
 

Black hole remnants may exist if Starobinsky inflation occurred
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Zero temperature black hole solutions to the semiclassical backreaction equations are investigated.
Evidence is provided that certain components of the stress-energy tensors for free quantum fields at the
horizon only depend on the local geometry near the horizon. This allows the semiclassical backreaction
equations to be solved near the horizon. It is found that macroscopic uncharged zero temperature black hole
solutions to the equations may exist if the coefficient of one of the higher derivative terms in the
gravitational Lagrangian is large enough and of the right sign for Starobinsky inflation to have occurred in
the early Universe.
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I. INTRODUCTION

With the discovery of black hole evaporation [1] came
the fact that one can assign a temperature to a black hole
that is equal to the temperature of the thermal radiation that
it emits. This temperature is related to the surface gravity of
the black hole. Two questions which have still not been
resolved were raised by this discovery: What is the end
point of the evaporation process and what happens to the
information about how the black hole formed? It may be
that a fully quantum theory of gravity is necessary to
answer these questions. However, black hole solutions to
the four-dimensional semiclassical backreaction equations
(SCE) have yet to be fully explored. Thus it remains a
possibility that semiclassical gravity has something sig-
nificant to say.
One possible answer to both the end point and informa-

tion issues that has been suggested is that at late times the
black hole evaporation process may shut off, leaving a zero
temperature black hole remnant [2]. It is usually expected
that such remnants would have sizes which are Planck scale
and thus would need to be described by a quantum theory
of gravity. It has been argued [3] that generically one might
expect there to be an infinite amount of pair production of
such remnants if the information is stored inside those
remnants. However, it was also pointed out that there may
be situations in which such infinite pair production does
not occur.
Although it would be attractive to solve both the

information and end point issues using black hole rem-
nants, it is possible that they have separate solutions. In that
case one can ask the question of whether such remnants
could exist without being concerned about whether the
information about how the black hole formed is inside of

them. Here we take this approach and investigate solutions
to the semiclassical backreaction equations that correspond
to static spherically symmetric zero temperature black
holes (SZTBHs). We focus on the solutions to the SCE
near the event horizons of such black holes and consider
black holes with and without electric charges. A macro-
scopic SZTBH must have an electric charge. However, we
find that if Starobinsky inflation [4,5] occurred, then the
coefficient of one of the terms in the SCE is large enough
and of the right sign so that it is possible to have uncharged
SZTBH solutions to the SCE that are significantly larger
than the Planck scale in size.
There is a long history of studying quantum effects in

four-dimensional zero temperature black hole spacetimes.
The stress-energy for free massless quantized fields of spin
0 and 1

2
has been numerically computed in extreme

Reissner-Nordström (ERN) spacetimes in four dimensions
and found to be regular on the event horizon [6,7]. It has
also been analytically computed in Bertotti-Robinson
spacetime [8,9] which becomes a good approximation to
the ERN geometry near the horizon.
SZTBH solutions to the linearized SCE in four dimen-

sions were investigated for conformally invariant fields in
[10,11] and for massive fields in [12,13]. In [11,13] it was
shown that solutions to the equations exist with different
relationships between the mass of the black hole, the
electric charge, and the radius of the event horizon than
occur for a classical ERN black hole.
The first solutions to the full nonlinear SCE in four

dimensions that we are aware of which are relevant for
SZTBHs are for AdS2 × S2 spacetimes in the case that a
massless minimally coupled scalar field is present [14].
This is the asymptotic form of the geometry near the event
horizon of a SZTBH with a metric near the horizon that is
of the same general form as that for an ERN black hole near
the horizon. Both exact and approximate solutions were*anderson@wfu.edu
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found, with the approximate ones being exact in certain
limits. It was found that solutions exist with no electric
charge for a large range of values of the coefficient of the
terms in the renormalized effective action for the scalar
field that are quadratic in the curvature and local.
Constraints on the behaviors of possible solutions to the

full nonlinear SCE near the event horizons of SZTBHs
were investigated in [15,16]. Assuming the usual higher
derivative terms in the gravitational Lagrangian necessary
for the renormalization of free quantum fields in curved
space along with conformally invariant fields and a possible
electric charge for the black hole, the trace of the SCE
was solved near the horizon. It was shown that there is a
range of sizes for which no SZTBH solutions to the
SCE are possible [16]. For metrics with power law
behaviors for gtt and grr near the horizon, constraints on
the powers were obtained along with a relationship between
the form of the metric near the horizon and the radius of the
horizon [15].
Here we continue the exploration of SZTBH solutions to

the full nonlinear SCE. We first add a constraint and then
make the argument that the most likely form of the metric
near the horizon is one with gtt and grr quadratic in r − r0,
with r0 the radius of the event horizon. Next we consider
metrics which have these forms near the horizon but
different forms away from it. We compute the stress-energy
tensors for massless scalar fields with minimal and con-
formal coupling to the scalar curvature in these geometries.
Our results provide strong evidence that the values of the
hTt

