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We define and calculate versions of complexity for free fermionic quantum field theories in 1þ 1 and
3þ 1 dimensions, adopting Nielsen’s geodesic perspective in the space of circuits. We do this both by
discretizing and identifying appropriate classes of Bogoliubov-Valatin transformations, and also directly in
the continuum by defining squeezing operators and their generalizations. As a closely related problem, we
consider cMERA tensor networks for fermions: viewing them as paths in circuit space, we compute their
path lengths. Certain ambiguities that arise in some of these results because of cutoff dependence are
discussed.
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I. INTRODUCTION

The formation of black holes via gravitational collapse in
anti–de Sitter space is expected to be dual to thermalization
in the dual conformal field theory. This leads one to think of
a thermal Conformal Field Theory (CFT) state as a
gravitational configuration that can be approximated by
an eternal black hole. If this is so, one needs to have a CFT
explanation for the fact that the Einstein-Rosen bridge (or
wormhole) that shows up inside the horizon of an eternal
black hole is a time-dependent configuration, and that its
“size” increases towards the future. It has recently been
proposed by Susskind and others [1] that the quantity one
should compare against the size of the Einstein-Rosen
wormhole is the “complexity” of the CFT state: the idea
being that the complexity of a state can increase even after
it has thermalized in some appropriate sense.
The trouble however is that the definition of complexity

is often very murky. Loosely it captures the number of gates
required to prepare a state. One way to make things a bit
more concrete is to consider “circuit complexity,” where
one assigns complexity to quantum states as follows. First
one picks a reference state and a set of unitary operators that
are called gates. Then the complexity of any particular state
is captured by the minimal number of gates that one must
act with on the reference state in order to get to that
particular state. This is believed to be a fairly reasonable

definition of complexity, even though clearly it involves
some arbitrary choices: what is a good reference state?
What are good choices for the gate unitaries?….1 For our
purposes in this paper, it is worth noting that this mini-
mization of the number of gates can be reinterpreted à la
Nielsen as a geodesic length minimization in the space of
circuits [3].
To make a sensible holographic definition of complexity

from the CFT, one needs to generalize these constructions
in three substantive ways. First, we need a definition that
generalizes these issues to the setting of quantum field
theory rather than in the setting of qubits and 0þ 1-
dimensional quantum mechanics, as is usual. Second, since
at least in known concrete examples of holography the
boundary theory has a gauge invariance, it seems necessary
that we will need to define complexity in the context of
gauge theories, in particular non-Abelian gauge theories.
Third, perhaps after some field theory constructions have
been undertaken for the free theory, one would need to
come up with a way to make such a definition viable, for
strongly coupled theories. After all, weakly coupled gravi-
tational physics is captured by a strongly coupled field
theory.
Recently, two related but different attempts at the first of

these problems was made in the context of scalar field
theories in [4,5]. In this paper, we will consider both these
approaches and adapt and generalize these approaches to
include various classes of fermionic field theories. One of
our motivations for this undertaking is the recent emer-
gence of a class of strongly coupled fermionic gauged
quantum mechanical theories called Sachdev-Ye-Kitaev
(SYK)-like tensor models, as well as their generalizations
to higher dimensions which are bona fide field theories.
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1Note also that this definition is usually implemented in
discrete qubit systems and often with discrete time evolution [2].

PHYSICAL REVIEW D 98, 126001 (2018)

2470-0010=2018=98(12)=126001(28) 126001-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.98.126001&domain=pdf&date_stamp=2018-12-04
https://doi.org/10.1103/PhysRevD.98.126001
https://doi.org/10.1103/PhysRevD.98.126001
https://doi.org/10.1103/PhysRevD.98.126001
https://doi.org/10.1103/PhysRevD.98.126001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Of course, this paper does not deal with neither gauge
theories nor strongly coupled systems: it should be viewed
as a preliminary exploratory attempt. We hope that our
explicit calculations will be useful in shedding some light
on the questions at the intersection of holography and
complexity, and perhaps in sharpening them.
The structure of the calculation in [4] was to discretize

spacetime and then work effectively with quantum
mechanical wave functions for the discretized oscillators.
By working with a class of Gaussian wave functions that
interpolated between the decoupled reference state and the
true ground state (chosen as the target state) they were able
to define complexity for the state by minimizing the
Nielsen-like path length in the space of unitaries that did
such an interpolation. Since we are working with fermions,
an analogue of the Gaussian wave function will involve
Grassmann variables and will be too awkward for many
purposes. But we will see that it is easy enough to work
directly with (finite dimensional) fermionic Hilbert spaces
that contain the reference and target states, and that they
lead to natural notions of circuit length minimization. The
slight subtlety due to fermion doubling in the lattice will not
affect the main points we make. As a result we find an
expression for the complexity, which is controlled by the
formula in (2.17), and which shows up in various guises in
the various cases we consider. This fermionic form is
distinct from the form of complexity in [4], where the
analogous expression is a log instead of our arctan.
On the continuum side, we will find that a construction

entirely parallel to that of [5] for scalars is possible for
Dirac fermions in 1þ 1 dimensions. The strategy of using
squeezing operators and their generalizations as entangler
operators turns out to be a viable strategy for fermions as
well. Our analysis of the 1þ 1-dimensional continuum
Dirac case works entirely parallel to the results for the
scalar in [5]. Instead of the metric on the hyperbolic plane,
we discover the metric on a CP1 sphere, and instead of an
SUð1; 1Þ isometry, we find an SUð2Þ. We further generalize
our approach to Majorana theory in 1þ 1 dimensions, as
well as to massive and massless Dirac theories in 3þ 1
dimensions. In all these cases we are able to identify
convenient squeezing operators that take us to natural target
states that approximate the ground state.
In the final section before the conclusion, we discuss the

cMERA tensor network for fermions, as an alternate path in
the space of unitaries. We first do this for 1þ 1 dimensions
and then move on to 3þ 1 dimensions (where we introduce
a new cMERA-like path), both in the massive and massless
cases. In both cases we find that as the cutoff tends to
infinity, the state tends to the ground state. Since when the
cutoff is finite the target state for the cMERA is not quite the
target state of the previous paragraph (even though they
both tend to the ground state as Λ → ∞), it is not possible
to meaningfully compare the lengths of the paths at finite
cutoff by looking at their leading divergences. This leads us

to a discussion of the meaning of a cutoff dependent
quantity like the complexity, and to speculations on the
possibility that subleading terms in complexity could be of
physical interest, in analogy with (holographic) entangle-
ment entropy. In particular, these UV divergences could be
reinterpreted as AdS IR divergences in a holographic
context. It must be born in mind here that we are dealing
with free quantum field theories in our work.
In a concluding section we make various speculative

comments. In particular, we discuss the possibility of doing
similar calculations for gauge theories and perturbative
string theory. Especially since the world sheet theory is free
after gauge fixing, the latter is tractable and is currently
under investigation. We also briefly allude to some issues
which were suppressed in the main text, the choice of
metric and penalty factors in Nielsen’s geometric definition
among others. Various Appendices contain some review
material as well as technical details.

II. LATTICE OF FERMIONIC OSCILLATORS

Lets us start with the Dirac Lagrangian in dþ 1
spacetime dimensions:

L ¼ Ψ̄ðiγ:∂ −mÞΨ: ð2:1Þ
The conjugate momentum is

Π ¼ ∂L
∂ð∂0ΨÞ

¼ iΨ† ð2:2Þ

and the Dirac Hamiltonian is

H ¼
Z

ddx½−iΨ̄γi∂iΨþmΨ̄Ψ�: ð2:3Þ

We regulate it by placing it on a lattice with lattice spacing δ
and the Hamiltonian becomes

H ¼
X
n⃗

δd
�
−iΨ̄ðn⃗Þ

X
i

γi
�
Ψðn⃗þ x̂iÞ −Ψðn⃗Þ

δ

�

þmΨ̄ðn⃗ÞΨðn⃗Þ
�
: ð2:4Þ

The xi here are “unit”2 vectors along the axes of the
(d-dimensional) lattice. The summation over i is only over
the spatial directions, and therefore range over d values.
By introducing ω≡ δdm and Ω≡ δd−1 we can bring it to
the formX
n⃗

h
−iΩΨ̄ðn⃗Þ

X
i

γi(Ψðn⃗þ x̂iÞ −Ψðn⃗Þ)þ ωΨ̄ðn⃗ÞΨðn⃗Þ
i
:

ð2:5Þ

2The quotes around the unit emphasize that the length of the
vector is the lattice spacing.
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Note that this is a system of coupled fermionic oscillators,
but since the coupling is quadratic, we can solve the system
completely by identifying the normal modes. We will see
various versions of this general idea throughout this paper.

A. A toy model

The above form of the Hamiltonian suggests that we
should study a set of coupled oscillators of the form

H ¼ ωðΨ̄1Ψ1 þ Ψ̄2Ψ2Þ þ iΩΨ̄1ρ
1ðΨ1 −Ψ2Þ: ð2:6Þ

The basic idea is this: we wish to consider the simplest
oscillator system which has a coupling analogous to the
discretization (2.5) of the field theory. A candidate is the
system with two lattice points parallel to the work for
scalars considered in [4]. But if we work with dþ 1-
dimensional Dirac fermions, the coupling term will force us
to consider the d spatial directions. We wish to avoid this
technical complication, and therefore in writing the above,
we have restricted ourselves to a 1þ 1-dimensional theory.
After we gain some intuition by working with this system,
we will consider more general cases. In particular, we will
see that the above Hamiltonian (2.6), when interpreted as a
theory for Majorana fermions, is essentially a precise
parallel to the bosonic two oscillator case discussed in
[4]. We have adopted the notation ρa for gamma matrices in
two dimensions in this subsection.
In two dimensions, gamma matrices allow a purely

imaginary representation in which the spinors can be taken
as Majorana. The gamma matrices take the form

ρ0 ¼
�
0 −i
i 0

�
; ρ1 ¼

�
0 i

i 0

�
: ð2:7Þ

The general Majorana spinor in two dimensions Ψi (here i
is part of the name of the spinor and not a spinor index) can
be written as

Ψi ¼
�
ψ−
i

ψþ
i

�
; ð2:8Þ

where the ψ�
i are real Grassmann variables. This means that

our minimal Hamiltonian (2.6) is made of four real
Majorana fermions and takes the form

H ¼ 2iωðψþ
1 ψ

−
1 þ ψþ

2 ψ
−
2 Þ þ iΩðψþ

1 ψ
þ
2 − ψ−

1ψ
−
2 Þ: ð2:9Þ

Note that the Hamiltonian is real (Hermitian) because the
fermions are Majorana and anticommute. Now we will
rewrite this Hamiltonian in a form that is useful for future
generalizations.3

We will define complex Grassmann variables bi and b†i ,

bi ¼
ψ−
i − iψþ

iffiffiffi
2

p b†i ¼
ψ−
i þ iψþ

iffiffiffi
2

p ; ð2:10Þ

and quantize by imposing the anticommutation relations
fbi; b†jg ¼ δij, see Appendix A for our conventions on
fermionic oscillators. The Hamiltonian takes the form

H ¼ ω½b†1; b1� þ ω½b†2; b2� − iΩðb†1b†2 þ b1b2Þ: ð2:11Þ
To bring this to the diagonalized normal mode form, we use
the standard technology of Bogoliubov-Valatin (B-V)
transformations (see Appendix B for a self-contained
review). The result is

H ¼ λ½b̃†1; b̃1� þ λ½b̃†2; b̃2�; ð2:12Þ
where

λ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2 þΩ2

p
: ð2:13Þ

The b’s and b̃’s are related by

b̃1 ¼ ηb2 þ iρb†1; b̃2 ¼ ηb1 − iρb†2; ð2:14Þ
where ρ and η are given in Eq. (2.16).

B. Complexity of the toy model ground state

A B-V transformation matrix that does the job of
diagonalizing the Hamiltonian in the previous section is

T ¼

2
6664

0 η iρ 0

η 0 0 −iρ
−iρ 0 0 η

0 iρ η 0

3
7775; ð2:15Þ

where

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
−

ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ω2 þ Ω2

p
s

; η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ω2 þΩ2
p

s
:

ð2:16Þ
This form suggests that we define

r≡ 1

2
tan−1

�
Ω
2ω

�
; ð2:17Þ

so that

ρ ¼ sin r; and η ¼ cos r: ð2:18Þ
To define complexity, we need to define a reference state

from which we reach the target states via appropriate
unitary transformations. A natural reference state is to
choose j00i, defined via

bij00i ¼ 0; for i ¼ 1; 2; ð2:19Þ
3Note that because the fermions are Majorana, we can use

Hermitian conjugation and transposition interchangeably.
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and the target state which is the ground state of our theory is
defined by

b̃ij0̃ 0̃i ¼ 0; for i ¼ 1; 2: ð2:20Þ

From the B-V matrix, it follows that

j0̃ 0̃i ¼ cos rj00i þ i sin rj11i: ð2:21Þ

To go from the reference state to the target state by a unitary
transformation, we first write the states in matrix form with
the basis jiji. The unitary transformation is a 4 × 4 unitary
matrix:

2
6664
cos r

0

0

i sin r

3
7775 ¼ Uð4×4Þ

2
6664
1

0

0

0

3
7775: ð2:22Þ

Notice that the middle two components of the state vector
are zero for both reference and target state. If these two
components are changed along the path then we need to
bring them back down to zero, when we get to the target
state. So it stands to reason that (for appropriately defined
Euclidean notions of distance in the space of unitaries) this
would only increase the length, so we restrict ourselves to
the path which only changes the first and fourth compo-
nents. These transformations clearly fall inside a Uð2Þ
group:

�
cos r

i sin r

�
¼ Uð2×2Þ

�
1

0

�
: ð2:23Þ

Now Uð2×2Þ is a 2 × 2 unitary matrix. After extracting a
Uð1Þ phase eiy and writing the remaining SUð2Þ as an S3,
we can parametrize a general Uð2Þ matrix as

