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We evaluate the effect of quantum electrodynamics on the correlations between Dirac field modes
corresponding electron-positron pairs of opposite momenta generated by expansion of an asymptotically
flat Friedmann-Robertson-Walker (FRW) universe. The mutual information of out-going electron-positron
pairs is evaluated to leading order in the coupling strength and compared with the free case. It is shown a
decrease in the mutual information between the electron and positron. In addition, it is found that the
change in the electron-positron mutual information depends on how the momentum is distributed between
the positron and photon modes.
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I. INTRODUCTION

Gravitational particle creation appeared as a fundamental
process in early works on particle creation by black holes
and black hole evaporation by S. Hawking in [1]. One of
the conclusions was that gravitational collapse converts
baryons and leptons in the collapsing body into entropy.
The recent revival of the study of gravitational particle
creation in a time-varying space-time background is par-
tially motivated by the development of relativistic quantum
information and precise data acquired from cosmic micro-
wave background radiation. These developments permit,
for instance, to study quantum information processes in
regimes where relativistic effects are important and to test
fundamental predictions of inflation on primordial fluctua-
tions, such as scale independence and gaussianity [2].
Cosmological particle creation incorporates entropy

production and particle backreaction on space-time
geometry [3]. In particular, the degree of entanglement
between quantum field modes has been shown to contain a

fairly complete amount of information about the cosmic
parameters characterizing the expansion [4]. In [5], the
thermodynamic and kinetic properties of irreversible
gravitationally induced particle production were studied
in the context of Friedmann-Robertson-Walker (FRW)
cosmology, showing that the resulting nonequilibrium
distribution function has the same functional form of
equilibrium, save that the evolution laws should be cor-
rected by the particle production process. Moreover, such a
process was seen to affect predictions of the observable
quantities as, for instance, the dark matter density and
thermally averaged annihilation cross sections [6].
In [7] the entanglement of momentum modes ðp;−pÞ of

a free quantum scalar field, produced by an expanding
conformally flat 1þ 1-dimensional FRW universe, was
shown to contain information about cosmic parameters
characterizing the space-time expansion. In the limit of
small mass, this allowed for expressing the cosmological
parameters in terms of the amount of the entanglement,
quantified by the von Neumann entropy (SvN), generated
throughout cosmic evolution. In a similar fashion, in [8] it
was studied the entanglement between modes of opposite
momenta of a free Dirac field. The latter showed qualitative
differences as compared with the bosonic counterpart,
namely that fermionic fields encode more information
about the underlying space-time than the bosonic case.
In other words, the response of the entanglement to the
dynamical evolution of the universe was shown to depend
on the nature of the quantum field. Whilst for the bosonic
case SvN of an observed mode decreases monotonically
from a maximum at p ¼ 0, for a Dirac field SvN peaks
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around a certain (optimal) momentum p > 0. This shows a
privileged momentum range for which space-time expan-
sion generates a large amount of entanglement for fermion
fields as if the exclusion principle impeded entanglement
between small momentum values in contrast to the bosonic
case. Moreover, the frequency at which this peak in
SvNðjpj;mÞ occurs is sensible to the rapidity (ρ) of the
expansion, while the amount of entanglement in the
maximally entangled jpj is sensitive to the total volume
(ϵ) of expansion. As these are the only cosmological
parameters characterizing the scale factor of their model,
it follows that the information about all the parameters of
the expansion is codified in this peak. In this ideal context,
where the universe follows an (asymptotically flat) expan-
sion governed by two parameters ϵ and ρ, namely the
volume and rapidity, in [8] it is designed a protocol to
extract such cosmological parameters from the peaked
behavior in jpj of the electron entropy (as opposed to
the bosonic case, which monotonically decreases as jpj
increases), namely the rapidity of the expansion is encoded
in the frequency of the maximally entangled mode whereas
the volume of the expansion is codified in the amount of
entanglement generated for this optimal mode.
The problem of whether the presence of interactions

stimulates or prevents the production of particles by the
gravitational field as compared with the creation of free
particles has been solved long ago [9–11]. In [12,13], it was
investigated the effect of quantum electrodynamics (QED)
interaction upon the creation of photons and electron-
positron pairs both in a FRW expanding universe and in
other expanding asymptotically Minkowskian spacetimes
in the distant past and future. The emphasis was on photon
generation later than the Compton time of Dirac particles
along the cosmological evolution because it is the mass of
Dirac particles that allows the breaking of conformal
symmetry. Therefore, cosmological creation of Dirac elec-
tron-positron pairs is possible even in the absence of the
QED interaction. On the other hand, the simultaneous
creation of electron-positron pairs and photons in a curved
background with electromagnetic interaction can be studied
within perturbation theory in e2=ð4πÞ ≈ 1=137 (ℏ ¼ c ¼ 1)
as in [13] where it was evaluated an attenuation effect for
fermion production. It would certainly be interesting to
assess the role played by interactions in the quantum
correlations over a time-varying cosmological background.
In [14], we studied the effect of interactions in the

evaluation of cosmological parameters through correlations
of opposite momentum modes of the created particles in the
simplest possible setup: a bosonic scalar field φ subject to a
λφ4 interaction immersed in an asymptotically flat (1þ 1)-
dimensional FRW expanding spacetime. The Bogolyubov
coefficients were computed perturbatively in the interaction
picture a la Birrel and Ford [9] and served to conclude that
self-interaction amplifies the low-frequency modes of the
scalar field producing an enhancement in the entanglement
entropy between the particle pairs created by space-time

expansion. Because there exist fundamental differences in
entanglement generation between opposite momenta of the
produced particles due to their statistics, it is worth
investigating the effect of interactions in the entanglement
and correlations between Dirac particles. This is the main
purpose of this contribution which is organized as follows:
in Sec. II we present the quantization of Dirac equation and
the Maxwell field in a conformally flat curved space-time.
Section III contains all the main results of this work,
namely the mutual information between electrons and
positrons in both free and interacting cases, which are
illustrated with the graphs in the end of this section. We
chose the mutual information for it is a more meaningful
quantity when dealing with N-partite (N > 2) systems,
since the interaction produces a third particle in the system,
i.e., a photon, to leading order in perturbation theory.
Moreover, it reduces to (twice) the von Neumann entropy in
the free case limit as computed in [8]. Our concluding
remarks are addressed in Sec. IV and technical details are
left to an Appendix.