ti, hTr
ri, and hTθ

θi components on the horizon only
depend on the geometry near the horizon. This appears to
be true for massless scalar fields with other couplings to the
scalar curvature as well. We expect that this property will
also hold for massless free fields of higher spin. Our results
provide evidence that the solutions in [14] can be used to
describe the near horizon regions of SZTBH solutions to
the SCE in the cases considered.
We have also computed the quantity

hTr
ri − hTt

ti
gtt

ð1:1Þ

at the horizon. This is related to the energy density seen by
a freely falling observer who passes through the horizon. If
it diverges at the horizon, then the observer sees an infinite
energy density there. We find that its value and in general
the values of hTt

ti;r and hTr
ri;r depend on the geometry

away from the horizon as well as that near it. We find that in
some cases this quantity is finite on the horizon, but in
many cases it is not.
We use our results to solve the SCE near the horizon

when only conformally invariant fields are present along
with the usual higher derivative terms which are necessary
for the renormalization of these fields. Since the values of
hTt

ti, hTr
ri, and hTθ

θi at the horizon depend only on the

geometry near the horizon, we can solve the SCE for the
values of these components at the horizon. If the stress-
energy is finite on the horizon, then hTt

ti ¼ hTr
ri there

and it suffices to solve the trace equation and the rr
component of the SCE. Since the radial derivatives of
these components depend upon the geometry away from
the horizon, we cannot say anything about SZTBH
solutions to the SCE away from the horizon. Therefore
the solutions we find tell us about the properties that
physically acceptable SZTBH solutions to the SCE must
have near the event horizon given the types of quantum
fields that we consider.
We restrict our attention to conformally invariant

fields because most fields in the Standard Model of
particle physics are conformally invariant in the limit that
their masses and interactions vanish. It was shown in [17]
that the relevant quantity in determining the importance
of the mass is mM in Planck units, with m the mass of the
scalar field andM the mass of the black hole. FormM ≳ 2,
the DeWitt-Schwinger approximation, which is a large
mass approximation, was found to be valid. Thus we
expect the stress-energy tensor near the horizon to be
approximately the same as that for a massless field if
mM ≪ 1.
For the form of the metrics that we use, the results of [15]

for solutions to the trace equation indicate that there is a
minimum size that a SZTBH can have that is independent
of the coefficients of the higher derivative terms in the
equations. Solving the rr component of the SCE, we find
that in many cases there is a more severe lower bound on
the size that a SZTBH can have. This lower bound
corresponds to the case of zero electric charge and thus
a solution satisfying this lower bound could serve as a black
hole remnant. If the coupling constant for the higher
derivative term that leads to Starobinsky inflation [4,5]
has the right sign and magnitude for Starobinsky inflation
to occur in the early Universe [18], and if it is significantly
larger in magnitude than the other coupling constant, then
the lower bound results in a black hole whose size is large
enough compared with the Planck scale that semiclassical
gravity can be valid.
In Sec. II we review some results of [15,16] and come up

with a new constraint on SZTBH solutions to the semi-
classical backreaction equations. In Sec. III we argue that
the most likely form for a zero temperature black hole
metric near the horizon is given by (3.1). We also show
the specific form of the metric that we use for the numerical
computations. In Sec. IV we present some of our numerical
results for components of the stress-energy tensor in
various candidate geometries. Our solutions to the semi-
classical backreaction equations near the horizon are
given in Sec. V. Section VI contains a summary and
discussion of our results. Throughout we use units such
that ℏ ¼ c ¼ G ¼ kB ¼ 1 and our sign conventions are
those of [19].
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II. CONSTRAINTS ON STATIC SPHERICALLY
SYMMETRIC ZERO TEMPERATURE

BLACK HOLES

In this section we first review constraints on the
spacetime geometry near the event horizon of a SZTBH
and then add a new constraint.

A. Previous constraints

Some constraints on the geometry of a SZTBH near the
event horizon were obtained in [15,16] by simply requiring
that the components of the Riemann tensor in an ortho-
normal frame, or equivalently the Kretschmann scalar, be
finite at the horizon. Writing the metric in the form

ds2 ¼ −fðrÞdt2 þ dr2

kðrÞ þ r2dΩ2; ð2:1Þ

one finds that the surface gravity is

κ ¼ v
2

ffiffiffiffiffi
fk

p
; ð2:2Þ

with

v≡ f0

f
: ð2:3Þ

Here primes denote derivatives with respect to r. To have an
event horizon it is necessary that f ¼ 0 there and therefore
that v ¼ ∞. To avoid a divergence of the Kretchmann
scalar RabcdRabcd at the horizon it is necessary that k ¼ 0
there as well. To have a zero temperature black hole, it is
further necessary that k0 ¼ 0 at the horizon. It is also
necessary for zero temperature black holes that kv2 be finite
on the horizon and thus kv ¼ 0 there. Finally, for all zero
temperature black holes□R cannot approach a constant on
the horizon. It thus either diverges or vanishes there.
In [15,16] further constraints were obtained by consid-

