(k). W1 (K)} = {¥2(k). ¥} (K)} =8k = k). (3.4)
The reference unentangled IR state |R) can be defined by
¥ (K)|R) =0,

PI(K)R) =0 V keR. (3.5

This is the ground state of the ultralocal Hamiltonian
Hy= [ as(m®) = [ dlom(¥} (0140 =W 0619200,
(3.6)

The ground state of this fermionic theory can be obtained
by direct analogy with the discrete case via a Bogoliubov-
Valatin transformation’ which is

¥ (k)P =0, FK)|P) =0 VieR, (37)
where
P (k) = (A (k) + B, (k)
Wy (k) = (= By (k) + AW, (k) (3.8)
are the normal mode coordinates and
—k , (3.9)

Ak -
Ve + (VIE = mp?

Note that this same ground state is precisely the one that is
obtained in the standard approach to quantization of Dirac
fermions, which involves the introduction of Dirac u and v
modes. We demonstrate this in Appendix C.
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E+m (3.10)
\/k2 VIE 4+ m? —m)?
Noting that Ai + B% =1, we introduce
re = —%tan‘1 (%) (3.11)
so that
Ay =—cos(ry) and By =sin(ry). (3.12)

Note the similarity of this expression r;, with analogous
expressions in the discrete case.

As our target state, following the scalar case in [5], we
consider the approximate ground state |m*) which is
defined as

(k)|
2 (k) |m

V=0 V k:|k| <A
=0 V k:|k| > A.
(3.13)

N =+ N =

¥ (k)[m™N) =0, ¥
0. W

We can reach the target state from the reference state via a
unitary transformation of the form

) = ¢ Juan BKO oy (3.14)
where the reference state is |[R) = |Q) V k and K (k) is the
squeezing operator which we define as

2(k) + ¥y (k) W5 (K)).

We will see that this construction shares many of the
features of the scalar case discussed in [5], despite the fact
that here the entanglement is happening between the two
fermionic modes, and not between modes at antipodal
momenta. Note also that the target ground state that we
have defined is not the cMERA ground state [6,7] even
though in the A — oo limit they both tend to the true
ground state. The cMERA can be viewed as a nongeodesic
path in our language, as we will discuss in the next section.

K(k) = i(¥](k)¥ (3.15)

B. Ground state complexity

Before we do all that, let us evaluate the complexity
using our squeezing operator above. With the specific
choice of the squeezing operator we have made in the
previous section, the calculation goes entirely parallel to the
one in [5], but we review it here largely to establish our
notation. First, we calculate the distance with the Fubini-
Study metric,

dsys(o) = dff\/lf%l‘l‘(G»I2 = [(¥(0)|0,|¥(0))I*. (3.16)

and then minimize the length. The circuit length of a path
traced by intermediate states |¥(o)) = U(0)|R) is

(¥ = [“dsiste). a7
Using (3.1) we can write the FS metric as
dsps(0) = doy [(G?(0))wie) = (G(0))5,)-  (3:18)

In the context of our discussion in the previous sub-
section, we can consider a general path generated by the
squeezing operator as a unitary transformation that takes
the state through

U(o) = ¢ uar #Kwhi) oy (3.19)

Here

Y, (o) = / "y(s)ds' and  Yi(s;)=r. (320

i

where the last condition arises from our specific choice of
target state. The order of k and o integrals can be exchanged
because K (k) at different k are all commuting. By direct
calculation one sees that

(G(6)) =0, and (G*(5)) = Vol / dkyX(c).  (3.21)

Here we write 5(0)
the minimal path:

= Vol. The complexity is the length of

C = min [(ds
{G(S)}( Fs)

— min / Y doy Vol / dk(9,Y,(0)?.  (3.22)
RAGINES [k|<A

We recognize a flat Euclidean geometry associated with
coordinate Y (o), implying that the geodesic is a straight
line path. Under a simple affine parametrization o the
geodesic is

o —

Sf—Sl

Y, (o) = (3.23)

Yk(sf)

The complexity for the target state is the length of this
straight line path,

c = [Vl / k(). (3.24)
k<A

and r is given by (3.11). As we see, the essential difference
between complexity in the scalar case and the fermionic
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case is in the form of the r;, both in the discrete case and the
continuum case. We find that the parallel between the form
of the complexity in the discrete [4] and continuum [5]
cases for the scalar, holds for the fermionic case as well.

These integrals are divergent in the cutoff A. In the
massive case, the above expression can be explicitly
evaluated to

A? A
2 =-"vol log <—2 + 1>t.an‘1 (—)

2 m m
1 A

~2 mVol <— log(16)tan™! <m>

—iLi, <_e—2itan' (%)) + iLi, (_e2itan1 (%)) )
1 AN\ 2

+=AVol <tan‘l (—)) )
2 m

Its behavior at large A takes the form

2 4 2m\ 4
=" vol (A +mlog<m> Sy 0(1/A)>.
8 n A T

(3.26)

(3.25)

When m = 0 the integral is simple and the complexity
simplifies:

7*AVol

C =
8

(3.27)

C. Ground state complexity and SU(2) generators

Our discussion so far used a single generator K (k) to
reach the target state. This can be viewed as a specific
choice of gate in the circuit complexity language. Since we
were able to construct a parallel between the entangling
operator in the scalar case in [5] and the Dirac fermion case
above, it is interesting to ask whether a construction
analogous to the more general SU(1,1) generators dis-
cussed in [5] is possible here. It turns out that the answer is
yes, except that the generators satisfy an SU(2) algebra
now. Our calculations in this section are direct adaptations
of those in the Letter of [5], but we include some tricks here
that simplify the calculation.

The basic idea is to note that the target state can also be
reached by using a more general set of generators:

K, (k) = V] (k)W (k)
K_(k) = i%, (k) ¥} (k)

_ IR, (k) = Wi (k)W (k)
5 .
These commute with the number preserving operators
(ny = ny) where n; = ¥]¥, and n, = ¥,¥}. These gen-
erators satisfy the following commutations relations:

Ko(k) (3.28)

K (), K_(K)] = 2Ko()5(k - K)
[Ko(k). K, (K)] = K, (K)3(k = K)

Ko(k). K_(K)] = —-K_(k)s(k—K).  (3.29)

This is easily seen to be a set of decoupled SU(2) algebras
at each k, once one rescales the generators appropriately
with §(0) = Vol. Now as in [5] let us consider a general
path of the form:

dkg(k,o)

W(0)) = euer #96) ) (3.30)

generated by g(k, o), given as

g(k,0) = a,.(k,0)K . (k) + a_(k,0)K_(k) + w(k,0) Ko (k).
(3.31)

The unitarity condition for the above transformation

implies o (c) = —a_(s) and w*(6) = —w(c). We can
decompose the unitary transformation above using [8]

U(0) = eduan @0+ EK) [y dklogo(ko)Kolh)
y ef\k\</\ dk/)’,(k,or)K,(k)7 (3.32)
where the coefficients are
b, — 20, sinh B
* T 2EcoshE — wsinhE’
-2
Po = (cosh - 22_, sinh E) ,
with E defined via
2
22 = % ta,a. (3.33)

Analogous to [5] now we can observe that K_ annihilates
the reference state while the exponential of K, only
changes the reference state up to a phase

