
 

Unruh-DeWitt detectors and entanglement: The anti–de Sitter space

Keith K. Ng,1 Robert B. Mann,1,2,3 and Eduardo Martín-Martínez4,2,3
1Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

2Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
3Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

4Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

(Received 1 November 2018; published 11 December 2018)

We investigate entanglement harvesting in AdS4. Applying the general results of [K. K.
Ng, R. B. Mann, and E. Martín-Martínez, Phys. Rev. D 97, 125011 (2018)], we consider two scenarios:
one where two particle detectors are geodesic, with equal redshift; and one where both are static,
at unequal redshift. As expected, at large AdS length L, our results approximate flat space.
However at smaller L we observe nontrivial effects for various field boundary conditions. Furthermore,
in the static case we observe a novel feature of the entanglement as a function of switching
time delay, which we attribute to different (coordinate) frequencies of the detectors. We also find an
island of separability in parameter space, analogous to that observed in AdS3, to which we compare and
contrast our other results. The variety of features observed in both cases suggest further study in other
spacetimes.
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I. INTRODUCTION

Quantum mechanics and general relativity are two of the
most precise and predictive theories of physics ever created.
It is therefore of some concern that they are not compatible.
In the frontiers of the black hole, physicists have found a
contradiction: either general relativity is correct, and that
which falls into a black hole is lost forever; or quantum
mechanics is correct, and the information contained within
the falling object survives. This disagreement is known as
the information paradox.
There are a few schools of thought regarding this

paradox [1]. Some physicists believe that general relativity
is correct, and thus that information really is lost. While this
would make gravity unique among the fundamental inter-
actions, it is not entirely unprecedented: indeed, the de
Sitter solution, not unlike the spacetime we live in, does
allow information to lose causal contact with us, over
cosmological time scales. Other physicists favor quantum
mechanics, and quantum field theory: perhaps that which
we call a “black hole” is in truth a more complicated
structure at its smallest scales. This structure might indeed
be capable of holding information inside it, releasing it as
the black hole evaporates. Most recently, a few physicists
have even proposed that information never falls into a black
hole: instead, it is immediately stripped from infalling
matter at the horizon by a “firewall” [2]. Debate on this
question continues.
One tool that has been employed to answer this question

is known as the AdS=CFT duality [3]. In its original form,
the dynamics of general relativity inside an AdS spacetime

may be translated into a quantum field theory on its
boundary. Since this QFT cannot lose information, a black
hole inside the spacetime’s bulk must still conserve
information. Physicists have then sought to determine
the form that this information takes, and whether this
might be generalized to our de Sitter spacetime. However,
tracking information through the phase transition/collapse
of a black hole has proven to be a formidable challenge
indeed. Still, this idea has led to a profusion of new avenues
of investigation.
Recently, there has been much interest in the entangle-

ment present in the vacuum state of a quantum field on a
curved background. Specifically, the nature of the
AdS=CFT duality seems to suggest that questions about
gravity in a spacetime might be translated into questions
about quantum information on its boundaries, or at least on
a relatively gravity-free region. For instance, the length of a
wormhole, a theoretical possibility within general relativity,
has been found to be linked to the entanglement structure of
its two horizons [4]. However, calculations of the entan-
glement entropy of a region of space are very computa-
tionally expensive, and questions have arisen as to how
much of the entanglement is accessible. (For instance, in
models with nonzero spin fields, it is unclear whether some
degrees of freedom are accessible at all.) Therefore, the
Unruh-DeWitt model, and several other detector-type
models, have been deployed to study the entanglement
of the quantum vacuum.
Employing particle detectors to study entanglement has

been until recently a largely unexplored subject, despite
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Valentini’s demonstration some time ago [5] (and revisited
by Reznik in 2002 [6]) that atoms interacting with the
electromagnetic field can become entangled, even
when spacelike separated for the duration of their inter-
action. This process of extracting entanglement from
the quantum field is known as “entanglement harvesting,”
and research in this subject has intensified in the past
few years [7–12].
More recently, it has been found that the structure

of spacetime affects the entanglement extracted [13,14].
The entanglement of Unruh-DeWitt detectors thus
becomes a valuable tool for studying the structure of
spacetime.
Much progress has been made in characterizing the

behavior of Unruh-DeWitt detectors. Unruh-DeWitt detec-
tors are good models for the light-matter interaction when
exchange of angular momentum does not play a role in the
interaction [15,16]. It is only natural, then, that we bring the
UDW detector back to the AdS space, in order (amongst
other things) to further understand the AdS=CFT duality.
In many ways, AdS is quite “friendly”: it may be con-
formally mapped into a compact space, which implies it has
a discrete spectrum, and its high degree of symmetry
implies a simple vacuum structure. However, some funda-
mental questions still remain. In particular, we choose to
study the entanglement which UDW detectors may harvest.
While this is in some sense comparable to studying
entanglement harvesting in a box, the addition of spacetime
curvature adds some interesting features, which we will
explore.
Understanding the entanglement structure of anti-de

Sitter space is also an important step toward understanding
AdS=CFT. Moreover, the methods we develop in this paper
may be employed in any static spacetime, and may be of
use to studying the entanglement structure of any static
spacetime. AdS is thus both a useful spacetime to study,
and a test bed towards future investigations.
In this paper we analyze the entanglement harvested by

two UDW detectors in AdS4, in two configurations: one
where both are in geodesic motion at the same redshift, and
another where both are static at different redshifts. As one
would expect, at large curvatures, the geodesic case
approximates flat space quite well. However, at smaller
curvatures, the effects of the boundary conditions become
more apparent. As well, a number of novel features are
visible in the static case, most strikingly an island of
separability in parameter space at intermediate values of the
AdS length, whose origin remains to be understood. This
feature has also been concurrently observed in AdS3 [17],
and we compare and contrast our other results to this case.
The variety of features we observe warrant further study in
other model spacetimes: this is especially important for the
static case as it is the only generally applicable case. Our
application of the findings of [18] to the AdS4 case serve

both as a demonstration of the method’s potential, and as a
foundation for further investigation.

