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Building on Segal’s local free action principle for bosonic unconstrained higher spin gauge fields in
d-dimensional ðAÞdSd spacetime, we present a similar action principle à la Segal for fermions in
d-dimensional ðAÞdSd spacetime. Moreover, at the level of equations of motion, we demonstrate how the
Fronsdal and the Fang-Fronsdal equations in d-dimensional ðAÞdSd spacetime are related, respectively, to
the Euler-Lagrange equations of the bosonic and fermionic higher spin actions mentioned above.
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I. INTRODUCTION

From the massless limit of the Singh-Hagen formulation
[1,2], the local constrained Lagrangian formulation
describing free bosonic (fermionic) massless higher spin
fields was established by Fronsdal (Fang and Fronsdal) in
flat and anti–de-Sitter (AdS) spacetimes [3,4] ([5,6]) in a
metriclike approach (see [7] for a recent review).1 The
constrained Lagrangian formulations include some con-
ditions on the gauge fields and parameters; however, along
with them, there are unconstrained formulations comprised
of no conditions on the gauge fields and parameters, in both
the BRST and geometric approaches, in Minkowski and
(A)dS spacetimes (see, e.g., [16–45]).2
An unconstrained Lagrangian formulation should be

useful to make links between the higher spin theories
and the BRST form of the string theory [23,47], as well as it
is thought that the unconstrained Lagrangian formulation
might be helpful for studying a possible Lagrangian
formulation for the Vasiliev equations, describing interact-
ing higher spin fields [48–50]. We note that one of the

main open problems in the classical field theory is con-
structing a Lagrangian formalism to describe interacting
higher spin fields3 (see, e.g., [52–55] for reviews), and for
that we shall concentrate on unconstrained Lagrangian
formulations.
Among all unconstrained Lagrangian formulations,

there is a simple model for the massless free bosonic
higher spin fields in d-dimentional ðAÞdSd spacetime,
suggested by Segal in 2001, in terms of unconstrained
gauge fields and parameters [56]. The merit of the Segal
formulation is its simplicity, the fact that it does not
introduce any auxiliary fields, and particularly its relation
to the bosonic continuous spin gauge theory in a limit,
explained below. In fact, Segal constructed a generating
formulation describing an infinite sum of the actions for
massless integer-spin fields, s ¼ 0; 1;…;∞, such that
every spin enters only one time. The obtained action
includes an integral localized on the “constraint surface”
p2 − 1 ¼ 0 in the cotangent bundle of AdS space. It was
shown that the action can be thought as a decomposition
of an infinite sum over all Fronsdal actions in ðAÞdSd
spacetime. It should be again emphasized that the Segal’s
unconstrained formulation is devoid of any auxiliary
fields, differently from other formulations (e.g., there
exist indeed two auxiliary fields in the unconstrained
Lagrangian formulation presented in [34]).4

Later, in 2014, in their research on constructing a free
action principle for bosonic continuous spin particles
(CSPs), Schuster and Toro presented an unconstrained
formulation for bosonic higher spin gauge fields in flat
spacetime [57]. This action principle was obtained from a
limit of the CSP theory when the continuous spin parameter
(characterized usually by μ) vanishes (μ ¼ 0), and is a
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1For the framelike approach, see Refs. [8–10] in Minkowski
space, and [11–14] in AdS space (see also [15] for massless
mixed-symmetry fermionic fields).

2We notice that, in particular, the formulation proposed in [42]
does not appear to be fully unconstrained (the gauge parameter is
still subject to a transversality condition); however, one can
parametrize the gauge symmetry of the corresponding Maxwell-
like Lagrangians in terms of fully unconstrained gauge param-
eters so as to obtain a fully unconstrained system [46] (We thank
Dario Francia for comments and for pointing out this issue).

3For example, it was shown that no massless higher spin field
can be consistently coupled to gravity in flat space [51].

4We thank again Dario Francia for highlighting this point.
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reformulation of Segal’s four-dimensional action with van-
ishing cosmological constant (Λ ¼ 0). They also recovered
this action as a sum of the Fronsdal actions in another
approach. Indeed, they integrated out the auxiliary space
dependence of the action to reproduce the Schwinger-
Fronsdal tensor actions, using a field decomposition and
partial gauge fixing.
Afterwards, in 2015, we found a similar uncon-

strained Lagrangian formulation for fermionic CSP in four-
dimensional flat spacetime [58]. Consequently, we were
motivated to construct a Segal-like formulation for fer-
mionic higher spin gauge fields in d-dimensional ðAÞdSd
spacetime (explained below), which had not yet been
discussed in the literature.
These above-mentioned actions [56–58], as well as the

present work, can be placed in the following Table by
understanding the fact that, à la Segal, the bosonic and
fermionic CSP actions in (A)dS spacetime (μ;Λ ≠ 0) have
not yet been discovered. However, we note that, à la
Fronsdal, the bosonic [59] and fermionic [60] CSP actions
in d-dimensional ðAÞdSd spacetime have been established
by Metsaev.

For bosons Λ ¼ 0 Λ ≠ 0

μ ¼ 0 Segal action [56] Segal action [56]
μ ≠ 0 CSP action [57] ?
For fermions
μ ¼ 0 Present work Present work
μ ≠ 0 CSP action [58] ?

Therefore, to a great extent, the present work was
motivated by the previous studies on the bosonic [57]
and fermionic [58] continuous spin gauge theories, which
are formulated in an unconstrained formalism. Indeed, we
realize the fact that, when the continuous spin parameter
goes to zero (μ ¼ 0), the bosonic [57] and fermionic [58]
CSP actions reduce, respectively, to the bosonic [56] and
fermionic (present work) higher spin gauge theories in
four-dimensional flat spacetime.
In the present work, we obtain a local and covariant

action principle for free fermionic higher spin gauge fields
in d-dimensional ðAÞdSd spacetime as

S ¼
Z

ddxddηeΨ̄ðx; ηÞδ0ðη2 þ 1Þðγ · ηþ iÞ

×

�
γ · D − ðγ · η − iÞð∂η · DÞ

þ i
ffiffiffiffi
Λ

p

2
ð2Nη þ d − 4þ ðγ · ηÞðγ · ∂ηÞ

− 3iðγ · ∂ηÞÞ
�
Ψðx; ηÞ; ð1Þ

where ηa is a d-dimensional auxiliary Lorentz vector
localized to the unit hyperboloid η2 ¼ −1, δ0 is the
derivative of the Dirac delta function with respect to its

argument δ0ðaÞ ¼ d
da δðaÞ, and γa are gamma matrices in d

dimensions. In addition, we define the Dirac adjoint as
Ψ̄ ≔ Ψ†γ0, ∂a

η ≔ ∂=∂ηa, Nη ≔ η · ∂η, and e ≔ det eaμ,
where eaμ stands for the vielbein of ðAÞdSd space. We also
denote Da ≔ eμaDμ, where Dμ stands for the fermionic
Lorentz covariant derivative, defined in Appendix A, and

Λ ¼

8>><
>>:

þ1; for dS space;

0; for flat space;

−1; for AdS space;

ð2Þ

such that the (A)dS radius is set to be one. The gauge field
Ψ is unconstrained and introduces as the generating
function

Ψðx; ηÞ ¼
X∞
n¼0

1

n!
ηa1…ηanΨa1…anðxÞ; ð3Þ

where Ψa1…anðxÞ are totally symmetric spinor-tensor fields
of all half-integer spin fields s ¼ nþ 1

2
, in such a way that

the spinor index is left implicit. Note that in the infinite
tower of spins (3), every spin state interns only once, and
the spin states are not mixed under the Lorentz boost.5