ering conformally invariant quantum fields. The trace of the
stress-energy tensor for such fields is the trace anomaly and
is known in an arbitrary spacetime. It is given in terms of
the scalar curvature R, the Ricci tensor Rab and the Weyl
tensor Cabcd by

hTqi¼ α□Rþβ

�
RabRab−

1

3
R2

�
þ γCabcdCabcd; ð2:4Þ

with

α ¼ 1

2880π2
½Nð0Þ þ 6Nð1=2Þ − 18Nð1Þ�; ð2:5aÞ

β ¼ 1

2880π2
½Nð0Þ þ 11Nð1=2Þ þ 62Nð1Þ�; ð2:5bÞ

γ ¼ 1

2880π2

�
Nð0Þ þ 7

2
Nð1=2Þ − 13Nð1Þ

�
: ð2:5cÞ

Here Nð0Þ, Nð1=2Þ, and Nð1Þ are the numbers of
conformally invariant scalar fields, four-component spin
1=2 fields, and vector fields, respectively. For the trace of
the stress-energy tensor for a given type of conformally
invariant field to be finite at the horizon of a SZTBH, it is
clear that□R cannot diverge there. Thus since there is also
the constraint mentioned above that□R cannot be constant
on the horizon, it is necessary that □R ¼ 0 there.
Solutions to the semiclassical backreaction equations

were investigated when only conformally invariant quan-
tized fields are present. The general form of these equations
can be written as

Gab ¼ 8π½Tc
ab þ hTq

abi þ h1ð1ÞHab þ h2ðCÞHab�; ð2:6Þ

where the superscripts c and q correspond to classical
matter and quantum fields, respectively, and

ð1ÞHab¼−
1ffiffiffiffiffiffi−gp δ

δgab

Z
d4x

ffiffiffiffiffiffi
−g

p
R2

¼−2gab□Rþ2∇a∇bR−2RRabþ
1

2
gabR2; ð2:7aÞ

ðCÞHab ¼ −
1ffiffiffiffiffiffi−gp δ

δgab

Z
d4x

ffiffiffiffiffiffi
−g

p
CabcdCabcd

¼ −4∇c∇dCacbd − 2RcdCacbd: ð2:7bÞ

The coefficients h1 and h2 are constants which must in
principle be determined experimentally.
An important constraint was obtained from the trace of

the SCE. The only classical matter we consider here is the
classical electric field that occurs if the black hole has an
electric charge Q. Since the electromagnetic field is
conformally invariant, the trace of Tc

ab is zero. From
(2.7b) one sees that the trace of ðCÞHab is also zero due
to its dependence on the Weyl tensor. From (2.7a) it is
easily seen that ð1ÞHa

a ¼ −6□R. Setting □R ¼ 0 on the
horizon gives

−R ¼ 8π½hTqi�: ð2:8Þ

To derive the constraint, the following component of the
Riemann tensor in an orthonormal frame was considered:

AðrÞ≡ Rt̂ r̂ t̂ r̂ ¼
v0k
2

þ vk0

4
þ v2k

4
: ð2:9Þ

Clearly this must be finite or there is a curvature singularity
at the horizon. By integrating, one obtains
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k ¼ B0

v2f
þ 4

v2f

Z
r

r0

f0ðr2ÞAðr2Þdr2; ð2:10Þ

where r0 is the radius of the event horizon. Multiplying by
v2f and comparing with (2.2), one finds that, so long as
A0 ≡ Aðr0Þ is finite on the horizon, B0 ¼ 4κ2. Thus for the
zero temperature black holes we are considering, B0 ¼ 0.
In [16] these results were used to solve (2.8) on the horizon,
with the result that

A0 ¼
1

16πðβ þ 2γÞr20
½3r20 − 32πðβ − γÞ

� ð768π2β2 − 3072π2βγ − 288πβr20 þ 9r40Þ1=2�:
ð2:11Þ

For physically acceptable solutions, A0 must be real, which
means that there can be no solutions with r0 in the range
r− < r0 < rþ, with

r� ¼ 4ðπβÞ1=2
�
1�

�
2

3β

�
1=2

ðβ þ 2γÞ1=2
�
1=2

: ð2:12Þ

B. New constraints

A new constraint, which to our knowledge has not been
presented elsewhere, can be obtained by first requiring that
the curvature seen by a freely falling observer in an
orthonormal frame be finite. In such a frame, one compo-
nent of the Einstein tensor near the horizon depends in part
upon the combination1

1

f
ðGr

r −Gt
tÞ ¼

kf0

rf2
−

k0

rf
≡ −FðrÞ: ð2:13Þ

For the curvature to be finite at the horizon, it is clear that
Fðr0Þ must be finite. This equation can be formally
integrated, with the result that

k ¼ f

�
a1 þ

Z
r

r0

r1Fðr1Þdr1
�
; ð2:14Þ

where a1 is an integration constant. Equating (2.10) and
(2.14) and using the definition (2.3) gives