II. FOURIER TRANSFORMS AND
SWITCHING FUNCTIONS

Consider a spacetime manifold with a global timelike
Killing symmetry, i.e., a Killing time t, with a scalar field.
For simplicity, we treat the spacetime as a background: that
is, we will not consider the effects of the field’s gravitation
on the spacetime. Then, the presence of a global time
allows us to have a well-defined notion of particles
everywhere on the manifold. Specifically, let us consider
solutions to the massless Klein-Gordon equation,

ð□ − ζRÞΦ ¼ 0; ð1Þ

where ζ describes the coupling of the scalar field Φ to
the Ricci curvature of the manifold. (In 3þ 1 dimensions,
ζ ¼ 1=6 defines the conformal coupling.) Then, because
the spacetime is static, we can define a basis of positive-
frequency solutions as

Φnlmðt; xÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

2ωnlm
p e−iωnlmtφnlmðxÞ; ð2Þ

where n, l, m are indices which enumerate the space of
solutions. One can then show that any solution to the field
equations can be represented by a linear superposition of
the particle solutions and their negative-frequency complex
conjugates. We can also use these particle solutions to
quantize the scalar field; the quantum field state in which
no particles exist is the vacuum. More generally, all states
of a free quantum field may be characterized by their
one- and two-point correlation functions, hΦ̂ðt; xÞi and
Wðt; x; t0; x0Þ ¼ hΨjΦ̂ðt; xÞΦ̂ðt0; x0ÞjΨi. Given these func-
tions (more properly distributions), we can calculate any
observable quantity.
Next, consider two Unruh-DeWitt detectors, A and B.

These detectors are simple two-level systems, with energy
gaps ΩA;ΩB, coupled to the scalar field via coupling
constants λA; λB, and have their interaction with the scalar
field switched on and off according to switching functions
χAðτAðtÞÞ; χBðτBðtÞÞ. For now, we will not assume any of
these are equal. We can then write an interaction
Hamiltonian density governing their interactions with the
scalar field. With respect to the Killing time t, this is

ĤIðtÞ ¼
X
I¼A;B

λIχIðτIðtÞÞμ̂IðtÞ

× FIðτI; ξIÞΦ̂ðt; xÞ; ð3Þ

where FIðτI; ξIÞ is the smearing function of detector I, and

μ̂IðtÞ ¼ eiΩIτIðtÞσ̂þI þ e−iΩIτIðtÞσ̂−I ð4Þ
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is the monopole operator of detector I in the interaction
picture. By calculating how the state of these detectors
evolve in time, we hope to understand what information an
observer may gain about the structure of the background
spacetime.
More specifically, suppose we initialize the detectors in

their respective ground states, and the field in the jΨi state.
Therefore, the initial joint density matrix of the detectors
and the field becomes ρ̂ðt0Þ ¼ jgAgBijΨihΨjhgAgBj. We
then wish to calculate the state of the detectors alone, as a
function of t: this is accomplished by time-evolving the
initial density matrix, then tracing out the field. Given the
unitary evolution operator Ûðt; t0Þ, our final state is then

ρ̂ABðtÞ ¼ Trϕ½Ûðt; t0Þρ̂ðt0ÞÛ†ðt; t0Þ�: ð5Þ

In practice, we do not have access to the exact unitary
evolution operator ÛðtÞ. Instead, we use the Dyson expan-
sion to express the unitary evolution operator in terms of
the interaction Hamiltonian, then truncate the expansion at
finite order:

Ûðt; t0Þ ¼
X∞
n¼0

Ûnðt; t0Þ; ð6Þ

Ûnðt; t0Þ ¼
ð−iÞn
n!

Z
t

t0

dt1

Z
t

t0

dt2 � � �
Z

t

t0

dtn

× T ðĤIðt1ÞĤIðt2Þ � � � ĤIðtnÞÞ: ð7Þ

We take the convention that Û0 ¼ 1. In order to express the
final density matrix of the detectors we then sum up:

ρ̂ABðtÞ ¼ Trϕ

� Xnþm≤2

n;m¼0

Ûnðt; t0Þρ̂ðt0ÞÛ†
mðt; t0Þ

�
þ � � � ð8Þ

valid to second order in the interactions. Note the inclusion
of both the second-order unitary operator, as in U2ρ, and
the first-order unitary operator, as in Û1ρ̂Û

†
1; both of these

terms are needed in order to maintain the unit trace of the
density matrix (and its positivity at second order). In
general, the Dyson expansion maintains positivity to all
orders; however, one must take care that all relevant terms
are included in the sum. It is also important to note that for
any quantum state where the one-point function is zero,

ρ̂ð1ÞABðtÞ ¼ ρ̂0; this is the case for vacuum field states, Fock
states, and free thermal states. This justifies our use of the
second-order density matrix, as it is in fact the leading-
order density matrix for such initial field states.
Finally, let us select the following basis for the detector

state:

jgAgBi ¼ ð1; 0; 0; 0Þ† jeAgBi ¼ ð0; 1; 0; 0Þ†
jgAeBi ¼ ð0; 0; 1; 0Þ† jeAeBi ¼ ð0; 0; 0; 1Þ†: ð9Þ

It can then be shown (e.g., [19]) that the terms of the density
matrix can be written as an integral transform of the
Wightman function. Specifically, quantizing with respect
to the Killing time t, we find [8]

ρ̂AB ¼

2
6664
1 − LAA − LBB 0 0 M�

0 LAA LAB 0

0 LBA LBB 0

M 0 0 0

3
7775þOðλ4I Þ;