The action (1) is invariant under the gauge transformations,

δξ1Ψðx; ηÞ ¼
�
ðγ · DÞðγ · η − iÞ − ðη2 þ 1Þð∂η · DÞ

þ i
ffiffiffiffi
Λ

p

2
ð2ðγ · ηÞ þ ðγ · ηþ iÞ2ðγ · ∂ηÞ

− ðγ · ηþ iÞð2Nη þ dÞÞ
�
ξ1ðx; ηÞ; ð4Þ

δξ2Ψðx; ηÞ ¼ ðη2 þ 1Þðγ · ηþ iÞξ2ðx; ηÞ; ð5Þ
where ξ1 and ξ2 are the unconstrained gauge transformation
parameters. Varying the action (1) with respect to the gauge
field Ψ yields the following equation of motion:

δ0ðη2 þ 1Þðγ · ηþ iÞ
�
γ · D − ðγ · η − iÞð∂η · DÞ

þ i
ffiffiffiffi
Λ

p

2
ð2Nη þ d − 4þ ðγ · ηÞðγ · ∂ηÞ

− 3iðγ · ∂ηÞÞ
�
Ψðx; ηÞ ¼ 0: ð6Þ

Wewill show later how this equation of motion can be related
to the Fang-Fronsdal equation.
The structure of this paper is as follows. Since we aim to

find a Segal-like formulation for fermions, we will first

5We note that in the context of the continuous spin gauge
theory, the gauge field has a form of the one in (3), but with the
difference that the spin states are mixed under the Lorentz boost.
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focus on the Segal action, by presenting the method in
Sec. II. Then we will extend the method to the fermionic
case and find a fermionic action in Sec. III, which is the
main point of this paper. Strictly speaking, in Sec. II, we
explain how to find the origin of the Segal action, by
starting from the Fronsdal one. For this purpose, we will
present two steps; the first step is constructing the Fronsdal-
like formulation (Sec. II B), and the second one is building
an unconstrained system by Fourier transforming of the
Fronsdal-like (Sec. II C). We have realized that pursuing
these two steps will lead to the Segal action [56]. The
reason why constructing the Fronsdal-like formulation
(step one), leading to the Segal’s action, is necessary is
clarified in Sec. II D. In Sec. III, we will elaborate how to
achieve the presented action in (1). Therefore, similar to the
bosonic case, we will first start from the Fang-Fronsdal
formulation and, by presenting these two steps (Secs. III B
and III C), will then arrive at the fermionic action (1).
Conclusions and further directions will be presented in
Sec. IV. We present our conventions in the Appendix A.
Useful relations are given in the Appendix B. In order to be
self-contained, a short discussion on the Segal action [56]
will be presented in Appendix C.

II. THE SEGAL ACTION

In this section, we aim to construct the Segal action
[56] from the Fronsdal one [4]. In fact, at the level of
equations of motion, we will make a relationship between
the Fronsdal equation and the obtained Euler-Lagrange
equation of the Segal action. Therefore, we first
briefly review the Fronsdal formulation in d-dimensional
ðAÞdSd spacetime, in which the gauge fields and param-
eters obey traceless constraints. However, at the end, by
solving the trace conditions, we will arrive at the Segal
formulation, which is devoid of any constraints on the
gauge fields and parameters. To this end, we will present
two steps. In the first step, we apply a field redefinition
and construct a so-called Fronsdal-like formulation in
such a way that the gauge field and parameter satisfy
shifted traceless conditions. In the second step, we
perform a Fourier transformation on the auxiliary space,
solve the shifted traceless conditions using distributions,
and construct an unconstrained formulation for the
equation of motion. We will find the obtained equation
of motion is nothing but the Euler-Lagrange equation of
the Segal action. Finally, we explain why without the
Fronsdal-like formulation we shall not be able to arrive at
a correct action describing massless bosonic higher spin
fields.

A. Fronsdal formulation

The action describing an arbitrary massless spin-s
field in the Minkowski [3] and (A)dS [4] spacetimes
were first found by Fronsdal in the metriclike approach.

In d-dimensional ðAÞdSd spacetime, the free action for a
given spin s reads

Is ¼
s!
2

Z
ddxeφsðx; ∂ωÞ

�
1 −

1

4
ω2ð∂ω · ∂ωÞ

�

× F ðsÞφsðx;ωÞjω¼0; ð7Þ
where6

F ðsÞ ¼−□ðAÞdSþðω ·∇Þð∂ω ·∇Þ−1

2
ðω ·∇Þ2ð∂ω ·∂ωÞ

−Λ½s2þ sðd−6Þ−2ðd−3Þþω2ð∂ω ·∂ωÞ�; ð8Þ
is the Fronsdal operator. The operator □ðAÞdS denotes the
D’Alembert operator of (A)dS space, and∇a ≔ eμa∇μ while
∇μ stands for the Lorentz covariant derivative (see
Appendix A). The gauge field φsðx;ωÞ in (7) is double-
traceless

ð∂ω ·∂ωÞ2φsðx;ωÞ¼ 0; φsðx;ωÞ¼
1

s!
ωa1…ωasφa1…asðxÞ;

ð9Þ
describing a totally symmetric double-traceless tensor field
φa1…asðxÞ of any integer spin s, whereωa is a d-dimensional
auxiliary vector and ∂a

ω ≔ ∂=∂ωa. The action (7) is invariant
under the gauge transformation

δϵφsðx;ωÞ ¼ ðω ·∇Þϵsðx;ωÞ; ð10Þ
where ϵs is the gauge transformation parameter subject to the
traceless condition

ð∂ω · ∂ωÞϵsðx;ωÞ ¼ 0;

ϵsðx;ωÞ ¼
1

ðs − 1Þ!ω
a1…ωas−1ϵa1…as−1ðxÞ; ð11Þ

for the rank-(s − 1) symmetric and traceless gauge param-
eter ϵa1…as−1ðxÞ. We note that the generating functions in (9)
and (11) satisfy, respectively, the following homogeneity
conditions:

ðNω−sÞφsðx;ωÞ¼ 0; ðNω− sþ1Þϵsðx;ωÞ¼ 0; ð12Þ

where Nω ≔ ω · ∂ω. We end up here the constrained
Fronsdal formulation and present a Fronsdal-like system
in next subsection.

B. Fronsdal-like formulation

By the Fronsdal-like formulation for a massless higher
spin field we mean a formulation, in which the gauge field
and parameter are redefined objects by the operators PΦ
and Pε

6The operator F s in (8) was first found in [61]. See also the
presented formulation in [62].
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Φsðx;ωÞ ¼ PΦφsðx;ωÞ;

PΦ ¼
X∞
n¼0

ω2n 1

22nn!ðNω þ d
2
− 1Þn

; ð13Þ

εsðx;ωÞ ¼ Pεϵsðx;ωÞ;

Pε ¼
X∞
n¼0

ω2n 1

22nn!ðNω þ d
2
Þn
; ð14Þ

so that the new gauge field Φs and parameter εs satisfy,
respectively, the shifted traceless conditions

ð∂ω · ∂ω − 1Þ2Φsðx;ωÞ ¼ 0;

ð∂ω · ∂ω − 1Þεsðx;ωÞ ¼ 0: ð15Þ

Indeed, the operators PΦ and Pε play a role to convert the
shifted traceless conditions (15) to the traceless ones (9),
(11); and ðaÞn in the denominators denotes the rising
Pochhammer symbol (B1) (for specific details of the
calculation, see the Appendices of [63]).
Considering a similar generating function, as before, for

the redefined gauge field Φs and parameter εs, we can find
the “Fronsdal-like equation”7