K_|R) = 0; Ko|R) = —@ IR).  (3.34)
So |¥(o)) can be written as
¥(o)) = Nes WPk pRy (335
with
N = &2 Juan deloehlke) (3.36)

To compute the Fubini-Study metric from here is a bit of
work, and we will introduce a small trick to accomplish it
painlessly. Let us define
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K, =K. K_=K, Ky=-K, (3.37)

The crucial fact that makes them useful is that they
satisfy identical commutation relations as the untilde’d
operators:

Ko(k)8(k - k')
K. (k)o(k— k)

R_(0)s(k—k).  (3.38)

The g(k, o) can be written as a linear combination of these
generators as well:

g(k.0) =a, (k.0)K (k) +a_(k.0)K_(k) + d(k.c)Ko(k).
(3.39)

Comparing this with Eq. (3.32), we get
a, =a_ a_ =a, o= —w. (3.40)

As the tilde’d generators also satisfy identical commutation
relations, U(o) can be decomposed in the same fashion in
terms of these generators as

Ulo) = e Juor @B kK(8) [, ko8 o ko)) Ko(h)

y ef\/«'l</\ dkﬁ,(k,o)f(,(k)’ (3.41)

where the coefficients satisfy exactly the same formulas as
before, but now with tilde’d quantities. Using (3.40) we can
show that these are related to the coefficients in (3.33) by

B==B.  By=Po (3.42)

It is useful to write the decomposition of U'(s) with the
latter generators:

Ut(6) = eduan WEGORR) [ dklogi(ko)Rolt)

o« oJon (KK (k)

- fmm dkp_(k.o)K_(k) — ﬁ 1 k(108 o (k.0)) Ko (k)

=ée e

X e J\‘k|</\ dkp, (k.0)K . (k)

(3.43)

This last form helps us in substantially reducing the
mindless labor involved in the calculations here as well
as in the analogous results in [5].

Further in this section we suppress some notations: the
integral over k is just denoted with the integral symbol, and
the argument & is often not explicitly written. To calculate
the Fubini-Study metric, we have

9,|%(c ( VOl/ﬁO /ﬂﬂg)qf (3.44)
This leads to
@0, ¥l = -5 [ Ny [ gl e

- Wv% /mmmmm

—Vol
= 20 ( _0+/ﬂ+/5+0>’

where {;; is defined via

This leads to

o v = (5) ([ 55+ [ #icio)
([ [p0a).

It is useful to note that

(3.46)

o =0 (3.47)

The second piece in the Fubini-Study metric follows from a
similar, but slightly lengthier calculation:

outeenP = (5) ([ 52+ [ i)
([ [r-50)

+ Vol / BBy (3.48)
So the final form of the metric is
dsps = da\/ Vol / BipL ¢y, (3.49)

where
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A
Ll = (1 G I 3.50
o b g O
Making use of the identity |By| =1+ |, %
finally simplifies to
ﬁ+ﬁ'
dsps = do Vol/ 5 3.51
e \/ [k|<A 1+ |5 1)? (3:51)

where the prime denotes the derivative with respect to o.
Thus the metric has the form of the Fubini-Study metric on
S? ka CP! and the complexity arises as its geodesic. Note
the sign difference from the results of [5].

D. Another generator

Now that we have the SU(2) generators in our hand, we
can construct another single generator B(k) out of them that
is distinct from K(k), which takes us from the initial
reference state to the target state, just like K (k) does [5].
This takes the form

B(k) = =2isin(r;)[K, — K_] —4cos(ry)Ky.  (3.52)
The unitary transformation which does the job is
) = o L #B0 ) (3.53)
Let the intermediate state be
W(o)) = e Juar BB Ry (354

Plugging this in the Fubini-Study metric gives

dsgs = do— , | Vol / dksin?ry (0, Y, (6))%.  (3.55)
2 kI<A

So the path with the least length is
Yi(o) =o0. (3.56)

We can compare the B(k) form with the SU(2) gen-
erators of the last section, and read off

o o .
a, = —sinry, a_ = ——sinry,
+ 3 k 2 k
. _  inmo
W = —Ino COS Iy, == 5 (3.57)
which translates to the f,:
isin ry sinZZ

pr=- 2 (3.58)

o _ in 70"
1COS75 — COS Iy SIN 5

At o =1 the . for B(k) becomes
(3.59)

P, = —itanry.

The length of this path, on plugging the expression (3.58)
into the CP' metric from the end of last section, yields

=T Vol / dk sin® r,.
2 lk|<A

This can be explicitly evaluated to be

2= <2) Vo 1<A+1 log<\/__—_.m;i>>, (3.61)

(3.60)

which goes as
P = l7t2V01 A+m log : (3.62)
4 2A '

for large A, with the dots denoting subleading powers in A.
This distance is more than the one presented in (3.26)
which is obvious in the m — 0 limit.

For comparison, for the straight line path using squeez-
ing operator K (k) the SU(2) coefficients are

a, = —iro; a_ = —ir,o; w=0; E=iro
(3.63)

which gives the f, for K(k) as
p. = —itan(ryo). (3.64)

The complexity of this path has been discussed in a
previous subsection.

In Appendix D, we explicitly show that the minimal path
when the squeezing operator is K (k) is a geodesic of the
CP! metric, but the minimal path of the B(k) operator
is not.

E. Majorana fermions in 1+ 1 dimensions

Now we move on to field theories other than the 1 + 1-d
Dirac fermion, which as we demonstrated, has very close
parallels to the scalar field theory discussed in [5]. First we
turn to the Majorana theory.

Previously we discussed the discrete version of 1 + 1-
dimensional Majorana field theory. Now we consider the
continuum version of it. The Lagrangian is

= /dxy-,(iyﬂa,, —m)y. (3.65)

where the gamma matrices are the same ones we used in
Sec. II [see Eq. (2.7)], and
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y”@,, = ,008() + ,0181. (366)

The field y is a two-component spinor with its components
real Grassmann variables classically:

cy!
ll/ = \Ilz *

The Lagrangian in terms of them becomes

(3.67)

L= /dx(l(‘l’lao‘{’] + ‘I’280‘P2 + Tlall}” — Tzal\Pz)

+ mP'WY? — mP?P). (3.68)
We developed our B-V technology more directly in the
language of complex Grassmann variables, so we rewrite
the Lagrangian in terms of
| _ g2 1 g2

‘P:‘I‘—z‘l’7 \pT:T +1‘P'

V2 V2

Here W, W' are complex Grassmann variables. The
Lagrangian becomes

(3.69)

— ¥ ¥]) (3.70)

and the Hamiltonian
H = /dx(—i‘P@,‘P — Y7o, ¥" + m[‘I’T‘I‘]) (3.71)

Quantization proceeds by imposing the canonical anticom-
mutation relations

{P(x). W' ()} = 6(x - x')

and all other anticommutators are zero. Doing a Fourier
transform

(3.72)

W(x) = / e (3.73)

they turn to
{W(k), YT (K)} = 6(k—K) (3.74)

and all other anticommutators are zero. The Hamiltonian in
Fourier variables is

H— / dk( = RP()W(=k) + k¥ (k)P (=k)

m[¥ (k). W(k)]). (3.75)

We define the reference state to be

Y(k)|R) =0 (3.76)
which is the same as defining W(x)|R) = 0. This state has
no entanglement in position space and is also the ground
state of the ultralocal Hamiltonian, ie., the above
Hamiltonian without the terms arising from the derivatives
in position space.