U ¼
�
eiy cos ρ cos τ þ ieiy sin θ sin ρ eiy cos θ sin ρþ ieiy cos ρ sin τ

ieiy cos ρ sin τ − eiy cos θ sin ρ eiy cos ρ cos τ − ieiy sin θ sin ρ

�
: ð2:24Þ

The ranges of the various coordinates are4

y; θ; τ ∈ ½0; 2πÞ; and ρ ∈ ½0; π=2�: ð2:25Þ
For finite value of the parameter along the path, the state

will be

jΨðσÞi ¼ UðσÞjRi; ð2:26Þ
where jRi is the reference state. This means that in the
explicit matrix above, we treat ρ, τ, θ, y as functions of σ.
We can view this unitary as a path-ordered exponential

UðσÞ ¼ P⃖e
R

σ

0
YIðsÞOI ð2:27Þ

if we write5

YIðsÞOI ¼ (∂sUðsÞ)U−1ðsÞ: ð2:28Þ
Here the OI are the generators of Uð2Þ, and they can be
taken as

O0 ¼
�
i 0

0 i

�
; O1 ¼

�
0 i

i 0

�
;

O2 ¼
�

0 1

−1 0

�
; O3 ¼

�
i 0

0 −i

�
: ð2:29Þ

Using

TrðOaObÞ ¼ −2δab; ð2:30Þ

we can extract the velocities via

YIðsÞ ¼ −
1

2
Tr½(∂sUðsÞ)(U−1ðsÞOI)�: ð2:31Þ

Using these, we define the length of the path (using a
Euclidean Metric) as

D½u� ¼
Z

1

0

ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δIJYIðsÞYJðsÞ

q
: ð2:32Þ

The path taken by the states will be a curve in y, ρ, τ, θ
coordinates. The YI’s will be linear in derivatives of them.
Explicitly calculating this metric, we find the natural metric
on Uð1Þ × SUð2Þ:

ds2 ¼ sin2ðρÞdθ2 þ dρ2 þ cos2ðρÞdτ2 þ dy2: ð2:33Þ

4We will work with y ∈ ½−π; πÞ when we want to go across the
y ¼ 0 point without changing charts.

5This equation is the analogue of the time-dependent Schro-
dinger equation, written in a form that is usually written when one
solves it via time-ordered exponentials. The left-hand side is the
analogue of the Hamiltonian. So the solution, (2.27), can be
directly exported here by analogy. To write (2.28), we merely
note that since the right-hand side is made from a general Uð2Þ
matrix, the left-hand side must be writable in terms of the
generators of Uð2Þ whose coefficients we call YI .
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Extremizing this length gives us the geodesic equations

y00 ¼ 0

ρ00 − sin ρ cos ρθ02 þ sin ρ cos ρτ02 ¼ 0

τ00 − 2 tan ρρ0τ0 ¼ 0

θ00 þ 2 cot ρθ0ρ0 ¼ 0; ð2:34Þ
where the derivatives are with respect to the curve param-
eter. Looking at the metric it is evident that ∂

∂y,
∂
∂θ,

∂
∂τ are the

killing vectors. Using these one sees that

y0 ¼ const; cos2ρτ0 ¼ const; sin2ρθ0 ¼ const

ð2:35Þ
are the constants of motion. It is easy to check that this
same result can be obtained by directly integrating the
relevant equations of motion.
Now we can use the boundary conditions to solve the

system. Demanding

Uðs ¼ 0Þ ¼ I ð2:36Þ
immediately yields

(yðs ¼ 0Þ; ρðs ¼ 0Þ; τðs ¼ 0Þ; θðs ¼ 0Þ) ¼ ð0; 0; 0; θ0Þ:
ð2:37Þ

Furthermore, we know that

jψTi ¼ Uðs ¼ 1ÞjRi: ð2:38Þ
Here jψTi is the target state (and our target state is the
ground state). A 2 × 2 unitary matrix that takes the
reference state to the target state is of the general form

Uðs ¼ 1Þ ¼
�
cos r i sin re−iϕ

i sin r cos re−iϕ

�

¼ e−iϕ=2
�
cos reiϕ=2 i sin re−iϕ=2

i sin reiϕ=2 cos re−iϕ=2

�
ð2:39Þ

for some arbitrary ϕ ∈ ½−π; πÞ. This translates to the end
point boundary condition in terms of coordinates

(yðs ¼ 1Þ; ρðs ¼ 1Þ; τðs ¼ 1Þ; θðs ¼ 1Þ) ¼ ðy1; ρ1; τ1; θ1Þ;
ð2:40Þ

where

y1 ¼ −ϕ=2; τ1 ¼ r; ρ1 ¼ ϕ=2; θ1 ¼ π=2 − r:

ð2:41Þ

Because the metric is Euclidean, one can convince oneself
that the distance with the above initial and final boundary

conditions is globally minimized for ϕ ¼ 0,6 and the
corresponding geodesic is given by

yðsÞ ¼ 0; ρðsÞ ¼ 0;

τðsÞ ¼ τ1s; θðsÞ ¼ unfixed: ð2:42Þ

The length of this minimum path can be directly calculated
and the result is

D½U� ¼
Z

1

0

dsτ1 ¼ r ¼ 1

2
tan−1

�
Ω
2ω

�
: ð2:43Þ

This minimum length is the complexity of the target state.
In the analogous discussion in [4], the generators (theMI

in their notation) used were nonstandard and that resulted in
a more complicated form of the metric and resulting
geodesic equations. To solve the geodesic equations, more
Killing vectors were identified. Here on the other hand, we
explicitly see the S3 ×R form of the metric, and we only
needed to use the obvious Killing vectors to find the
explicit solution.

C. Squeezing operators as gates

In this section, we will present an alternate approach for
discussing complexity, which has a natural role in the
continuum case. We will define an entangling operator K,
which is also known as squeezing operator in some
contexts:

K ¼ b†2b
†
1 − b2b1 ¼ b̃†1b̃

†
2 − b̃1 b̃2 : ð2:44Þ

The first equality can be viewed as the definition of the
operator, the second equality is the result of a calculation,
where we have used the definition of the tilde’d operators
via the B-V transformation from the previous subsection.
It is also useful to define a unitary

U ¼ e−iKr; ð2:45Þ
where r ∈ R. The target state j0̃ 0̃i can be reached from the
reference state j00i via

j0̃ 0̃i ¼ Uj00i ð2:46Þ
for some appropriately chosen r. It is easy to see this via a
similarity transformation of b̃i using U that gives bi:

U†b̃1U ¼ eiKrb̃1e−iKr

¼ b̃1 − irb̃†2 −
r2

2
b̃1 þ

ir3

3!
b̃†2 þ

1

4!
r4b̃1 � � �

¼ b̃1 cos r − ib̃†2 sin r: ð2:47Þ

6Note that when this happens, θ is no longer determinate,
including at the boundaries.
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SettingU†b̃1U ¼ b2, we see that the transformationU does
indeed take the reference state to the target state that we
have worked with in the previous sections if we take the
value of r to be what we found before.
Now let us consider an arbitrary path generated by the

squeezing operator which takes the reference state to some
more general target state:

jΨðσÞi ¼ UðσÞj00i ¼ e−iKYðσÞj00i; ð2:48Þ

such that

Yð0Þ ¼ 0 ⇒ jΨð0Þi ¼ j00i
Yð1Þ ¼ r ⇒ jΨð1Þi ¼ j0̃ 0̃i: ð2:49Þ

We evaluate the length of this path using the Fubini-Study
(FS) metric and minimizing it to get the complexity. In
other words, the allowed circuits we are considering are the
ones generated by K.
The Fubini-Study metric7 is

dsFSðσÞ ¼ dσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j∂σjΨðσÞij2 − jhΨðσÞj∂σjΨðσÞij2

q
: ð2:50Þ

The circuit length of a path traced by intermediate states
jΨðσÞi ¼ UðσÞj00i is

lðjΨðσÞiÞ ¼
Z

σf

σi

dsFSðσÞ: ð2:51Þ

The complexity is the length of minimal path:

C ¼ min
fYðsÞg

lðdsFSÞ ¼ min
fYðσÞg

Z
1

0

dσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂σYðσÞÞ2

q
: ð2:52Þ

This gives the geodesic to be a straight line path. Under a
simple affine parametrization σ the geodesic is

YðσÞ ¼ σr: ð2:53Þ

The complexity for the target state is the length of this
straight line path

C ¼
Z

1

0

dσ
ffiffiffiffiffiffiffiffi
ðrÞ2

q
¼ r: ð2:54Þ

This matches with the complexity derived in the previous
section. The idea here is that the unitary transformation was
generated by one generator K, the squeezing operator. We
interpret the squeezing operator as creating entanglement
between the two oscillators, and we use this as another

approach to the definition of complexity. In the present
case, we see that the two approaches match.

D. 1 + 1-dimensional Majorana on a lattice

So far we have considered just a pair of fermionic
oscillators, albeit with a coupling that was motivated by
our eventual interest in field theory. Now we will consider
discretized versions of the field theory, and consider full
lattices, with periodic and antiperiodic boundary conditions.
We will work with Majorana fermions for concreteness.
The Hamiltonian of 1þ 1-d Majorana theory in terms

of the complexified variables is (see Sec. III E for a
derivation):

H ¼
Z

dxð−iΨ∂1Ψ − iΨ†∂1Ψ† þm½Ψ†;Ψ�Þ: ð2:55Þ

By placing it on a circular8 lattice with lattice spacing δ, the
Hamiltonian for N oscillators is

H ¼
XN−1

n¼0

δ

�
−iΨn

ðΨnþ1 −ΨnÞ
δ

− iΨ†
n
ðΨ†

nþ1 −Ψ†
nÞ

δ

þm½Ψ†
n;Ψn�

�
: ð2:56Þ

We can quantize by imposing the anticommutation rela-
tions

fΨn;Ψ
†
mg ¼ δnm fΨn;Ψmg ¼ 0 ¼ fΨ†

n;Ψ†
mg: ð2:57Þ

The Hamiltonian will be written as

H ¼
XN−1

n¼0

ðω½Ψ†
n;Ψn� − iðΨnΨnþ1 þ Ψ†

nΨ†
nþ1ÞÞ; ð2:58Þ

where ω ¼ mδ. We will look at the lattice with periodic
(Ramond) and antiperiodic (Neveu-Schwarz) boundary
conditions.

1. Ramond boundary condition

The Ramond boundary condition is imposed by

ΨnþN ¼ Ψn: ð2:59Þ

The discrete Fourier transform for this boundary condition
is

Ψn ¼
1ffiffiffiffi
N

p
XN−1

k¼0

e
2πikn
N Ψk ð2:60Þ

7Note that the Fubini-Study metric is in the Hilbert space,
while the distance we calculated in the previous subsection is in
the space of unitaries.

8We use the word circular to refer to both periodic and
antiperiodic boundary conditions simultaneously.
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and the inverse discrete Fourier transform is

Ψk ¼
1ffiffiffiffi
N

p
XN−1

k¼0

e−
2πikn
N Ψn: ð2:61Þ

From the sum rule of nth roots of unity

δk;−k0 ¼
1

N

XN−1

n¼0

e
2πi
N nðkþk0Þ ð2:62Þ

one can show that the anticommutation relations
translate to

fΨk;Ψ
†
k0 g ¼ δkk0 fΨk;Ψk0g ¼ 0 ¼ fΨ†

k;Ψ
†
k0 g: ð2:63Þ

One can check that the Fourier transformed variables also
satisfy a Ramond-like boundary condition in Fourier space:

ΨkþN ¼ Ψk: ð2:64Þ
Using all of these, the Hamiltonian in terms of the Fourier
transformed variables can be written as

H ¼
XN−1

k¼0

�
ω½Ψ†

k;Ψk� − i

�
ΨkΨ−ke

−2πik
N þ Ψ†

kΨ
†
−ke

2πik
N

��
:

ð2:65Þ
Since the range of k is periodic, we can use Ψ−k ¼ ΨN−k to
bring this to a more convenient form:

H ¼
XN−1

k¼0

�
ω½Ψ†

k;Ψk� − i

�
ΨkΨN−ke

−2πik
N þΨ†

kΨ
†
N−ke

2πik
N

��
:

ð2:66Þ
This form can be directly translated to the normal modes by
an adaptation of our earlier B-V construction. We can see
that the oscillators at k and N − k are getting mixed,
independently from the rest of the oscillators. The ground
state will be the tensor product of the ground state of each
such pair, together with the ground states of the unpaired
oscillators at the boundary. The pairing is different for N
odd and even, so we will do these two cases separately.
The reference state is defined as ΨkjRi ¼ 0 which is the

same thing as ΨnjRi ¼ 0 for n; k ∈ ½0; N − 1�. This state
has no entanglement between any two oscillators on the
lattice.
When N is odd, rewriting the Hamiltonian in the paired

form yields

H ¼ ω½Ψ†
0;Ψ0� þ

XN−1
2

k¼1

�
ω½Ψ†

k;Ψk� þ ω½Ψ†
N−k;ΨN−k�

þ 2 sin
2πk
N

ðΨ†
kΨ

†
N−k −ΨkΨN−kÞ

�
: ð2:67Þ

This can be written as

H ¼
XN−1

2

k¼1

Hk þ ω½Ψ†
0;Ψ0�; ð2:68Þ

where Hk is the Hamiltonian for the two oscillators Ψk and
ΨN−k for k ∈ ½1; N−1

2
�. Defining b1 ¼ Ψk and b2 ¼ ΨN−k

Hk ¼ ω½b†1; b1� þ ω½b†2; b2� þ 2 sin
2πk
N

ðb†1b†2 − b1b2Þ:
ð2:69Þ

After B-V transformation

b̃1 ¼ ρb1 þ ηb†2; b̃2 ¼ ηb†1 − ρb2: ð2:70Þ

Here

ρ ¼ sffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωðω −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ω2

p
Þ þ s2

q ;

η ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωðω −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ω2

p
Þ þ s2

q
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ω2

p ; ð2:71Þ

where s ¼ sin 2πk
N . The ground state is defined by

b̃ij0̃ 0̃i ¼ 0 for i ∈ f1; 2g. Writing

j0̃ 0̃i ¼ αijjiji; ð2:72Þ

where now i; j ∈ ð0; 1Þ, using B-V transformations we can
show that the ground state takes the form

j0̃ 0̃i ¼ α00j00i þ α11j11i ð2:73Þ

with α01 ¼ α10 ¼ 0. Furthermore

ρα00 ¼ ηα11 ð2:74Þ

and

jα200j þ jα211j ¼ 1: ð2:75Þ

So here also the Uð4Þ → Uð2Þ reduction (analogous to the
minimal oscillator toy model) happens. The transformation
from reference state to target state for all N oscillators
together can therefore be viewed as an element of

Uð2Þ⊗N−1
2 : ð2:76Þ

This is a tensor product of N−1
2

factors of Uð2Þ because N−1
2

pairs of oscillators are getting mixed at a time when N is
odd. The complexity for the ground state of the
Hamiltonian in (2.68) is then immediately calculated to be
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C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXðN−1Þ=2

k¼1

ðrkÞ2
vuut ; ð2:77Þ

where

rk ¼ −
1

2
tan−1

�
1

ω
sin

�
2πk
N

��
: ð2:78Þ

Similarly when N is even the Hamiltonian in paired
form is

H ¼ ω½Ψ†
0;Ψ0� þ ω½Ψ†

N
2

;ΨN
2
� þ

XN−2
2

k¼1

Hk; ð2:79Þ

with the Hk here being the same as in the odd case. The
only difference is that in the even case there are N−2

2
pairs

and so the transformation from reference state to target state
for all N oscillators can be taken to be in

Uð2Þ⊗N−2
2 : ð2:80Þ

The complexity for the ground state of the Hamiltonian in
(2.79) is now

C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXðN−2Þ=2

k¼1

ðrkÞ2
vuut ; ð2:81Þ

where rk is the same as in (2.78).

2. Neveu-Schwarz boundary condition

Let us now impose a Neveu-Schwarz boundary con-
dition,

ΨnþN ¼ −Ψn; ð2:82Þ

on our Majorana lattice. The discrete Fourier transform for
this boundary condition is

Ψn ¼
1ffiffiffiffi
N

p
XN−1

k¼0

e
2πinðkþ1

2
Þ

N Ψk ð2:83Þ

and the inverse transform

Ψk ¼
1ffiffiffiffi
N

p
XN−1

n¼0

e
−2πinðkþ1

2
Þ

N Ψn: ð2:84Þ

Although Ψn satisfies the Neveu-Schwarz boundary con-
dition, Ψk satisfies an analogue of the Ramond boundary
condition in Fourier space:

ΨkþN ¼ Ψk: ð2:85Þ

The Hamiltonian takes the form

H¼
XN−1

n¼0

ðω½Ψ†
n;Ψn�−iðΨnΨnþ1þΨ†

nΨ†
nþ1ÞÞ

¼
XN−1

k¼0

ðω½Ψ†
k;Ψk�−iðΨkΨ−k−1e

−2πiðkþ1
2
Þ

N þΨ†
kΨ

†
−k−1e

2πiðkþ1
2
Þ

N ÞÞ:

ð2:86Þ

Using periodicity in k, we can use

Ψ−k−1 ¼ ΨN−k−1 ð2:87Þ

to rewrite the Hamiltonian as

H ¼
XN−1

k¼0

ðω½Ψ†
k;Ψk� − iðΨkΨN−k−1e

−2πiðkþ1
2
Þ

N

þΨ†
kΨ

†
N−k−1e

2πiðkþ1
2
Þ

N ÞÞ: ð2:88Þ

When N is even, the Hamiltonian in the paired form is

H ¼
XN2−1
k¼0

�
ω½Ψ†

k;Ψk� þ ω½Ψ†
N−1−k;ΨN−1−k�

þ 2 sin

�
2π

N

�
kþ 1

2

��
ðΨ†

kΨ
†
N−k−1 − ΨkΨN−k−1Þ

�

≡XN2−1
k¼0

Hk: ð2:89Þ

As in the Ramond case, this can again be interpreted as a
pairwise mixing Hamiltonian, and the corresponding term
of the Hamiltonian is Hk. At each k, defining b1 ¼ Ψk and
b2 ¼ ΨN−1−k (the index k is suppressed in the operators b),

Hk ¼ ω½b†1; b1� þ ω½b†2; b2�

þ 2 sin

�
2π

N

�
kþ 1

2

��
ðb†1b†2 − b1b2Þ: ð2:90Þ

Comparing with the Ramond case, the only difference is
that k there is replaced by kþ 1

2
here. Following a similar

approach one can show here too that the Uð4Þ → Uð2Þ
reduction happens. The transformation from the reference
state to the target state for all N oscillators is in Uð2Þ⊗N

2 .
The complexity for the ground state of the Hamiltonian in
(2.89) is

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN=2−1

k¼0

ðrkÞ2
vuut ; ð2:91Þ

where
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rk ¼ −
1

2
tan−1

�
1

ω
sin

�
2π

N

�
kþ 1

2

���
: ð2:92Þ

Similarly when N is odd the paired form of the
Hamiltonian is

H ¼ ω½Ψ†
N−1
2

;ΨN−1
2
� þ

XN−2
2

k¼0

Hk; ð2:93Þ

with the same Hk as in the even case (for the Neveu-
Schwarz boundary condition). This time there are N−1

2
pairs

and so the transformation from the reference state to the
target state for all N oscillators is in Uð2Þ⊗N−1

2 . The
complexity for the ground state of the Hamiltonian in
(2.93) is

C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXðN−2Þ=2

k¼0

ðrkÞ2
vuut ; ð2:94Þ

where rk is the same as in (2.92).

III. CONTINUUM FIELD THEORY

Everything we did so far was by discretizing spacetime
into a lattice. This was the strategy adopted for the scalar
case in [4], and what we have shown is that a similar
strategy works (modulo minor—for our purposes—subtle-
ties like fermion doubling) for fermions as well. Now we
will work directly in the continuum case following the
corresponding approach for scalars undertaken in [5]. The
idea here is basically a generalization of the squeezing
operator approach we discussed in passing in the lattice
case. We can reach from an unentangled reference state jRi
to the entangled target state jΨi via a unitary transformation

jΨi ¼ Pe
−i
R

σf
σi

GðσÞdσjRi; ð3:1Þ

where in many cases, we will find that the GðσÞ can be
realized via an appropriate squeezing operator, which
creates quantum entanglement below some UV cutoff scale
Λ. Here σ parametrizes our path such that at σ ¼ σi we have
our reference state jRi and at σ ¼ σf we get the target state
jΨi. The path ordering P is not required for commuting
generators GðσÞ, as will often be the case if we manage to
find appropriate squeezing operators. We will begin with
Dirac fermions in 1þ 1 dimensions, which is a standard
context where the cMERA tensor network is discussed
[6,7], with an eye towards our discussions in the next
section.

A. Dirac in 1 + 1 dimensions

We consider the Dirac Hamiltonian in 1þ 1 dimensions
given by

H ¼
Z

dx½−iΨ̄γx∂xΨþmΨ̄Ψ�: ð3:2Þ

Here Ψ ¼ ðΨ1;Ψ2ÞT is the two component complex
fermion and γt ¼ σ3 and γx ¼ iσ2. By a Fourier transform

ΨiðxÞ ¼
Z

dkffiffiffiffiffiffi
2π

p ΨiðkÞeikx

we can write the Hamiltonian as

H ¼
Z

dk½kΨ†
1ðkÞΨ2ðkÞ þ kΨ†

2ðkÞΨ1ðkÞ

þmΨ†
1ðkÞΨ1ðkÞ −mΨ†

2ðkÞΨ2ðkÞ�: ð3:3Þ

The canonical anticommutators in momentum space
become

fΨ1ðkÞ;Ψ†
1ðk0Þg ¼ fΨ2ðkÞ;Ψ†

2ðk0Þg ¼ δðk − k0Þ: ð3:4Þ

The reference unentangled IR state jRi can be defined by

Ψ1ðkÞjRi ¼ 0; Ψ†
2ðkÞjRi ¼ 0 ∀ k ∈ R: ð3:5Þ

This is the ground state of the ultralocal Hamiltonian

Hm¼
Z

dxðmΨ̄ΨÞ¼
Z

dkmðΨ†
1ðkÞΨ1ðkÞ−Ψ†

2ðkÞΨ2ðkÞÞ:

ð3:6Þ

The ground state of this fermionic theory can be obtained
by direct analogy with the discrete case via a Bogoliubov-
Valatin transformation9 which is

Ψ̃1ðkÞjΨi ¼ 0; Ψ̃†
2ðkÞjΨi ¼ 0 ∀ k ∈ R; ð3:7Þ

where

Ψ̃1ðkÞ ¼ (AkΨ1ðkÞ þ BkΨ2ðkÞ)
Ψ̃2ðkÞ ¼ ( − BkΨ1ðkÞ þ AkΨ2ðkÞ) ð3:8Þ

are the normal mode coordinates and

Ak ¼
−kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
−mÞ2

q ; ð3:9Þ

9Note that this same ground state is precisely the one that is
obtained in the standard approach to quantization of Dirac
fermions, which involves the introduction of Dirac u and v
modes. We demonstrate this in Appendix C.
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Bk ¼
m −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
−mÞ2

q : ð3:10Þ

Noting that A2
k þ B2

k ¼ 1, we introduce

rk ¼ −
1

2
tan−1

�
k
m

�
ð3:11Þ

so that

Ak ¼ − cosðrkÞ and Bk ¼ sinðrkÞ: ð3:12Þ

Note the similarity of this expression rk with analogous
expressions in the discrete case.
As our target state, following the scalar case in [5], we

consider the approximate ground state jmðΛÞi which is
defined as

Ψ̃1ðkÞjmðΛÞi ¼ 0; Ψ̃†
2ðkÞjmðΛÞi ¼ 0 ∀ k∶jkj ≤ Λ

Ψ1ðkÞjmðΛÞi ¼ 0; Ψ†
2ðkÞjmðΛÞi ¼ 0 ∀ k∶jkj > Λ:

ð3:13Þ

We can reach the target state from the reference state via a
unitary transformation of the form

jmðΛÞi ¼ e
−i
R
jkj≤Λ dkKðkÞrk jRi; ð3:14Þ

where the reference state is jRi ¼ jΩi ∀ k and KðkÞ is the
squeezing operator which we define as

KðkÞ ¼ i(Ψ†
1ðkÞΨ2ðkÞ þΨ1ðkÞΨ†

2ðkÞ): ð3:15Þ

We will see that this construction shares many of the
features of the scalar case discussed in [5], despite the fact
that here the entanglement is happening between the two
fermionic modes, and not between modes at antipodal
momenta. Note also that the target ground state that we
have defined is not the cMERA ground state [6,7] even
though in the Λ → ∞ limit they both tend to the true
ground state. The cMERA can be viewed as a nongeodesic
path in our language, as we will discuss in the next section.

B. Ground state complexity

Before we do all that, let us evaluate the complexity
using our squeezing operator above. With the specific
choice of the squeezing operator we have made in the
previous section, the calculation goes entirely parallel to the
one in [5], but we review it here largely to establish our
notation. First, we calculate the distance with the Fubini-
Study metric,

dsFSðσÞ ¼ dσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j∂σjΨðσÞij2 − jhΨðσÞj∂σjΨðσÞij2

q
; ð3:16Þ

and then minimize the length. The circuit length of a path
traced by intermediate states jΨðσÞi ¼ UðσÞjRi is

lðjΨðσÞiÞ ¼
Z

σf

σi

dsFSðσÞ: ð3:17Þ

Using (3.1) we can write the FS metric as

dsFSðσÞ ¼ dσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hG2ðσÞiΨðσÞ − hGðσÞi2ΨðσÞ

q
: ð3:18Þ

In the context of our discussion in the previous sub-
section, we can consider a general path generated by the
squeezing operator as a unitary transformation that takes
the state through

UðσÞ ¼ e
−i
R
jkj≤Λ dkKðkÞYkðσÞjRi: ð3:19Þ

Here

YkðσÞ ¼
Z

σ

si

ykðs0Þds0 and YkðsfÞ ¼ rk; ð3:20Þ

where the last condition arises from our specific choice of
target state. The order of k and σ integrals can be exchanged
because KðkÞ at different k are all commuting. By direct
calculation one sees that

hGðσÞi ¼ 0; and hG2ðσÞi ¼ Vol
Z

dky2kðσÞ: ð3:21Þ

Here we write δð0Þ ¼ Vol. The complexity is the length of
the minimal path:

C ¼ min
fGðsÞg

lðdsFSÞ

¼ min
fYkðσÞg

Z
sf

si

dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vol

Z
jkj≤Λ

dkð∂σYkðσÞÞ2
s

: ð3:22Þ

We recognize a flat Euclidean geometry associated with
coordinate YkðσÞ, implying that the geodesic is a straight
line path. Under a simple affine parametrization σ the
geodesic is

YkðσÞ ¼
σ − si
sf − si

YkðsfÞ: ð3:23Þ

The complexity for the target state is the length of this
straight line path,

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vol

Z
k≤Λ

dkðr2kÞ
s

; ð3:24Þ

and rk is given by (3.11). As we see, the essential difference
between complexity in the scalar case and the fermionic
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case is in the form of the rk, both in the discrete case and the
continuum case. We find that the parallel between the form
of the complexity in the discrete [4] and continuum [5]
cases for the scalar, holds for the fermionic case as well.
These integrals are divergent in the cutoff Λ. In the

massive case, the above expression can be explicitly
evaluated to

C2 ¼ −
m
2
Vol log

�
Λ2

m2
þ 1

�
tan−1

�
Λ
m

�

−
1

4
mVol

�
− logð16Þtan−1

�
Λ
m

�

− iLi2

�
−e−2itan−1ðΛmÞ

�
þ iLi2

�
−e2itan−1ðΛmÞ

��

þ 1

2
ΛVol

�
tan−1

�
Λ
m

��
2

: ð3:25Þ

Its behavior at large Λ takes the form

C2 ¼ π2

8
Vol

�
Λþ 4m

π
log

�
2m
Λ

�
−
4m
π

þOð1=ΛÞ
�
:

ð3:26Þ
When m ¼ 0 the integral is simple and the complexity
simplifies:

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2ΛVol

8

r
: ð3:27Þ

C. Ground state complexity and SUð2Þ generators
Our discussion so far used a single generator KðkÞ to

reach the target state. This can be viewed as a specific
choice of gate in the circuit complexity language. Since we
were able to construct a parallel between the entangling
operator in the scalar case in [5] and the Dirac fermion case
above, it is interesting to ask whether a construction
analogous to the more general SUð1; 1Þ generators dis-
cussed in [5] is possible here. It turns out that the answer is
yes, except that the generators satisfy an SUð2Þ algebra
now. Our calculations in this section are direct adaptations
of those in the Letter of [5], but we include some tricks here
that simplify the calculation.
The basic idea is to note that the target state can also be

reached by using a more general set of generators:

KþðkÞ ¼ iΨ†
1ðkÞΨ2ðkÞ

K−ðkÞ ¼ iΨ1ðkÞΨ†
2ðkÞ

K0ðkÞ ¼
Ψ†

1ðkÞΨ1ðkÞ −Ψ†
2ðkÞΨ2ðkÞ

2
: ð3:28Þ

These commute with the number preserving operators
ðn1 − n2Þ where n1 ¼ Ψ†

1Ψ1 and n2 ¼ Ψ2Ψ
†
2. These gen-

erators satisfy the following commutations relations:

½KþðkÞ; K−ðk0Þ� ¼ 2K0ðkÞδðk − k0Þ
½K0ðkÞ; Kþðk0Þ� ¼ KþðkÞδðk − k0Þ
½K0ðkÞ; K−ðk0Þ� ¼ −K−ðkÞδðk − k0Þ: ð3:29Þ

This is easily seen to be a set of decoupled SUð2Þ algebras
at each k, once one rescales the generators appropriately
with δð0Þ ¼ Vol. Now as in [5] let us consider a general
path of the form:

jΨðσÞi ¼ e
R
jkj<Λ

dkgðk;σÞjRi ð3:30Þ

generated by gðk; σÞ, given as

gðk;σÞ ¼ αþðk;σÞKþðkÞþα−ðk;σÞK−ðkÞþωðk;σÞK0ðkÞ:
ð3:31Þ

The unitarity condition for the above transformation
implies α�þðσÞ ¼ −α−ðσÞ and ω�ðσÞ ¼ −ωðσÞ. We can
decompose the unitary transformation above using [8]

UðσÞ ¼ e
R
jkj<Λ dkβþðk;σÞKþðkÞe

R
jkj<Λ dk log β0ðk;σÞK0ðkÞ

× e
R
jkj<Λ dkβ−ðk;σÞK−ðkÞ; ð3:32Þ

where the coefficients are

β� ¼ 2α� sinhΞ
2Ξ coshΞ − ω sinhΞ

;

β0 ¼
�
coshΞ −

ω

2Ξ
sinhΞ

�
−2
;

with Ξ defined via

Ξ2 ¼ ω2

4
þ αþα−: ð3:33Þ

Analogous to [5] now we can observe that K− annihilates
the reference state while the exponential of K0 only
changes the reference state up to a phase

K−jRi ¼ 0; K0jRi ¼ −
δð0Þ
2

jRi: ð3:34Þ

So jΨðσÞi can be written as

jΨðσÞi ¼ N e
R
Λ
dkβþðk;σÞKþðkÞjRi ð3:35Þ

with

N ¼ e
−δð0Þ
2

R
jkj≤Λ dk log β0ðk;σÞ: ð3:36Þ

To compute the Fubini-Study metric from here is a bit of
work, and we will introduce a small trick to accomplish it
painlessly. Let us define
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K̃þ ¼ K− K̃− ¼ Kþ K̃0 ¼ −K0 ð3:37Þ

The crucial fact that makes them useful is that they
satisfy identical commutation relations as the untilde’d
operators:

½K̃þðkÞ; K̃−ðk0Þ� ¼ 2K̃0ðkÞδðk − k0Þ
½K̃0ðkÞ; K̃þðk0Þ� ¼ K̃þðkÞδðk − k0Þ
½K̃0ðkÞ; K̃−ðk0Þ� ¼ −K̃−ðkÞδðk − k0Þ: ð3:38Þ

The gðk; σÞ can be written as a linear combination of these
generators as well:

gðk;σÞ ¼ α̃þðk;σÞK̃þðkÞþ α̃−ðk;σÞK̃−ðkÞþ ω̃ðk;σÞK̃0ðkÞ:
ð3:39Þ

Comparing this with Eq. (3.32), we get

α̃þ ¼ α− α̃− ¼ αþ ω̃ ¼ −ω: ð3:40Þ

As the tilde’d generators also satisfy identical commutation
relations, UðσÞ can be decomposed in the same fashion in
terms of these generators as

UðσÞ ¼ e
R
jkj<Λ dkβ̃þðk;σÞK̃þðkÞe

R
jkj<Λ dkðlog β̃0ðk;σÞÞK̃0ðkÞ

× e
R
jkj<Λ dkβ̃−ðk;σÞK̃−ðkÞ; ð3:41Þ

where the coefficients satisfy exactly the same formulas as
before, but now with tilde’d quantities. Using (3.40) we can
show that these are related to the coefficients in (3.33) by

β̃�� ¼ −β� β̃�0 ¼ β0: ð3:42Þ

It is useful to write the decomposition of U†ðσÞ with the
latter generators:

U†ðσÞ ¼ e
R
jkj<Λ dkβ̃�−ðk;σÞK̃þðkÞe

R
jkj<Λ

dkðlog β̃�
0
ðk;σÞÞK̃0ðkÞ

× e
R
jkj<Λ

dkβ̃�þðk;σÞK̃−ðkÞ

¼ e
−
R
jkj<Λ

dkβ−ðk;σÞK−ðkÞe−
R
jkj<Λ dkðlog β0ðk;σÞÞK0ðkÞ

× e
−
R
jkj<Λ dkβþðk;σÞKþðkÞ ð3:43Þ

This last form helps us in substantially reducing the
mindless labor involved in the calculations here as well
as in the analogous results in [5].

Further in this section we suppress some notations: the
integral over k is just denoted with the integral symbol, and
the argument k is often not explicitly written. To calculate
the Fubini-Study metric, we have

∂σjΨðσÞi ¼
�
−
Vol
2

Z
β00
β0

þ
Z

βþ0Kþ

�
jΨðσÞi: ð3:44Þ

This leads to

hΨðσÞj∂σjΨðσÞi ¼ −
Vol
2

Z
β00
β0

þ
Z

βþ0hΨðσÞjKþjΨðσÞi

¼ −
Vol
2

Z
β00
β0

þ
Z

βþ0ζþihRjKijRi

¼ −Vol
2

�Z
β00
β0

þ
Z

βþ0ζþ0

�
;

where ζij is defined via

U†KiU ¼ ζijKj: ð3:45Þ

This leads to

jhΨðσÞj∂σjΨðσÞij2 ¼
�
Vol
2

�
2
�Z

β0�0
β�0

þ
Z

β0�þζ�þ0

�

×

�Z
β00
β0

þ
Z

βþ0ζþ0

�
: ð3:46Þ

It is useful to note that

ζ�þ0 ¼ ζ−0: ð3:47Þ

The second piece in the Fubini-Study metric follows from a
similar, but slightly lengthier calculation:

j∂σjΨðσÞij2 ¼
�
Vol
2

�
2
�Z

β0�0
β�0

þ
Z

β0�þζ�þ0

�

×

�Z
β00
β0

þ
Z

βþ0ζþ0

�

þ Vol
Z

β�0þβ0þζ−−ζþþ: ð3:48Þ

So the final form of the metric is

dsFS ¼ dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vol

Z
β�0þβ0þζ−−ζþþ

s
; ð3:49Þ

where
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ζ−−ζþþ ¼
�
1þ βþβ−

β�0

�
2

¼ 1

jβ0j2
: ð3:50Þ

Making use of the identity jβ0j ¼ 1þ jβþj2, the metric
finally simplifies to

dsFS ¼ dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vol

Z
jkj≤Λ

dk
β�0þβ0þ

ð1þ jβþj2Þ2

s
; ð3:51Þ

where the prime denotes the derivative with respect to σ.
Thus the metric has the form of the Fubini-Study metric on
S2 ka CP1 and the complexity arises as its geodesic. Note
the sign difference from the results of [5].

D. Another generator

Now that we have the SUð2Þ generators in our hand, we
can construct another single generator BðkÞ out of them that
is distinct from KðkÞ, which takes us from the initial
reference state to the target state, just like KðkÞ does [5].
This takes the form

BðkÞ ¼ −2i sinðrkÞ½Kþ − K−� − 4 cosðrkÞK0: ð3:52Þ

The unitary transformation which does the job is

jmðΛÞi ¼ e
iπ
4

R
jkj≤Λ dkBðkÞjRi: ð3:53Þ

Let the intermediate state be

jΨðσÞi ¼ e
iπ
4

R
jkj≤Λ dkBðkÞYkðσÞjRi: ð3:54Þ

Plugging this in the Fubini-Study metric gives

dsFS ¼ dσ
π

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vol

Z
jkj≤Λ

dksin2rkð∂σYkðσÞÞ2
s

: ð3:55Þ

So the path with the least length is

YkðσÞ ¼ σ: ð3:56Þ

We can compare the BðkÞ form with the SUð2Þ gen-
erators of the last section, and read off

αþ ¼ πσ

2
sin rk; α− ¼ −

πσ

2
sin rk;

ω ¼ −iπσ cos rk; Ξ ¼ iπσ
2

; ð3:57Þ

which translates to the βþ:

βþ ¼ i sin rk sin πσ
2

i cos πσ
2
− cos rk sin

πσ
2

: ð3:58Þ

At σ ¼ 1 the βþ for BðkÞ becomes

βþ ¼ −i tan rk: ð3:59Þ

The length of this path, on plugging the expression (3.58)
into the CP1 metric from the end of last section, yields

l ¼ π

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vol

Z
jkj≤Λ

dk sin2 rk

s
: ð3:60Þ

This can be explicitly evaluated to be

l2 ¼
�
π

2

�
2

Vol

�
Λþ 1

2
m log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þm2

p
− Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ2 þm2
p

þ Λ

��
; ð3:61Þ

which goes as

l2 ¼ 1

4
π2Vol

�
Λþm log

m
2Λ

þ � � �
�

ð3:62Þ

for large Λ, with the dots denoting subleading powers in Λ.
This distance is more than the one presented in (3.26)
which is obvious in the m → 0 limit.
For comparison, for the straight line path using squeez-

ing operator KðkÞ the SUð2Þ coefficients are

αþ ¼ −irkσ; α− ¼ −irkσ; ω ¼ 0; Ξ ¼ irkσ

ð3:63Þ

which gives the βþ for KðkÞ as

βþ ¼ −i tanðrkσÞ: ð3:64Þ

The complexity of this path has been discussed in a
previous subsection.
In Appendix D, we explicitly show that the minimal path

when the squeezing operator is KðkÞ is a geodesic of the
CP1 metric, but the minimal path of the BðkÞ operator
is not.

E. Majorana fermions in 1 + 1 dimensions

Now we move on to field theories other than the 1þ 1-d
Dirac fermion, which as we demonstrated, has very close
parallels to the scalar field theory discussed in [5]. First we
turn to the Majorana theory.
Previously we discussed the discrete version of 1þ 1-

dimensional Majorana field theory. Now we consider the
continuum version of it. The Lagrangian is

L ¼
Z

dxψ̄ðiγμ∂μ −mÞψ ; ð3:65Þ

where the gamma matrices are the same ones we used in
Sec. II [see Eq. (2.7)], and
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γμ∂μ ¼ ρ0∂0 þ ρ1∂1: ð3:66Þ

The field ψ is a two-component spinor with its components
real Grassmann variables classically:

ψ ¼
�
cΨ1

Ψ2

�
: ð3:67Þ

The Lagrangian in terms of them becomes

L ¼
Z

dxðiðΨ1∂0Ψ1 þ Ψ2∂0Ψ2 þΨ1∂1Ψ1 − Ψ2∂1Ψ2Þ

þmΨ1Ψ2 −mΨ2Ψ1Þ: ð3:68Þ

We developed our B-V technology more directly in the
language of complex Grassmann variables, so we rewrite
the Lagrangian in terms of