�
−□ðAÞdSþðω ·∇Þð∂ω ·∇Þ−1

2
ðω ·∇Þ2ð∂ω ·∂ω−1Þ

−Λðs2þ sðd−6Þ−2ðd−3Þþω2ð∂ω ·∂ωÞ−2ω2Þ
�
Φs

× ðx;ωÞ¼ 0; ð16Þ

which is invariant under the gauge transformation

δεΦsðx;ωÞ ¼ ðω · ∇Þεsðx;ωÞ: ð17Þ

To illustrate that the obtained Fronsdal-like equation (16)
will reproduce the Fronsdal equation, one can first use the
homogeneity condition ðNω − sÞΦs ¼ 0 to rewrite Eq. (16)
in terms of Nω. Then, by plugging (13) into (16), and
applying the relations (B9)–(B12), it is straightforward to
demonstrate that the Fronsdal-like equation (16) will pre-
cisely recover theFronsdal equation,F ðsÞφsðx;ωÞ ¼ 0, up to
terms of order Oðω4Þ vanishing due to the double-traceless
condition φðx; ∂ωÞðω2Þ2 ¼ 0 at the level of the action (7).
The relations (15)–(17) are formulated for an arbitrary

integer spin-s field Φsðx;ωÞ. However, we might be
interested in a formulation where its gauge field

Φðx;ωÞ¼
X∞
s¼0

Φsðx;ωÞ¼
X∞
s¼0

1

s!
ωa1…ωasΦa1…asðxÞ; ð18Þ

decomposes into infinite tower of all integer spins (s ¼ 0;
1; 2;…;∞), in which every spin state interns only once and
the spin states of the symmetric tensor fields Φa1…asðxÞ are
not mixed under the Lorentz boost.8 Therefore, to construct
such a formulation, we first use the homogeneity condition
of the gauge field (12) into (16), and then take into account
an infinite sum over all integer spins in the relations (15)–
(17). The obtained result gives us the traceless conditions

ð∂ω ·∂ω−1Þ2Φðx;ωÞ¼0; ð∂ω ·∂ω−1Þεðx;ωÞ¼0; ð19Þ

the Fronsdal-like equation,
�
−□ðAÞdS þ ðω ·∇Þð∂ω ·∇Þ − 1

2
ðω · ∇Þ2ð∂ω · ∂ω − 1Þ

− ΛðN2
ω þ Nωðd − 6Þ − 2ðd − 3Þ þ ω2ð∂ω · ∂ωÞ

− 2ω2Þ
�
Φðx;ωÞ ¼ 0; ð20Þ

and the gauge transformation

δεΦðx;ωÞ ¼ ðω · ∇Þεðx;ωÞ; ð21Þ

in terms of the gauge field Φ (18) and the gauge
parameter ε.9

In flat spacetime, it would be useful for our future
purpose to take into account the equation of motion (20) in
the momentum space and then perform a suitable gauge
fixing (see the procedure applied in [64]). Consequently, in
terms of the gauge-invariant distribution Φðp;ωÞ ¼
δðp · ωÞΦðp;ωÞ, the massless bosonic higher spin equa-
tions become

p2Φðp;ωÞ¼ 0; ðp ·ωÞΦðp;ωÞ¼ 0;

ðp ·∂ωÞΦðp;ωÞ¼ 0; ð∂ω ·∂ω−1ÞΦðp;ωÞ¼ 0: ð22Þ

We notice that these equations in their Fourier-transformed
auxiliary space are precisely the Wigner equations [65]
with a vanishing continuous spin parameter.
It would be useful to highlight here a difference between

the Fronsdal-like formulation in Sec. II B, describing
massless bosonic higher spin field, and the Fronsdal-like
formulation describing a single bosonic continuous spin

7Note that the Fronsdal-like formulation, describing a single
bosonic continuous spin particle (CSP), was first discussed in
[64]. That formulation satisfies similar conditions as (15) for the
bosonic CSP gauge field and the parameter. In this sense, we
called here our formulation the “Fronsdal-like formulation”;
however, we note that it actually describes the bosonic higher
spin gauge theory.

8We note that this is in contrast to the bosonic continuous spin
gauge field, where the gauge field has a similar decomposition as
(18), but actually the spin states of the symmetric tensor fields
Φa1…asðxÞ are mixed under the Lorentz boost such that the degree
of mixing is determined by a continuous spin parameter.

9Thegauge parameter ε has a similar decomposition as thegauge
field Φ, if we substitute Φ with ε, and s with s − 1 into (18).
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field [64]. Consider the Fronsdal-like equation (20) in
d-dimensional flat spacetime (Λ ¼ 0)

F1Φðx;ωÞ¼
�
−□þðω ·∂xÞð∂ω ·∂xÞ

−
1

2
ðω ·∂xÞ2ð∂ω ·∂ω−1Þ

�
Φðx;ωÞ¼ 0: ð23Þ

Then, using (B18), and after dropping the term proportional
to ð∂ω · ∂ω − 1Þ2 which vanishes due to the double-
tracelesslike condition (19) in the action, one can easily
check that the kinetic operator

K1 ¼
�
1 −

1

4
ðω2 − 1Þð∂ω · ∂ω − 1Þ

�
F1

is Hermitian (i.e., K†
1 ¼ K1) with respect to the Hermitian

conjugation,

ð∂xÞ† ≡ −∂x; ð∂ωÞ† ≡ ω; ðωÞ† ≡ ∂ω: ð24Þ
Thus, one can write the action as

I1 ¼
1

2

Z
ddxΦðx; ∂ωÞK1Φðx;ωÞjω¼0: ð25Þ

Therefore, the Fronsdal-like equation (23) of the higher
spin gauge field theory can be derived from the action (25).
However, by giving the Fronsdal-like equation of the
continuous spin gauge theory [64],

F1Φðx;ωÞ ¼
�
−□þ ðω · ∂x þ iμÞð∂ω · ∂xÞ

−
1

2
ðω · ∂x þ iμÞ2ð∂ω · ∂ω − 1Þ

�
Φðx;ωÞ ¼ 0;

ð26Þ
where μ stands for the continuous spin parameter, using
(B19), one can simply check that the operator

K1 ¼
�
1 −

1

4
ðω2 − 1Þð∂ω · ∂ω − 1Þ

�
F1 ð27Þ

is not Hermitian, and thus Eq. (26) cannot be directly
obtained from an action principle. In other words, the
Fronsdal-like formulation in Sec. II B of the higher spin
theory is a Lagrangian formulation, while the one for the
CSP theory [64] is not. In order to find a Lagrangian
formulation for the CSP theory, we performed the Fourier
transformation on the auxiliary space ω, and worked in η
space, as well as solved the (double-)traceless condition
using the Dirac delta distributions. This procedure has been
explained in detail for CSP in [66], and here, in next
subsection, we will apply it for higher spin and demonstrate
how it leads to the Segal action.