In the ground state the oscillators at & and —k are to be
entangled. The target state can be reached by using the
squeezing operator K(k) defined here as

K(k) = i(PT(k)¥T(=k) + P (k)¥(=k)). (3.77)
This operator entangles the oscillators at k and —k. Let us
rewrite the Hamiltonian as

H/dk [P (k

+ 2k(WT(k)¥T (=k) —

P(k)] + m[P(—k), ¥ (=k)]

Y(k)¥(=k))). (3.78)
In the Dirac case the integration limits ran from —oco to oo
but here it is from O to co. In other words, we have the
freedom to define

P, (k) =P(k), WY, (k) = W7 (—k) (3.79)
here, and when we do it, we get the Dirac Hamiltonian that
we wrote down earlier but with the integration over k
limited to the positive k real axis.'” In other words, we are
reinterpreting the entanglement between k and —k modes
here as entanglement between two different fields, but at
same k (restricted to be positive). Since much of the
calculations in the Dirac case goes through at each k
separately, this means that the Majorana calculation reduces
loosely to half of Dirac. Apart from the restriction in the
range of k, the ground states for both cases are the same and
the reference states are also the same. So the r; is the same
as before and every derivation here is the same as before
with the only difference being in the lower integration limit
which is O for this case and not —A as in the previous case.
The complexity for the ground state of the Majorana theory
is then

C = [Vol / " ak(r2). (3.80)
0

As (r;)? is an even function in k, we have

"These ¥, and W, refer to the Dirac notation analogous to that
in Sec. III A and should not be confused with the real ¥! and P2
(with lower indices) used in this section.
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Cbirac = \/ECMajoranav (3 8 1)

where Cpjre and Cypjorana are the complexities for the

ground state of Dirac and Majorana theories in 141
dimensions.

F. Fermions in higher dimensions

Now we will generalize some of the above consider-
ations to higher dimensions. The fermionic field theoretic
Hamiltonian in d + 1 spacetime dimensions is

H= /ddx‘i’(x)(—

where i runs from 1 to d. After doing a Fourier transform on
each of the components of the spinor

iy 0, +m¥(x).  (3.82)

dk 73
Y,(x) = [ — ¥, (k)e™*. (3.83)
(2m)®
The Hamiltonian in Fourier variables is
H = / AP (i, + m)P(K).  (3.84)

1. Massless theory in 3 + 1 dimensions

Let us start by considering a massless theory in 3 + 1
dimensions in chiral (aka Weyl) basis:

y0:<0 12> yk:<0 ak>
I 2 0 —0 k 0 .
For massless particles the two Weyl spinors decouple from
each other. The Hamiltonian is

H = / P
where i runs from 1 to 3. Each component of the spinor

W(k) can be interpreted as an oscillator at k. At each k there
are four fermionic oscillators with the Hamiltonian H(k):

(3.85)

(k)7 kP (k) _/d3kH(k), (3.86)

ks ks
2 2

k
+33[‘P4"P1] — (K,

ks
2

— ik, )W, —

H(k) =5 [¥1. 9]+ 5 [¥5. o] + 22 [¥3, s

(ky + ik, )W,

+ (kg — iky ) WI®, + (ky 4 iky )i, (3.87)
In the above equation the dependence of the fields on k is
suppressed. The two oscillators W,(k) and W,(k) are
decoupled from W5 (k) and W4(k).

For each k, let us define a; = ‘I’{ a, =

= W] so that

‘PZ’ bl = LP3’

H(k) = Ho(k) + HP (k) (3.88)

with

k k .
Hi(k) =2 [ T +33[a§»02] — (ky = iky)ayay

+ (ky + iky)alal

k k .
HP (k) = ;[blb ]+ ;[bg’bz] + (ky — iky)b} b}

— (ky + iky)by by, (3.89)

After the by-now-familiar B-V transformation we get

“”‘Z aj.a)+[b].5]).

where @, = \/k} + k3 + k3. The B-V transformation for a
type oscillators is

H (k) (3.90)

i (ks +ay)

a a, +a (k:+:/ik2)
~ T (kytay)
a1 1 (1 k3) a;—a (k?ﬂ‘kg) (3.91)
~+ = S - . .
) IRy P =
~
a T (ky+

’ ar - Ay Ry

and the B-V transformation for b type oscillators is

ks 4wy
—ik,

; by + by (24
(k';"rwk)
(k1=ika)
(fa o)

7 i

by | 1<1 k3) by=b

b 2\ o) | byt b
by —b

e (3.92)

2

T (k3+wy
1 (ky+ik,
T (
2

)
ky+wy)
(ki+iks)

Here there is no natural ultralocal Hamiltonian, because
mass is zero. We can choose any reference state which has
no entanglement in the physical (i.e., x) space. Let us define
the reference state |R) to be the state which is annihilated by
¥, (x), P (x), ¥} (x) and W4(x) V x € R>. This is the same
thing as defining the reference state to be annihilated by
a;(k) and b;(k) for i = 1,2 and Vk € R.

We define the target state to be the approximate ground

state |TN) defined as
a,(k)[T™) =0 bi(k)[T™) =0V k:[k| <A
al(IT™y =0 bI(K)|TW)Y=0 V k:|k| > A.

(3.93)

It is possible to see that the target state can be reached from
the reference state by the unitary transformation
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TW) = ¢ Jua POKE gy (3 04
where the squeezing operator K (k) here is
K(k) = i(ky = iky) (@) (k)3 (k) + by (k)b (k))
+i(ky + iky) (@ (k)ay (k) + b (k)B5 (k)
= i(ky = iky)(a(k)ay (k) + b3 (k)b] (k)
+i(ky + iky) (a3 (k)ay (k) + by(k)by (k) (3.95)
and r(k) is
b et
r(k) = NGEY t (\/m) (3.96)

It can also be checked that the unitary transformation

takes the a;’s and b;’s to @;’s and b,’s via the similarity
transformations

Udut = a
UbiU' = b,

Udiut = a,

UbU' = b,. (3.97)
As the annihilation operators of the reference state are
transformed to the annihilation operators of the target state
via the similarity transformation, the unitary transformation
takes the reference state to the target state.

Now let us consider an arbitrary path generated by the
squeezing operator

W(o)) = ¢ @ S d3kyk<x)1<<k>| R)

= o e PR, oy (3.98)
Note that by identifying a judicious squeezing operator,
here too we have bypassed the need to do any path ordering
because all K(k) commute.

Evaluating the length of this path using the Fubini-Study
metric gives

1
_ / da\/2Vol / P+ 12) (0,74 (0))2.
0 [k|<A

(3.99)
Doing a “coordinate” transformation
X (o) = \/k} + K3Y (o) (3.100)
the length of the path becomes
1
:/ do 2Vol/ Pk(0,X(0))*.  (3.101)
0 k| <A

This is again a flat Euclidean geometry associated with
coordinate X; (o) and so the geodesic is

Xy (o) = \/k} + K3r(k)o.