II. THE MODEL

Consider the action of QED with Dirac fermions of mass
m embedded in a curved space-time background M in
(3þ 1)-dimensions:

SMQED ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ψ̄ðiγμð∂μ − ΓμÞ −mÞψ

−
1

4
FμνFμν − ieψ̄γμAμψ

�
:

We have adopted natural units. In SMQED, e is the coupling
constant, Fμν ¼ ∇μAν −∇νAμ is the electromagnetic field
strength tensor, where ∇μ represents covariant differentia-
tion, Γμ is the spinorial affine connection defined as

Γμ ¼ −
1

8
½γa; γb�eaν∇μebν; ð1Þ

in which eμa is a tetrad field and γμ ¼ eμaγa are the Dirac
matrices in curved spacetime, satisfying fγμ; γνg ¼ 2gμν,
fγa; γbg ¼ 2ηab and eaμebνηab ¼ gμν. We take a conformally
flat FRW space-time with metric

ds2 ¼ CðηÞð−dη2 þ dxidxiÞ; ð2Þ

where η is the conformal time related to the cosmological
time t as dη ¼ dt=CðηÞ and we adopt the mostly plus
signature. Exact solutions in quantum field theory on
curved space-times are notoriously difficult. In order to
get analytical results, we follow [8,15] by choosing

CðηÞ ¼ ð1þ ϵð1þ tanhðρηÞÞÞ2; ð3Þ
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where ϵ, ρ are positive real parameters which represent the
total volume and the rapidity of the expansion, respectively.
In the asymptotic past/future

Cin ≡ Cðη → −∞Þ ¼ 1;

Cout ≡ Cðη → þ∞Þ ¼ ð1þ 2ϵÞ2; ð4Þ

showing that space-time is asymptotically Minkowskian in
in=out-regions, respectively. In the asymptotic regions,
space-time admits timelike Killing vectors �∂η. Conse-
quently we may classify the solutions of the field equations
into positive and negative frequency modes and proceed
with field quantization in terms of creation and annihilation
operators.
In order to study interacting fields, it is convenient to

work in the interaction picture. The field operators satisfy
the free Dirac and Maxwell wave equations,

½iγμð∂μ − ΓμÞ þm�ψ ¼ 0; ð5Þ
and

∇μ∇μAν −∇νð∇μAμÞ þ Rα
μAα ¼ 0; ð6Þ

where Rμν is the Ricci tensor that arises due to the
commutation relation for the covariant derivatives acting
on a vector field. The state-vector of the system satisfies the
Schroedinger equation

HintjΨi ¼ i∂ηjΨi; ð7Þ
with

Hint ¼ −ie
Z

d3x
ffiffiffiffiffiffi
−g

p
ψ̄γμAμψ : ð8Þ

A. Dirac field in an expanding spacetime

Using gμνðxÞ ¼ CðηÞημν, we can rewrite the Dirac
equation (5) by replacing the tetrad field with the square
root of the scalar factor

½i
ffiffiffiffiffiffiffiffiffiffi
CðηÞ

p
γμð∂μ − ΓμðCðηÞÞÞ þm�ψ ¼ 0: ð9Þ

Spatial translational invariance of the metric (2) permits us
to factorize the solutions as

ψðxÞ ¼ eip·x½CðηÞ�−3=4 ð10Þ

×ðγ0∂η þ iγ · p −m
ffiffiffiffiffiffiffiffiffiffi
CðηÞ

p
ÞϕpðηÞ: ð11Þ

Inserting this equation into the Dirac equation (5), we
obtain the following differential equation

∂2
ηϕ

ð�Þ
p þ

�
m2CðηÞ � i

m _CðηÞffiffiffiffiffiffiffiffiffiffi
CðηÞp þ p2

�
ϕð�Þ
p ¼ 0 ð12Þ

where p2 ¼ jpj2, _CðηÞ ¼ ∂CðηÞ=∂η and we have used that
γ0 has eigenvalues�1. Notice that (12) is just the harmonic
oscillator equation with time-varying frequency

ω2ð�Þ
p ðηÞ ¼ p2 þm2CðηÞ � i

m _CðηÞffiffiffiffiffiffiffiffiffiffi
CðηÞp : ð13Þ

The solutions of Eq. (12) in the asymptotic regions are

ϕinð�Þ
p jη→−∞ ¼ eiωinηffiffiffiffiffiffiffiffiffiffiffiffi

2ωð�Þ
in

q ; ϕoutð�Þ
p jη→þ∞ ¼ e−iωoutηffiffiffiffiffiffiffiffiffiffiffiffi

2ωð�Þ
out

q

ð14Þ

with frequencies ωin;out ¼ ðp2 þ μ2in;outÞ1=2 where μ2in ¼
m2Cð−∞Þ and μ2out ¼ m2Cðþ∞Þ and we have used
_Cð�∞Þ ¼ 0. Following the notation as in [15], we re-
present the quantum field over the regions “in” and “out”
with a pair of mode functions Uin;out, V in;out, where the U’s
(V’s) are related to ϕð−Þ (ϕðþÞ). Moreover, according to our
conventions, flat space spinors satisfy

γ0uð0; sÞ ¼ −uð0; sÞ; γ0vð0; sÞ ¼ vð0; sÞ; ð15Þ

with s ¼ 1, 2 accounting for spin states. Putting all
together, the curved-space spinor solutions of Dirac equa-
tion can be written in terms of the mode functions in the
in-region,