C. Unconstrained formulation

The Segal action is an unconstrained formulation
for describing the bosonic higher spin gauge field in d-
dimensional ðAÞdSd spacetime [56], which is formulated in
η space. Thus, we will write the Fronsdal-like formulation
in η space by performing the Fourier transformation on the
auxiliary space ω

Φ̃ðx; ηÞ ¼
Z

ddω

ð2πÞd2 expð−iη · ωÞΦðx;ωÞ: ð28Þ

In η space, the shifted double-traceless condition (19)
becomes ðη2 þ 1Þ2Φ̃ðx; ηÞ ¼ 0, which can be generally
solved by the Dirac delta distribution

Φ̃ðx; ηÞ ¼ δ0ðη2 þ 1ÞΦðx; ηÞ; ð29Þ

where Φðx; ηÞ is now an arbitrary unconstrained function
and δ0ðaÞ ¼ d

da δðaÞ. We then take into account the
Fronsdal-like equation (20) in its Fourier-transformed
auxiliary space, which is

�
−□ðAÞdS − ð∂η ·∇Þðη ·∇Þ − 1

2
ð∂η ·∇Þ2ðη2 þ 1Þ

− ΛððNη þ dÞ2 − ðNη þ dÞðd − 6Þ − 2ðd − 3Þ

þ ð∂η · ∂ηÞη2 þ 2ð∂η · ∂ηÞÞ
�
Φ̃ðx; ηÞ ¼ 0; ð30Þ

with Nη ≔ η · ∂η and ∂a
η ≔ ∂=∂ηa. Afterwards, by plug-

ging (29) into (30), and applying the identities (B6)
and (B8), we will conveniently arrive at the equation of
motion

K̂bΦðx; ηÞ ¼ δ0ðη2 þ 1Þ
�
−□ðAÞdS þ ðη ·∇Þð∂η ·∇Þ

−
1

2
ðη2 þ 1Þð∂η ·∇Þ2 − ΛðN2

η þ Nηðd − 6Þ

− 2ðd − 3Þ þ η2ð∂η · ∂ηÞ þ 2ð∂η · ∂ηÞÞ
�

×Φðx; ηÞ ¼ 0; ð31Þ

where the operator K̂b is Hermitian (i.e., K̂†
b ¼ K̂b) with

respect to the Hermitian conjugation

ð∂xÞ† ≡ −∂x; ð∂ηÞ† ≡ −∂η; η† ≡ η: ð32Þ

Therefore, the obtained equation of motion (31) can be
derived from the action
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I ¼ 1

2

Z
ddxddηeΦðx; ηÞK̂bΦðx; ηÞ

¼ 1

2

Z
ddxddηeΦðx; ηÞδ0ðη2 þ 1Þ

×

�
−□ðAÞdS þ ðη · ∇Þð∂η ·∇Þ − 1

2
ðη2 þ 1Þð∂η · ∇Þ2

− ΛðN2
η þ Nηðd − 6Þ − 2ðd − 3Þ þ η2ð∂η · ∂ηÞ

þ 2ð∂η · ∂ηÞÞ
�
Φðx; ηÞ: ð33Þ

This action is precisely the Segal action presented
in [56], describing the bosonic higher spin gauge field in
d-dimensional ðAÞdSd spacetime (see Appendix C for more
detail on the Segal action). Note that, as Segal mentioned,
we find the action (33) is equal to a sum of the Fronsdal
actions (7) up to some coefficients

I ¼
X∞
s¼0

αsIs: ð34Þ

It is notable that in four-dimensional flat space Λ ¼ 0, the
authors of [57] also proposed the action (33) for presenting
their massless bosonic higher spin formulation. They
directly solved the integral over η space in the action
(33) and illustrated the outcome (34) in another fashion.
With a similar procedure as what was done in this

subsection to obtain the Segal action, we can find the
invariance of the action (33) under the gauge transforma-
tions (see the presented method in [66] for CSP)

δεΦðx; ηÞ ¼
�
η ·∇ −

1

2
ðη2 þ 1Þð∂η ·∇Þ

�
εðx; ηÞ; ð35Þ

δχΦðx; ηÞ ¼ ðη2 þ 1Þ2χðx; ηÞ; ð36Þ

where the gauge parameters ε and χ are two unconstrained
arbitrary functions.
We note that, in four dimensions, the Segal action (33)

with vanishing cosmological constant (Λ ¼ 0)

I ¼ 1

2

Z
d4xd4ηΦδ0ðη2 þ 1Þ

�
−□x þ ðη · ∂xÞð∂η · ∂xÞ

−
1

2
ðη2 þ 1Þð∂η · ∂xÞ2

�
Φ; ð37Þ

is precisely the bosonic continuous spin action [57] with
vanishing continuous spin parameter (μ ¼ 0).

D. Why the Fronsdal-like formulation?

In this subsection, we aim to explain why constructing
the Fronsdal-like formulation in Sec. II B is necessary to
reach a proper unconstrained system in Sec. II C. Indeed,

we shall demonstrate that starting from the Fronsdal
formulation, and applying the method in Sec. II C
(Fourier transforming and solving the traces), can not
describe massless bosonic higher spin fields. For simplicity,
we work in four-dimensional flat spacetime to show this
fact in a simple way.
Let us first consider the Fronsdal action [3] as

I0 ¼
1

2

Z
d4xΦðx; ∂ωÞK0Φðx;ωÞjω¼0 ð38Þ

where K0 is the kinetic operator given by (B17), and the
gauge field Φ is given by the generating function (18),
which is double-traceless

ð∂ω · ∂ωÞ2Φðx;ωÞ ¼ 0: ð39Þ

Due to this double-tracelessness, obviously, the kinetic
operator K0 is Hermitian (i.e., K†

0 ¼ K0) with respect to
(24). Varying the action (38) with respect to the gauge field
Φ yields the Fronsdal equation

F0Φðx;ωÞ ¼
�
−□þ ðω · ∂xÞð∂ω · ∂xÞ

−
1

2
ðω · ∂xÞ2ð∂ω · ∂ωÞ

�
Φðx;ωÞ ¼ 0: ð40Þ

In order to omit the constraint (39) in the system and build
an unconstrained formalism, one can perform the Fourier
transformation (28), and write Eqs. (39) and (40) in η space

ðη2Þ2Φ̃ðx; ηÞ ¼ 0; ð41Þ

F̃0Φ̃ðx; ηÞ ¼
�
−□ − ð∂η · ∂xÞðη · ∂xÞ

−
1

2
ð∂η · ∂xÞ2ðη2Þ

�
Φ̃ðx; ηÞ ¼ 0: ð42Þ

Then, using the Dirac delta functions property a2δ0ðaÞ ¼ 0,
one can solve the constraint (41) generally by

Φ̃ðx; ηÞ ¼ δ0ðη2ÞΦðx; ηÞ; ð43Þ

where Φðx; ηÞ is now an arbitrary unconstrained function

Φðx; ηÞ ¼
X∞
s¼0

1

s!
ημ1…ημsΦμ1…μsðxÞ: ð44Þ

Plugging (43) into (42), we will arrive at the equation of
motion,
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F̂0Φðx; ηÞ ¼ δ0ðη2Þ
�
−□þ ðη · ∂xÞð∂η · ∂xÞ

−
1

2
ðη2Þð∂η · ∂xÞ2

�
Φðx; ηÞ ¼ 0; ð45Þ

where the operator F̂0 is Hermitian with respect to the
Hermitian conjugation (32). This enables us to write the
free action as

A ¼ 1

2

Z
d4x

Z
d4ηδ0ðη2ÞΦðx; ηÞ

�
−□þ ðη · ∂xÞð∂η · ∂xÞ

−
1

2
ðη2Þð∂η · ∂xÞ2

�
Φðx; ηÞ: ð46Þ

We note that this bosonic action (46), and its fermionic
analogue, were first presented in [66]. This is the model that
one expects to describe massless bosonic higher spin fields.
To show this, one can follow the procedure in [57], and
integrate out the auxiliary space dependence of the action
(46) to see whether it reproduce the Schwinger-Fronsdal
tensor actions or not. For this purpose, we can use a more
general form of η-integrals over the Euclidean space [66]
(for technical details, see the Appendices in [57,66]),10

Z
d4ηδ0ðη2 þ σÞFðηÞ ¼

h
J0
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σð∂η · ∂ηÞ
q �

FðηÞ
i���

η¼0
;

ð47Þ

where FðηÞ is any smooth function, and J0 is the Bessel
function of the first kind, of index 0. In the limit σ → 0,
which is the case we are studying here, it is clear that (47)
becomes