Ψ ¼ Ψ1 − iΨ2ffiffiffi
2

p ; Ψ† ¼ Ψ1 þ iΨ2ffiffiffi
2

p : ð3:69Þ

Here Ψ, Ψ† are complex Grassmann variables. The
Lagrangian becomes

L ¼
Z

dxðiðΨ†∂0Ψþ Ψ∂0Ψ† þ Ψ∂1Ψþ Ψ†∂1Ψ†Þ

−m½Ψ†;Ψ�Þ ð3:70Þ

and the Hamiltonian

H ¼
Z

dxð−iΨ∂1Ψ − iΨ†∂1Ψ† þm½Ψ†;Ψ�Þ: ð3:71Þ

Quantization proceeds by imposing the canonical anticom-
mutation relations

fΨðxÞ;Ψ†ðx0Þg ¼ δðx − x0Þ ð3:72Þ

and all other anticommutators are zero. Doing a Fourier
transform

ΨðxÞ ¼
Z

dkffiffiffiffiffiffi
2π

p ΨðkÞeikx ð3:73Þ

they turn to

fΨðkÞ;Ψ†ðk0Þg ¼ δðk − k0Þ ð3:74Þ

and all other anticommutators are zero. The Hamiltonian in
Fourier variables is

H ¼
Z

dk( − kΨðkÞΨð−kÞ þ kΨ†ðkÞΨ†ð−kÞ

þm½Ψ†ðkÞ;ΨðkÞ�): ð3:75Þ

We define the reference state to be

ΨðkÞjRi ¼ 0 ð3:76Þ

which is the same as defining ΨðxÞjRi ¼ 0. This state has
no entanglement in position space and is also the ground
state of the ultralocal Hamiltonian, ie., the above
Hamiltonian without the terms arising from the derivatives
in position space.
In the ground state the oscillators at k and −k are to be

entangled. The target state can be reached by using the
squeezing operator KðkÞ defined here as

KðkÞ ¼ i(Ψ†ðkÞΨ†ð−kÞ þ ΨðkÞΨð−kÞ): ð3:77Þ

This operator entangles the oscillators at k and −k. Let us
rewrite the Hamiltonian as

H ¼
Z

∞

0

dkðm½Ψ†ðkÞ;ΨðkÞ� þm½Ψ†ð−kÞ;Ψð−kÞ�

þ 2kðΨ†ðkÞΨ†ð−kÞ − ΨðkÞΨð−kÞÞÞ: ð3:78Þ

In the Dirac case the integration limits ran from −∞ to ∞
but here it is from 0 to ∞. In other words, we have the
freedom to define

Ψ1ðkÞ≡ΨðkÞ; Ψ2ðkÞ≡Ψ†ð−kÞ ð3:79Þ

here, and when we do it, we get the Dirac Hamiltonian that
we wrote down earlier but with the integration over k
limited to the positive k real axis.10 In other words, we are
reinterpreting the entanglement between k and −k modes
here as entanglement between two different fields, but at
same k (restricted to be positive). Since much of the
calculations in the Dirac case goes through at each k
separately, this means that the Majorana calculation reduces
loosely to half of Dirac. Apart from the restriction in the
range of k, the ground states for both cases are the same and
the reference states are also the same. So the rk is the same
as before and every derivation here is the same as before
with the only difference being in the lower integration limit
which is 0 for this case and not −Λ as in the previous case.
The complexity for the ground state of the Majorana theory
is then

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vol

Z
Λ

0

dkðr2kÞ
s

: ð3:80Þ

As ðrkÞ2 is an even function in k, we have

10TheseΨ1 andΨ2 refer to the Dirac notation analogous to that
in Sec. III A and should not be confused with the real Ψ1 and Ψ2

(with lower indices) used in this section.
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CDirac ¼
ffiffiffi
2

p
CMajorana; ð3:81Þ

where CDirac and CMajorana are the complexities for the
ground state of Dirac and Majorana theories in 1þ 1
dimensions.

F. Fermions in higher dimensions

Now we will generalize some of the above consider-
ations to higher dimensions. The fermionic field theoretic
Hamiltonian in dþ 1 spacetime dimensions is

H ¼
Z

ddxΨ̄ðxÞð−iγi∂i þmÞΨðxÞ; ð3:82Þ

where i runs from 1 to d. After doing a Fourier transform on
each of the components of the spinor

ΨaðxÞ ¼
Z

ddk

ð2πÞd2 ΨaðkÞeik⃗:x⃗: ð3:83Þ

The Hamiltonian in Fourier variables is

H ¼
Z

ddk(Ψ̄ðkÞðγiki þmÞΨðkÞ): ð3:84Þ

1. Massless theory in 3+ 1 dimensions

Let us start by considering a massless theory in 3þ 1
dimensions in chiral (aka Weyl) basis:

γ0 ¼
�

0 I2
I2 0

�
γk ¼

�
0 σk

−σk 0

�
: ð3:85Þ

For massless particles the two Weyl spinors decouple from
each other. The Hamiltonian is

H ¼
Z

d3kðΨ̄ðkÞγikiΨðkÞÞ ¼
Z

d3kHðkÞ; ð3:86Þ

where i runs from 1 to 3. Each component of the spinor
ΨðkÞ can be interpreted as an oscillator at k. At each k there
are four fermionic oscillators with the Hamiltonian HðkÞ:

HðkÞ ¼ k3
2
½Ψ1;Ψ†

1� þ
k3
2
½Ψ†

2;Ψ2� þ
k3
2
½Ψ†

3;Ψ3�

þ k3
2
½Ψ4;Ψ

†
4�− ðk1 − ik2ÞΨ†

1Ψ2 − ðk1 þ ik2ÞΨ†
2Ψ1

þ ðk1 − ik2ÞΨ†
3Ψ4 þ ðk1 þ ik2ÞΨ†

4Ψ3: ð3:87Þ

In the above equation the dependence of the fields on k is
suppressed. The two oscillators Ψ1ðkÞ and Ψ2ðkÞ are
decoupled from Ψ3ðkÞ and Ψ4ðkÞ.
For each k, let us define a1 ¼ Ψ†

1, a2 ¼ Ψ2, b1 ¼ Ψ3,
b2 ¼ Ψ†

4 so that

HðkÞ ¼ HaðkÞ þHbðkÞ ð3:88Þ

with

HaðkÞ ¼ k3
2
½a†1; a1� þ

k3
2
½a†2; a2� − ðk1 − ik2Þa1a2

þ ðk1 þ ik2Þa†1a†2
HbðkÞ ¼ k3

2
½b†1; b1� þ

k3
2
½b†2; b2� þ ðk1 − ik2Þb†1b†2

− ðk1 þ ik2Þb1b2: ð3:89Þ

After the by-now-familiar B-V transformation we get

HðkÞ ¼ ωk

2

X2
i¼1

ð½ã†i ; ãi� þ ½b̃†i ; b̃i�Þ; ð3:90Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þ k23

p
. The B-V transformation for a

type oscillators is

0
BBBBB@

ã1
ã2
ã†1
ã†2

1
CCCCCA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1 −

k3
ωk

�s
0
BBBBBB@

a†2 þ a1
ðk3þωkÞ
ðk1þik2Þ

a†1 − a2
ðk3þωkÞ
ðk1þik2Þ

a2 þ a†1
ðk3þωkÞ
ðk1−ik2Þ

a1 − a†2
ðk3þωkÞ
ðk1−ik2Þ

1
CCCCCCA

ð3:91Þ

and the B-V transformation for b type oscillators is

0
BBBBB@

b̃1
b̃2
b̃†1
b̃†2

1
CCCCCA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1 −

k3
ωk

�s
0
BBBBBB@

b†2 þ b1
ðk3þωkÞ
ðk1−ik2Þ

b†1 − b2
ðk3þωkÞ
ðk1−ik2Þ

b2 þ b†1
ðk3þωkÞ
ðk1þik2Þ

b1 − b†2
ðk3þωkÞ
ðk1þik2Þ

1
CCCCCCA
: ð3:92Þ

Here there is no natural ultralocal Hamiltonian, because
mass is zero. We can choose any reference state which has
no entanglement in the physical (i.e., x) space. Let us define
the reference state jRi to be the state which is annihilated by
Ψ1ðxÞ, Ψ†

2ðxÞ, Ψ†
3ðxÞ and Ψ4ðxÞ∀ x ∈ R3. This is the same

thing as defining the reference state to be annihilated by
aiðkÞ and biðkÞ for i ¼ 1, 2 and ∀ k ∈ R3.
We define the target state to be the approximate ground

state jTðΛÞi defined as

ãiðkÞjTðΛÞi ¼ 0 b̃iðkÞjTðΛÞi ¼ 0 ∀ k∶jkj ≤ Λ

a†i ðkÞjTðΛÞi ¼ 0 b†i ðkÞjTðΛÞi ¼ 0 ∀ k∶jkj > Λ:

ð3:93Þ

It is possible to see that the target state can be reached from
the reference state by the unitary transformation
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jTðΛÞi ¼ e
−i
R
jkj≤Λ d3krðkÞKðkÞjRi; ð3:94Þ

where the squeezing operator KðkÞ here is

KðkÞ ¼ iðk1 − ik2Þ(ã†1ðkÞã†2ðkÞ þ b̃1ðkÞb̃2ðkÞÞ
þ iðk1 þ ik2Þðã1ðkÞã2ðkÞ þ b̃†1ðkÞb̃†2ðkÞÞ

¼ iðk1 − ik2Þða2ðkÞa1ðkÞ þ b†2ðkÞb†1ðkÞÞ
þ iðk1 þ ik2Þða†2ðkÞa†1ðkÞ þ b2ðkÞb1ðkÞÞ ð3:95Þ

and rðkÞ is

rðkÞ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k21 þ k22
p arctan

�
k3 þ ωkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

p �
: ð3:96Þ

It can also be checked that the unitary transformation
takes the ai’s and bi’s to ãi’s and b̃i’s via the similarity
transformations

Ua†2U
† ¼ ã1 Ua†1U

† ¼ ã2

Ub†2U
† ¼ b̃1 Ub†1U

† ¼ b̃2: ð3:97Þ

As the annihilation operators of the reference state are
transformed to the annihilation operators of the target state
via the similarity transformation, the unitary transformation
takes the reference state to the target state.
Now let us consider an arbitrary path generated by the

squeezing operator

jΨðσÞi ¼ e
−i
R

σ

0
ds
R
jkj≤Λ d3kykðsÞKðkÞjRi

¼ e
−i
R
jkj≤Λ d3kYkðσÞKðkÞjRi: ð3:98Þ

Note that by identifying a judicious squeezing operator,
here too we have bypassed the need to do any path ordering
because all KðkÞ commute.
Evaluating the length of this path using the Fubini-Study

metric gives

lðjΨðσÞiÞ ¼
Z

1

0

dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vol

Z
jkj≤Λ

d3kðk21 þ k22Þð∂σYkðσÞÞ2
s

:

ð3:99Þ

Doing a “coordinate” transformation

XkðσÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

q
YkðσÞ ð3:100Þ

the length of the path becomes

lðjΨðσÞiÞ¼
Z

1

0

dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vol

Z
jkj≤Λ

d3kð∂σXkðσÞÞ2
s

: ð3:101Þ

This is again a flat Euclidean geometry associated with
coordinate XkðσÞ and so the geodesic is

XkðσÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

q
rðkÞσ: ð3:102Þ

The complexity is the length of this path

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vol

Z
jkj≤Λ

d3k

�
arctan

�
k3 þ ωkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

p ��
2

s
: ð3:103Þ

This integral can in principle be explicitly evaluated, but we
will not present it here. Instead we go on to the massive
case, where we will present all the gory details.

2. Ground state complexity and
SU(2) × SU(2) generators

Let us consider an extended set of paths as we did before
in Sec. III C. We introduce SUð2Þ × SUð2Þ generators and
consider the paths generated by them. More general paths
are possible as we will see in the next subsection, but this is
a sufficiently interesting generalization that contains our
squeezing operator. The squeezing operator used in the
previous subsection can be written as

KðkÞ ¼ iðk1 − ik2Þðã†1ðkÞã†2ðkÞ þ b̃1ðkÞb̃2ðkÞÞ
þ iðk1 þ ik2Þðã1ðkÞã2ðkÞ þ b̃†1ðkÞb̃†2ðkÞÞ

¼ iðk1 − ik2Þða2ðkÞa1ðkÞ þ b†2ðkÞb†1ðkÞÞ
þ iðk1 þ ik2Þða†2ðkÞa†1ðkÞ þ b2ðkÞb1ðkÞÞ: ð3:104Þ

Let ðk1 þ ik2Þ ¼ κeiθ and ðk1 − ik2Þ ¼ κe−iθ and by
absorbing the phases into the ladder operators the squeez-
ing operator simplifies to

KðkÞ ¼ iκðã†1ðkÞã†2ðkÞ þ ã1ðkÞã2ðkÞÞ
þ iκðb̃†1ðkÞb̃†2ðkÞ þ b̃1ðkÞb̃2ðkÞÞ

¼ iκða†2ðkÞa†1ðkÞ þ a2ðkÞa1ðkÞÞ
þ iκðb†2ðkÞb†1ðkÞ þ b2ðkÞb1ðkÞÞ

¼ κKaðkÞ þ κKbðkÞ; ð3:105Þ

where KaðkÞ≡ iða†2ðkÞa†1ðkÞ þ a2ðkÞa1ðkÞÞ and KbðkÞ≡
iðb†2ðkÞb†1ðkÞ þ b2ðkÞb1ðkÞÞ.
Notice from the Hamiltonian in the previous section

the a type oscillators and b type oscillators completely
decouple from each other. We can introduce the following
generators:
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KaþðkÞ ¼ ia†2ðkÞa†1ðkÞ; KbþðkÞ ¼ ib†2ðkÞb†1ðkÞ
Ka

−ðkÞ ¼ ia2ðkÞa1ðkÞ; Kb
−ðkÞ ¼ ib2ðkÞb1ðkÞ

Ka
0ðkÞ ¼

a†2ðkÞa2ðkÞ − a1ðkÞa†1ðkÞ
2

; Kb
0ðkÞ ¼

b†2ðkÞb2ðkÞ − b1ðkÞb†1ðkÞ
2

: ð3:106Þ

Together these six generators generate a SUð2Þ × SUð2Þ
algebra. Each of these generators commute with the number
preserving operators ðn1 − n2Þ and ðn3 − n4Þ, where

n1 ¼ a†2a2; n2 ¼ a†1a1; n3 ¼ b†2b2; n4 ¼ b†1b1:

ð3:107Þ

Let us consider the path generated by an arbitrary linear
combination of these six generators

jΨðσÞi ¼ e
R
jkj≤Λ dkgðk;σÞjRi; ð3:108Þ

where jRi is the reference state defined in the previous
section and here gðk; σÞ≡ gaðk; σÞ þ gbðk; σÞ and

gaðk; σÞ ¼ αaþðk; σÞKaþðkÞ þ αa−ðk; σÞKa
−ðkÞ

þ ωaðk; σÞKa
0ðkÞ

gbðk; σÞ ¼ αbþðk; σÞKbþðkÞ þ αb−ðk; σÞKb
−ðkÞ

þ ωbðk; σÞKb
0ðkÞ: ð3:109Þ

The Ka
i ’s commute with Kb

j ’s (for i,j ¼ þ;−; 0), so

e
R
jkj≤Λ dkgðk;σÞ ¼ e

R
jkj≤Λ dkgaðk;σÞ

e
R
jkj≤Λ dkgbðk;σÞ

: ð3:110Þ

Proceeding in the same way as in Sec. III C we get

jΨðσÞi ¼ N aN be
R
Λ
dk βaþðk;σÞKa

þðkÞe
R
Λ
dk βbþðk;σÞKb

þðkÞjRi
ð3:111Þ

with

N a ¼ e
−δð0Þ
2

R
jkj≤Λ dk log βa

0
ðk;σÞ

N b ¼ e
−δð0Þ
2

R
jkj≤Λ dk log βb

0
ðk;σÞ

ð3:112Þ

and the βai ’s and βbi ’s are defined exactly analogous to the
1þ 1-d case.
Computing the Fubini-Study metric will give two copies

of the metric on S2 and the length of the whole path is
minimized if the length of each individual path (i.e., βaþ and
βbþ) is minimized. As these are just two copies of what we
had before in Sec. III, we conclude that the straight line
path taken by our squeezing operator is the shortest path in
the space of paths generated by the entire SUð2Þ × SUð2Þ

algebra of generators. This is unsurprising: the Hamiltonian
of the massless 3þ 1 theory in the chiral basis can be seen
to be two copies of the 1þ 1 Dirac theory that we studied
earlier, after the phase redefinitions etc. that we did. So the
path length can be understood as path lengths in two
separate factorized Hilbert spaces, each of which contains
the SUð2Þ structure.