ðf0Þ2 ¼ 4
R
r
r0
f0ðr2ÞAðr2Þdr2

a1 þ
R
r
r0
r1Fðr1Þdr1

: ð2:15Þ

In [16] it was shown that for SZTBH solutions to the SCE
when only conformally invariant fields are present,

A0 > 0: ð2:16Þ

Then we find that to leading order near the horizon

ðf0Þ2
f

¼ 4A0

a1 þ
R
r
r0
r1Fðr1Þdr1

: ð2:17Þ

Next we consider what this constraint implies for various
values of a1 and F0 ≡ Fðr0Þ. First it is necessary that
a1 ≥ 0 since if a1 ≠ 0, then it dominates the denominator
near the horizon. If a1 > 0, then near the horizon

ðf0Þ2
f

¼ 4A0

a1
: ð2:18Þ

Integrating and using (2.10) gives

f ¼ A0

a1
ðr − r0Þ2;

k ¼ A0ðr − r0Þ2: ð2:19Þ

If a1 ¼ 0 and Fðr0Þ ¼ F0 > 0, then one can integrate
(2.17) and use (2.10) to show that

f ¼ 4A0

r0F0

ðr − r0Þ ð2:20aÞ

k ¼ 4A0ðr − r0Þ2: ð2:20bÞ

Finally if a1 ¼ F0 ¼ 0, then near the horizon

ðf0Þ2
f

¼ 4A0R
r
r0
r2Fðr2Þdr2

: ð2:21Þ

Taking the square root and integrating gives

2f1=2 ¼
Z

r

r0

�
4A0R

r3
r0
r2Fðr2Þdr2

�
1=2

dr3: ð2:22Þ

The minimum value of the right-hand side would occur if
Fðr0Þ > 0, and one would then obtain the result (2.20a) for
which f0 is constant at the horizon. Thus f0 must have an
infinite value on the horizon. Further the function FðrÞ
cannot vanish too rapidly as the horizon is approached or f
would not be equal to zero at the horizon. As an example,
suppose f ¼ a4ðr − r0Þp near the horizon with 0 < p < 1.
Then it is not hard to show that near the horizon

k ¼ 4A0

p2
ðr − r0Þ2;

FðrÞ ¼ 4A0

r0p2a4
ðr − r0Þ1−p: ð2:23Þ

1This combination of components for the stress-energy
tensor is part of the energy density and pressure seen by a freely
falling observer passing through the event horizon on a radial
geodesic [20].
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III. METRICS CONSIDERED HERE

In the previous section constraints were found on the
form of the metric for SZTBHs near the event horizon. It
was found that if only conformally invariant fields are
present, then, for SZTBH solutions to the SCE, metrics of
the form (2.19) and (2.20) are allowed. It was shown that
for all other solutions f0 → ∞ at the horizon, which means
that there is no smooth way to continue f across the
horizon, and the coordinate system breaks down in a more
significant way than it does for Schwarzschild or Reissner-
Nordström spacetimes. If f is linear and k is quadratic at the
horizon, then the obvious way of continuing f and k across
the horizon leads to Euclidean space. On the other hand, if
both f and k are quadratic near the horizon, then the metric
is of the same form as that of an extreme Reissner-
Nordström spacetime. From the point of view of the
semiclassical backreaction equations, this is clearly the
form of most interest and the one that will be pursued here.
In general the stress-energy tensor for a quantum field is

a nonlocal quantity. Therefore it is necessary to know the
geometry everywhere in the causal past of a given space-
time point in order to compute the stress-energy tensor at
that point. For a SZTBH solution to the SCE outside the
event horizon, this means knowing the geometry every-
where outside of the event horizon. One can of course guess
the geometry, but it is extremely unlikely that any guess
would correspond to a solution to the SCE. However, we
have numerical evidence that for a SZTBH most compo-
nents of the stress-energy tensor on the horizon depend
only on the geometry near the horizon. This allows us to
solve the semiclassical backreaction equations near the
horizon to determine that geometry.
Our conjecture concerns metrics for SZTBHs that near

the event horizon have the leading order behaviors

f →

�
r − r0
r0

�
2

; ð3:1aÞ

k → b2

�
r − r0
r0

�
2

: ð3:1bÞ

Note that the coefficient for f has been set to 1 here because
it is always possible to do this by rescaling the coordinate
time t in (2.1). The conjecture states that for a massless
scalar field with arbitrary coupling to the scalar curvature,
in SZTBH spacetimes for which f and k have the above
form near the horizon, the values of the components hTt

ti,
hTr

ri, hTθ
θi, and hTϕ

ϕi on the event horizon depend on the
coefficient b2, but not on the behaviors of f and k away
from the horizon.
Previous work provides some evidence for this con-

jecture. In [6] it was shown numerically that on the event
horizon of an extreme Reissner-Nordström black hole
(b2 ¼ 1) one finds that for a massless scalar field with
arbitrary coupling to the scalar curvature