Z
d4ηδ0ðη2ÞFðηÞ ¼ FðηÞjη¼0: ð48Þ

Therefore, by applying (44) and (48) in (46), one can easily
find that the action (46) reduces to

A ¼ 1

2

Z
d4x

�
Φðx; ηÞ

�
−□þ ðη · ∂xÞð∂η · ∂xÞ

−
1

2
ðη2Þð∂η · ∂xÞ2

�
Φðx; ηÞ

	
jη¼0 ð49Þ

¼ −
1

2

Z
d4xΦðxÞ□ΦðxÞ; ð50Þ

which is the Klein-Gordon action, describing the massless
scalar field. Thus, we conclude that the action (46),
localized on δ0ðη2Þ, does not describe the massless

higher spin fields.11 However, in four-dimensional flat
spacetime, one can start the above procedure with the
Fronsdal-like equation (20), instead of the Fronsdal one,
and obtain the Segal action (37). That action is localized on
δ0ðη2 þ 1Þ, rather than δ0ðη2Þ, for which one should con-
sider (47) with σ ¼ 1 to integrate out the η-space depend-
ence of the action. This case has been studied in detail in
[57], illustrating that the Segal action (37) reproduces
precisely the Schwinger-Fronsdal tensor actions.
Another observation demonstrating that the bosonic

action (46) is problematic was addressed in [66]. Indeed,
we investigated that the action (46) does not reproduce the
correct current-current exchange for bosonic higher spins.
A similar discussion as above can be applied for the

fermionic case (next section), and observe that constructing
the Fang-Fronsdal-like formulation in Sec. III B is required;
however, we do not pursue such a discussion in this
manuscript.

III. THE FERMIONIC ACTION

In this section, we will construct the fermionic action
presented in (1), by following the similar steps which led to
the Segal action. For this purpose, at the level of equations
of motion, we will demonstrate a relationship between the
Fang-Fronsdal equation [6] and the obtained equation of
motion in (6). Following the previous section for the
bosonic case, we first review the Fang-Fronsdal formu-
lation. Then we present two steps. In the first step, we use a
field redefinition and construct the Fang-Fronsdal-like
formulation. In the next step, by performing a Fourier
transformation and solving the gamma trace conditions, we
will arrive at the equation of motion (6), which can be
directly derived from the fermionic action (1).

A. Fang-Fronsdal formulation

The action describing an arbitrary massless half-integer
spin field s ¼ nþ 1

2
in d-dimensional ðAÞdSd spacetime

was first proposed by Fang and Fronsdal [6] in a metriclike
approach.12The free action is given by

Sn ¼
Z

ddxeψ̄nðx; ∂ωÞ
�
1 −

1

2
ðγ · ωÞðγ · ∂ωÞ

−
1

4
ω2ð∂ω · ∂ωÞ

�
F ðnÞψnðx;ωÞjω¼0; ð51Þ

where

10Ref. [57] has discussed the case with σ ¼ 1, while Ref. [66]
has taken into account a generic σ.

11It is noteworthy to address here such a problem in context of
the continuous spin gauge theory, where the first bosonic CSP
action [67] (localized on δ0ðη2Þ) was problematic, and then, its
modified version [localized on δ0ðη2 þ 1Þ] appeared in [57].

12To clarify the equivalence of metric- and framelike formu-
lations of higher spin fermions, see, e.g., [68].
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F ðnÞ ¼ iγ · D − iðω · DÞðγ · ∂ωÞ

−
1

2

ffiffiffiffi
Λ

p
½2nþ d − 4þ ðγ · ωÞðγ · ∂ωÞ� ð52Þ

is the Fang-Fronsdal operator (see the Appendix A for
conventions). The action (51) is invariant under the gauge
transformation,

δζψnðx;ωÞ ¼
�
ω · Dþ i

ffiffiffiffi
Λ

p

2
γ · ω

	
ζnðx;ωÞ; ð53Þ

where the spinor gauge field ψn and parameter ζn, using an
auxiliary vector ωa, are introduced as the generating
functions

ψnðx;ωÞ ¼
1

n!
ωa1…ωanψa1…anðxÞ; ð54Þ

ζnðx;ωÞ ¼
1

ðn − 1Þ!ω
a1…ωan−1ζa1…an−1ðxÞ; ð55Þ

obeying the gamma traceless conditions

ðγ · ∂ωÞ3ψnðx;ωÞ ¼ 0; ðγ · ∂ωÞζnðx;ωÞ ¼ 0; ð56Þ

and the homogeneity ones

ðNω−nÞψnðx;ωÞ¼ 0; ðNω−nþ1Þζnðx;ωÞ¼ 0: ð57Þ

Note the spinor indices are left implicit, and ψa1…an in (54)
denotes a totally symmetric spinor-tensor field of half-
integer spin, while ζa1…an−1 in (55) stands for the relevant
spinor gauge parameter. We also note, using the homo-
geneity condition on the spinor gauge field (57), that the
action (51) is precisely equivalent to the Metsaev action
[69] in the limit of massless fields.

B. Fang-Fronsdal-like formulation

Similar to the bosonic case, we introduce the Fang-
Fronsdal-like formulation in terms of the redefined spinor
gauge field and parameter,

Ψnðx;ωÞ¼PΨψnðx;ωÞ;

PΨ¼
X∞
k¼0

½ðγ ·ωÞ2kþ2kðγ ·ωÞ2k−1� 1

22kk!ðNωþd
2
−1Þk

;

ð58Þ

ξnðx;ωÞ ¼ Pξζnðx;ωÞ;

Pξ ¼
X∞
k¼0

½ðγ · ωÞ2k þ 2kðγ · ωÞ2k−1� 1

22kk!ðNω þ d
2
Þk
;

ð59Þ

such that the new spinor gauge field Ψn and parameter
ξn satisfy, respectively, the shifted gamma traceless
conditions,

ðγ · ∂ω − 1Þð∂ω · ∂ω − 1ÞΨnðx;ωÞ ¼ 0;

ðγ · ∂ω − 1Þξnðx;ωÞ ¼ 0: ð60Þ

The “Fang-Fronsdal-like equation” can then be found as13

�
iγ · D − iðω · DÞðγ · ∂ω − 1Þ

−
1

2

ffiffiffiffi
Λ

p
½2nþ d − 4þ ðγ · ωÞðγ · ∂ωÞ − 3ðγ · ωÞ�

�

×Ψnðx;ωÞ ¼ 0; ð61Þ

which is invariant under the gauge transformation

δξΨnðx;ωÞ ¼
�
ω · Dþ i

ffiffiffiffi
Λ

p

2
γ · ω

	
ξnðx;ωÞ: ð62Þ

To demonstrate the obtained Fang-Fronsdal-like equa-
tion (61) is equivalent to the Fang-Fronsdal one
F ðnÞψn ¼ 0, we can first use the homogeneity condition
ðNω − nÞΨnðx;ωÞ ¼ 0 within (61). Then by plugging
(58) into (61), and applying the relations (B13)–(B16),
the Fang-Fronsdal equation, F ðnÞψn ¼ 0, will be con-
veniently reproduced (up to terms of order Oðω3Þ
vanishing at the level of the action, due to the triple
gamma-trace condition on the spinor gauge field
ψnðx; ∂ωÞðγ · ωÞ3 ¼ 0).
If we are interested in a formulation in terms of the

spinor gauge field,

Ψðx;ωÞ¼
X∞
n¼0

Ψnðx;ωÞ¼
X∞
n¼0

1

n!
ωa1…ωanΨa1…anðxÞ; ð63Þ

comprising an infinite tower of all half-integer spins, and
consider a similar decomposition for the spinor gauge
parameter ξ, the shifted gamma traceless conditions read