ð10Þ

where

M ¼ −λAλB
Z

∞

−∞
dt
Z

t

−∞
dt0

Z
dnx

Z
dnx0

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðt; xÞgðt0; x0Þ

p
Mðt; x; t0; x0ÞWðt; x; t0; x0Þ ð11Þ

LIJ ¼ λIλJ

Z
∞

−∞
dt
Z

∞

−∞
dt0

Z
dnx

Z
dnx0

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðt; xÞgðt0; x0Þ

p
LIðt; xÞL�

Jðt0; x0ÞWðt; x; t0; x0Þ
ð12Þ

and

LIðt; xÞ ¼ χIðτIðt; xÞÞFIðτI; ξIÞeiΩIτIðt;xÞ ð13Þ

Mðt; x; t0; x0Þ ¼ LAðt; xÞLBðt0; x0Þ þ LAðt0; x0ÞLBðt; xÞ
ð14Þ

where I ¼ A;B. Note that LAA is simply the leading-order
transition rate for detector A.
It is also possible to determine the causal influence of

detector J on I. Since we plan to use noncompact switching
functions, this allows us to quantify the degree to which the
detectors are in causal contact. As shown in detail in [20],
the influence of detector J on detector I’s density matrix
is quantified by a integral over the field commutator,
iC−ðt; x; t0; x0Þ ≔ ½Φ̂ðt; xÞ; Φ̂ðt0; x0Þ� (using the notation of
[18]) rather than the Wightman function. The magnitude of
the result depends on the initial state of I and J. An upper
bound on this causal influence estimator (that we notate
CIJ) [20] is given for a detectors initial states with maximal
coherences and is
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CIJ ¼ −λIλJ
Z

∞

−∞
dt
Z

t

−∞
dt0

Z
dnx

Z
dnx0

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðt; xÞgðt0; x0Þ

p
LIðt; xÞℜ½LJðt0; x0Þ�iC−ðt; x; t0; x0Þ

ð15Þ

We know that the linearly coupled UDW detector does
not diverge if smoothly switched, even if it is pointlike,
and so we will assume the detector smearing function
FIðτI; ξIÞ ¼ δðξIÞ ¼ δðxIÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−hIðt; xIÞ

p
. where hIðt; xÞ is

the determinant of the spatial three-metric of the detector’s
proper frame. Note that for stationary spacetime trajecto-
ries, dτ

dt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðt; xÞ=hðt; xÞp

.
Since we will eventually consider detectors located at

different redshifts, we will use the convention that t is the
coordinate time, ΩI is the proper gap of the detector, τI is
the proper time of the detector, and Ω̃I is the “coordinate
frequency” of the detector, i.e., the frequency such that
Ω̃Idt ¼ ΩIdτI . where I ¼ A;B. We will also use the
convention that χ̃IðtÞ ¼ χIðτIðtÞÞdτI=dt is the “coordinate
switching function” of detector I, guaranteeing that its
integral over time will be constant. Notably, in our specific
coordinates for AdS4, the coordinates are dimensionless,
while the proper measurements (e.g., proper distance,
proper time) are not.
Now consider the special case where the Wightman

function Wðt; x; t0; x0Þ ¼ h0jΦðt; xÞΦðt0; x0Þj0i where j0i
describes a static vacuum state. As noted previously, the
presence of the Killing time t allows us to quantize the field
with respect to particle modes, and implies that a well-
defined vacuum state exists. We can then express the field
operator and the vacuum Wightman function with respect
to the annihilator anlm of a particle of indices n, l, m:

Φ̂ðt; xÞ ¼
X
nlm

½ânlmðt; xÞΦnlmðt; xÞ

þâ†nlmðt; xÞΦ̄nlmðt; xÞ� ð16Þ

Wðt; x; t0; x0Þ ¼
X
nlm

1

2ωnlm
e−iωnlmðt−t0ÞφnlmðxÞφ̄nlmðx0Þ

ð17Þ
where our expression for the Wightman function depends
on time only through t − t0, as expected for a stationary
state. Note that we include a factor 1=

ffiffiffiffiffiffi
2ω

p
which com-

pensates for the difference between the Klein-Gordon inner
product and the usual L2 inner product (i.e., for our mode
normalization choice

R
dxjφðxÞj2 ¼ 1), and include indices

n, l, m in anticipation of the separation of variables used
later. As well, we use a discrete sum over frequencies,
anticipating that our boundary conditions will generate a
discrete spectrum; other spacetimes will require an integral
over frequencies instead.

Consider a pair of detectors in stationary trajectories.
Using the mode expansion, it is fairly simple to rewrite the
nonentangling terms of the density matrix:

LIJ ¼ λJλI

Z
∞

−∞
dt
Z

∞

−∞
dt0χ̃JðtÞχ̃Iðt0Þ

X
ωlm

1

2ω

× e−iðωþΩ̃JÞteiðωþΩ̃IÞt0φnlmðxJðtÞÞφ�
ωlmðxIðt0ÞÞ

¼ λJλI
X
ωlm

π

ω

× F τJ ½χJðτJðtÞÞφnlmðxJðtÞÞ�
�
−ω

dt
dτJ

− ΩJ

�

× F τI ½χIðτIðt0ÞÞφ�
ωlmðxIðt0ÞÞ�

�
ω

dt
dτI

þΩI

�
; ð18Þ

where F τI is the Fourier transform with respect to the
corresponding proper time variable. For instance, in the
special case where both detectors are static, this is just

LIJ ¼ λJλI
X
ωlm

π

ω
φnlmðxJÞφ�

ωlmðxIÞ

× χ̂�J

�
ω

dt
dτJ

þ ΩJ

�
χ̂I

�
ω

dt
dτI

þΩI

�
: ð19Þ

Note that if J ¼ I this becomes the expression found in [21]
for the transition rate, albeit summing over discrete modes
rather than continuous modes.
We note here that for anti-de Sitter spacetime in

particular, an analytical expression for the Wightman
function is known to exist, for any coupling [22]. For
instance, for the conformally coupled scalar, in the special
case where the detectors are at equal angular coordinates
one can show [23] that

8π2L2Wðx; x0Þ ¼ X½1þ εð1þ 2XÞ−1�; ð20Þ

where X is twice the inverse square of the geodesic distance
in the embedding space, and ε defines the conformal
boundary condition:

ε ¼

8>><
>>:

−1; Dirichlet

1; Neumann

0; transparent

ð21Þ

However, we are also interested in studying less symmetric
spacetimes, for which no analytical expression exists. AdS is
therefore a test of our methods, for use in more general
spacetimes. Ourmethods are complementary to a concurrent
study of entanglement harvesting in AdS3 [17], in which a
sum over images was used to evaluate the Wightman
function.
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III. A SIMPLE EXPRESSION FOR M