Uin
p ðx; sÞ ¼ KinðpÞ½CðηÞ�−3=4½−i∂η þ iγ · p

−m
ffiffiffiffiffiffiffiffiffiffi
CðηÞ

p
�ϕinð−Þ

p eip·xuð0; sÞ;
V in
p ðx; sÞ ¼ KinðpÞ½CðηÞ�−3=4½i∂η − iγ · p

−m
ffiffiffiffiffiffiffiffiffiffi
CðηÞ

p
�ϕinðþÞ

p e−ip·xvð0; sÞ; ð16Þ

or out-region with similar expressions substituting in with
out, where

KinðoutÞðpÞ ¼ −
1

p

�
ωinðoutÞ − μinðoutÞ

2μinðoutÞ

�
1=2

: ð17Þ

Finally the field operator can be expanded in terms of
creation and annihilation operators in the in-region as

ψ̂ðxÞ ¼
XZ

p;s

�
μin
ωin

�1
2½âinp;sUin

p ðx; sÞ þ b̂†inp;sV in
p ðx; sÞ�; ð18Þ

where
R
p ≡

R
d3p=ð2πÞ3=2 and similarly for the field

operator in the out-region. The creation and annihilation
operators which act on fermionic states satisfy the usual
relations

INTERACTING FERMIONS IN AN EXPANDING SPACETIME PHYS. REV. D 98, 125009 (2018)

125009-3



fâinðoutÞp;s ; âinðoutÞ†p0;s0 g ¼ fb̂inðoutÞp;s ; b̂inðoutÞ†p0;s0 g ¼ δss0δpp0 ð19Þ

defining the in and out-vacua

âinðoutÞp;s j0iinðoutÞ ¼ b̂inðoutÞp;s j0iinðoutÞ ¼ 0: ð20Þ

Bogolyubov’s coefficients are defined as usual, connecting
in- and out- regimes

ϕinð�Þ
p ðηÞ ¼ αð�Þ

p ϕoutð�Þ
p ðηÞ þ βð�Þ

p ϕoutð∓Þ�
p ðηÞ; ð21Þ

and obey, according to our normalization,

αð−ÞαðþÞ� − βð−ÞβðþÞ� ¼ 1: ð22Þ

Equivalently, one can express the relations between the
mode functions Uin=out, V in=out with the help of (16):

Uin
p ¼ Kout

Kin
½αð−Þp Uout

p þ βð−Þp V�out
p �

V in
p ¼ Kout

Kin
½αðþÞ

p Vout
p þ βðþÞ

p U�out
p �: ð23Þ

A relation between creation and annihilation operators in
the asymptotic regimes can be obtained from (18) using
that the expansion in both regions describes the same field
operator. We obtain

âoutp;s ¼ N
�
αð−Þp âinp;s þ β�ð−Þp

X
s0
Xss0 ð−pÞb̂†in−p;s0

�
;

≡ α̃pâinp;s þ β̃�pb̂
†in
−p;s;

b̂outp;s ¼ N
�
αð−Þp b̂inp;s þ β�ð−Þp

X
s0
Xss0 ð−pÞâ†in−p;s0

�

≡ α̃pb̂
in
p;s þ β̃�pâ

†in
−p;s; ð24Þ

with

N ¼
�
ωout

ωin

ωin − C1=2
in

ωout − C1=2
out

�
1=2

ð25Þ

and the so called polarization tensor Xss0 ðpÞ is given
by [15]

Xss0 ðpÞ ¼ −2Cout

�
ωout − C1=2

out

2p2Cout

�1=2

Uout
−pðs0Þvð0; sÞ; ð26Þ

satisfying

X
s0
jXss0 ðpÞj2 ¼ 2μinðoutÞK2

inðoutÞðωinðoutÞ − μinðoutÞÞδss0

¼
X
s0

�
μinðoutÞ
p

�
1 −

ωinðoutÞ
μinðoutÞ

��
2

δss0 : ð27Þ

In a similar fashion, we may obtain expressions for â†outp;s

and b̂†outp;s .
The Bogolyubov coefficients can be analytically evalu-

ated for the asymptotically free space-time (2) using the
solutions of Eq. (12) [7,8,14,15]. They read:

αð�Þ
p ¼

�
ωin

ωout

�
1=2 Γð1 − iωout

ρ Þ
Γð−i

2ρ ðω− � iϵÞÞ

×
Γðiωin

ρ Þ
Γð1 − i

2ρ ðω− � iϵÞÞ ð28Þ

and

βð�Þ
p ¼ −

�
ωin

ωout

�
1=2 Γð1 − iωout

ρ Þ
Γð−i

2ρ ðωþ ∓ iϵÞÞ

×
Γð−iωin

ρ Þ
Γð1 − i

2ρ ðωþ ∓ iϵÞÞ ; ð29Þ

where we used (13) to conclude that

ω�
in − ω�

out ¼ ωin − ωout � iϵ

≡ ω− � iϵ; ð30Þ

and

ω�
in þ ω�

out ¼ ωin þ ωout ∓ iϵ

≡ ωþ ∓ iϵ: ð31Þ

B. Electromagnetic field in an expanding spacetime

As it is well known, the free photon Lagrangian is
invariant under local rescalings in the metric and so is the
Dirac Lagrangian for massless fermions in four dimen-
sions. In fact, the addition of a QED interaction term does
not violate conformal invariance either. That means that
particle creation mechanism for electrons, positrons and
photons depend on the mass term in the Dirac field.
Concretely one may perform a transformation g0μν ¼
Ω2gμν and A0μ ¼ Ω−2Aμ so that g0μν ¼ ημν. Hence “in”
and “out” solutions will be undistinguishable and the vector
potential Âμ may be expanded in terms of plane-wave
modes in Minkowski space

ÂμðxÞ ¼
XZ

k;σ

1ffiffiffiffiffi
2k

p ϵσμðkÞðĉk;σe−ik·x þ ĉ†k;σe
ik·xÞ; ð32Þ
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where ϵσμ is the polarization vector for the polarization
state σ and ĉk;σ and ĉ†k;σ are the annihilation and creation
operators for photons, respectively. These operators satisfy
the usual commutation relations

½ĉk;σ; ĉ†k0;σ0 � ¼ δσ;σ0δk;k0 ;

½ĉk;σ; ĉk0;σ0 � ¼ ½ĉ†k;σ; ĉ†k0;σ0 � ¼ 0: ð33Þ

The natural choice for the vacuum state is conformal
vacuum of the Maxwell theory and it is defined
as ĉk;σj0i ¼ 0.