The complexity is the length of this path

ks +ow 2
2Vol &Pk (arctan( 3 k )) . (3.103
\/ A|<A VK + ks ( )

This integral can in principle be explicitly evaluated, but we
will not present it here. Instead we go on to the massive
case, where we will present all the gory details.

(3.102)

2. Ground state complexity and
SU(2) x SU(2) generators

Let us consider an extended set of paths as we did before
in Sec. I C. We introduce SU(2) x SU(2) generators and
consider the paths generated by them. More general paths
are possible as we will see in the next subsection, but this is
a sufficiently interesting generalization that contains our
squeezing operator. The squeezing operator used in the
previous subsection can be written as

Let (k; + iky) = ke and (k; — ik,) = ke™™ and by
absorbing the phases into the ladder operators the squeez-

ing operator simplifies to

(3.105)

where K“(k) = i(a}(k)a| (k) + as(k)a,(k)) and K (k)=
(B3 (0B} (K) + by(k)b (K)):

Notice from the Hamiltonian in the previous section
the a type oscillators and b type oscillators completely
decouple from each other. We can introduce the following
generators:
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K4 (k) = ia}(K)a] (k).
K% (k) = iar(k)a,(k),
Koy = S0 = By (6)

Together these six generators generate a SU(2) x SU(2)
algebra. Each of these generators commute with the number
preserving operators (n; — n,) and (n3 — ny), where

ny = b;bz, ny = b,{‘bl

(3.107)

_ 4T — F
ny = a,dp, n, = aay,

Let us consider the path generated by an arbitrary linear
combination of these six generators

¥(0)) = efuar 44 ) (3.108)

where |R) is the reference state defined in the previous

section and here g(k, o) = ¢“(k,6) + ¢*(k, o) and

g'(k, 0) = af (ko) K4 (k) +
+ o®(k, 0)K§(k)

g’ (k.0) = ol (k.0) K% (k) +
+ w’(k,0)K5 (k).

a‘ (k,o)K%(k)

ab (k. o)K® (k)
(3.109)

The K¢’s commute with Kj”s (for i,j = +,—,0), so

a b
ef\k\sl\ dkg(k,o) _ ej\‘k\sA dkg (k’a)eﬁk\sA dkg (k.o‘)'

(3.110)

Proceeding in the same way as in Sec. [II C we get

W(0)) = NN be Jydkpi (ko) (0, [ i (ko)K% ()|
(3.111)

with

A — e%“” fng dk log 5 (k.0) A — e%“’) fwsz\ dk log i (k.0)

(3.112)

and the $9’s and $?’s are defined exactly analogous to the
1 4 1-d case.

Computing the Fubini-Study metric will give two copies
of the metric on S? and the length of the whole path is
minimized if the length of each individual path (i.e., #¢ and
ﬂﬁ) is minimized. As these are just two copies of what we
had before in Sec. III, we conclude that the straight line
path taken by our squeezing operator is the shortest path in
the space of paths generated by the entire SU(2) x SU(2)

(3.106)

algebra of generators. This is unsurprising: the Hamiltonian
of the massless 3 + 1 theory in the chiral basis can be seen
to be two copies of the 1 + 1 Dirac theory that we studied
earlier, after the phase redefinitions etc. that we did. So the
path length can be understood as path lengths in two
separate factorized Hilbert spaces, each of which contains
the SU(2) structure.

3. Massive theory in 3+ 1 dimensions

Now we go on to consider the massive theory in 3 + 1
dimensions in the Dirac basis:

12 0 0 Gk
0 — k— . 3.113
! (0 —5) ! <—& 0) (3.113)

The Hamiltonian in terms of the Fourier variables is
H= /d%‘i’(k)(k,»yi +m)¥(k) = /d3ka, (3.114)

where i runs from 1 to 3. Interpreting the components of the
spinor W(k) as oscillators, the Hamiltonian for the four
oscillators at k is

m m m T m il
He=% (W], P,] + ) R ARE 5 ¥, W3] + 2 (¥,
+ (kl - lkz)(‘PTlP4 + LPZlP2>
+ (ky + k) (W35 + Vi)

+ k3 (P]Ws — PO, + P, - IS, (3.115)

At each k let us define the operators
b] = e’gl}’l bz = €_igq"2 b3 = e_ig‘Pz bl = Eiglpj;,
(3.116)

% k? + k3. In terms

of these the Hamiltonian for the four oscillators at k
becomes

where 0 = tan~!(2) and define x =

4
m f
Hi = (52[[%7[91‘}) + ks (b}by — byby)

i=1
+ k3 (DyD3 = baby) + k(b3 = bybs)

+ k(bib; — byby). (3.117)
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After the usual B-V transformation this becomes

| N S
_ 3 T
H= /d kiwk;[bi,b[], (3.118)
where wy = \/k} + k% + k% + m?.
The B-V transformation is
b, by = bayks + b} (w; —m)
Bz b2K+blk3+b§(0)k—m)
133 —b3K' + b4k3 + b;(a)k - m)

by 1 —byk — byky + b} (w) — m)

by N V20 (@ —m) | bik = bks + by(w, —m)

];; b;:<+b'[k3+b3(a)k—m)

b —blx+ biks + by (wg —m)

b} —bix—blks + by (g — m)
(3.119)

We will take the reference state |R) is defined as the
ground state of the ultralocal Hamiltonian

H, = /d%(m‘?(x)\l’(x)) —/d%(m‘i’(k)‘l“(k))

(3.120)

This state is annihilated by b;(k) for i =1,2,3,4 and
V k € R3. This state has no entanglement in x space.

The target state is the approximate ground state |TM)
defined as

bi(k)TMY =0 ¥ k:lk| <A
b

() TWY =0V k:|k| > A. (3.121)

The basic observation of this section is that the target
state can be reached from the reference state by the unitary
transformation

70 = ¢ i PR O ey _ iRy, (3.122)
where the squeezing operator K (k) is
K(k) = iks(b] b} + byb3) + iks(b}b] + byb,)
+ ix(byby + bybs) + ik(bb) 4+ byby)  (3.123)

and r is

(3.124)

Here |k| = \/k} + k3 + k3.

This unitary transformation takes the b; to a linear
combination of b; via the similarity transformations

Ub Ut = K01t Kby T;d’“bz Ub,UT = L’l'k" kby
UbyU' kb T;fb“ Ub,U" = ksbs — Kby 3|k_| kba.

(3.125)

Crucially, there are no creation operators in the linear
combinations on the right-hand side, hence this unitary
transformation takes the reference state to the target state.

Now we can as usual consider an arbitrary path gen-
erated by the squeezing operator

|‘I‘(a)> :e—if(')”dsﬁk‘s/\mk)’k(lf)l((k)|R> :e—if‘k‘sAtﬁkYk(n)K(k)|R>.
(3.126)
Path ordering is not necessary because all K(k) commute.