3. Massive theory in 3 + 1 dimensions

Now we go on to consider the massive theory in 3þ 1
dimensions in the Dirac basis:

γ0 ¼
�
I2 0

0 −I2

�
γk ¼

�
0 σk

−σk 0

�
: ð3:113Þ

The Hamiltonian in terms of the Fourier variables is

H ¼
Z

d3kΨ̄ðkÞðkiγi þmÞΨðkÞ ¼
Z

d3kHk; ð3:114Þ

where i runs from 1 to 3. Interpreting the components of the
spinor ΨðkÞ as oscillators, the Hamiltonian for the four
oscillators at k is

Hk ¼
m
2
½Ψ†

1;Ψ1� þ
m
2
½Ψ†

2;Ψ2� þ
m
2
½Ψ3;Ψ

†
3� þ

m
2
½Ψ4;Ψ

†
4�

þ ðk1 − ik2ÞðΨ†
1Ψ4 þ Ψ†

3Ψ2Þ
þ ðk1 þ ik2ÞðΨ†

2Ψ3 þ Ψ†
4Ψ1Þ

þ k3ðΨ†
1Ψ3 − Ψ†

2Ψ4 þ Ψ†
3Ψ1 −Ψ†

4Ψ2Þ: ð3:115Þ

At each k let us define the operators

b1 ¼ ei
θ
2Ψ1 b2 ¼ e−i

θ
2Ψ2 b3 ¼ e−i

θ
2Ψ†

3 b1 ¼ ei
θ
2Ψ†

4;

ð3:116Þ

where θ ¼ tan−1ðk2k1Þ and define κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22

p
. In terms

of these the Hamiltonian for the four oscillators at k
becomes

Hk ¼
�
m
2

X4
i¼1

½b†i ; bi�
�
þ k3ðb†1b†3 − b1b3Þ

þ k3ðb†4b†2 − b4b2Þ þ κðb†2b†3 − b2b3Þ
þ κðb†1b†4 − b1b4Þ: ð3:117Þ
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After the usual B-V transformation this becomes

H ¼
Z

d3k
1

2
ωk

X4
i¼1

½b̃†i ; b̃i�; ð3:118Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þ k23 þm2

p
.

The B-V transformation is

0
BBBBBBBBBBBBBBBB@

b̃1
b̃2
b̃3
b̃4
b̃†1
b̃†2
b̃†3

b̃†4

1
CCCCCCCCCCCCCCCCA

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωkðωk−mÞp

0
BBBBBBBBBBBBBBBB@

b1κ−b2k3þb†4ðωk−mÞ
b2κþb1k3þb†3ðωk−mÞ
−b3κþb4k3þb†2ðωk−mÞ
−b4κ−b3k3þb†1ðωk−mÞ
b†1κ−b†2k3þb4ðωk−mÞ
b†2κþb†1k3þb3ðωk−mÞ
−b†3κþb†4k3þb2ðωk−mÞ
−b†4κ−b†3k3þb1ðωk−mÞ

1
CCCCCCCCCCCCCCCCA

:

ð3:119Þ

We will take the reference state jRi is defined as the
ground state of the ultralocal Hamiltonian

Hm ¼
Z

d3xðmΨ̄ðxÞΨðxÞÞ ¼
Z

d3kðmΨ̄ðkÞΨðkÞÞ

¼
Z

d3k
m
2

X4
i¼1

½b†i ðkÞ; biðkÞ�: ð3:120Þ

This state is annihilated by biðkÞ for i ¼ 1; 2; 3; 4 and
∀ k ∈ R3. This state has no entanglement in x space.
The target state is the approximate ground state jTðΛÞi
defined as

b̃iðkÞjTðΛÞi ¼ 0 ∀ k∶jkj ≤ Λ

biðkÞjTðΛÞi ¼ 0 ∀ k∶jkj > Λ: ð3:121Þ

The basic observation of this section is that the target
state can be reached from the reference state by the unitary
transformation

jTðΛÞi ¼ e
−i
R
jkj≤Λ d3krðkÞKðkÞjRi ¼ UjRi; ð3:122Þ

where the squeezing operator KðkÞ is

KðkÞ ¼ ik3ðb†1b†3 þ b1b3Þ þ ik3ðb†4b†2 þ b4b2Þ
þ iκðb†2b†3 þ b2b3Þ þ iκðb†1b†4 þ b1b4Þ ð3:123Þ

and rðkÞ is

rðkÞ ¼ −
1

jkj arctan
� jkj
mþ ωk

�
: ð3:124Þ

Here jkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þ k23

p
.

This unitary transformation takes the bi to a linear
combination of b̃i via the similarity transformations

Ub1U† ¼ κb̃1 þ k3b̃2
jkj Ub2U† ¼ k3b̃1 − κb̃2

jkj

Ub3U† ¼ κb̃3 þ k3b̃4
jkj Ub4U† ¼ k3b̃3 − κb̃4

jkj :

ð3:125Þ

Crucially, there are no creation operators in the linear
combinations on the right-hand side, hence this unitary
transformation takes the reference state to the target state.
Now we can as usual consider an arbitrary path gen-

erated by the squeezing operator

jΨðσÞi¼e
−i
R

σ

0
ds
R
jkj≤Λd

3kykðsÞKðkÞjRi¼e
−i
R
jkj≤Λd

3kYkðσÞKðkÞjRi:
ð3:126Þ

Path ordering is not necessary because all KðkÞ commute.
Evaluating the length of this path using the Fubini-Study
metric gives

lðjΨðσÞiÞ ¼
Z

1

0

dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vol

Z
jkj≤Λ

d3kjkj2ð∂σYkðσÞÞ2
s

:

ð3:127Þ

The change of variable analogous to the massless case takes
the form

XkðσÞ ¼ jkjYkðσÞ ð3:128Þ

and the length of the path takes the usual form

lðjΨðσÞiÞ ¼
Z

1

0

dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vol

Z
jkj≤Λ

d3kð∂σXkðσÞÞ2
s

:

ð3:129Þ

This is again a flat Euclidean geometry associated with
coordinate XkðσÞ and so the geodesic is

XkðσÞ ¼ jkjrkσ: ð3:130Þ

The complexity is the length of this path, and is given by

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vol

Z
jkj≤Λ

d3k

�
arctan

� jkj
mþ ωk

��
2

s
ð3:131Þ
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This integral can be explicitly evaluated:

C2 ¼ 1

18
πVol

�
12im3Li2

�
1 −

2m
m − iΛ

�

− 24m

�
Λ2 þ 2m2 log

�
2m

m − iΛ

�
þm2

�

× tan−1
�

Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þm2

p
þm

�
þm2ð12Λþ iπ2mÞ þ 48ðΛ3 þ im3Þ

×

�
tan−1

�
Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ2 þm2
p

þm

��
2
�
: ð3:132Þ

Its behavior at large Λ takes the form

C2 ¼ π3

6
Vol

�
Λ3 −

6m
π

Λ2 þ 12m2

π2
Λ

þ 4m3

π
log

�
Λ
2m

�
−
2m3

3π
þOð1=ΛÞ

�
: ð3:133Þ

When m ¼ 0, the exact form of the integral is simple to
write down:

C2 ¼ π3Λ3Vol
6

: ð3:134Þ

Analogous to the previous cases, one can ask whether
there exists a bigger class of generators in which our
squeezing operator is a specific linear combination. It is
straightforward to see that this is the case, and that the
natural algebra generated by the creation annihilation
operators is an SOð8Þ, and therefore a natural geometry
that arises in the space of these more general paths is an S7.
We elaborate on this in Appendix E.

IV. FERMIONIC CMERA

The discussion we have had in the previous section is
very close in spirit to the so-called cMERA tensor network,
which one can view in our language just as an alternate
choice of path connecting the reference state to the target
state. The cMERA circuit can be viewed as entangling the
neighboring oscillators in x space and doing a scale
transformation iteratively.
In what follows we will define the target state at finite

cutoff to be some approximate ground state using cMERA.
This approximate ground state need not be the same
approximate ground state as defined previously. But as
the cutoff is taken to infinity both will tend to the true
ground state of the theory. Our discussion of cMERA will
follow the papers [6,7]. We will compute the length of the
cMERA path for fermions. The discussions in [6,7] are for
1þ 1-dimensional fermions, we will also consider a

cMERA-like path that is a natural generalization of these
works to 3þ 1 dimensions.

A. Dirac cMERA in 1 + 1 dimensions

We will use the version of cMERA that is described for
the Dirac theory in 1þ 1 dimensions in [7].
The cMERA path jΨðuÞi is

jΨðuÞi ¼ Pe−i
R

u

−∞
du0

R
dkKðkÞykðu0ÞjRi; ð4:1Þ

where jRi is the reference state defined in Eq. (3.5), KðkÞ is
the squeezing operator given in Eq. (3.15) and [7],

ykðuÞ ¼ gðuÞ ke
−u

Λ
ΘðΛeu − jkjÞ; ð4:2Þ

where ΘðxÞ is the step function (it is 1 for x ≥ 0 and zero
elsewhere) and gðuÞ is

gðuÞ ¼ 1

2

�
− arcsin

Λeuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2e2u þm2

p þ mΛeu

Λ2e2u þm2

�
: ð4:3Þ

Note that the integration range of k in (4.1) is superficially
not restricted and is from −∞ to þ∞. Effectively there are
restrictions, arising from the step function. It is important
to be careful about this type of thing in what follows,
especially when changing the order of integration in u and k
in the double integral. The path is parametrized from −∞
to 0 by the parameter u ¼ ln σ, where σ is our conventional
path parameter that runs from 0 to 1. The parametric values
of the reference state and target state are −∞ and 0
respectively.
The target state reached by cMERA is

jΨð0Þi ¼ Pe
−i
R
jkj≤Λ dkKðkÞYkð0ÞjRi ¼ Pe

−i
R
jkj≤Λ dkKðkÞRk jRi;

ð4:4Þ

where11

Ykð0Þ ¼ RkðΛÞ ¼
Z

0

−∞
duykðuÞ ¼

�
k
2Λ

arcsin
Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ2 þm2
p

�
þ rk; ð4:5Þ

where rk is given by Eq. (3.11). Note that changing the
order of integration has brought out the promised jkj ≤ Λ in
the k-integral. This target state reproduces the true ground

11Note that some of the expressions we present here are
superficially in tension with the results in [7]. This is because (we
believe) the results—see in particular (121)–(123)—in [7] should
be compared only up to terms suppressed by Λ. A clean way to
see this is to note that the ϕk in (121) and (122) in [7] do not have
the same Λ dependence: in particular, (122) vanishes when
jkj ¼ Λ, but (121) does not.
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state in the Λ → ∞ limit as Rk → rk in this limit. Note that
at finite values of the cutoff, it does not lead to the target
state that we defined in our 1þ 1-dimensional discussion in
the previous section. This is unlike in the case of the
bosonic case that was considered in [5] where the cutoff
target state had an extra parameter available (it was called
M in [5,7]) and this could be used to make the two cutoff
target states identical. We give a conceptual explanation for
the absence of this extra scale in the fermionic case at the
end of Appendix A, as a feature implicit in the structure of
bosonic vs fermionic oscillators. The fact that the states are
not the same at finite cutoff means that it is not meaningful
to compare quantities at finite cutoff. We elaborate on some
aspects of this observation in Appendix F.
At intermediate points on the cMERA path

jΨðuÞi ¼ UðuÞjRi ¼ e
−i
R
jkj≤Λeu dkKðkÞYkðuÞjRi ð4:6Þ

with

YkðuÞ¼
Z

u

−∞
du0ykðu0Þ¼

�
k

2Λeu
arcsin

Λeuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2e2uþm2

p
�
þrk:

ð4:7Þ

Note again the k-integration range, again getting fixed by
the change of integration order. Evaluating the length of
this cMERA path using Fubini-Study metric gives

lcMERA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
ΛVol

r Z
0

−∞
dujðgðuÞjeu

2: ð4:8Þ

In some of the calculations, it is useful to note that (4.6) can
be written as

jΨðuÞi ¼ e
−i
R
jkj≤Λ dkKðkÞYkðuÞΘðeu−jkj=ΛÞjRi

≡ e
−i
R
jkj≤Λ dkKðkÞYθ

kðuÞjRi: ð4:9Þ

In any event, it is possible to calculate this length explicitly,
we present the result in Appendix G where we summarize
various explicit formulas for complexities and circuit
lengths. Here we merely note that when m ¼ 0,

gðuÞ ¼ −
π

4
: ð4:10Þ

So the length of the cMERA path in this case is

lcMERA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2ΛVol

6

r
: ð4:11Þ

Now let us plot the jβþj for the following two paths. The
straight line path taking the reference state to the cMERA
target state is

jβþj ¼ tan ðRkσÞ: ð4:12Þ

For the cMERA path, from (4.6) and (4.7) we find

jβþj ¼ tan

�arcsin kffiffiffiffiffiffiffiffiffiffi
k2þm2

p
2

−
k arcsin Λσffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ2σ2þm2
p

2Λσ

�
Θðσ − jkj=ΛÞ; ð4:13Þ

where the step function arises because in calculating βþ we
want the entire u (or σ) dependence to be on the integrand
in (4.6). See Fig. 1.
The jβþj of the first (upper) plot here is for the geodesic

path and the second plot is for the cMERA path. In both
cases the target state is the cMERA target state. The theta
function is responsible for cutting off the curves in the
second figure at the k-axis: in practice this means that
the cMERA path βþ has no support on k > Λσ, whereas the
straight line geodesic path has support on all k. This was
observed in the bosonic case in [5] as well.