The nonlocal term M provides a more formidable
challenge. Because of the asymmetry between t and t0, it
does not convert into a simple double Fourier transform. It
may be written as

M ¼ −λBλA
Z

∞

−∞
dt
Z

t

−∞
dt0

× ðeiðΩ̃BtþΩ̃At0Þχ̃BðtÞχ̃Aðt0ÞWðt; xB; t0; xAÞ
þ eiðΩ̃AtþΩ̃Bt0Þχ̃AðtÞχBðt0ÞWðt; xA; t0; xBÞÞ: ð22Þ

This expression has an intriguing amount of symmetry that
can be exploited to simplify its calculation drastically as has
recently been shown [18]. In particular, while the inner
integration limit −∞ < t0 < t frustrates comparison to a
Fourier transform, there are special cases where a Fourier
transform is still possible.
In order to utilize the full generality of the following

theorem, we will reexpress the phase term and switching
function with respect to the proper time and gap, as in
ΩIτIðtÞ. This allows for cases where the relation between
proper and coordinate time is not stationary: for instance,
the accelerating detector. In these terms,

M¼−λBλA
Z

∞

−∞
dt
Z

t

−∞
dt0

× ðeiðΩBτBðtÞþΩAτAðt0ÞÞχ̃BðtÞχ̃Aðt0ÞWðt;xB; t0;xAÞ
þeiðΩAτAðtÞþΩBτBðt0Þχ̃AðtÞχ̃Bðt0ÞWðt;xA; t0;xBÞÞ: ð23Þ

Let us use the commutator and anticommutator of the
field,

iC−ðt; x; t0; x0Þ ≔ ½Φ̂ðt; xÞ; Φ̂ðt0; x0Þ� ð24Þ

Cþðt; x; t0; x0Þ ≔ fΦ̂ðt; xÞ; Φ̂ðt0; x0Þg ð25Þ

to clarify things. The commutator is clearly both conjugate-
symmetric and antisymmetric under exchange of ðt; xÞ with
ðt0; x0Þ, while the anticommutator is symmetric. Now,

2Wðt; x; t0; x0Þ ¼ Cþðt; x; t0; x0Þ þ iC−ðt; x; t0; x0Þ: ð26Þ

With respect to these functions, M becomes [18]

M ¼ Mþ þM− ð27Þ

Mþ ¼−
1

2
λBλA

Z
∞

−∞
dt
Z

∞

−∞
dt0

× ðeiðΩBτBðtÞþΩAτAðt0ÞÞχ̃BðtÞχ̃Aðt0ÞWðt;xB; t0;xAÞ
þeiðΩAτAðtÞþΩBτBðt0Þχ̃AðtÞχ̃Bðt0ÞWðt;xA; t0;xBÞÞ ð28Þ

M−¼−
1

2
λBλA

Z
∞

−∞
dt
Z

t

−∞
dt0

× ðeiðΩBτBðtÞþΩAτAðt0ÞÞχ̃BðtÞχ̃Aðt0ÞiC−ðt;xB; t0;xAÞ
þeiðΩAτAðtÞþΩBτBðt0Þχ̃AðtÞτ̃Bðt0ÞiC−ðt;xA; t0;xBÞÞ ð29Þ

where (by exploiting the symmetry of the real part of W
under exchange [18])Mþ is unchanged if we replaceW by
Cþ (hence the notation). In AdS4, these expressions for the
integral are particularly simple. Since in these spacetimes
Huygen’s principle holds for the conformally coupled
massless field, the commutator has support on the light
cone: therefore, C−ðt; x; t0; x0Þ will reduce to a combination
of delta functions. It is also interesting to note that
C−ðt; x; t0; x0Þ is independent of the state of the field: it
depends only on the background metric. In particular, the
causality of QFT implies that M− vanishes if the detectors
are out of causal contact, and therefore M ¼ Mþ. This is,
of course, true for spacelike separated detectors. Moreover,
in any spacetime satisfying the Huygens principle, timelike
separated detectors will also satisfy this condition.
Let us now consider Mþ, which does not vanish when

the detectors are causally disconnected. As shown in [18], it
can be reexpressed with respect to LAB:

Mþ ¼ −
1

2
ðLABðΩA;−ΩBÞ þ LBAðΩB;−ΩAÞÞ ð30Þ

where LIJðΩI;ΩJÞ denotes the local correlation term LIJ
where detectors I and J have proper gaps ΩI and ΩJ
respectively. In other words, if the detectors are not causally
connected during their switching, then the entangling term
can be expressed with respect to the term associated with
classical correlations. The fact that one of the detectors has
a ‘negative gap’ in the LIJ term also helps explain why the
ideal strategy is to have both ΩI positive: in that case, the
local noise LIIðΩ;ΩÞ is suppressed twice by the gap while
LIJðΩ;−ΩÞ is only suppressed once.
This means that when the two detectors are out of causal

contact, in the case where φnlmðxðtÞÞ and dτI=dt are
independent of time, we can write an explicit compact
expression for M as

M ¼ −
1

2
λBλA

X
ωlm

π

ω

×

�
χ̂B

�
ΩB −

dt
dτB

ω

�
χ̂A

�
ΩA þ dt

dτA
ω

�
× φnlmðxBÞφ�

ωlmðxAÞ

þ χ̂A

�
ΩA −

dt
dτA

ω

�
χ̂B

�
ΩB þ dt

dτB
ω

�

× φnlmðxAÞφ�
ωlmðxBÞ

�
ð31Þ
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In summary, if the two detectors are out of causal
contact, and have a Killing-like orbit, we find that the
entangling term can be quickly calculated in a similar
fashion to LIJ. This can occur when the detectors are
spacelike separated, or even timelike separated if the
spacetime is Huygens. Notably, it does not appear to be
necessary that the orbits of the detectors are related; as long
as the switching remains causally disconnected, we can
consider detectors that move along drastically different
trajectories, such as orbits on different planes, or even
different proper accelerations. The only requirement, from
a computational standpoint, is that the time dependence of
φnlmðxðtÞÞ remains simple enough to convolve with χ̂ðωÞ.
Amusingly, there is another way to express (23) that may