hTt
ti ¼ hTr

ri ¼ hTθ
θi ¼ hTϕ

ϕi ¼ 1

2880π2M4
: ð3:2Þ

It was also shown in [6] that these are the same values
as those for the stress-energy tensor for the conformally
coupled (ξ ¼ 1=6) massless scalar field in the Bertotti-
Robinson spacetime which is obtained by expanding the
extreme Reissner-Nordströmmetric in a series about r ¼ r0
and keeping only the lowest order terms. In Sec. IV we give
a more technical explanation of why the conjecture works
along with numerical results for another value of b2 that
support it.
If the conjecture is correct, then the following procedure

will work to solve the semiclassical backreaction equations
near the horizon. Choose metric functions which approach
(3.1) near the horizon for various values of b2 and which
have any convenient form away from it. Then compute the
stress-energy tensors for the quantum fields and evaluate
their components at the horizon. Next evaluate the left-hand
sides of the trace and rr components of the SCE. They
depend only on r0 and b2 at the horizon. Finally, since the
ERN black hole has an electric charge, include on the right-
hand side of the SCE the classical electromagnetic stress-
energy tensor that occurs if the black hole has an electric
chargeQ. Then the trace of the SCE will be independent of
Q and should yield a relationship between r0 and b2. The rr
component should yield a relationship between r0, b2, and
Q2. Thus, for any desired size for the black hole, one could
find the magnitude of the resulting electric charge and the
leading order behavior of the metric near the horizon.
In this paper we use the dimensionless radial coordinate

s≡ r − r0
r0

; ð3:3Þ

and consider metrics of the following form near the event
horizon:

f ¼ a2s2 þ a3s3 þ…; ð3:4aÞ

k ¼ b2s2 þ b3s3 þ…: ð3:4bÞ

Note that without loss of generality we can absorb the value
of the coefficient a2 into the definition of the time coordi-
nate t. We do this for the computations discussed here.
To compute the components of the stress-energy tensor it

is necessary to specify the metrics everywhere outside of
the event horizon. So the actual metrics we consider are of
the general form

f ¼ s2

ðsþ 1Þ2 þ
s3

ðsþ 1Þ3 A33 þ…; ð3:5aÞ

k ¼ s2

ðsþ 1Þ2 b2 þ
s3

ðsþ 1Þ3 B33 þ… ð3:5bÞ
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Note that for an asymptotically flat spacetime f → c for
some constant c > 0 and k → 1 as s → ∞. The first
condition is automatically satisfied by these metrics. For
the second

b2 þ B33 þ… ¼ 1: ð3:6Þ

Since b2 > 1 it is necessary that at least one of the other
terms in the sum be negative.
It is tempting to make the conjecture that the first radial

derivatives of the components of the stress tensor at the
horizon depend only on the values of r0, b2, a3, and b3.
However, we have found that this is not the case. Thus it
appears that this approach only allows one to find the
behaviors of solutions to the SCE when its trace, rr, and tt
components are evaluated at the horizon.

IV. NUMERICAL RESULTS

We begin with a constraint on two components of the
stress-energy tensor at the horizon. The radial component
of the conservation equation hTa

bi;b ¼ 0 is

hTr
ri;r þ

1

2f
df
dr

ðhTr
ri − hTt

tiÞ þ 2

r
ðhTr

ri − hTθ
θiÞ ¼ 0:

ð4:1Þ

Note that since we consider only states which respect
spherical symmetry, hTϕ

ϕi ¼ hTθ
θi. For the metrics we

consider f−1 df
dr ∼ ðr − r0Þ−1 near the horizon. Thus for

hTr
ri;r to be finite at the horizon it is necessary that hTt

ti ¼
hTr

ri there. This result is well known and our numerical
results confirm that for the vacuum state this condition is
always satisfied.
In the previous section, a conjecture was presented which

states that for a massless scalar field the components hTt
ti,

hTr
ri, hTθ

θi, and hTϕ
ϕi depend only on r0 and the metric

parameter b2 when the metric is of the form (3.1) near the
horizon. It is possible to show using the general static
spherically symmetric form of the expressions for hTa

bi
[17], the definition

r ¼ r0ð1þ sÞ; ð4:2Þ

and the scaling ω → ω=r0, that the entire r0 dependence for
each of these components is r−40 .
In this section we first discuss the computation of these

components on the horizon. In the process we provide a
technical explanation for why the conjecture should be
correct. Then we present the results of some of our
numerical computations.
The method we use to compute the stress-energy

tensor for a massless scalar field in a SZTBH spacetime
is given in detail in [17]. In this approach the mode

equation in the Euclidean space associated with the
exterior region of the black hole is solved. For each
value of the frequency ω and the angular momentum
parameter l there are two linearly independent solutions.
One of them we call pωl, and it is regular at the horizon2