B. 3+1 dimensions

We can generalize an analogous construction to 3þ 1
dimensions (which we will call a cMERA-like path), and
calculate the length of a similar construction for fermions in
3þ 1 dimensions in the Dirac basis. The path jΨðuÞi we
take is

jΨðuÞi ¼ Pe−i
R

u

−∞
du0

R
d3kKðkÞykðu0ÞjRi; ð4:14Þ

where jRi is the ground state of the ultralocal Hamiltonian
(3.120),KðkÞ is the squeezing operator given in Eq. (3.123)
and

ykðuÞ ¼ gðuÞ jkje
−u

Λ
ΘðΛeu − jkjÞ ð4:15Þ

and gðuÞ is

gðuÞ ¼ −
2

Λeu
arcsin

Λeuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ Λ2e2u

p

þ m
ffiffiffiffi
Z

p

2ðΛ2e2u þm2Þ34
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mZ þ Λ2e2u

p ð4:16Þ

with Z≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2e2u þm2

p
þm. To obtain gðuÞ we follow the

prescription of [7] and use

gðuÞ≡ −
jkj2
Λ

∂
∂jkj

�
Λrk
jkj

�				
jkj¼Λeu

; ð4:17Þ

where rk is given by (3.124).
In the following, we will discuss the massless case for

simplicity because that is enough to make our points. The
integrals in the above expressions are explicitly doable and
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we have calculated them also for the massive case. In
particular, we have checked that the ground state is attained
by the above path even in the massive case.
In the m ¼ 0 case the gðuÞ reduces to

gðuÞ ¼ −
π

2Λeu
: ð4:18Þ

The path is parametrized from −∞ to 0 by the parameter u.
The parametric values of the reference state and target state
are −∞ and 0 respectively. The target state reached by this
path is

jΨð0Þi ¼ Pe
−i
R
jkj≤Λ d3kKðkÞYkð0ÞjRi; ð4:19Þ

where Ykð0Þ is

Ykð0Þ ¼
Z

0

−∞
duykðuÞ ¼

π

4

�
k
Λ2

−
1

k

�
: ð4:20Þ

At finite u, we have

jΨðuÞi ¼ Pe
−i
R
jkj≤Λeu d

3kKðkÞYkðuÞjRi

¼ Pe
−i
R
jkj≤Λ d3kKðkÞYkðuÞΘðeu−jkj=ΛÞjRi; ð4:21Þ

where

YkðuÞ ¼
jkj
Λ

Z
u

ln jkj=Λ
due−ugðuÞ: ð4:22Þ

Evaluating the length of this cMERA-like path using the
Fubini-Study metric gives

lcMERA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

7
πΛ5Vol

r Z
0

−∞
dujgðuÞje5u

2 : ð4:23Þ

So the length of the cMERA-like path is

lcMERA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π3VolΛ3

63

r
: ð4:24Þ

One interesting feature of this construction is that one
can see by comparing with (3.134) that at finite cutoff, the
supposedly minimal complexity found in (3.134) is higher
than the one found here. This is because the target states in
both cases reach the true ground sate only at infinite cutoff,
and it is not meaningful to compare the lengths to the two
target states (which are distinct at finite cutoff). We present
an example in 1þ 1 dimensions that clarifies and illustrates
this type of cutoff dependence in Appendix F.

V. FUTURE DIRECTIONS AND SPECULATIONS

In this paper, we have calculated various natural notions
of complexity in the space of unitary circuits for free
fermionic quantum field theories. It seems possible that
these results will be of some use in understanding the
holographic significance of complexity (if any). We
will conclude in this section by listing various future
directions beyond the ones we briefly touched upon in
the Introduction.
One of the questions that might be of interest is to

understand the physical content hiding behind a cutoff
dependent quantity like complexity. We have discussed the
question of ambiguities that arise due to the cutoff in the
target states and in the path. It is an interesting questions
what IR sensible physical quantities we can extract from
these without knowing the full UV completion of these
theories. There are some parallels here to the case of
entanglement entropy. Entanglement entropy is also not an
observable in the conventional sense like complexity, but it

2 4 6 8 10

0.1

0.2

0.3

0.4

2 4 6 8 10

0.1
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k

FIG. 1. The jβþj of first plot is for the geodesic path and the
second plot is for the cMERA path. In both cases the target state
is the cMERA target state. The above figure shows the plots of
jβþj vs k for Λ ¼ 10 and m ¼ 1 for the values of σ ¼ 0.2, 0.4,
0.6, 0.8, 1.0, increasing the peak of the curve signifies increasing
σ. We see that while the cMERA path only acts on momenta
jkj
Λ < σ, the geodesic path alters jβþj for all the different momenta.
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does capture interesting physical information that is sen-
sible in the IR, even though it is UV divergent [9]. It is
tempting to also speculate whether supersymmetric theories
with their better defined UV behavior lead to any special
simplifications when calculating these quantities. But note
that such simplifications do not seem to happen for
entanglement entropy.
Two obvious interesting directions from a holographic

perspective is to introduce gauge invariances and inter-
actions. Perturbatively adding interactions seems reason-
ably straightforward, but ultimately for holographic
purposes, we would like to get to a strongly coupled
(conformal) gauge theory where we will probably need new
ideas. The question of gauge invariance on the other hand
seems like one where substantial progress might not be too
hard to make: perhaps an approach along the lines of [10]
which uses Wilson line based variables to define entangle-
ment entropy might be useful here as well for non-Abelian
gauge theories. In the case of asymptotically free theories, it
seems reasonable that the UV behavior we find here for
complexity will capture some of the relevant physics there
as well. At least in an appropriate free theory limit, it seems
plausible that the free field approach we have used might
also work for gauge theories once one takes care of ghost
modes as well. A discussion of complexity in Abelian
gauge theories was done in [11].
A simple situation which is quite interesting concep-

tually, and is a natural generalization of the work we have
done in this paper, is to consider perturbative (bosonic and
super) string theory on the world sheet. Unlike in the case
of entanglement entropy where target space issues com-
plicate some of the questions [12], at least in the free limit,
the circuit complexity of perturbative string theory should
be conceptually easier to characterize and compute. This is
because the reference states and target states can be
understood purely within the world sheet theory as long
as one makes sure that the central charge is zero. Some
work along this direction will be reported elsewhere.
One thing we have ignored in this paper is the question

of penalty factors for directions in circuit space [4] and the
possibility of more general Finsler/non-Riemannian met-
rics. At the moment, it is not clear to us what metrics are
more natural than others, so we have restricted our attention
to simple Riemannian choices. A related question that
clearly needs a better understanding is the question of what
qualifies as a natural choice of interesting gates when
defining complexity. We have used some natural choices
suggested by the problem itself in the discrete and
continuum cases, but it will be nice to find a canonical
way to choose these gates.
We had two motivations for writing this paper. One was

to understand complexity in quantum field theory as a
prerequisite for understanding holographic complexity [1].
A second reason was the recent emergence of a type of
strongly coupled fermionic theories called SYK (and

related) models which have a controllable large-N expan-
sion. In particular, one possible case where a strongly
coupled gauge theory could be solvable is in the context of
the so-called SYK-like tensor models [13]. These theories
are not field theories, but they offer the possibility of exact
solvability [14], and therefore it might be possible to
calculate complexity for them exactly. Between the insights
one can get from free fermionic field theories we discussed
here, and these strongly coupled gauged fermionic (and
possibly holographic) quantum mechanics, it will be
interesting to see if one can make any headway into an
understanding of complexity in strongly coupled holo-
graphic gauge theories.
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Note added.—After this result was obtained by us (but
before our preprint appeared on the arXiv), a paper [15]
appeared on the arXivwhich considers discretized complex-
ity for Dirac fermions. Even though wework withMajorana
spinors and they seem to be using Dirac, it is reasonable for
the results to be similar: we present concrete arguments why
this is so (but in the continuum case), in Sec. III. One of our
results for the discrete case (2.17) can be rewritten as
cos−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
þ ωffiffiffiffiffiffiffiffiffiffiffiffi

4ω2þΩ2
pq

, which we suspect is the same as

Eq. (73) in [15]. See also the related earlier work [16].

APPENDIX A: OSCILLATOR CONVENTIONS

We review some elementary facts to establish notation
(as well as to set up a dictionary to go between notations).
The phase space of the bosonic simple harmonic

oscillator is comprised of two real variables x and p.
The number of degrees of freedom can be defined as half of
the dimensionality of the phase space, and so the bosonic
oscillator has exactly 1 degree of freedom. By combining
the two phase space variables one defines the (complex,
aka non-Hermitian) creation and annihilation operators a
and a†,

a ¼
ffiffiffiffi
ω

2

r
xþ i

pffiffiffiffiffiffi
2ω

p ; a† ¼
ffiffiffiffi
ω

2

r
x − i

pffiffiffiffiffiffi
2ω

p ; ðA1Þ

which satisfy the standard commutation relations

½a; a†� ¼ 1; ðA2Þ

as a result of the canonical commutator, ½x; p� ¼ i. In terms
of these the oscillator Hamiltonian can be written as
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H ¼ 1

2
ðp2 þ ω2x2Þ ¼ ωða†aþ 1=2Þ: ðA3Þ

We could have absorbed the
ffiffiffiffi
ω

p
’s in the definition of a, a†

above into the x and p, without changing the discussion.
The factor of

ffiffiffi
2

p
in the definition can be absorbed only by

introducing a compensating factor on (say) the right-hand
side of the canonical commutator: it changes the symplectic
structure.
By analogy, the phase space of the simple fermionic

oscillator will contain two real (but now Grassmann)
variables ψ1 and ψ2. The number of degrees of freedom
as given by half the phase space dimensionality is then 1.
We define linear combinations of them which are again
non-Hermitian:

b ¼ 1ffiffiffi
2

p ðψ1 − iψ2Þ; b† ¼ 1ffiffiffi
2

p ðψ1 þ iψ2Þ: ðA4Þ

We want them to satisfy the anticommutator

fb; b†g ¼ 1: ðA5Þ

This is accomplished by the canonical anticommutator
(note that there is no i on the right-hand side):

fψ i;ψ jg ¼ δij; ðA6Þ

The Hamiltonian can be taken again in analogy with the
bosonic case

H ¼ −iωψ1ψ2 ¼ ωðb†b − 1=2Þ; ðA7Þ

where the zero point constant now has (famously) the
opposite sign.
A significant distinction between the fermionic and

bosonic oscillators for our purposes is that for bosonic
oscillators a scaling of the form

x → λx; p → λ−1p ðA8Þ

for λ ∈ C − f0g preserves the commutation relations. Such
a scaling is not possible in the fermionic case if one wants
to preserve the anticommutation relations. This operational
fact is at the basis of our observation that we could not
construct a reference state that depended on some arbitrary
scale M (like it was possible for bosons in [5,7]) when
dealing with fermions. It seems possible that this fact is of
some deep significance, even outside the context of
complexity, though we are not aware of a systematic
exploration of it.

APPENDIX B: BOGOLIUBOV-VALATIN
TRANSFORMATIONS FOR FERMIONS

Bogoliubov-Valatin (B-V) transformations12 preserve
the anticommutation relations while diagonalizing the
Hamiltonian. Consider the quadratic Hamiltonian for
some n > 1:

H ¼
Xn
i;j¼1

αij½b†i ; bj� þ
1

2
γijb

†
i b

†
j þ

1

2
γ�jibibj; ðB1Þ

where bi and b†j are the annihilation and creation operators
respectively and follow the anticommutation relations. To
ensure that the Hamiltonian is Hermitian, the αi;j and γi;j
must satisfy

αij ¼ α�ji γij ¼ −γji: ðB2Þ

Now, (B1) can be written as

H ¼ 1

2
Ψ†MΨ; ðB3Þ

where Ψ and Ψ† are

Ψ ¼
�

b

ðb†ÞT
�

Ψ† ¼
�
b† bT

�
ðB4Þ

and b, ðb†ÞT are column vectors of size n:

b ¼

2
666664

b1
b2

..

.

bn

3
777775 ðb†ÞT ¼

2
666664

b†1
b†2

..