III. PARTICLE CREATION, ENTANGLEMENT
AND MUTUAL INFORMATION

In [7,8] it was shown that the vacuum of the quantum
field in the asymptotic past evolves to an entangled state in
the asymptotic future. Moreover the entanglement gener-
ated by the expansion was shown to contain information
about the cosmic evolution, such an information being
more easily obtained for fermionic as compared with
bosonic fields. The entanglement entropy as a function
of physical parameters such as momentum and mass or the
cosmological parameters ϵ and ρ was qualitatively distinct
for bosons or fermions. In [12,13] it was estimated the
magnitude of the contributions to particle creation, which
are due to the interaction in comparison with the creation
of free electron-positron pairs. In particular, it was verified
an attenuation effect for fermionic particles as free
electron-positron pairs counteract pair creation due to non-
gravitational interaction. Effectively this means that the
electromagnetic interaction produces less than one elec-
tron-positron pair per photon to leading order.
Here we are interested in the contribution of the

electromagnetic interaction to the correlations generated
between Dirac modes in an expanding conformally flat and
asymptotically Minkowskian space-time. Up to tree-level,
the interaction term (8) in an expanding cosmological
background, where conservation of field energy is not
required, can be depicted as in Fig. 1. To evaluate such a
contribution it is convenient to use S-matrix techniques in

the interaction picture. We assume that the electromagnetic
interaction is adiabatically switched off in the “in” and
“out” regions of spacetime.
Let us formally write the state vector in the remote

past as

jΨiin¼N

�
j0iDin⊗ j0iγinþ

Z
k1;k2;k3

Γk1;k2;k3
jk1;k2i⊗ jk3i

�
;

ð34Þ

to leading order in the interaction, where j0iD and j0iγ
correspond to the Dirac and photon vacua and k1, k2 and
k3 represent the electron, positron and photon momenta,
respectively. Moreover, to guarantee that jΨiin is normal-
ized to unity, we require

jNj−2 ¼ 1þ
Z
k1;k2;k3

jΓk1;k2;k3
j2; ð35Þ

where

Γk1;k2;k3
¼ hk3j ⊗ hk2;k1j

�
−i

Z
∞

−∞
Ĥintdη

�
j0iDin ⊗ j0iγin;

≡ eδ3ðk1 þ k2 þ k3ÞAðk1;k2;k3Þ; ð36Þ

and Ĥint is given by (8).

A. The noninteracting case

In the interaction picture the Bogolyubov coefficients
carry information only about the noninteracting contribu-
tion to the total particle creation. Due to the structure of the
Bogolyubov transformation (24), an electron-positron pair
of modes ðp;−pÞ can be produced by the free Dirac field in
an expanding space-time. Moreover, a Fock space state in
the in-region is related to the corresponding state in the out-
region by a Schmidt decomposition which can be written as
a two-mode squeezing unitary operator factorized for each
pair of modes. Formally,

j0iDout ¼
Y
p

j0p0−piout;

j0p0−piout ¼ Sðâin†p ; b̂in†−pÞj0p0−piin

≡X1
n¼0

anjnpn−pi; ð37Þ

with

S ¼ Cp exp

�
−
β�ð−Þp

αð−Þp

X
s0
Xss0 ð−kÞâin†p;sb̂

in†
−p;s0 þ H:c:

�

an ¼ ð−1ÞnCp

�
β�ð−Þp

αð−Þp

X
s0

Xss0 ð−pÞ
�n
: ð38Þ

FIG. 1. Creation of electron-positron pairs and photons in an
expanding space-time. Even in the absence of interactions,
electron-positron pairs are created and realized as an entangled
state in the modes p, −p. Electromagnetic interaction is expected
to affect the mutual information of the electron-positron pair.
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and Cp is a normalization constant to be determined so that
D
outh0j0iDout ¼ 1 to yield

Cp ¼ ð1þ γpÞ−1=2; ð39Þ

where

γp ≡
X
s0

���� β
�ð−Þ
p

αð−Þp

����
2

jXss0 j2; ð40Þ

which can be computed for a FRW conformally flat space-
time of scale factor (3) with the help of Eqs. (27), (28) and
(29) to yield [4]:

γp ¼ ðω− þmϵÞðωþ þmϵÞ
ðω− −mϵÞðωþ −mϵÞ

×
sinh ½πρ ðω− −mϵÞ� sinh ½πρ ðω− þmϵÞ�
sinh ½πρ ðωþ þmϵÞ� sinh ½πρ ðωþ −mϵÞ�

×

�
m
p

�
1 −

ωin

m

��
2

: ð41Þ

Expression (37) means that the pure, entangled state
j0p0−piout can be written as a Schmidt decomposition in
all number states n in the bipartition p, −p, where npðn−pÞ
labels the number of electron (positron) excitations in the
field mode p as seen by an observer (inertial) in the in-
region. A similar decomposition can be made for j0p0−piin,
the interpretation being that particles are created by cosmic
expansion. In order to quantify the entanglement of
particle-antiparticle modes in j0p0−piout, we define the
density matrix,

ϱ0p;−p ¼ j0p0−piouth0p0−pj; ð42Þ

from which the reduced density matrix for the electron
reads

ϱ0p ¼
X
n

hn−pjϱ0p;−pjn−pi

¼
P

1
n¼0ðγpÞnjnpiinhnpj

ð1þ γpÞ
: ð43Þ

The von Neumann entropy S of the reduced density
matrix ϱp,

S0
e− ¼ −trðϱ0plog2ϱ0pÞ

¼ log2

�
1þ γp

γp
γp=ð1þγpÞ

�
; ð44Þ

is a well-founded measure of entanglement between elec-
trons and positrons produced in modes p, −p. From (41)

one sees that the entropy is zero when the mass of the
fermion field vanishes.
It is important to notice that the density of created

particles is given by jβ�pj2, and in order to the total number
of particles in all modes be finite, namely