but diverges at infinity. The other we call qωl. It is well
behaved at infinity but diverges at the horizon. The two-
point function hfϕðxÞ;ϕðx0Þgi is a sum and integral over
the product of these two mode functions. The unrenor-
malized stress-energy tensor involves spacetime deriva-
tives of the two-point function.
The fact that the stress-energy tensor depends only on

the geometry near the horizon for ERN spacetimes and
our conjecture that this is the case in general for SZTBHs
can be understood in two different ways. First, it is easy
to show that the proper distance to the horizon along a
radial spacelike geodesic from any point outside of it is
infinite [16]. In Euclidean space the distance is infinite
for any path from outside the horizon to the horizon.
Thus it makes sense qualitatively that the stress-energy
tensor might depend only on the geometry near the
horizon.
From a more technical point of view, it is found that to

leading order near the horizon pωl and qωl have expo-
nential factors of the form

expð�ω=ðr − r0ÞÞ: ð4:3Þ

Since the boundary conditions for qωl are fixed away from
the horizon, changing these conditions simply amounts to
adding some part of the pωl mode to the original qωl mode.
Then a product of the pωl and qωl modes simply results in
the original product plus a term which is damped expo-
nentially as the horizon is approached. Therefore it is
plausible that in the limit that the horizon is approached this
exponentially damped term does not contribute to leading
order to the mode sum that makes up the stress-energy
tensor.
The method in [17] allows us to compute the compo-

nents of the stress-energy tensor anywhere outside the event
horizon. The results can be extrapolated to the horizon.
There is a well-known ambiguity which occurs for the
value of hTabi which comes from the renormalization
counterterms. For the conformally invariant scalar field
this results in a finite renormalization of the parameter h2 in
the semiclassical backreaction equations (2.6). For the
massless minimally coupled field it results in finite
renormalizations of both h1 and h2. For the method we
use there is an arbitrary constant in one term of the stress-
energy tensor which is multiplied by ðCÞHab in the case of
the conformally invariant field and which is multiplied by a

2There can be spacetimes where there are exceptions to this for
small values of ω. However, in these cases the divergence is still
less strong than for qωl at the horizon.
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linear combination of ð1ÞHab and ðCÞHab for the massless
minimally coupled scalar field. More details are given in
[17]. For the numerical results shown we chose the value of
this constant to be zero.
The field is conformally invariant if it is massless and

ξ ¼ 1
6
. In this case the hTθ

θi component on the horizon is
related through the trace anomaly with the hTr

ri compo-
nent; see the next section for details. Some of our results for
hTr

ri are shown in Fig. 1.

A. Results for another component

Computation of the stress-energy tensor in an orthonor-
mal frame attached to a freely falling observer moving in
the radial direction shows that as the observer falls through
the horizon, the observer will observe an infinite stress-
energy unless hTt

ti, hTr
ri, and g−1tt ðhTr

ri − hTt
tiÞ are all

finite on the horizon [20]. Since gtt ∼ ðr − r0Þ2, this
component is divergent unless hTt

ti;r ¼ hTr
ri;r on the

horizon. From Fig. 2 it is clear that this is not the case
for all geometries of the form (3.5). In fact we have not
found an example where this condition is satisfied for
conformal coupling ξ ¼ 1

6
. However, as shown in Fig. 3 we

have found examples where it appears to be satisfied for
minimal coupling ξ ¼ 0.
The values of hTt

ti and hTr
ri on the horizon depend only

on the geometry near the horizon and in particular on the
values of b2 and r0. However, some of our numerical results
indicate that the values of hTt

ti;r and hTr
ri;r at the horizon

appear to depend on the geometry away from the horizon as
well. Thus it is quite possible that there are spacetime
geometries for which hTt

ti;r ¼ hTr
ri;r on the horizon

for ξ ¼ 1
6
.

V. SOLUTIONS TO THE SEMICLASSICAL
BACKREACTION EQUATIONS NEAR

THE HORIZON

In this section we solve the semiclassical backreaction
equations near the horizon using our results in Sec. IV

FIG. 1. The quantity hTr
ri is plotted near the horizon for a

massless scalar field with ξ ¼ 1
6
when b2 ¼ 2. All of the curves

have the series (3.5) truncated at A33 and B33. The solid curves
have A33 ¼ 0 and thus a3 ¼ −2. From top to bottom they have
B33 ¼ 0 (b3 ¼ −4), B33 ¼ 1 (b3 ¼ −3), and B33 ¼ 2 (b3 ¼ −2).
The dashed curve has A33 ¼ B33 ¼ 2 (a33 ¼ 0, b3 ¼ −2).

FIG. 2. Components of the stress-energy tensor are plotted near
the horizon for a massless scalar field with ξ ¼ 1

6
when b2 ¼ 2.

All of the curves have the series (3.5) truncated at A33 and B33.
The upper solid and dashed curves show hTr

ri and hTt
ti,

respectively, for A33 ¼ B33 ¼ 0 (a3 ¼ −2, b3 ¼ −4). The lower
solid curve and lower dashed curve show hTr

ri and hTt
ti,

respectively, for A33 ¼ 0 and B33 ¼ 2 (a3 ¼ b3 ¼ −2). Note
that in both cases the slope of the curve for hTr

ri near the horizon
is different from that of the curve for hTt

ti.