Evaluating the length of this path using the Fubini-Study
metric gives

1(1%(0))) = /01 do-\/2Vol /k|<A LU0, Y, (0))2.
(3.127)

The change of variable analogous to the massless case takes
the form

Xi(o) = [K[Yi(0) (3.128)
and the length of the path takes the usual form
1
(%)) = / do, [2Vol / B0, X, (0))2.
0 [k|<A
(3.129)

This is again a flat Euclidean geometry associated with
coordinate X; (o) and so the geodesic is
X (o) = |k|ro. (3.130)

The complexity is the length of this path, and is given by

k 2
C= \/ZVol/ d3k<arctan< i )) (3.131)
k|<A m—+ wy

126001-18



CIRCUIT COMPLEXITY IN FERMIONIC FIELD THEORY

PHYS. REV. D 98, 126001 (2018)

This integral can be explicitly evaluated:
1 . . 2m
C? = EﬂVol{l2zm3L12 (1 - iA)
2m 5
) )

A
xtan_l —_———
<\/A2 +m? + m)
+ m?(12A + iz*m) + 48(A3 + im?)

(o (o)) )

Its behavior at large A takes the form

—24m <A2 +2m? log (

(3.132)

12m?
c? —€V01<A3—6—mA2 ”

+ 4%105; (A> 2, 0(1//\)) (3.133)

A

2m 3

When m = 0, the exact form of the integral is simple to
write down:

3A3Vol
cr =AY - <. (3.134)

Analogous to the previous cases, one can ask whether
there exists a bigger class of generators in which our
squeezing operator is a specific linear combination. It is
straightforward to see that this is the case, and that the
natural algebra generated by the creation annihilation
operators is an SO(8), and therefore a natural geometry
that arises in the space of these more general paths is an S”.
We elaborate on this in Appendix E.

IV. FERMIONIC CMERA

The discussion we have had in the previous section is
very close in spirit to the so-called cMERA tensor network,
which one can view in our language just as an alternate
choice of path connecting the reference state to the target
state. The cMERA circuit can be viewed as entangling the
neighboring oscillators in x space and doing a scale
transformation iteratively.

In what follows we will define the target state at finite
cutoff to be some approximate ground state using cMERA.
This approximate ground state need not be the same
approximate ground state as defined previously. But as
the cutoff is taken to infinity both will tend to the true
ground state of the theory. Our discussion of cMERA will
follow the papers [6,7]. We will compute the length of the
cMERA path for fermions. The discussions in [6,7] are for
1 + 1-dimensional fermions, we will also consider a

cMERA-like path that is a natural generalization of these
works to 3 + 1 dimensions.

A. Dirac cMERA in 1+ 1 dimensions

We will use the version of cMERA that is described for

the Dirac theory in 1 + 1 dimensions in [7].
The cMERA path [¥(u)) is

|lP( )> Pe —tf du’ fdkK Vi (1 |R>

where |R) is the reference state defined in Eq. (3.5), K(k) is
the squeezing operator given in Eq. (3.15) and [7],

(4.1)

) = gl <

O(Ae" — [k]), (4.2)

where ©(x) is the step function (it is 1 for x > 0 and zero
elsewhere) and g(u) is

(u) 1 — arcsin < At (4.3)
u) = . (4
9 /A2 u ¥ m A2€2u + m2

Note that the integration range of k in (4.1) is superficially
not restricted and is from —oo to 4-o0. Effectively there are
restrictions, arising from the step function. It is important
to be careful about this type of thing in what follows,
especially when changing the order of integration in « and k
in the double integral. The path is parametrized from —oo
to 0 by the parameter u = In 6, where ¢ is our conventional
path parameter that runs from O to 1. The parametric values
of the reference state and target state are —oo and 0
respectively.
The target state reached by cMERA 1is

() = P s KK gy — a8y,
(4.4)
where''
0 k A
Y (0) = Ry(A) = / duy,(u) = | =——arcsin——=
—0 2A VAL +m?
+ 7, (4.5)

where r; is given by Eq. (3.11). Note that changing the
order of integration has brought out the promised |k| < A in
the k-integral. This target state reproduces the true ground

"Note that some of the expressions we present here are
superficially in tension with the results in [7]. This is because (we
believe) the results—see in particular (121)—(123)—in [7] should
be compared only up to terms suppressed by A. A clean way to
see this is to note that the ¢, in (121) and (122) in [7] do not have
the same A dependence: in particular, (122) vanishes when
|k| = A, but (121) does not.
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state in the A — oo limit as R; — ry in this limit. Note that
at finite values of the cutoff, it does not lead to the target
state that we defined in our 1 + 1-dimensional discussion in
the previous section. This is unlike in the case of the
bosonic case that was considered in [5] where the cutoff
target state had an extra parameter available (it was called
M in [5,7]) and this could be used to make the two cutoff
target states identical. We give a conceptual explanation for
the absence of this extra scale in the fermionic case at the
end of Appendix A, as a feature implicit in the structure of
bosonic vs fermionic oscillators. The fact that the states are
not the same at finite cutoff means that it is not meaningful
to compare quantities at finite cutoff. We elaborate on some
aspects of this observation in Appendix F.
At intermediate points on the cMERA path

W) = U@)|R) = & Jans BKO0 gy (4 6)

with

¥ [ du N[k ) Ae*
(u)= n u'y(u)= 2Aeuarcs1n\/m + 7.
(4.7)

Note again the k-integration range, again getting fixed by
the change of integration order. Evaluating the length of
this cMERA path using Fubini-Study metric gives

2 0 u
levEera = \IEAVOI/ dul(g(u)|e>.

In some of the calculations, it is useful to note that (4.6) can
be written as

(4.8)

W () = e—ifwsAdkK(k)Yk(u)G)(e"—\kVA)|R>

= e_if\k\sz\ kK (k)Y (1) IR). (4.9)

In any event, it is possible to calculate this length explicitly,
we present the result in Appendix G where we summarize
various explicit formulas for complexities and circuit
lengths. Here we merely note that when m = 0,

T
=——. 4.10
olu) = -2 (4.10)
So the length of the cMERA path in this case is
w2 AVol
lemera = 6 (4.11)

Now let us plot the |, | for the following two paths. The
straight line path taking the reference state to the cMERA
target state is

|A.| = tan (Ryo). (4.12)

For the cMERA path, from (4.6) and (4.7) we find

: k : Ac
arcsin ———— k arcsin —=2—
|ﬁ | . tan( K2 ++m? \/Azaz-‘rmz)
= —
2

2Ac

O(c — |k|/N), (4.13)
where the step function arises because in calculating ., we
want the entire u (or o) dependence to be on the integrand
in (4.6). See Fig. 1.

The |, | of the first (upper) plot here is for the geodesic
path and the second plot is for the cMERA path. In both
cases the target state is the cMERA target state. The theta
function is responsible for cutting off the curves in the
second figure at the k-axis: in practice this means that
the cMERA path #, has no support on k > Ao, whereas the
straight line geodesic path has support on all k. This was
observed in the bosonic case in [5] as well.

B. 3+1 dimensions

We can generalize an analogous construction to 3 + 1
dimensions (which we will call a cMERA-like path), and
calculate the length of a similar construction for fermions in
3 + 1 dimensions in the Dirac basis. The path |¥(u)) we
take is

W(u)) = Pe~ Ju ' [EERNR Ry - (414)
where |R) is the ground state of the ultralocal Hamiltonian
(3.120), K (k) is the squeezing operator given in Eq. (3.123)
and

) = o 0 he — 1) (415)
and g(u) is
) Ae
g(u) —marcsmW
mv'Z (4.16)

+
2N+ mf/mZ + N

with Z = VA?e* + m? + m. To obtain g(u) we follow the
prescription of [7] and use

(Lt):_Wi Ary
T =770k |

where r; is given by (3.124).