ðγ · ∂ω − 1Þð∂ω · ∂ω − 1ÞΨðx;ωÞ ¼ 0;

ðγ · ∂ω − 1Þξðx;ωÞ ¼ 0: ð64Þ

The Fang-Fronsdal-like equation, therefore, becomes

13Note again that the Fang-Fronsdal-like formulation, describ-
ing a single fermionic continuous spin particle (CSP), was first
discussed in [64]. That formulation satisfies similar conditions as
(60) for the fermionic CSP gauge field and parameter. In this
sense, we called here our formulation the “Fang-Fronsdal-like
formulation”; however, it actually describes the fermionic higher
spin gauge theory.
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�
iγ · D − iðω · DÞðγ · ∂ω − 1Þ

−
1

2

ffiffiffiffi
Λ

p
½2Nω þ d − 4þ ðγ · ωÞðγ · ∂ωÞ − 3ðγ · ωÞ�

�

×Ψðx;ωÞ ¼ 0; ð65Þ

with the gauge symmetry

δξΨðx;ωÞ ¼
�
ω · Dþ i

ffiffiffiffi
Λ

p

2
γ · ω

	
ξðx;ωÞ: ð66Þ

Again, as in the previous section, considering the flat
space limit of the equation of motion (65) in the momentum
space, one can find the massless fermionic higher spin
equations,

ðγ ·pÞΨðp;ωÞ¼ 0; ðp ·ωÞΨðp;ωÞ¼ 0;

ðp ·∂ωÞΨðp;ωÞ¼ 0; ðγ ·∂ω−1ÞΨðp;ωÞ¼ 0; ð67Þ

in terms of the gauge-invariant distributionΨ ¼ δðp · ωÞΨ.
We note again that these equations are the massless higher
spin limit of the Wigner equations [65], if we replace the
fourth equation by ð∂ω · ∂ω − 1ÞΨðp;ωÞ ¼ 0 (for details
see the explanations in [64]).

C. Unconstrained formulation

In η space, the triple-gamma traceless condition (64) on the
spinor gauge field becomes ðγ · ηþ iÞðη2 þ 1ÞΨ̃ðx; ηÞ ¼ 0,
which can be generally solved by

Ψ̃ðx; ηÞ ¼ δ0ðη2 þ 1Þðγ · η − iÞΨðx; ηÞ; ð68Þ

whereΨ is an unconstrained arbitrary function.We then take
into account the Fang-Fronsdal-like equation (65) in its
Fourier transformed auxiliary space, which is

�
iγ · Dþ ið∂η · DÞðγ · ηþ iÞ

þ 1

2

ffiffiffiffi
Λ

p
½2Nη þ dþ 4þ ðγ · ∂ηÞðγ · ηÞ þ 3iðγ · ∂ηÞ�

�

× Ψ̃ðx; ηÞ ¼ 0: ð69Þ

Plugging (68) into (69), and applying the identities (B7) and
(B8), we will arrive at the equation of motion

K̂fΨðx;ηÞ¼ δ0ðη2þ1Þðγ ·ηþ iÞ
�
γ ·D− ðγ ·η− iÞð∂η ·DÞ

þ i
ffiffiffiffi
Λ

p

2
ð2Nηþd−4þðγ ·ηÞðγ ·∂ηÞ

−3iðγ ·∂ηÞÞ
�
Ψðx;ηÞ¼ 0: ð70Þ

This equation ofmotion is precisely the one in (6), whichwas
obtained from the action (1). Therefore, at the level of the
equation of motions, we illustrated how the Fang-Fronsdal
equation, F ðnÞψn ¼ 0, can be related to the Euler-Lagrange
equation of (6). Practically, to find the action (1), we indeed
found that K̂†

f ¼ γ0K̂fγ
0 with respect to the Hermitian

conjugation (32). Using this fact, we were be able to write
the fermionic action (1) à la Segal as

S ¼
Z

ddxddηeΨ̄ðx; ηÞK̂fΨðx; ηÞ

¼
Z

ddxddηeΨ̄ðx; ηÞδ0ðη2 þ 1Þðγ · ηþ iÞ

×

�
γ · D − ðγ · η − iÞð∂η · DÞ

þ i
ffiffiffiffi
Λ

p

2
ð2Nη þ d − 4þ ðγ · ηÞðγ · ∂ηÞ

− 3iðγ · ∂ηÞÞ
�
Ψðx; ηÞ: ð71Þ

We note that, similar to the bosonic case, we find the action
(1) is equal to a sum of the Fang-Fronsdal actions (51) with
some coefficients

S ¼
X∞
n¼0

βnSn: ð72Þ

A similar procedure can be easily done to obtain the
gauge symmetries (4), (5). For instance, in order to
obviously see the invariance of the action (1), and con-
sequently the equation of motion (6), under the gauge
symmetry (5), we can use the identities (B7) and (B8), to
simplify the equation of motion (6), after some calcula-
tions, to the following form

�
γ · Dþ ð∂η · DÞðγ · ηþ iÞ

−
i

ffiffiffiffi
Λ

p

2
ð2Nη þ dþ 4þ ðγ · ∂ηÞðγ · ηÞ þ 3iðγ · ∂ηÞÞ

�

× δ0ðη2 þ 1Þðγ · η − iÞΨðx; ηÞ ¼ 0: ð73Þ

Then, at a glance, this equation would be clearly invariant
under the ξ2 symmetry (5), by applying the Dirac delta
function’s property: a2δ0ðaÞ ¼ 0.
In the end, similar to the bosonic case, we refer to the

fermionic action (1) in four-dimensional flat spacetime,

S ¼
Z

d4xd4ηΨ̄ðx; ηÞδ0ðη2 þ 1Þðγ · ηþ iÞ

× ½γ · ∂x − ðγ · η − iÞð∂η · ∂xÞ�Ψðx; ηÞ;
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and realize that it is indeed the fermionic continuous spin
action [58] when the continuous spin parameter van-
ishes (μ ¼ 0).

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we aimed to develop the Segal uncon-
strained Lagrangian formulation, describing free massless
bosonic higher spin fields, to the fermionic case. Therefore,
we first explained how to find the Segal action, known
as an unconstrained formulation, from the Fronsdal action,
known as a constrained formulation. This finding was
obtained in two stages. At the first stage, we applied a field
redefinition on the Fronsdal equation and built the so-called
Fronsdal-like formulation, in which the gauge field and
parameter were tracelesslike, instead of being traceless.
We also discovered that the Fronsdal-like formulation is
necessary in order to arrive at a correct action (Segal
action). In the next stage, we solved the tracelesslike
conditions in terms of distributions to get rid of the
conditions on the gauge fields and parameters. Then we
rewrote the Fronsdal-like formulation on its Fourier-trans-
formed auxiliary space and obtained an unconstrained
formulation. We note that one can introduce many other
types of operators, like the operator PΦ in (13), and build
many kinds of Fronsdal-like formulations. However, these
formulations do not lead to the Segal formulation, and in
this sense, the operator PΦ and consequently the Fronsdal-
like formulation we found here were unique (we used
precisely this operator in the case of CSP theory in [63]).
In the end, similar to the bosonic case, we presented two

steps (i.e., constructing the Fang-Fronsdal-like formulation
and its Fourier transforming) to find a Segal-like action
principle for fermions (1), describing free fermionic higher
spin gauge fields in d-dimentional ðAÞdSd spacetime,
which had not been previously done in the literature. We
found the action (1) is invariant under the gauge sym-
metries (4), (5) where both the gauge field and the
parameter were unconstrained.
It should be emphasized that, indeed, we made a