R
npd3p < ∞,

jβ�pj2 should fall faster than jpj−3 as jpj → ∞. Such a
condition also validates the normalization of the out-
vacuum expressed in terms of the in-vacuum (squeezing)
[16]. In the particular space-time we consider [7,8], this
condition is met. In particular, regarding the entropy
calculation in the free case, for both bosons and fermions,
it is possible to analytically evaluate the entanglement at
infinity. For instance, for m ¼ jpj ¼ ρ ¼ 1, it is found that
in the limit where ϵ → ∞,

γp → e−π
ffiffi
2

p eπ
ffiffi
2

p
− eπ

eπ
ffiffi
2

p þ1 − 1
; S0

e−ðϵ → ∞Þ ≈ 0.0048; ð45Þ

wherem is the mass, ϵ is the total volume and ρ the rapidity
of the expansion. For purposes of comparison with the
interacting case, we shall compute the mutual information
between the electron-positron in the free case, which is
defined as

I0
e−eþ ¼ S0

e− þ S0
eþ − S0

e−eþ

¼ 2S0
e− ; ð46Þ

because S0
e−eþ ¼ 0, as the system is a pure state,

and S0
eþ ¼ S0

e− .

B. Correlation measure of the dressed vacuum

In order to study the effect of the electromagnetic
interaction on the entropy generation for electrons of mode
pwe apply the squeezing operator in the fermionic sector in
(34), while leaving the (massless) photonic sector unaltered
jΨiout ¼ ðS ⊗ 1̂ÞjΨiin, namely

jΨiout ¼ N

�
Sj0iDin ⊗ j0iγin

þ
Z
k1;k2;k3

Γk1;k2;k3
Sjk1;k2i ⊗ jk3i

�
: ð47Þ

The integrand in the RHS of the expression above can be
evaluated as

Sjk1;k2i ⊗ jk3i →
ffiffiffiffiffiffiffiffi
2ω1

p ffiffiffiffiffiffiffiffi
2ω2

p ffiffiffiffiffiffiffi
2k3

p
Sâin†k1;s

S−1Sb̂in†k2;s0
S−1Sj0iDin ⊗ ĉin†k3;σ

j0iγ; ð48Þ

and hereafter we omit the index “in” at the creation operator
for photons because of the conformal invariance of
Maxwell theory. Moreover
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Sâin†k1;s
S−1 ¼ âout†k1;s

;

Sb̂in†k2;s
S−1 ¼ b̂out†k2;s

and Sj0iDin ¼ j0iDout:

In order to evaluate the contribution of the electromagnetic
interaction to leading order, we write the out-state as

jΨiout ¼ Nð1̂þ ÎÞðj0iDout ⊗ j0iγÞ; ð49Þ

where

Î ¼
Z
k1;k2;k3

Γk1;k2;k3
ðâout†k1;s

b̂out†k2;s
ĉ†k3;σ

Þ: ð50Þ

The dressed density matrix of the system reads

ϱ̃ ¼ jΨiouthΨj ¼ ðϱ̃0 þ Îϱ̃0 þ ϱ̃0Î† þ Îϱ̃0Î†Þ; ð51Þ

ϱ̃0 ¼jNj2j0iDouth0j ⊗ j0iγh0j: ð52Þ

Because now we are dealing with a tripartite system, the
von Neumann entropy of the reduced system is no longer a
meaningful quantity. Rather, we employ the mutual infor-
mation of the electron-positron pair as a consistent measure
of correlation in both free and interacting cases. Mutual
information has been used in [17,18], where it was
employed the so-called average subsystem entropy in the
context of multipartite systems.
In order to calculate the mutual information between the

electron and positron with the dressed vacuum, we need to
evaluate the reduced density of the electron, the positron
and the system electron-positron, just so we can compute
their individual von Neumann entropies. The mutual
information in the interacting case reads

Ĩe−eþ ¼ S̃e− þ S̃eþ − S̃e−eþ : ð53Þ

To compute the leading order correction for outgoing
electrons of momentum p, we must choose the partition
k1 ¼ p, k2 ¼ apþ q≡ q1 and k3¼−ð1þaÞp−q≡q2,
for any real a and p · q ¼ 0, on momentum conservation
grounds. Hence the reduced matrix for the electron is

ϱ̃p ¼
X
j;l

hjq1 j ⊗ hlq2 jϱ̃jjq1i ⊗ jlq2i

¼
X
j

hjq1 jϱ̃0jjq1
i þ

X
j;l

fhjq1 ; lq2 jðÎϱ̃0 þ ϱ̃0Î†Þjjq1 ; lq2i

þ hjq1 ; lq2 jÎϱ̃0Î†jjq1 ; lq2ig; ð54Þ

where we have abbreviated the notation and used Eq. (51).
To compute the effect of the dynamical space-time in the
interaction picture, we write (50) with help of (24).
According to the partition we chose, we have

Î ¼ Γp;q1;q2 â
out†
p;s b̂

out†
q1;s ⊗ ĉ†q2;σ

¼ Γp;q1;q2ðα̃�pα̃�q1 âin†p;sb̂in†q1;s

þ α̃�pβ̃q1 â
in†
p;sâin−q1;s þ β̃pα̃

�
q1 b̂

in
−p;sb̂

in†
q1;s

þ β̃pβ̃q1 b̂
in
−p;sâin−q1;sÞ ⊗ ĉ†q2;σ

≡ Γp;q1;q2 Î
D ⊗ ĉ†q2;σ; ð55Þ

where ÎD acts on the Dirac sector only. The terms of the
electron’s reduced density matrix in (54) are straightfor-
wardly evaluated. The Oðe0Þ term describing a free Dirac
particle reads:

X
j

hjq1 jϱ̃0jjq1i ¼ ϱ0p; ð56Þ

as in (43). The first two terms ofOðeÞ in the double-sum in
(54) do not contribute since the partial trace over the photon
space yields zero. As for the term of Oðe2Þ, it can formally
be written as:

X
j;l

hjq1 ; lq2 jÎϱ̃0Î†jjq1 ; lq2i

¼
X
j;l;n;n0

ana�n0 jΓp;q1;q2 j2hlq2 j1q2ihjq1 jÎDjnpijn−pi

× h1q2 jlq2ihn0pjhn0−pjÎD†jjq1i: ð57Þ

The term involving the operator ÎD can be explicitly
written as

hjq1 jÎDjnpijn−pi ¼ α̃�pα̃�q1
ðâin†p;sjnpiÞhjq1 jb̂in†q1;sjn−pi

þ α̃�pβ̃q1ðâin†p;sâin−q1;sjnpiÞhjq1 jn−pi
þ β̃pα̃

�
q1 jnpihjq1 jb̂in−p;sb̂in†q1;sjn−pi

þ β̃pβ̃q1ðâin−q1;sjnpiÞhjq1 jb̂in−p;sjn−pi:

It becomes clear from the structure above that only the third
term in the RHS contributes, which multiplied by its
hermitian conjugate as shown in (57), gives the following
formal expression for the electron’s reduced density matrix:

ϱ̃p ¼ NA½ϱ0p þ e2ja1j2jAðp;q1;q2Þj2jβ̃pj2jα̃�q1 j2j1p;sih1p;sj
þOðe4Þ�; ð58Þ

where NA is chosen so that Trðϱ̃pÞ ¼ 1, and we used (36).
Moreover,

jAðp;q1;q2Þj2 ¼
2ϵ2ð1þ ϵÞ2

πρ2sinh2ðπωinðpÞ
ρ Þ

½ð1þ aÞ2 þ q2�
p2m2

× ωinðpÞωinðq1Þ½ωinðpÞ −m�3
× ½ωinðq1Þ −m�3; ð59Þ
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which can be inferred from the explicit expression of
Aðp;q1;q2Þ demonstrated in the Appendix. It is note-
worthy that other diagrams of Oðe2Þ yield zero and thus
(58) is the total contribution to the reduced density matrix
for an electron of outgoing momentum p.
Finally, the von Neumann entropy of the reduced density

matrix taking into account the electromagnetic interaction
to Oðe2Þ can be written in terms of its eigenvalues λi,

S̃e− ¼ −
X1
i¼0

λilog2λi; ð60Þ

with

λ0 ¼
ja0j2

1þ e2ja1j2jAj2jβ̃pj2jα̃�q1 j2
; ð61Þ

λ1 ¼
ja1j2ð1þ e2jAj2jβ̃pj2jα̃�q1 j2Þ
1þ e2ja1j2jAj2jβ̃pj2jα̃�q1 j2

; ð62Þ

where A ¼ Aðp;q1;q2Þ.
In a similar fashion, by tracing out the electron and

photon modes, we compute the positron’s reduced density
matrix

ϱ̃q1 ¼ NB½ϱ0−p þ e2jAj2jα̃�pα̃�q1a0 þ β̃pα̃
�
q1a

�
1j2

× j1q1;sih1q1;sj þOðe4Þ�; ð63Þ

with emerging positrons of momenta: −p for the free case
and a contribution in q1 due to the interaction. In addition,
NB is a normalization constant and ϱ0−p is the positron’s
reduced density matrix in the free case, which has the same
eigenvalues as the electron’s. That said, the positron’s
entropy becomes

S̃eþ ¼ −
X1
i¼0

λ0ilog2λ
0
i; ð64Þ

with

λ00 ¼
ja0j2

1þ e2jAj2jα̃�pα̃�q1a0 þ β̃pα̃
�
q1a

�
1j2

; ð65Þ

λ01 ¼
ja1j2

1þ e2jAj2jα̃�pα̃�q1a0 þ β̃pα̃
�
q1a

�
1j2

; ð66Þ

λ02 ¼
e2jAj2jα̃�pα̃�q1a0 þ β̃pα̃

�
q1a

�
1j2

1þ e2jAj2jα̃�pα̃�q1a0 þ β̃pα̃
�
q1a

�
1j2

: ð67Þ

We still need to evaluate the entropy of the electron-
positron system, i.e., S̃e−eþ , which is obtained by tracing
out the photon modes of (52). In doing so, we find that the
density matrix ϱ̃e−eþ is not diagonal. After diagonalizing it,

only 2 eigenvalues are non-null, so that the entropy of the
pair is

S̃e−eþ ¼ −
X1
i¼0

λ00i log2λ
00
i ; ð68Þ

with

λ000 ¼
1

1þ e2jAj2jα̃�pα̃�q1a0 þ β̃pα̃
�
q1a

�
1j2

; ð69Þ

λ001 ¼
e2jAj2jα̃�pα̃�q1a0 þ β̃pα̃

�
q1a

�
1j2

1þ e2jAj2jα̃�pα̃�q1a0 þ β̃pα̃
�
q1a

�
1j2

: ð70Þ

The fact that S̃e−eþ ≠ 0 indicates that the electron-positron
system is no longer pure, that is, the pair is entangled with
the emerging photon. Due to this, the mutual information,
which quantifies the total (quantumþ classical) correlation
between the pair, is expected to decrease, because the
photon “carries” part of the correlation. Using (60), (64)
and (68), we can compute the mutual information in the
interacting case as

Ĩe−eþ ¼ S̃e− þ S̃eþ − S̃e−eþ ; ð71Þ
and compare it with the free case in (46). We display our
results in the graphs below. For the sake of simplicity we
have consistently adopted q ¼ 0 as its value does not affect
qualitatively our conclusions. We have used e2

4π ¼ 1
137

.