In the following, we will discuss the massless case for
simplicity because that is enough to make our points. The
integrals in the above expressions are explicitly doable and

. (417)
|k|=Ae"
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we have calculated them also for the massive case. In
particular, we have checked that the ground state is attained
by the above path even in the massive case.

In the m = 0 case the g(u) reduces to

prs
2Ae"’

g(u) = (4.18)

The path is parametrized from —oo to 0 by the parameter u.
The parametric values of the reference state and target state
are —oo and 0 respectively. The target state reached by this
path is

W(0)) = Pe Juan PKWYO oy 4 1)

where Y;(0) is

Y,(0) = /_ iduyk(u):;[(/]fz—llc). (4.20)

At finite u, we have

—i 3 "
[¥(u)) = Pe f\k\s/\eu kK (k)Y ( )|R>

_ Pe—ifwg d3kK(k)Yk(u)G)(e“—|k\/A)|

R), (4.21)
where

Y
() A Jinjrya

due™g(u). (4.22)

Evaluating the length of this cMERA-like path using the
Fubini-Study metric gives

8 0 u
Loviera = \/77/:A5Vol / dulg(u)|e®. (4.23)
So the length of the cMERA-like path is
/873 VoIA3
chERA = T (424)

One interesting feature of this construction is that one
can see by comparing with (3.134) that at finite cutoff, the
supposedly minimal complexity found in (3.134) is higher
than the one found here. This is because the target states in
both cases reach the true ground sate only at infinite cutoff,
and it is not meaningful to compare the lengths to the two
target states (which are distinct at finite cutoff). We present
an example in 1 4+ 1 dimensions that clarifies and illustrates
this type of cutoff dependence in Appendix F.

V. FUTURE DIRECTIONS AND SPECULATIONS

In this paper, we have calculated various natural notions
of complexity in the space of unitary circuits for free
fermionic quantum field theories. It seems possible that
these results will be of some use in understanding the
holographic significance of complexity (if any). We
will conclude in this section by listing various future
directions beyond the ones we briefly touched upon in
the Introduction.

One of the questions that might be of interest is to
understand the physical content hiding behind a cutoff
dependent quantity like complexity. We have discussed the
question of ambiguities that arise due to the cutoff in the
target states and in the path. It is an interesting questions
what IR sensible physical quantities we can extract from
these without knowing the full UV completion of these
theories. There are some parallels here to the case of
entanglement entropy. Entanglement entropy is also not an
observable in the conventional sense like complexity, but it

1841

04
03[

0.2

1B+1

oaf
0.3 ;
0.2 :*
0.1 :*

k

2 4 6 8 10

FIG. 1. The |f,] of first plot is for the geodesic path and the
second plot is for the cMERA path. In both cases the target state
is the cMERA target state. The above figure shows the plots of
|B+| vs k for A =10 and m = 1 for the values of 6 = 0.2, 0.4,
0.6, 0.8, 1.0, increasing the peak of the curve signifies increasing

o. We see that while the cMERA path only acts on momenta

% < o, the geodesic path alters | | for all the different momenta.
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does capture interesting physical information that is sen-
sible in the IR, even though it is UV divergent [9]. It is
tempting to also speculate whether supersymmetric theories
with their better defined UV behavior lead to any special
simplifications when calculating these quantities. But note
that such simplifications do not seem to happen for
entanglement entropy.

Two obvious interesting directions from a holographic
perspective is to introduce gauge invariances and inter-
actions. Perturbatively adding interactions seems reason-
ably straightforward, but ultimately for holographic
purposes, we would like to get to a strongly coupled
(conformal) gauge theory where we will probably need new
ideas. The question of gauge invariance on the other hand
seems like one where substantial progress might not be too
hard to make: perhaps an approach along the lines of [10]
which uses Wilson line based variables to define entangle-
ment entropy might be useful here as well for non-Abelian
gauge theories. In the case of asymptotically free theories, it
seems reasonable that the UV behavior we find here for
complexity will capture some of the relevant physics there
as well. At least in an appropriate free theory limit, it seems
plausible that the free field approach we have used might
also work for gauge theories once one takes care of ghost
modes as well. A discussion of complexity in Abelian
gauge theories was done in [11].

A simple situation which is quite interesting concep-
tually, and is a natural generalization of the work we have
done in this paper, is to consider perturbative (bosonic and
super) string theory on the world sheet. Unlike in the case
of entanglement entropy where target space issues com-
plicate some of the questions [12], at least in the free limit,
the circuit complexity of perturbative string theory should
be conceptually easier to characterize and compute. This is
because the reference states and target states can be
understood purely within the world sheet theory as long
as one makes sure that the central charge is zero. Some
work along this direction will be reported elsewhere.

One thing we have ignored in this paper is the question
of penalty factors for directions in circuit space [4] and the
possibility of more general Finsler/non-Riemannian met-
rics. At the moment, it is not clear to us what metrics are
more natural than others, so we have restricted our attention
to simple Riemannian choices. A related question that
clearly needs a better understanding is the question of what
qualifies as a natural choice of interesting gates when
defining complexity. We have used some natural choices
suggested by the problem itself in the discrete and
continuum cases, but it will be nice to find a canonical
way to choose these gates.

We had two motivations for writing this paper. One was
to understand complexity in quantum field theory as a
prerequisite for understanding holographic complexity [1].
A second reason was the recent emergence of a type of
strongly coupled fermionic theories called SYK (and

related) models which have a controllable large-N expan-
sion. In particular, one possible case where a strongly
coupled gauge theory could be solvable is in the context of
the so-called SYK-like tensor models [13]. These theories
are not field theories, but they offer the possibility of exact
solvability [14], and therefore it might be possible to
calculate complexity for them exactly. Between the insights
one can get from free fermionic field theories we discussed
here, and these strongly coupled gauged fermionic (and
possibly holographic) quantum mechanics, it will be
interesting to see if one can make any headway into an
understanding of complexity in strongly coupled holo-
graphic gauge theories.
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Note added.—After this result was obtained by us (but
before our preprint appeared on the arXiv), a paper [15]
appeared on the arXiv which considers discretized complex-
ity for Dirac fermions. Even though we work with Majorana
spinors and they seem to be using Dirac, it is reasonable for
the results to be similar: we present concrete arguments why
this is so (but in the continuum case), in Sec. III. One of our

results for the discrete case (2.17) can be rewritten as

-1 1 )
cos 5+ X
2 Vet

Eq. (73) in [15]. See also the related earlier work [16].

which we suspect is the same as

APPENDIX A: OSCILLATOR CONVENTIONS

We review some elementary facts to establish notation
(as well as to set up a dictionary to go between notations).