be of use. As shown in [18],

M¼−
1

2
λBλA

Z
∞

−∞
dt
Z

∞

−∞
dt0

× ðeiðΩBτBðtÞþΩAτAðt0ÞÞχ̃BðtÞχ̃Aðt0ÞiGFðt;xB; t0;xAÞ
þeiðΩAτAðtÞþΩBτBðt0Þχ̃AðtÞχ̃Bðt0ÞiGFðt;xA; t0;xBÞÞ; ð32Þ

where GF is the usual Feynman Green’s function. While it
suffers from certain singularities on the light cone, there are
cases where analytic solutions exist, in which case this
expression may become useful. We emphasize that this
expression in iGF is valid even if the detectors are timelike
connected. As before, this result is completely independent
of themotions of the detectors, and even the state of the field.

IV. GLOBAL AdS MODES

Since we are interested in detector responses over many
AdS periods, we will use global coordinates and modes. We
will use the convention found in Avis, Isham, and Storey
[22], namely

ds2¼L2 sec2ϱðdt2−dϱ2− sin2ϱðdθ2þ sin2 θdϕ2ÞÞ ð33Þ

where L ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
−3=Λ

p
is the AdS length. Note that this is not

the conformally flat coordinate system. The conformal
infinity of AdS exists at ϱ ¼ π=2, the speed of light in this
system is simply dϱ=dt ¼ 1, and therefore a lightlike signal
emitted from the origin reaches conformal infinity after a
coordinate time Δt ¼ π=2, regardless of L.
We will consider three boundary conditions on the

timelike boundary of AdS, enumerated according to the
value ε, as in [23]: ε ¼ −1 is Dirichlet, ε ¼ 1 is Neumann,
and ε ¼ 0 is “transparent” (i.e., considering AdS embedded
within an Einstein static universe (ESU) [22]); we note that
in [23] the latter two boundary conditions were erroneously
transposed. We emphasize that Dirichlet best corresponds
to the general case of a massive or nonconformally coupled
scalar, which would be trapped away from the boundary by
a gravitational potential.

Therefore, the vacuum is described by the following
modes:

φnlmðxÞ ¼
ffiffiffi
2

p
ε2Nωl cos ϱðsin ϱÞlCðlþ1Þ

ω−l−1ðcos ϱÞYm
l ðθ;ϕÞ;

ð34Þ

Nωl ¼
2ll!
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωðω − l − 1Þ!

πðωþ lÞ!

s
; ð35Þ

where Cb
a are the Gegenbauer polynomials, and

ω ¼
8<
:

lþ nþ 1 if ε ¼ 0

lþ 2nþ 1 if ε ¼ 1

lþ 2nþ 2 if ε ¼ −1
: ð36Þ

For all boundary conditions, any lightlike signal originating
from the center will return after a time Δt ¼ 2π, and sooner
if ε ≠ 0. Therefore, any observer can interact with the
boundary condition within finite time. Note also that while
the AdS space is still Cauchy for the transparent case, the
“Cauchy surface” is actually two surfaces, at times t ¼ 0,
π=2; this is because signals from t ¼ 0 “hide” on the other
side of the embedding ESU for half the period of AdS. This
is why the normalization for that case is different.
It is fairly easy to show that in AdS, there exist many

geodesics at constant radius. Denoting proper time of the
detector as τ, one family of geodesics is described by
t ¼ τ;ϕ ¼ τ. Note that the redshift and angular velocity are
completely independent of radius: this is a peculiar prop-
erty of AdS, and does not hold for most spacetimes (e.g.,
Schwarzschild-AdS). To highlight this, we note that the
proper length Δx between the center and ϱ are related by

Δx ¼ L logðtan ϱþ sec ϱÞ; ð37Þ

ϱ ¼ arctan sinhðΔx=LÞ: ð38Þ

Recall that our expressions for the density matrix
contained the key term F½χIðtÞφnlmðxIðtÞÞ�. In the case
of a circular geodesic detector, the observed frequency
depends on axial angular momentum,m. Specifically, since
ϕðtÞ ¼ t, we find that

φnlmðxðtÞÞ ¼
ffiffiffi
2

p
ε2Nωl cos ϱðsin ϱÞlCðlþ1Þ

ω−l−1ðcos ϱÞ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4π

ðl −mÞ!
ðlþmÞ!

s
Plðcos θÞeimt: ð39Þ
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This causes a shift in the Fourier transform mentioned
earlier.
There is another way to express the Wightman function

that preserves the symmetry of AdS [22]: namely, one can
express the Wightman function in terms of geodesic
distances in the embedding space. This implies that
geodesic observers, e.g., in circular orbit, observe the same
LAA as static observers in the center, despite radically
different expressions (see [24] for further discussion).
Evaluation of an orbiting geodesic detector’s response
can therefore largely be done using symmetry, whereas
the response of static detectors is more computationally
intensive.

V. ENTANGLED GEODESIC DETECTORS

The symmetries of AdS make it simplest to study the
case of two geodesic detectors, where one detector is at the
center, say detector A. We will then place detector B at a
proper separation Δx, which can be converted to a
coordinate separation via (38). Since both detectors are
the same on the LAA level (i.e., up to the difference in
switching function), we will focus instead on LBA and M.
The location of detector A at the center has a particular

consequence: only l ¼ 0 modes are nonzero at the center,
and so we will only need to sum over one index, n. This
also means that we do not need to concern ourselves overm
and the revolution of detector B. Furthermore, the fact that
φn00 is real will simplify things. For brevity, we will simply
write φn and ωn where appropriate.