FIG. 3. Components of the stress-energy tensor are plotted near
the horizon for a massless scalar field with ξ ¼ 0 when b2 ¼ 2.
All of the curves have the series (3.5) truncated at A33 and B33.
The upper solid and dashed curves show hTr

ri and hTt
ti,

respectively, for A33 ¼ B33 ¼ 0 (a3 ¼ −2, b3 ¼ −4). The lower
solid curve and lower dashed curve show hTr

ri and hTt
ti,

respectively, for A33 ¼ 4 and B33 ¼ 6 (a3 ¼ b3 ¼ 2). Note that
the slopes of the upper curves approach each other near the
horizon but that for the lower curves the slope of the curve for
hTr

ri near the horizon is different from that of the curve for hTt
ti.
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which assume a metric of the form (3.5). We begin by
reviewing the solution to the trace equation. If only
conformally invariant quantum fields are present, then
the trace equation is given by substituting (2.4) into the
trace of (2.6). Evaluating at the horizon and recalling that
□R ¼ 0 there, one finds that the resulting equation can be
solved for r0 as a function of b2 with the result that

r20 ¼
π

3ðb2 − 1Þ ½8ðβ þ 2γÞðb22 þ 1Þ þ 32ðβ − γÞb2�: ð5:1Þ

It is easy to show from (2.5) that β þ 2γ > 0 and β − γ ≥ 0.
Thus physically acceptable solutions only exist if b2 > 1. It
is worth noting that for an ERN black hole, b2 ¼ 1. Thus
the ERN solution to the classical Einstein equations is not a
solution to the SCE if only conformally invariant fields are
present.
There is a minimum radius which occurs for

ðb2Þmin ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
6β

β þ 2γ

s
: ð5:2Þ

It is

ðr20Þmin ¼ 16π

� ffiffiffi
2

3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βðβ þ 2γÞ

p
þ β

�
: ð5:3Þ

For the Standard Model N0 ¼ 4, N1=2 ¼ 45, and
N1 ¼ 12, so

β ¼ 1243

2880π2
; ð5:4aÞ

γ ¼ 11

5760π2
; ð5:4bÞ

and

ðb2Þmin ¼ 1þ
ffiffiffiffiffiffiffiffi
113

19

r
≈ 3.4

ðr0Þmin ¼
1ffiffiffi
π

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1243

180
þ 11

ffiffiffiffiffiffiffiffiffiffi
2147

p

90

s
≈ 2.0: ð5:5Þ

Thus for the Standard Model the minimum size is of order
the Planck length. However there are many more particles
in Grand Unified Theories, so the minimum size could be
significantly larger than the Planck scale. Further, this
minimum is really only a constraint because it comes from
just one of the backreaction equations. The actual minimum
could be larger. Note that it does not depend on the
coefficients h1 and h2 of the higher derivative terms in
the semiclassical backreaction equations nor does it depend
on the charge of the black hole.

Continuing the analysis of the solutions to the trace
equation at the horizon, for small values of b2 − 1 > 0, the
radius is

r20 ≈
16πβ

b2 − 1
ð5:6Þ

and the scalar curvature at the horizon is

R ¼ −
2ðb2 − 1Þ

r20
≈ −

ðb2 − 1Þ2
8πβ

: ð5:7Þ

Thus for 1 < b2 ≤ ðb2Þmin the size of the event horizon
ranges from infinity to its minimum value and the scalar
curvature is small when the horizon size is large. Thus these
values of b2 result in physically acceptable solutions.
For very large values of b2,

r20 ≈
8π

3
ðβ þ 2γÞb2; ð5:8Þ

and

R ≈ −
3

4πðβ þ 2γÞ : ð5:9Þ

Since R does not get small as r0 gets large, the solutions
with b2 ≫ ðb2Þmin are probably not physically acceptable.
To go further we examine the “rr” component of the

semiclassical backreaction equations. At the horizon the
equation is

−
1

r20
¼ 8π

�
−

Q2

8πr40
þ ðTr

rÞ0 −
2

r40
ðb22 − 1Þ

�
h2
3
þ h1

��
:

ð5:10Þ

Here ðTr
rÞ0 is the value of hTr

ri evaluated at r ¼ r0. Thus
the charge of the black hole which corresponds to a given
value of r0 and hence b2 is

Q2 ¼ r20 þ 8π

�
r40ðTr

rÞ0 − 2ðb22 − 1Þ
�
h2
3
þ h1

��
: ð5:11Þ

Note that r40ðTr
rÞ0 depends on b2 and not r0. Thus this

equation gives a relationship between the charge Q, the
radius r0, and the metric parameter b2 for fixed values of h1
and h2.
It is of interest to see whether it is possible to have

Q ¼ 0. Since b2 > 1, it is clearly not possible if h2 þ
3h1 < 0 and ðTr

rÞ0 > 0. Even for values of these quantities
where it is possible to have Q ¼ 0, the resulting radius of
the black hole will be of the Planck scale or smaller unless
there is a large number of fields and ðTr

rÞ0 < 0 and/or
h1 þ h2=3 ≫ 1. The latter condition can be satisfied if

ANDERSON, BINKLEY, BJERKE, and CAULEY PHYS. REV. D 98, 125011 (2018)

125011-8



h2 ≫ −h1 and the Universe underwent Starobinsky infla-
tion, which requires h1 ∼ 109 [18].
If Q2 ¼ 0, then (5.11) gives a second equation for r0.