The phase space of the bosonic simple harmonic
oscillator is comprised of two real variables x and p.
The number of degrees of freedom can be defined as half of
the dimensionality of the phase space, and so the bosonic
oscillator has exactly 1 degree of freedom. By combining
the two phase space variables one defines the (complex,
aka non-Hermitian) creation and annihilation operators a
and a,

@ . D ¥ w . P
a=/=x+1 s a"' = /=x—1 s Al
\/g V2w \/g V2w (A1)
which satisfy the standard commutation relations
[a,a’] =1, (A2)

as a result of the canonical commutator, [x, p|] = i. In terms
of these the oscillator Hamiltonian can be written as
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H= % (p* + 0’x*) = w(a'a +1/2). (A3)

We could have absorbed the /@’s in the definition of a, a
above into the x and p, without changing the discussion.

The factor of v/2 in the definition can be absorbed only by
introducing a compensating factor on (say) the right-hand
side of the canonical commutator: it changes the symplectic
structure.

By analogy, the phase space of the simple fermionic
oscillator will contain two real (but now Grassmann)
variables y; and y,. The number of degrees of freedom
as given by half the phase space dimensionality is then 1.
We define linear combinations of them which are again
non-Hermitian:

1 1
b=— @y —iyy), b =—(w +iy,). (A4
7 (w1 — iy) ﬁ(wl wa).  (A4)
We want them to satisfy the anticommutator
{b,b"} =1. (A5)

This is accomplished by the canonical anticommutator
(note that there is no i on the right-hand side):

{llflw l//j} = 51‘,/‘, (A6)

The Hamiltonian can be taken again in analogy with the
bosonic case

H = —ioyy, = o(b'h —1/2), (A7)

where the zero point constant now has (famously) the
opposite sign.

A significant distinction between the fermionic and
bosonic oscillators for our purposes is that for bosonic
oscillators a scaling of the form

X = Ax, p—A"'p (A8)

for 2 € C — {0} preserves the commutation relations. Such
a scaling is not possible in the fermionic case if one wants
to preserve the anticommutation relations. This operational
fact is at the basis of our observation that we could not
construct a reference state that depended on some arbitrary
scale M (like it was possible for bosons in [5,7]) when
dealing with fermions. It seems possible that this fact is of
some deep significance, even outside the context of
complexity, though we are not aware of a systematic
exploration of it.

APPENDIX B: BOGOLIUBOV-VALATIN
TRANSFORMATIONS FOR FERMIONS

Bogoliubov-Valatin (B-V) transformations'? preserve
the anticommutation relations while diagonalizing the
Hamiltonian. Consider the quadratic Hamiltonian for
some n > 1:

1
H= Zal, Lbjl+5 y,,b*bw yibibj, (B1)

where b; and bj. are the annihilation and creation operators
respectively and follow the anticommutation relations. To
ensure that the Hamiltonian is Hermitian, the ; ; and y; ;
must satisfy

ajj = a;i Vij Vji (B2)
Now, (B1) can be written as
1
H = WMy, (B3)
where ¥ and W' are
lp—[ b } Y = {b* bT} (B4)
Leh” a
and b, (b")T are column vectors of size n:
by b}
b, b}
b= "' = (B5)
b, b}
The matrix M has the form
a v
M= [ﬂ _ar}. (B6)

Our goal is to diagonalize the Hamiltonian and identify the
normal modes, while preserving the anticommutators. This
is accomplished by the B-V transformations 7"

Y =T (B7)

Here, @ is the column matrix of normal modes:

We will only discuss the fermionic case here, an analogous
discussion can be made for bosons as well, see [17].
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¢ L;H (B8)
with
1 i
P b, (YT = b} (B9)
5, i

To do the diagonalization, T must satisfy
D =T'MT, (B10)

where D is the diagonal matrix of normal mode frequen-
cies. This is immediate from

1 | - 1 .
H:E‘I‘"'M‘P:EGD'T1MT<I>:§(D‘DQ (B11)
A general linear transformation is of the form
_AF 5
b; —A,-jbj+B,-jbj (B12)
which can be written in the matrix form
b A B b
o) =lo allgy) @
@] e Al L@
This means that T looks like
A B
T = . (B14)
B* A*

Using the above explicit form of 7, a direct calculation
shows that the condition for 7 to unitary is identical to the
condition that the anticommutators are preserved under
(B13). It is useful when doing this calculation to remember
manipulations like the following: for column vectors x and
y if x = Ay, i.e., x; = A;;y;, then

x; = (Ay); = (yTAT)j = )’:'FA:,‘ = y,TAj,- = A;iij (B15)
and therefore, (x")7 = A*(y")”. Note that the transposition
in this last equation is necessary because we want to
interpret it as a column vector equation, as in the second
definition in (B5).

In conclusion, a B-V transformation for fermions is a
unitary matrix 7" of the form (B14), ghich can diagonalize
the Hamiltonian [as captured by (B10)]. The crucial point is
that any unitary matrix that does the job of diagonalization

does not qualify as a B-V matrix,"” it has to be of the
form (B14).

APPENDIX C: BOGOLIUBOV-VALATIN
VS DIRAC MODES

The spinor ¥(x) was Fourier transformed in Sec. IIl A as

dk .
—=Y(k)e™.
A Y(K)

A more standard basis is to expand in the basis of Dirac
modes,

¥(x) = (C1)

C[dk 1
) V2z\2E

where a;, b, are the annihilation operators of the ground
state and u;, and v are the spinors satisfying the equation

P(x) (aguy + bik”—k)eikxv (C2)

((+m)uy,=0 and (K—m)v, =0 (C3)
with the normalization
iu=2m and v = —-2m. (C4)

These can be explicitly calculated to be

Comparing (C1) and (C2) we get

lP1(k) B 1 ;
<‘P2(k)> NGy (@i +bLyv_y) (C6)
from which
ar = A1 (k) + B W1 (k)
bik = _Bk\Pl (k) + Aklpz(k) (C7)

follows, with the A; and B, given in Sec. IIl A. It is clear
from this that the ground state obtained there via a
Bogoliubov-Valatin transformation in the main body of
the paper is just the usual ground state (as it should be).

We have phrased this discussion in 1 4 1 dimensions,
but an entirely similar discussion holds in higher dimen-
sions as well. The only difference is that in higher
dimensions (say 3 4 1d) the Dirac u#, v modes are not
uniquely fixed (ie., the # and v come with an index as is
familiar in 3 + 1d where the index has two values), and so

BNote that the Hamiltonian being Hermitian, it can always be
diagonalized by a unitary.
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there are some more arbitrary choices that need to be made
in the choice of their specific form.

APPENDIX D: GEODESICS ON CP!

The metric we derived in Sec. III C is the Fubini-Study
metric on CP':

B

ds’> = — """ do?,
(1+18:7)

(D1)

. d . . .
where . is %+, Since is a complex variable, we can
+ do +

write f, = x + iy, to bring the metric to a real form:"*

dx? + dy?

ds? =— -~
s (1+x%+y%)?

(D2)

The geodesics on this metric satisfy the usual Euler-
Lagrange equations

JZ a d /id y
£ e o, (D3)
do " do do
where x* = (x(o), y(0)). For the straight line path given in
(3.64), p., takes the form
p. = —itanrio. (D4)

So we get x =0, y = —tan r;o. This can be immediately
checked to satisfy the above geodesic equation.