LII ¼ λ2I
X
n

π

ωn
φ2
nðxAÞjχ̂IððωnÞ=Lþ ΩIÞj2 ð40Þ

As noted, the symmetries of AdS allow us to place detector
B at the center for LII (i.e., the change of coordinates, and
the corresponding vacua, are compatible).
Since the l ¼ 0 mode is spherically symmetric, the value

of the mode at B happens to be time-independent.
Therefore, we can write

LAB ¼ λBλA
X
n

π

ωn
φnðxBÞφnðxAÞ

× χ̂Aðωn=LþΩAÞχ̂�Bðωn=LþΩBÞ: ð41Þ
As for M, recall that we can instead use the simplified

expression found in (31) to conclude that

Mþ ¼ −λBλA
X∞
n¼0

π

2ωn
φnðxBÞφnðxAÞ

× ðχ̂BðΩB − ωn=LÞχ̂AðΩA þ ωn=LÞ
þ χ̂AðΩA − ωn=LÞχ̂BðΩB þ ωn=LÞÞ: ð42Þ

As noted previously, this particular expression happens to
be very similar to LBA. More precisely, expressing all

matrix elements as functions ofΩA;ΩB, it is easy to see that
in general

MþðΩA;ΩBÞ ¼ −
1

2
LABðΩA;−ΩBÞ −

1

2
LBAðΩB;−ΩAÞ:

ð43Þ

In the particular case of geodesic detectors in AdS4, an
analytic expression for the commutator also exists, pro-
vided one detector is located at the center; the result is [22]

iC−ðx; 0Þ ¼ −
i

4πL2
ς0ðtÞ½δðσ0ðxÞÞ − ð−1Þjδðσ0ðxÞ − 2Þ�

ð44Þ

where σ0 ¼ 1 − cos t sec ϱ is half of the geodesic distance
in the embedding space, the Dirichlet boundary condition
corresponds to j ¼ 2, ς0ðtÞ ¼ sgnðsinðtÞÞ, and the sym-
metries of AdS4 imply that the commutator depends only
on1 Kσ0 and t − t0. In other words, the Dirichlet commu-
tator has deltalike support on the light cone, changes sign
upon reflection, and is 2π-periodic. This simple form
allows us to handle the more general case where the
detectors are causally connected. Noting that ϱ is constant,
we may write dσ0=dt ¼ sin t sec ϱ; on the light cone, t ¼ ϱ,
so dσ0=dt ¼ tan ϱ. Therefore

iC−ðx; t; 0; t0Þ ¼
X∞

N¼−∞
−

i
4πL2

ðtan ϱÞ−1½δðΔt − ϱ − 2NπÞ

þ εδðΔtþ ϱ − ð2N þ 1ÞπÞ
− εδðΔt − ϱ − ð2N þ 1ÞπÞ
− δðΔtþ ϱ − ð2N þ 2ÞπÞ� ð45Þ

iC−ð0; t; x0; t0Þ ¼
X∞

N¼−∞
−

i
4πL2

ðtan ϱ0Þ−1½δðΔt − ϱ0 − 2NπÞ

þ εδðΔtþ ϱ0 − ð2N þ 1ÞπÞ
− εδðΔt − ϱ0 − ð2N þ 1ÞπÞ
− δðΔtþ ϱ0 − ð2N þ 2ÞπÞ� ð46Þ

where Δt ¼ t − t0. Note that, as written, t > t0 corresponds
to N ≥ 0.
Finally, let us substitute (45), (46) into the second half of

(29). Under the assumption that the detector gaps are equal,
we find that the commutator part of M is equal to

1Note that our sign convention differs from that of [22].
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M− ¼ −
1

2
λBλA

Z
∞

−∞
dt
Z

t

−∞
dt0eiΩ̃ðtþt0Þðχ̃BðtÞχ̃Aðt0ÞiC−ðt; xB; t0; xAÞ þ χ̃AðtÞχ̃Bðt0ÞiC−ðt; xA; t0; xBÞÞ

¼ iλAλB
8π tan ϱ

Z
∞

−∞
dte2iΩ̃t

X∞
N¼0

ðe−iΩ̃ðϱþ2NπÞχ̃BðtÞχ̃Aðt − ϱ − 2NπÞ þ e−iΩ̃ðϱþ2NπÞχ̃AðtÞχ̃Bðt − ϱ − 2NπÞ

þ εe−iΩ̃ð−ϱþð2Nþ1ÞπÞχ̃BðtÞχ̃Aðtþ ϱ − ð2N þ 1ÞπÞ þ εe−iΩ̃ð−ϱþð2Nþ1ÞπÞχ̃AðtÞχ̃Bðtþ ϱ − ð2N þ 1ÞπÞ
− εe−iΩ̃ðϱþð2Nþ1ÞπÞχ̃BðtÞχ̃Aðt − ϱ − ð2N þ 1ÞπÞ − εe−iΩ̃ðϱþð2Nþ1ÞπÞχ̃AðtÞχ̃Bðt − ϱ − ð2N þ 1ÞπÞ
− e−iΩ̃ð−ϱþð2Nþ2ÞπÞχ̃BðtÞχ̃Aðtþ ϱ − ð2N þ 2ÞπÞ − e−iΩ̃ð−ϱþð2Nþ2ÞπÞχ̃AðtÞχ̃Bðtþ ϱ − ð2N þ 2ÞπÞÞ