Combining (5.1) and (5.11) gives

ðβ þ 2γÞðb22 þ 1Þ þ 4ðβ − γÞb2 þ 3r40ðTr
rÞ0ðb2 − 1Þ

− 6

�
h2
3
þ h1

�
ðb2 þ 1Þðb2 − 1Þ2 ¼ 0: ð5:12Þ

For a black hole much larger than the Planck scale, Eq. (5.1)
implies that b2 ≈ 1, which in turn implies that the metric
near the horizon is nearly the same as that of the extreme
Reissner-Nordström metric. In that case one expects ðTr

rÞ0
to be approximately equal to its value in an ERN spacetime
which for conformally invariant fields is3

ðTr
rÞ0 ¼

β

r40
: ð5:13Þ

Using this as an approximation for ðTr
rÞ0 in (5.12) along

with b2 ≈ 1, and assuming jh2j ≪ h1 gives

ðb2 − 1Þ2 ¼ β

2h1
: ð5:14Þ

Substituting this into (5.1) gives

r0 ≈ ð512π2βh1Þ1=4: ð5:15Þ

Using 109 for h1 and the value of β for the Standard Model
(5.4) gives r0 ≈ 700, which is well above the Planck scale
where r0 ∼ 1. For grand unified theories β and hence r0 are
even larger. Thus if Starobinsky inflation occurred it is
possible that black hole remnants could exist that are
compatible with and predicted by semiclassical gravity.

VI. SUMMARY AND CONCLUSIONS

We have examined constraints on the form of the metric
for SZTBH solutions to the semiclassical backreaction
equations and found that the most likely form the metric
would take is that both gtt and grr are quadratic in r − r0
near the horizon. Restricting our attention to metrics of this
form, we have numerically computed the stress-energy
tensor for both the conformally invariant scalar field and the
massless minimally coupled scalar field in spacetimes with
metrics of the form (3.5). It has been found in all cases
considered that the value of hTt

ti ¼ hTr
ri on the horizon

depends only on the metric parameter b2 and on the radius

r0 of the event horizon. This makes it possible to determine
the leading order behaviors of solutions to the SCE near the
horizon.
We have examined the solutions to the SCE near the

horizon when only conformally invariant quantum fields
are present. It was shown in [17] that for a massive scalar
field the large mass condition is given bymM ∼ 2 in Planck
units. For the small mass limit (mM ≪ 1), most massive
free fields are approximately conformally invariant. For
small enough black holes this includes most of the fields in
the Standard Model if their interactions can be neglected.
We have found that near the horizon zero temperature
solutions to the SCE can exist even if the black hole has no
electric charge. Of course only knowing their behaviors
near the horizon does not guarantee that these solutions
have physically realistic geometries far from the horizon
and that they could thus correspond to realistic zero
temperature black holes. Even if the geometries are
physically realistic, it does not guarantee that the black
hole evaporation process really does shut off at late times
when the black hole is small and therefore that black hole
remnants exist. What one does expect, however, is that
backreaction effects due to quantum fields should be larger
for black holes of smaller sizes. Thus it is possible that such
effects could result in progressively smaller surface
gravities and hence progressively lower temperatures for
such black holes with the limit being the uncharged SZTBH
solutions discussed here.
The rr component of the semiclassical backreaction

equations provides a relation between b2, r0, and the black
hole charge Q along with the coefficients h1 and h2 of the
R2 and Weyl squared terms in the gravitational Lagrangian.
If only conformally invariant fields are present, we have
shown that this relationship allows for an electric charge of
zero for the black hole if hTr

ri on the horizon has a large
enough negative value and/or h2=3þ h1 has a large enough
positive value. For values of jh1j and jh2j less than or of
order unity, there would need to be an enormous number
of quantum fields for the corresponding black hole to be
larger in size than the Planck scale. However, if Starobinsky
inflation occurred so that h1 ∼ 109, and if h2 ≫ −h1, then
zero temperature black holes with sizes significantly
above the Planck scale could exist even for the number
of quantum fields in the Standard Model. Thus if
Starobinsky inflation occurred, then it is possible that
black hole remnants could exist that are large enough that
semiclassical gravity could be used to describe them. As
such they could provide an answer to the question of what
the end state of the black hole evaporation process is.
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