IV. DISCUSSION AND CONCLUSIONS

It has been shown in [7], for massive free scalar fields,
and in [8], for massive free fermionic fields, that informa-
tion about space-time evolution is encoded in the entan-
glement between particles of opposite momenta as
measured by the von Neumann entropy. For the Dirac
vacuum in an expanding space-time, entangled fermion-
antifermion pairs ðp;−pÞ are generated even in the absence
of electromagnetic interaction for massive fermions. The
entanglement entropy of the observed particles, say elec-
trons, has distinguished features as compared with bosonic
fields: whilst for fermions it peaks at an optimal frequency,
for bosons it monotonically decreases. This somewhat
shows that fermionic fields are more effective for extracting
information about space-time evolution. Using such pecu-
liar features of fermionic fields and within a simple
spatially flat, asymptotically Minkowskian spacetime char-
acterized by a rapidity ρ and total volume ϵ, it was possible
to construct a protocol to estimate such cosmological
parameters from the quantum correlations. Such protocols
are described in [8]. In a few words, the rapidity estimation
protocol is obtained from the optimal momentum, which is
very sensitive to ρ variations, whilst it changes very little
with ϵ. In addition, a lower bound for ϵ can be appraised by
computing the maximum value of the quantum correlation
via an optimal jpj tuning as a function of ϵ. One of the
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purposes of our work is to study, to leading order in
perturbation theory, how the electromagnetic interaction
interferes with cosmological parameter assessment based
on quantum correlations of modes of the pair electron-
positron for an emerging electron of momentum p.
Because a third particle is involved (photon) we employ

the mutual information as a measurement of quantum
correlations. It is adequate since it reduces to (twice) the
von Neumann entanglement entropy of the electron (posi-
tron) in the limit where the coupling is zero. Figures 2 and 3
are just a restatement of the free case reported in [8], save
that we plotted the e−eþ mutual information showing that it
peaks at optimal values of the electron momentum jpj for
ρ ¼ 3, 5, 10, 15, 20 and 30. Figure 4 shows the variation
ΔI ¼ Ĩe−eþ − I0

e−eþ as a function of jpj for the same values
of ρ. Notice that it peaks at different values than Fig. 3 and
vanishes for large jpj, showing that the decrease of mutual
information is very small at the optimal momenta that
maximize it. This decrease in the e−eþ mutual information
is due to the fact that the particles become correlated to the
photon as well. The maximum decrease for the set of
parameters we adopted is around 6%. The behavior of the
e−eþ mutual information as a function of a (the parameter
that characterizes the momentum shared between the
positron and the photon) is depicted in Fig. 5. Notice that
it coincides with the free case (flat line) at a ¼ −1, as it
should, presents two minima at a ≈�12, and approaches a
value that coincideswith the free case for jaj ≫ 1.Moreover,
from Fig. 5, it is clear that multiple values of a yield the same

FIG. 2. Mutual information between the electron and positron
as a function of mass in the free case. We have used jpj ¼ 1 and
ϵ ¼ 1. The peaks increase with ρ and saturate around ρ ≈ 30.
Above we plotted the mutual information corresponding to
ρ ¼ 3, 5, 10, 15, 20, 30.

FIG. 3. Mutual information between the electron and positron
as a function of momentum in the free case. We have used m ¼ 1
and ϵ ¼ 1. The peaks increase with ρ and saturate around ρ ≈ 30
at an optimal momentum jpjoptimal ≈ 1.2. The curves correspond
to ρ ¼ 3, 5, 10, 15, 20, 30.

FIG. 4. Decrease in the mutual information between the
electron and positron due to the interaction (ΔIe−eþ ¼
Ĩe−eþ − I0

e−eþ ). We have used m ¼ 1 and ϵ ¼ 1. The curves
correspond to ρ ¼ 3, 5, 10, 15, 20, 30 and ρ ¼ 100, where they
saturate. Observe that the decrease is small up until around
jpjoptimal ≈ 1.2 and for large momenta. The maximal mutual
information loss for these parameters is about 6%.
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decrease in the mutual information, indicating that a 1-1
correspondence between the mutual information and the
outgoingmomenta of the particles is not direct and should be
taken into account in the evaluation of the cosmological
parameters. Figure 6 shows the variation of the mutual
information as a function of the volume of the universe ϵ.
Notice that it vanishes for large ϵ and peaks at a value of ϵ that
corresponds to about 15% of the mutual information of the
free case for the same set of parameters.
Finally it is worth mentioning that in [14] we considered

the influence of a self-interaction λϕ4 for scalar fields ϕ on
the entanglement entropy generation for a particular mode
in an asymptotically free FRW space-time. It was shown
that self-interaction enhances the entanglement entropy.
Here, because of both the fermionic character of the pair
e−eþ and the interaction that involved a photon, we realize
that some of the quantum correlation of the pair e−eþ is
distributed to the photon meaning that in this case the
interaction presents a deleterious effect.
Of course this analysis is qualitative and serves only to

indicate the percentage change in the quantum correlation
due to the interaction. Such effects should be taken into
consideration in the estimation protocols along with
anisotropy effects and, last but not least, decoherence effects.
It would be interesting to construct more realistic models

to take into account the effects above, as well as

constructing appropriate detector models and detection
processes for the interpretation of the measurements in
the observation of (non-local) quantum correlations. In this
sense, moving pointlike detectors coupled to quantum
fields have been considered to carry quantum information
in space-time [20]. In [21] finite-size detectors, i.e.,
detectors with a position dependent coupling strength,
are described and claimed not only to be more realistic
but also to have the advantage of coupling to peaked
distributions of modes. This is important in the task of
evaluating correctly the reality of these quantum correla-
tions that define entanglement or even of effects that appear
to not satisfy the causal propagation of signals as nicely
discussed in [19].

ACKNOWLEDGMENTS

L. N.M. thanks FAPEMIG for the financial support. J. B.
A. [Grant No. 88881.188500/2018-01] andH. A. S. C. thank
CAPES for financial support. M. S. acknowledges FAPESP
(2018/05948-6) and CNPq (303482/2017-6) for a research
grant. This studywas financed in part by theCoordenação de
Aperfeiçoamento de Pessoal de Nível Superior–Brazil
(CAPES)–Finance Code 001.