Now for alternate path generated by B(k), the form of .,
is given in (3.58):

i sin ry sin %

pi =

 icOSZ% —cos ry sinZe’ (D3)
2 k 2
This gives

sin 7 cos rsin
2

. P 7o
Sin 7 S1n > Ccos P
2

2 zo
2

x =

cos?rsin® %2 + cos® 22 cos

2 rsin? 22 + cos? 2’

2
(Do)

Plugging this into the left-hand side of the geodesic
equation above, we find that the equation is not satisfied.

We see that the straight line path generated by squeezing
operator K (k) is the geodesic of the CP! metric but the path
taken by B(k) is not.

APPENDIX E: SO(8)

In this Appendix, we consider the massive 3 + 1-
dimensional fermions discussed in the main text and

"Said another way, manifesting the complex structure of the
metric is not necessary to answer metric questions.

consider a natural, yet more general class of generators
that can be used as the primitive gates. The squeezing
operator we constructed in the main body of the paper is a
specific linear combination of these generators and can be
viewed as a restricted class of paths.

The basic observation is that the most general (quadratic)
generators that we can construct at each k from the creation
and annihilation operators are built from

T

bib

i

bibj,  blb;, (E1)
for i, j=1, 2, 3, 4. Using the antisymmetry property,
bib} = —bib] and b;b; = —b;b; for i#j and bb; =
b/b! =0, we can count that there are 6+ 6 + 16 = 28
total generators. This is a strong suggestion that the algebra
of these generators forms an SO(8) algebra, which also has
the same number of generators.
To explicitly see the algebra, all one has to do is define
Tyiy = bi+b] Ty = i(b; — b}) (E2)
and note that it follows from the anticommutation relations
that the I'’s satisfy the Clifford algebra

{Fa’ Fb} = 25ah (E3)

for SO(8). The generators of SO(8) are then as usual
defined via

i
z“ab = _Z [Faﬂ Fb]’ (E4)

where a, b runs from 1 to 8. X, is an antisymmetric tensor,
which again yields the 28 independent generators of SO(8).
The fact that the I', defined from the b; and blT satisfy the
Clifford algebra guarantees that the generators correspond-
ing to I',I';) are proportional to the identity (when a = b,
else they are zero) and therefore only contribute to a
decoupled phase.

In analogy with the 1 + 1-dimensional case where we
found an SU(2) algebra and an associated CP' geometry
on which it naturally acts, this indicates that the natural
geometry arising from the paths here is an S7 where the
SO(8) acts linearly. It will be interesting to see whether the
squeezing operator we have defined in the text leads to a
geodesic or nongeodesic path when considered as a path in
this geometry. Based on genericity alone, there is no reason
why the squeezing operator path is geodesic, but it will be
nice to (dis)prove this explicitly. The calculation will be the
generalization of the one we did for the SU(2) casein 1 + 1
dimensions, but unlike the three generators there, now we
have 28 generators. So one has to either go for more brute
force than we have been able to muster, or find an alternate
clever way to do this, or a suitable combination of both.
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APPENDIX F: Cutoff Dependence

Notice that in Sec. IV B the A-dependent length of the
cMERA-like path is shorter than that of the straight line
path calculated in Sec. III. This is a result of the fact that at
finite cutoff, the target states do not match and therefore it is
not meaningful to compare them, even though they do
match at infinite cutoff.

Let us define a one parameter family of target states for
the 1 4 1-dimensional Dirac theory, with a cutoff A such
that the target state approaches the ground state of the field
theory in the A — oo limit:

Ay =i [ KOr()(1+aky

|Ta > =e Iki=A |R> (Fl)

where r(k) is given in Eq. (3.11) and @ € R. In the limit

A — oo the coefficient of K (k) in the exponent becomes

r(k) thereby reproducing the ground state of the field
theory.

We will use the same reference state as the one we used
in the main body of the paper and calculate the length of the
minimal path from this reference state to this new target
state. To simplify the integrals we will do this in the m = 0
case. Again using the Fubini-Study metric and following
the by now standard derivation, we get the straight line path
to be the minimal path. The length of this minimal path is

l, = \/VOIASA r(k)? <1 + ai—i)z. (F2)

For m =0
7 2 1,

—cf142 +12% (F3)
= 3a Sa s

where C = 4 /%ZAVOI is the complexity that we calculated

in the text.

It is easy to see that this length can be bigger or even
smaller (e.g., « = —5/3) than the complexity C, depending
on the value of a. What is happening here is that the cutoff
dependence in the definition of the target state is making
the comparison between path lengths at finite cutoff
meaningless between states that are distinct at finite cutoff.
This is what is manifest in Sec. IV B. There also the target
states were different and so we do not expect the cMERA-
like lengths to be directly comparable to the complexity at
finite cut off. In Sec. IV A it turned out that cMERA length
was longer than the complexity and in Sec. IV B it is the
opposite.

This is a demonstration of the fact that UV sensitive
quantities are not stable under change of cutoff. It is
interesting to ask what kind of information one can extract

from a UV sensitive quantity like complexity: note that
entanglement entropy is also typically UV divergent, but
its subleading behavior is proportional to the area. So it
will be interesting to understand what kind of UV-
insensitive information one can extract from quantities
like complexity.

APPENDIX G: COMPLEXITIES AND CIRCUIT
LENGTHS: SELECTED SUMMARY

1. Dirac complexity in 1+1 dimensions

The following is a real quantity:

A? A
= -"vol log< + l)tan‘1 (—>
2 m
1 A
——mVol| —log(16)tan™! [ —
3 mvo < og(16)tan <m>

_ iLi2 (_e—Zitan’1 &) ) + iLiZ (_eZitan’l (%)))

1 A\ 2
+—AVol <tan‘1 <) >
2 m

which gives in the large A expansion

2
c? :%Vol <A+47mlog (27’”> —4—m+(’)(1/A)> (G2)

2. Circuit length with the B generator
in 1+1 dimensions

2 VA? Z-A
c? = <f> Vol <A +Zlog <—+ “ )) (G3)
2 2 VAL +m? + A
which gives in the large A expansion

c? —£V01<A+mlog(zA> +(’)(1/A)) (G4)

3. Massive Dirac complexity in 3 +1 dimensions

The following is again a real quantity:
2m

m—iA

2m 5

—; A) +m )

m*(12A + in’m)

1
C? = RHVOI{ 12im3Li, (1 -

—24m <A2 +2m?log (
m

A
xtan ™| ——— | +
<\/A2 +m? + m>

+48(A3 +im?) (tan—l <m» 2} (G5)
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and it yields in the large A expansion

Vs 6m 12m? am3 A 2m?
C? ="Vol[ A} ——A\? A+ —Ilog|— ) ——=—+ O(1/A) |. G6
6 O( T +JZ'2 +ﬂ0g(2m> 37z+ (/)) (G6)
4. cMERA circuit length in 1+ 1 dimensions
For the massive case, the explicit expression for the cMERA circuit length is
Vol iA A
LovERA = 1/—0 2VAcor () + 3/im  tanh™! \/l— —tan~! \/l— (G7)
6 A m m
and it has the large A form
2 7’ JamA O9m 8m
chERA:gVOI A-3 2mA+7—|—7+(’)(1/A) . (G8)
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