¼ iλAλB
8πL2 tan ϱ

Z
∞

−∞
dte2iΩ̃t

X∞
N¼0

�
χ̃B

�
tþ ϱþ 2Nπ

2

�
χ̃A

�
t −

ϱþ 2Nπ

2

�
þ χ̃A

�
tþ ϱþ 2Nπ

2

�
χ̃B

�
t −

ϱþ 2Nπ

2

�

þ εχ̃B

�
t −

ϱ − ð2N þ 1Þπ
2

�
χ̃A

�
tþ ϱ − ð2N þ 1Þπ

2

�
þ εχ̃A

�
t −

ϱ − ð2N þ 1Þπ
2

�
χ̃B

�
tþ ϱ − ð2N þ 1Þπ

2

�

− εχ̃B

�
tþ ϱþ ð2N þ 1Þπ

2

�
χ̃A

�
t −

ϱþ ð2N þ 1Þπ
2

�
− εχ̃A

�
tþ ϱþ ð2N þ 1Þπ

2

�
χ̃B

�
t −

ϱþ ð2N þ 1Þπ
2

�

− χ̃B

�
t −

ϱ − ð2N þ 2Þπ
2

�
χ̃A

�
tþ ϱ − ð2N þ 2Þπ

2

�
−χ̃A

�
t −

ϱ − ð2N þ 2Þπ
2

�
χ̃B

�
tþ ϱ − ð2N þ 2Þπ

2

��

¼ iλAλB
8πL2 tan ϱ

Z
∞

−∞
dte2iΩ̃t

X∞
N¼−∞

ςðN þ 1=2Þ
�
χ̃B

�
tþ ϱþ 2Nπ

2

�
χ̃A

�
t −

ϱþ 2Nπ

2

�

þ χ̃A

�
tþ ϱþ 2Nπ

2

�
χ̃B

�
t −

ϱþ 2Nπ

2

�
− εχ̃B

�
tþ ϱþ ð2N þ 1Þπ

2

�
χ̃A

�
t −

ϱþ ð2N þ 1Þ
2

�

−εχ̃A
�
tþ ϱþ ð2N þ 1Þ

2

�
χ̃B

�
t −

ϱþ ð2N þ 1Þ
2

��

¼ iλAλB
8πL2 tan ϱ

Z
∞

−∞
dte2iΩ̃t

X∞
N¼−∞

ςðN þ 1=2Þð−εÞpðNÞ
�
χ̃B

�
tþ ϱþ Nπ

2

�
χ̃A

�
t −

ϱþ Nπ

2

�

þ χ̃A

�
tþ ϱþ Nπ

2

�
χ̃B

�
t −

ϱþ Nπ

2

��
; ð47Þ

where ςðnÞ ¼ sgnðnÞ is the sign function, Ω̃dt ¼ Ωdτ,
pðnÞ ¼ 0 if n is even and 1 otherwise, and we use the
convention that 00 ¼ 1. We have thus expressed the light-
cone contribution in terms of the Fourier transform of a
certain sum of switching functions. This also makes clear
what the necessary conditions for convergence of the light-
cone contribution are: namely, that the switching function
is both smooth enough (because of the Fourier transform)
and decays rapidly enough (because of the sum over
translations). Note that strictly speaking, the use of the ς
function was also unnecessary: we simply used it to reduce
the number of terms inside the sum, by extending the sum
to negative infinity.
We should note that this summation over infinite N is

unique to AdS4: Huygen’s principle does not apply for
most AdSD, nor does it apply to most curved spaces (e.g.,
Schwarzschild); and the infinite echoes produced by
the conformal boundary are suppressed if some other
feature is present in the interior (e.g., a black hole, as in

Schwarzschild-AdS). In other words, this simple expres-
sion for the commutator part will not hold for most other
spacetimes, and in the few cases where it does (e.g.,
Minkowski), it will not involve a sum over infinite trans-
lations of the switching function. However, this form does
allow us to separate the divergences associated with the
light cone from the other features of the quantum state,
which may itself be useful.
In fact, we can reason as to what might happen in the more

generic case. To begin, in most curved spacetimes (with the
notable exception of dS4 [25]), and with nonconformal
couplings/masses, the commutator is not limited to the
lightcone, but also has (nonsingular) support inside it
[26–32]. One says that the strong Huygens principle is
violated. Notably this is remarkably important for the
physics of detectors and allows for the transmission of
information along timelike paths, without energy cost
[25,33–37]. This is not radically different from our con-
formal case, especially since the interior contribution decays
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with time. In fact, something similar also occurs in any
dimension greater than (1þ 1)-D: the commutator generi-
cally contains a decaying term inside the lightcone, which
will complicate calculations. (1þ 1)-D space is special
because this term no longer decays with time: questions

of convergence, among other things, arise (e.g., the (1þ 1)-
D infrared problem). However, in most cases, the singular-
ities within the commutator are limited to the light cone.
Therefore, this method may still be a way of preserving the
UV-dependent causal characteristics of the scalar field.

We include the expression for the causality estimator (15)

CIJ ¼−λAλB
Z

∞

−∞
dt
Z

t

−∞
dt0eiΩ̃I tℜ½eiΩ̃Jt0 �χ̃IðtÞχ̃Jðt0ÞiC−ðt;xI; t0;xJÞ

¼ iλAλB
4πL2 tanρ

Z
∞

−∞
dteiΩ̃I t

X∞
N¼0

ðℜ½eiΩ̃Jðt−ρ−2NπÞ�χ̃IðtÞχ̃Jðt−ρ−2NπÞþ εℜ½eiΩ̃Jðtþρ−ð2Nþ1ÞπÞ�χ̃IðtÞχ̃Jðtþρ− ð2Nþ1ÞπÞ

− εℜ½eiΩ̃Jðt−ρ−ð2Nþ1ÞπÞ�χ̃IðtÞχ̃Jðt−ρ− ð2Nþ1ÞπÞℜ½eiΩ̃Jðtþρ−ð2Nþ2ÞπÞ�χ̃IðtÞχ̃Jðtþρ− ð2Nþ2ÞπÞÞ: ð48Þ

We then can time-translate in order to get a more symmetric expression.

CIJ ¼
iλAλB

8πL2 tan ρ

Z
∞

−∞
dt

X∞
N¼0

�
ðe2iΩ̃t þ eiΩ̃ðρþ2NπÞÞχ̃I

�
tþ ρþ 2Nπ

2

�
χ̃J

�
t −

ρþ 2Nπ

2

�

þ εðe2iΩ̃t þ eiΩ̃ð−ρþð2Nþ1ÞπÞÞχ̃I
�
t −

ρ − ð2N þ 1Þπ
2

�
χ̃J

�
tþ ρ − ð2N þ 1Þπ

2

�

− εðe2iΩ̃t þ eiΩ̃ðρþð2Nþ1ÞπÞÞχ̃I
�
tþ ρþ ð2N þ 1Þπ

2

�
χ̃J

�
t −

ρþ ð2N þ 1Þπ
2

�

−ðe2iΩ̃t þ eiΩ̃ð−ρþð2Nþ2ÞπÞÞχ̃I
�
t −

ρ − ð2N þ 2Þπ
2

�
χ̃J

�
tþ ρ − ð2N þ 2Þπ

2

��
ð49Þ

where our third equation uses the fact that in the geodesic configuration, Ω̃I ¼ Ω̃J.