APPENDIX: DERIVATION OF PARTICLE
PRODUCTION AMPLITUDE

Let us explicitly compute the amplitude in Eq. (36),

Γk1;k2;k3
¼ hkχ

3j ⊗ hkr0
2 ;k

r
1j
�
−i

Z
∞

−∞
Ĥintdη

�
j0iDin ⊗ j0iγin;

FIG. 6. Variation of the mutual information of the electron-
positron pair for m ¼ 1, p ¼ jpjoptimal, and ρ ¼ 30 as a function
of ϵ.

FIG. 5. Mutual information of the electron-positron pair for
m ¼ 1, p ¼ jpjoptimal, ϵ ¼ 1 and ρ ¼ 30. The mutual information
for the free case corresponds to the flat line, while the interacting
case is a function of a, which determines how the momentum −p
is distributed between the positron and photon. Notice that for
a ¼ −1 or jaj ≫ 1, the mutual information for both cases
coincide. Also, there are values of a ≈�12 which considerably
decrease the mutual information in the interacting case.
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where Ĥint ¼ −ie
R
d3x

ffiffiffiffiffiffi−gp ˆ̄ψγμÂμψ̂ . The mode expansion
for the Dirac and Maxwell quantum fields are given by
Eqs. (18) and (32). Inserting the latter in the expression for
Γk1;k2;k3

yields

Γk1;k2;k3
¼−e

Z
d4x

ffiffiffiffiffiffi
−g

p X
s;s0;σ

Z
k0
1
;k0

2
;k0

3

�
μin

ωinðk01Þ
�
1=2

×

�
μin

ωinðk02Þ
�
1=2e−iðk0

1
þk0

2
þk0

3
Þ·xffiffiffiffiffiffiffi

2k03
p Ūin

k0
1
;sγ

μϵσ�μ ðk0
3ÞV in

k0
2
;s

×hkr
1k

r0
2 jk0s

1k
0s0
2 ihkχ

3jk0σ
3i: ðA1Þ

According to the normalization convention we have
adopted, the scalar products read

hkr
1k

r0
2 jk0s

1k
0s0
2 ihkχ

3jk0σ
3i ¼

�
ωinðk01Þ
μin

δð3Þðk0
1 − k1Þδrs

�
�
ωinðk02Þ
μin

δð3Þðk0
2 − k2Þδr0s0

�
ð2jk03jδð3Þðk0

3 − k3ÞδχσÞ;

which yields, after simple algebra,

Γk1;k2;k3
¼ −

e

ð2πÞ3ð2πÞ32
Z

d4x
ffiffiffiffiffiffi
−g

p �
ωinðk1Þ
μin

�
1=2

×

�
ωinðk2Þ
μin

�
1=2 ffiffiffiffiffiffiffi

2k3
p

e−iðk1þk2þk3Þ·x

× Ūin
k1;r

γμϵχ�μ ðk3ÞV in
k2;r0

: ðA2Þ

To simplify the calculation, let us explicitly write the spinor
functions as [15],

Ūin
k1;r

¼ −Kinðk1Þði=k1 þ μinÞeiωinðk1ÞηŪin
0;r;

V in
k2;r0

¼ −Kinðk2Þði=k2 þ μinÞeiωinðk2ÞηV in
0;r0 ; ðA3Þ

with Ūin
0;r and V in

0;r0 given by [22]:

Ūin
0;r ¼

ffiffiffiffi
m

p ð r† r† Þ; ðA4Þ

V in
0;r0 ¼

ffiffiffiffi
m

p �
r0

−r0

�
; ðA5Þ

and r† ¼ ð1 0Þ or ð0 1Þ and r0 ¼ ð1
0
Þ or ð0

1
Þ. For simplicity,

consider a photon polarized in the z-direction. Thus, the
polarization function ϵχμ is

ϵχμðk3Þ ¼
1ffiffiffi
2

p

0
BBB@

0

1

ð−1Þqi
0

1
CCCA; ðA6Þ

with q ¼ 1, 2. Moreover, the product γμϵqμðk3Þ is given by

1ffiffiffi
2

p ADð1 − ð−1Þq; 1þ ð−1Þq;−1þ ð−1Þq;−1 − ð−1ÞqÞ;

where AD stands for antidiagonal matrix going from the
lower left corner to the upper right corner. Thus we have,

Ūin
0;rγ

μϵχ�μ ðk3ÞV in
0;r0 ¼

4mffiffiffi
2

p : ðA7Þ

Recalling that
ffiffiffiffiffiffi−gp ¼ CðηÞ ¼ ½1þ ϵð1þ tanhðρηÞÞ�2, it

can be shown that
Z þ∞

−∞
dη½1þ ϵð1þ tanhðρηÞÞ�2eiω̄η ¼ ð1þ ϵÞ2ð2πÞ3δðω̄Þ

þ
�
2πi
ρ

ϵð1þ ϵÞ − πϵω̄

ρ2

�
1

sinhðπω̄
2ρÞ

: ðA8Þ

with ω̄ ¼ ωinðk1Þ þ ωinðk2Þ.
Collecting all these results and plugging them back in

(A2) yields, factoring out eδ3ðk1 þ k2 þ k3Þ according to
our definition given in equation (36),

Aðk1;k2;k3Þ¼−
4m

ð2πÞ32
�
ωinðk1Þ
μin

�
1=2

�
ωinðk2Þ
μin

�
1=2

×
ffiffiffiffiffi
k3

p
Kinðk1ÞKinðk2Þði=k1þμinÞði=k2þμinÞ

×

�
ð1þ ϵÞ2ð2πÞ3δðω̄Þ

þ
�
2πi
ρ

ϵð1þ ϵÞ−πϵω̄

ρ2

�
1

sinhðπω̄
2ρÞ

�
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