.

b†n

3
777775: ðB5Þ

The matrix M has the form

M ¼
�
α γ

γ† −αT

�
: ðB6Þ

Our goal is to diagonalize the Hamiltonian and identify the
normal modes, while preserving the anticommutators. This
is accomplished by the B-V transformations T:

Ψ ¼ TΦ: ðB7Þ

Here, Φ is the column matrix of normal modes:

12We will only discuss the fermionic case here, an analogous
discussion can be made for bosons as well, see [17].
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Φ ¼
�

cb̃

ðb̃†ÞT
�

ðB8Þ

with

b̃ ¼

2
666664

b̃1
b̃2

..

.

b̃n

3
777775 ðb̃†ÞT ¼

2
666664

b̃†1

b̃†2

..

.

b̃†n

3
777775: ðB9Þ

To do the diagonalization, T must satisfy

D ¼ T†MT; ðB10Þ

where D is the diagonal matrix of normal mode frequen-
cies. This is immediate from

H ¼ 1

2
Ψ†MΨ ¼ 1

2
Φ†T†MTΦ ¼ 1

2
Φ†DΦ: ðB11Þ

A general linear transformation is of the form

bi ¼ Aijb̃j þ Bijb̃
†
j ðB12Þ

which can be written in the matrix form

�
b

ðb†ÞT
�
¼

�
A B

B� A�

��
b̃

ðb̃†ÞT
�
: ðB13Þ

This means that T looks like

T ¼
�
A B

B� A�

�
: ðB14Þ

Using the above explicit form of T, a direct calculation
shows that the condition for T to unitary is identical to the
condition that the anticommutators are preserved under
(B13). It is useful when doing this calculation to remember
manipulations like the following: for column vectors x and
y if x ¼ Ay, i.e., xi ¼ Aijyj, then

x†j ¼ ðAyÞ†j ¼ ðy†A†Þj ¼ y†i A
†
ij ¼ y†i A

�
ji ¼ A�

jiy
†
i ; ðB15Þ

and therefore, ðx†ÞT ¼ A�ðy†ÞT . Note that the transposition
in this last equation is necessary because we want to
interpret it as a column vector equation, as in the second
definition in (B5).
In conclusion, a B-V transformation for fermions is a

unitary matrix T of the form (B14), qhich can diagonalize
the Hamiltonian [as captured by (B10)]. The crucial point is
that any unitary matrix that does the job of diagonalization

does not qualify as a B-V matrix,13 it has to be of the
form (B14).

APPENDIX C: BOGOLIUBOV-VALATIN
VS DIRAC MODES

The spinorΨðxÞ was Fourier transformed in Sec. III A as

ΨðxÞ ¼
Z

dkffiffiffiffiffiffi
2π

p ΨðkÞeikx: ðC1Þ

A more standard basis is to expand in the basis of Dirac
modes,

ΨðxÞ ¼
Z

dkffiffiffiffiffiffi
2π

p 1ffiffiffiffiffiffi
2E

p ðakuk þ b†−kv−kÞeikx; ðC2Þ

where ak, bk are the annihilation operators of the ground
state and uk and vk are the spinors satisfying the equation

ð=kþmÞuk ¼ 0 and ð=k −mÞvk ¼ 0 ðC3Þ

with the normalization

ūu ¼ 2m and v̄v ¼ −2m: ðC4Þ

These can be explicitly calculated to be

uk ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

Eþm
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E −m

p
�

and v−k ¼
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E −m

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþm

p
�
: ðC5Þ

Comparing (C1) and (C2) we get

�Ψ1ðkÞ
Ψ2ðkÞ

�
¼ 1ffiffiffiffiffiffi

2E
p ðakuk þ b†−kv−kÞ ðC6Þ

from which

ak ¼ AkΨ1ðkÞ þ BkΨ2ðkÞ
b†−k ¼ −BkΨ1ðkÞ þ AkΨ2ðkÞ ðC7Þ

follows, with the Ak and Bk given in Sec. III A. It is clear
from this that the ground state obtained there via a
Bogoliubov-Valatin transformation in the main body of
the paper is just the usual ground state (as it should be).
We have phrased this discussion in 1þ 1 dimensions,

but an entirely similar discussion holds in higher dimen-
sions as well. The only difference is that in higher
dimensions (say 3þ 1d) the Dirac u, v modes are not
uniquely fixed (ie., the u and v come with an index as is
familiar in 3þ 1d where the index has two values), and so

13Note that the Hamiltonian being Hermitian, it can always be
diagonalized by a unitary.
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there are some more arbitrary choices that need to be made
in the choice of their specific form.

APPENDIX D: GEODESICS ON CP1

The metric we derived in Sec. III C is the Fubini-Study
metric on CP1:

ds2 ¼ β0�þβþ0

ð1þ jβþj2Þ2
dσ2; ðD1Þ

where β0þ is dβþ
dσ . Since βþ is a complex variable, we can

write βþ ¼ xþ iy, to bring the metric to a real form:14

ds2 ¼ dx2 þ dy2

ð1þ x2 þ y2Þ2 : ðD2Þ

The geodesics on this metric satisfy the usual Euler-
Lagrange equations

d2xα

dσ2
þ Γα

βγ

dxβ

dσ
dxγ

dσ
¼ 0; ðD3Þ

where xα ≡ ðxðσÞ; yðσÞÞ. For the straight line path given in
(3.64), βþ takes the form

βþ ¼ −i tan rkσ: ðD4Þ

So we get x ¼ 0, y ¼ − tan rkσ. This can be immediately
checked to satisfy the above geodesic equation.
Now for alternate path generated by BðkÞ, the form of βþ

is given in (3.58):

βþ ¼ i sin rk sin
πσ
2

i cos πσ
2
− cos rk sin πσ

2

: ðD5Þ

This gives

x ¼ sin r sin πσ
2
cos πσ

2

cos2rsin2 πσ
2
þ cos2 πσ

2

y ¼ sin r cos rsin2 πσ
2

cos2rsin2 πσ
2
þ cos2 πσ

2

:

ðD6Þ

Plugging this into the left-hand side of the geodesic
equation above, we find that the equation is not satisfied.
We see that the straight line path generated by squeezing

operatorKðkÞ is the geodesic of theCP1 metric but the path
taken by BðkÞ is not.

APPENDIX E: SOð8Þ
In this Appendix, we consider the massive 3þ 1-

dimensional fermions discussed in the main text and

consider a natural, yet more general class of generators
that can be used as the primitive gates. The squeezing
operator we constructed in the main body of the paper is a
specific linear combination of these generators and can be
viewed as a restricted class of paths.
The basic observation is that the most general (quadratic)

generators that we can construct at each k from the creation
and annihilation operators are built from

b†i b
†
j ; bibj; b†i bj; ðE1Þ

for i, j ¼ 1, 2, 3, 4. Using the antisymmetry property,
b†i b

†
j ¼ −b†jb

†
i and bibj ¼ −bjbi for i ≠ j and bibi ¼

b†i b
†
i ¼ 0, we can count that there are 6þ 6þ 16 ¼ 28

total generators. This is a strong suggestion that the algebra
of these generators forms an SOð8Þ algebra, which also has
the same number of generators.
To explicitly see the algebra, all one has to do is define

Γ2i−1 ¼ bi þ b†i Γ2i ¼ iðbi − b†i Þ ðE2Þ

and note that it follows from the anticommutation relations
that the Γ’s satisfy the Clifford algebra

fΓa;Γbg ¼ 2δab ðE3Þ

for SOð8Þ. The generators of SOð8Þ are then as usual
defined via

Σab ¼ −
i
4
½Γa;Γb�; ðE4Þ

where a, b runs from 1 to 8. Σab is an antisymmetric tensor,
which again yields the 28 independent generators of SOð8Þ.
The fact that the Γa defined from the bi and b†i satisfy the
Clifford algebra guarantees that the generators correspond-
ing to ΓðaΓbÞ are proportional to the identity (when a ¼ b,
else they are zero) and therefore only contribute to a
decoupled phase.
In analogy with the 1þ 1-dimensional case where we

found an SUð2Þ algebra and an associated CP1 geometry
on which it naturally acts, this indicates that the natural
geometry arising from the paths here is an S7 where the
SOð8Þ acts linearly. It will be interesting to see whether the
squeezing operator we have defined in the text leads to a
geodesic or nongeodesic path when considered as a path in
this geometry. Based on genericity alone, there is no reason
why the squeezing operator path is geodesic, but it will be
nice to (dis)prove this explicitly. The calculation will be the
generalization of the one we did for the SUð2Þ case in 1þ 1
dimensions, but unlike the three generators there, now we
have 28 generators. So one has to either go for more brute
force than we have been able to muster, or find an alternate
clever way to do this, or a suitable combination of both.

14Said another way, manifesting the complex structure of the
metric is not necessary to answer metric questions.
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APPENDIX F: Cutoff Dependence

Notice that in Sec. IV B the Λ-dependent length of the
cMERA-like path is shorter than that of the straight line
path calculated in Sec. III. This is a result of the fact that at
finite cutoff, the target states do not match and therefore it is
not meaningful to compare them, even though they do
match at infinite cutoff.
Let us define a one parameter family of target states for

the 1þ 1-dimensional Dirac theory, with a cutoff Λ such
that the target state approaches the ground state of the field
theory in the Λ → ∞ limit:

jTðΛÞ
α i ¼ e

−i
R
jkj≤Λ KðkÞrðkÞð1þαk2

Λ2
ÞjRi; ðF1Þ

where rðkÞ is given in Eq. (3.11) and α ∈ R. In the limit
Λ → ∞ the coefficient of KðkÞ in the exponent becomes
rðkÞ thereby reproducing the ground state of the field
theory.
We will use the same reference state as the one we used

in the main body of the paper and calculate the length of the
minimal path from this reference state to this new target
state. To simplify the integrals we will do this in the m ¼ 0
case. Again using the Fubini-Study metric and following
the by now standard derivation, we get the straight line path
to be the minimal path. The length of this minimal path is

lα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vol

Z
jkj≤Λ

rðkÞ2
�
1þ α

k2

Λ2

�
2

s
: ðF2Þ

For m ¼ 0

lα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2

8
ΛVol

�
1þ 2

3
αþ 1

5
α2
�s

¼ C

�
1þ 2

3
αþ 1

5
α2
�1

2

; ðF3Þ

where C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2

8
ΛVol

q
is the complexity that we calculated

in the text.
It is easy to see that this length can be bigger or even

smaller (e.g., α ¼ −5=3) than the complexity C, depending
on the value of α. What is happening here is that the cutoff
dependence in the definition of the target state is making
the comparison between path lengths at finite cutoff
meaningless between states that are distinct at finite cutoff.
This is what is manifest in Sec. IV B. There also the target
states were different and so we do not expect the cMERA-
like lengths to be directly comparable to the complexity at
finite cut off. In Sec. IVA it turned out that cMERA length
was longer than the complexity and in Sec. IV B it is the
opposite.
This is a demonstration of the fact that UV sensitive

quantities are not stable under change of cutoff. It is
interesting to ask what kind of information one can extract

from a UV sensitive quantity like complexity: note that
entanglement entropy is also typically UV divergent, but
its subleading behavior is proportional to the area. So it
will be interesting to understand what kind of UV-
insensitive information one can extract from quantities
like complexity.

APPENDIX G: COMPLEXITIES AND CIRCUIT
LENGTHS: SELECTED SUMMARY

1. Dirac complexity in 1 + 1 dimensions

The following is a real quantity:

C2 ¼ −
m
2
Vol log

�
Λ2

m2
þ 1

�
tan−1

�
Λ
m

�

−
1

4
mVol

�
− logð16Þtan−1

�
Λ
m

�

− iLi2ð−e−2itan−1ðΛmÞÞ þ iLi2ð−e2itan−1ðΛmÞÞ
�

þ 1

2
ΛVol

�
tan−1

�
Λ
m

��
2

ðG1Þ

which gives in the large Λ expansion

C2¼ π2

8
Vol

�
Λþ4m

π
log

�
2m
Λ

�
−
4m
π

þOð1=ΛÞ
�
: ðG2Þ

2. Circuit length with the B generator
in 1 + 1 dimensions

C2 ¼
�
π

2

�
2

Vol
�
Λþm

2
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þm2

p
− Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ2 þm2
p

þ Λ

��
ðG3Þ

which gives in the large Λ expansion

C2 ¼ π2

4
Vol

�
Λþm log

�
m
2Λ

�
þOð1=ΛÞ

�
: ðG4Þ

3. Massive Dirac complexity in 3 + 1 dimensions

The following is again a real quantity:

C2 ¼ 1

18
πVol

�
12im3Li2

�
1−

2m
m− iΛ

�

− 24m

�
Λ2þ 2m2 log

�
2m

m− iΛ

�
þm2

�

× tan−1
�

Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2þm2

p
þm

�
þm2ð12Λþ iπ2mÞ

þ 48ðΛ3þ im3Þ
�
tan−1

�
Λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λ2þm2
p

þm

��
2
�

ðG5Þ
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and it yields in the large Λ expansion

C2 ¼ π3

6
Vol

�
Λ3 −

6m
π

Λ2 þ 12m2

π2
Λþ 4m3

π
log

�
Λ
2m

�
−
2m3

3π
þOð1=ΛÞ

�
: ðG6Þ

4. cMERA circuit length in 1 + 1 dimensions

For the massive case, the explicit expression for the cMERA circuit length is

lcMERA ¼
ffiffiffiffiffiffiffiffi
Vol
6

r �
2

ffiffiffiffi
Λ

p
cot−1

�
m
Λ

�
þ 3

ffiffiffiffiffiffi
im

p �
tanh−1

� ffiffiffiffiffi
iΛ
m

r �
− tan−1

� ffiffiffiffiffi
iΛ
m

r ���
ðG7Þ

and it has the large Λ form

l2cMERA ¼ π2

6
Vol

�
Λ − 3

ffiffiffiffiffiffiffiffiffiffi
2mΛ

p
þ 9m

2
þ 8m

π
þOð1=ΛÞ

�
: ðG8Þ
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