relationship between the Fronsdal equation and the
Euler-Lagrange equation of (31), as well as a connection
between the Fang-Fronsdal equation and the Euler-
Lagrange equation of (6). However, making a connection
at the level of the actions is still an open problem, i.e.,
linking the Segal action (33) to the Fronsdal action (7) [or
linking the fermionic action (1) to the Fang-Fronsdal
one (51)].
In four-dimensional flat space, the authors of [57] have

directly shown that solving the η-dependent part of the
Segal action will lead to a direct sum of all Fronsdal
actions.14 However, it would be interesting to investigate

and illustrate explicitly that their applied fashion will work
for the fermionic action (1) as well, i.e., do the integral on
the auxiliary space in the action (1), and reproduce a direct
sum of all Fang-Fronsdal actions. Extending the manner to
the higher spin theories in d-dimensional de Sitter and anti–
de Sitter backgrounds would be attractive too.
The fermionic action presented here, together with the

bosonic action of Segal, can be applied to construct
supersymmetric higher spin theories in this approach,
which its formulation presumably seems to be simpler
than other existing theories. Moreover, it would be inter-
esting to generalize the bosonic and fermionic formula-
tions, à la Segal, to the partially massless, mixed-symmetry
and massive fields. In addition, as we noted in the
Introduction, it would be interesting to investigate whether
we can, à la Segal, generalize the CSP theory to (A)dS
spacetime?
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APPENDIX A: CONVENTIONS

Our conventions are as follows. xa and ηa (or its Fourier
transformed ωa) denote, respectively, coordinates and aux-
iliary coordinates in d-dimensional flat spacetime, where
the latin (flat) indices take values: a ¼ 0; 1;…; d − 1.
Derivatives with respect to xa and ηa are defined as
∂a ≔ ∂=∂xa, ∂ηa ≔ ∂=∂ηa. We use the mostly minus
signature for the flat metric tensor ηab and define the
operators Nη ≔ η · ∂η and Nω ≔ ω · ∂ω.
The bosonic covariant derivative ∇a is given by

∇a ≔ eμa∇μ; ∇μ ≔ ∂=∂xμ þ 1

2
ωab
μ Mab;

Mab ≔ ηa∂η
b − ηb∂η

a; ðA1Þ

where eμa is inverse vielbein of ðAÞdSd space, ∇μ stands for
the Lorentz covariant derivative, ωab

μ is the Lorentz con-
nection of ðAÞdSd space, and Mab denotes the spin operator
of the Lorentz algebra, while the greek (curved) indices
take values μ ¼ 0; 1;…; d − 1. The D’Alembert operator of
ðAÞdSd space □ðAÞdS is defined by

□ðAÞdS ≔ ∇a∇a þ eμaωab
μ ∇b: ðA2Þ

14We note that the integral on the auxiliary space in the Segal
action cannot be solved in the Lorentzian signature (see the
Appendices of [66] for more detail).
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Flat and curved indices of the covariant totally symmetric
tensor fields of ðAÞdSd spacetime are related to each other
as: Φa1…asðxÞ ¼ eμ1a1…eμsasΦμ1…μsðxÞ.
The fermionic covariant derivative Da is given by

Da ≔ eμaDμ; Dμ ≔ ∂=∂xμ þ 1

2
ωab
μ ðMab þ γabÞ;

γab ≔
1

4
ðγaγb − γbγaÞ; ðA3Þ

where γa are the d-dimensional Dirac gamma matrices
satisfying the Clifford algebra fγa; γbg ¼ 2ηab, and

ðγaÞ† ¼ γ0γaγ0; ðγ0Þ† ¼ þγ0;

ðγiÞ† ¼ −γi; ði ¼ 1;…; d − 1Þ: ðA4Þ
We choose the mostly minus signature for the metric;

however, it would be useful to stress the bosonic and
fermionic formulations in the mostly plus signature for the
metric as well. To this end, e.g., for the bosonic action (33),
we have to apply the following replacements,

X → −X; Y → Y; ðA5Þ
where X denotes Λ; η2; ð∂η · ∂ηÞ; ð∂η · ∇Þ;□ðAÞdS, while Y
stands for Nη, ðη ·∇Þ. For the fermionic action (1), the
substitutions should be taken into account as

X → iX ; ðγ · ηÞ → −iðγ · ηÞ; Y → −Y; ðA6Þ

where X denotes γa, Ψ̄; ðγ · ∂ηÞ; ðγ · DÞ, while Y stands
for Λ; η2; ð∂η · DÞ.

APPENDIX B: USEFUL RELATIONS

The rising Pochhammer symbol ðaÞn is defined as

ðaÞn ≔ aðaþ 1Þðaþ 2Þ � � � ðaþ n − 1Þ

¼ Γðaþ nÞ
ΓðaÞ ; n ∈ N and a ∈ R: ðB1Þ

The following useful relations can be conveniently
derived (see the Appendix of [69] for more detail)

½Da; η2� ¼ 0; ½∂2
η;Da� ¼ 0; ½Da; γ · η� ¼ 0; ðB2Þ

½∂2
η; η · D� ¼ 2∂η · D; ½γ · ∂η; η · D� ¼ γ · D;

fγ · D; γ · ηg ¼ 2η · D; ðB3Þ

½γ · D; η · D� ¼ Λ
�
γ · η

�
Nη þ

d − 1

2

�
− η2ðγ · ∂ηÞ

	
ðB4Þ

½∂η ·D;γ ·D� ¼Λ
��

Nηþ
d−1

2

�
γ ·∂η− ðγ ·ηÞ∂2

η

	
: ðB5Þ

The identities,

ð∂η ·∂ηÞδ0ðη2þ1Þ¼δ0ðη2þ1Þð∂η ·∂ηÞþ4δ00ðη2þ1Þðh−3Þ
−4δ000ðη2þ1Þ; ðB6Þ

ðγ ·∂ηÞδ0ðη2þ1Þ¼ 2ðγ ·ηÞδ00ðη2þ1Þþδ0ðη2þ1Þðγ ·∂ηÞ;
ðB7Þ

Nηδ
0ðη2 þ 1Þ ¼ δ0ðη2 þ 1ÞðNη − 4Þ − 2δ00ðη2 þ 1Þ; ðB8Þ

can be easily obtained, where δ00ðaÞ (or δ000ðaÞ) is the
derivative of δ0ðaÞ (or δ00ðaÞ) with respect to its argument a.
The quantities ∂a

ω, ∂2
ω, ωa and Nω on the bosonic

operator PΦ, introduced in (13), act as (for more detail,
see the Appendices in [63]15)

∂a
ωPΦ ¼ PΦ

�
∂a
ω − ω2

1

ð2N þ dÞð2N þ d − 2Þ ∂
a
ω

þ ωa 1

ð2N þ d − 2Þ
�
; ðB9Þ

∂2
ωPΦ¼PΦ

�
ð∂ω ·∂ωÞ−ω2

2

ð2Nþd−2Þð2Nþdþ2Þð∂ω ·∂ωÞ

þ 2Nþd
ð2Nþd−2Þ−ω2

2

ð2NþdÞð2Nþd−2Þ2þOðω4Þ
�
;

ðB10Þ

ωaPΦ ¼PΦ

�
ωaþω2ωa 1

ð2NþdÞð2Nþd−2ÞþOðω4Þ
�
;

ðB11Þ

NωPΦ ¼ PΦ

�
Nω þ ω2

1

ð2N þ d − 2Þ þOðω4Þ
�
; ðB12Þ

where the terms containing Oðω4Þ will be eliminated at the
level of the action, due to the double-traceless condition on
the gauge field Φðx; ∂ωÞðω2Þ2 ¼ 0. On the other hand, the
quantities γ · D, ω · D, γ · ∂ω and Nω on the fermionic
operator PΨ, given by (58), act as

ðγ · DÞPΨ ¼ PΨ

�
ðγ · DÞ þ ðω · DÞ 2

ð2Nþ d− 2Þ
− ðγ ·ωÞðγ · DÞ 2

ð2Nþ d− 2Þ
− ðγ ·ωÞðω · DÞ 2

ð2N þ dÞð2Nþ d− 2Þ

þω2ðγ · DÞ 2

ð2N þ dÞð2Nþ d− 2Þ þOðω3Þ
�
;

ðB13Þ

15We note, in this paper, the metric signature is the mostly
minus one, while the one in [63] is the mostly plus one.
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ðω · DÞPΨ ¼ PΨ

�
ðω · DÞ þ ðγ · ωÞðω · DÞ 2

ð2N þ dÞð2N þ d − 2Þ þOðω3Þ
�
; ðB14Þ

ðγ · ∂ωÞPΨ ¼ PΨ

�
ðγ · ∂ωÞ − ðγ · ωÞ 2

ð2N þ d − 2Þ2 þ ω2
1

ð2N þ dÞ2 ðγ · ∂ωÞ þ
2N þ d

ð2N þ d − 2Þ

− ðγ · ωÞ 2ð2N þ d − 1Þ
ð2N þ dÞð2N þ d − 2Þ ðγ · ∂ωÞ þOðω3Þ

�
; ðB15Þ

NωPΨ ¼ PΨ

�
Nω þ ðγ · ωÞ 1

2N þ d − 2
þ ω2

2N þ d − 1

ð2N þ dÞð2N þ d − 2Þ þOðω3Þ
�
; ðB16Þ

where the terms containingOðω3Þ will vanish, at the level of the action, because of the triple gamma-trace condition on the
spinor gauge field Ψ̄ðx; ∂ωÞðγ · ωÞ3 ¼ 0.
The operators K0, K1, and K1 are given as the following:

K0 ¼
�
1 −

1

4
ω2ð∂ω · ∂ωÞ

��
−□þ ðω · ∂xÞð∂ω · ∂xÞ −

1

2
ðω · ∂xÞ2ð∂ω · ∂ωÞ

�

¼ −□þ ðω · ∂xÞð∂ω · ∂xÞ þ
1

2
½ω2

□ð∂ω · ∂ωÞ − ðω · ∂xÞ2ð∂ω · ∂ωÞ − ω2ð∂ω · ∂xÞ2�

þ 1

4
ω2ðω · ∂xÞð∂ω · ∂xÞð∂ω · ∂ωÞ þ

1

8
ω2ðω · ∂xÞ2ð∂ω · ∂ωÞ2; ðB17Þ

K1 ¼
�
1 −

1

4
ðω2 − 1Þð∂ω · ∂ω − 1Þ

��
−□þ ðω · ∂xÞð∂ω · ∂xÞ −

1

2
ðω · ∂xÞ2ð∂ω · ∂ω − 1Þ

�

¼ −□þ ðω · ∂xÞð∂ω · ∂xÞ

þ 1

2
½ðω · ∂xÞ2 þ ð∂ω · ∂xÞ2 − ðω · ∂xÞ2ð∂ω · ∂ωÞ − ω2ð∂ω · ∂xÞ2 þ□ − ω2 − ð∂ω · ∂ωÞ þ ω2

□ð∂ω · ∂ωÞ�

þ 1

4
½ðω · ∂xÞð∂ω · ∂xÞ − ω2ðω · ∂xÞð∂ω · ∂xÞ − ðω · ∂xÞð∂ω · ∂xÞð∂ω · ∂ωÞ þ ω2ðω · ∂xÞð∂ω · ∂xÞð∂ω · ∂ωÞ�

þ 1

8
ðω · ∂xÞ2ðω2 − 1Þð∂ω · ∂ω − 1Þ2; ðB18Þ

K1 ¼
�
1 −

1

4
ðω2 − 1Þð∂ω · ∂ω − 1Þ

��
−□þ ðω · ∂x þ iμÞð∂ω · ∂xÞ −

1

2
ðω · ∂x þ iμÞ2ð∂ω · ∂ω − 1Þ

�

¼ K1 þ iμ½∂ω · ∂x − ðω · ∂xÞð∂ω · ∂ω − 1Þ� þ 1

2
μ2
�
ð∂ω · ∂ω − 1Þ − 1

4
ðω2 − 1Þð∂ω · ∂ω − 1Þ2

�

þ iμ
4
½ðω2 − 1Þð∂ω · ∂xÞð∂ω · ∂ω − 1Þ þ ðω2 − 1Þðω · ∂xÞð∂ω · ∂ω − 1Þ2�: ðB19Þ

APPENDIX C: THE SEGAL ACTION IN (A)dS

In this Appendix, we review briefly the Segal action [56]
in a more convenient form to compare with our results
in Sec. II.
The invariant action of the bosonic higher spin gauge

fields onAdSd spacetime, in themostly negative signature,16

is given by [56]

S ¼ 1

2

Z
ddxddp

ffiffiffiffiffiffi
−g

p
h̃δ0ðp2 þ 1Þ

×



−ABþ 2BAþ V11 −

1

2
ðp2 þ 1ÞðA2 − V21Þ

�
h̃;

ðC1Þ

wherepμ is an auxiliary d-dimensional vector, g ¼ detðgμνÞ,
δ0ðaÞ ¼ d

da δðaÞ and the unconstrained gauge field h̃ is
considered as the generating function

16Note that in [56], the action is written in the mostly plus
signature for the metric.
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h̃ ¼ h̃ðx; pÞ ¼
X∞
s¼0

1

s!
pμ1 � � �pμshμ1…μsðxÞ; ðC2Þ

with hμ1…μsðxÞ corresponding to totally symmetric tensor
fields of all integer spins (one row Young tableaux) in any
dimension d. The operators A, B, V11 and V21 in the action
(C1) are given by17

A ¼ ∂p ·∇; V11 ¼ 2Λð2p · ∂p þ d − 3Þ; ðC3Þ

B ¼ p ·∇; V21 ¼ −4Λð∂p · ∂pÞ; ðC4Þ

where ∂μ
p ≔ ∂

∂pμ
, Λ is the constant scalar curvature defined

in (2), and ∇μ is the bosonic “covariant derivative,”

∇μ ¼ ∂μ þ Γα
μνðxÞpα∂ν

p; ∂μ ≔
∂
∂xμ ; ðC5Þ

with the Riemannian connection Γα
μνðxÞ corresponding to

the metric gμνðxÞ, so that

½∇μ;∇ν�fðx; pÞ ¼ pαRα
μνβðxÞ∂β

pfðx; pÞ
¼ Λðpμ∂pν − pν∂pμÞfðx; pÞ: ðC6Þ

Using the latter, and ½∂μ
p; pν� ¼ δμν , it is straightforward to

demonstrate the following commutator,

½A;B� ¼ □AdS þ ΛðN2 þ Nðd − 2Þ − p2∂p · ∂pÞ; ðC7Þ

where N ¼ p · ∂p and

□AdS ¼ ∇μ∇μ þ 2Γα
νμpα∂μ

p∇ν: ðC8Þ

Then, we can rewrite the action (C1) by substituting (C3),
(C4), and (C7) in (C1) as

S ¼ 1

2

Z
ddxddp

ffiffiffiffiffiffi
−g

p
h̃δ0ðp2 þ 1Þ

×



−□AdS þ ðp ·∇Þð∂p ·∇Þ − 1

2
ðp2 þ 1Þð∂p · ∇Þ2

− ΛðN2 þ Nðd − 6Þ − 2ðd − 3Þ þ p2ð∂p · ∂pÞ

þ 2ð∂p · ∂pÞÞ
�
h̃: ðC9Þ
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