VI. STATIC DETECTORS

In order to complete our characterization of AdS4, we
also need to consider detectors that remain static in our
global coordinate system. As previous research has shown
(e.g., [38]), in the adiabatic switching limit, these detectors
do not become spontaneously excited, despite experiencing
proper acceleration; on the other hand, this proper accel-
eration provides reason to believe that in the finite time
regime, the response of such detectors should change,
especially if they are initialized in an excited state.
Moreover, in the broader picture, AdS4 is especially sym-
metric, in that all circular geodesics have the same proper
time; if we wish to generalize our analysis to other space-
times, we must consider more generic configurations. The
static configuration thus is a good starting point.
To maximize the remaining symmetries, we place

detector A at the center as before, and place B on the
z-axis (thus forcing δm0 into our angular momentum sums).
While this implies that the detectors remain at constant
separation, and thus that the Wightman function is t-time-
invariant, the detectors no longer agree on proper time.

Specifically, the proper times of detectors A and B are
now

τA ¼ Lt; ð50Þ

τB ¼ Lt sec ϱB; ð51Þ

where ϱB is the spatial coordinate of detector B. We will
also investigate dependence on the curvature parameter; we
will then use the convention that the proper gaps ΩI and
proper switching functions χIðτIÞ remain the same.
Consequently the two detectors will no longer be switched
on for the same coordinate time.
Since A is located at the center, Wðt; xAðtÞ; t0; xBðt0ÞÞ

remains exactly the same. This is because A couples
only to the mode l ¼ 0, so the angular coordinates of B
are irrelevant. Still, the different switching functions
lead to some loss of symmetry, and LBB is no longer
equal to LAA. We therefore write the corresponding
expression for the static case LBB, in terms of the modes
φn;l;mðxBÞ.
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LBB ¼ λ2B
X
n;l

π

ωnl
φ2
n;l;0ðxBÞjχ̂Bðωnl=ðL sec ϱBÞ þ ΩBÞj2: ð52Þ

For the two-detector terms, we simply have to remember to apply the Fourier transforms in proper time: that is, we
treat the proper switching function χBðτÞ as fixed, and apply the Fourier transform as follows:

χ̂BðτÞ ¼ F τB ½χBðτBðtÞÞ�: ð53Þ
There is another difficulty, however. We now obtain

M− ¼ −
1

2
λBλA

Z
∞

−∞
dt
Z

t

−∞
dt0ðeiΩ̃Btχ̃BðtÞeiΩ̃At0 χ̃Aðt0ÞiC−ðt; xB; t0; xAÞ þ ðeiΩ̃Atχ̃AðtÞeiΩ̃Bt0 χ̃Bðt0ÞiC−ðt; xA; t0; xBÞÞ

¼ iλBλA
8πL2 tan ϱB

Z
∞

−∞
dteiðΩ̃AþΩ̃BÞt

X∞
N¼0

ðe−iΩ̃AðϱBþ2NπÞχ̃BðtÞχ̃Aðt − ϱB − 2NπÞ þ e−iΩ̃BðϱBþ2NπÞχ̃AðtÞχ̃Bðt − ϱB − 2NπÞ

þ εe−iΩ̃Að−ϱBþð2Nþ1ÞπÞχ̃BðtÞχ̃Aðtþ ϱB − ð2N þ 1ÞπÞ þ εe−iΩ̃Bð−ϱBþð2Nþ1ÞπÞχ̃AðtÞχ̃Bðtþ ϱB − ð2N þ 1ÞπÞ
− εe−iΩ̃AðϱBþð2Nþ1ÞπÞχ̃BðtÞχ̃Aðt − ϱB − ð2N þ 1ÞπÞ − εe−iΩ̃BðϱBþð2Nþ1ÞπÞχ̃AðtÞχ̃Bðt − ϱB − ð2N þ 1ÞπÞ
− e−iΩ̃Að−ϱBþð2Nþ2ÞπÞχ̃BðtÞχ̃Aðtþ ϱB − ð2N þ 2ÞπÞ − e−iΩ̃Bð−ϱBþð2Nþ2ÞπÞχ̃AðtÞχ̃Bðtþ ϱB − ð2N þ 2ÞπÞÞ ð54Þ

for theM− integral, and at this point we have a small problem. In general a phase coefficient exists before each term, unlike
the geodesic case, where Ω̃A ¼ Ω̃B, allowing us to t-translate each term to make the N phase cancel. Fortunately we can
continue as before, translating by half the displacement, in order to make this expression more symmetric. Then, after
translating and relabeling t0 as t, and renumbering as in the geodesic case (47), we find

M− ¼ iλBλA
8πL2 tan ϱB

Z
∞

−∞
dteiðΩ̃AþΩ̃BÞt

X∞
N¼−∞

ð−εÞpðNÞςðN þ 1=2Þ

ðeiðΩ̃B−Ω̃AÞðϱBþNπÞ=2χ̃B

�
tþ ϱB þ Nπ

2

�
χ̃A

�
t −

ϱB þ Nπ

2

�

þ e−iðΩ̃B−Ω̃AÞðϱBþNπÞ=2χ̃A

�
tþ ϱB þ Nπ

2

�
χ̃B

�
t −

ϱB þ Nπ

2

��
: ð55Þ

Note that this expression applies equally to the case where both detectors are geodesic, but have different proper gaps. It
appears that the symmetry in Ω̃I is more important than any symmetry in ΩI .
The causality estimator derivation follows a similar path, except we cannot assume Ω̃I ¼ Ω̃J. We will simply write:

CIJ ¼
iλAλB

4πL2 tan ϱB

Z
∞

−∞
dteiΩ̃I t

X∞
N¼0

½ℜ½eiΩ̃Jðt−ϱB−2NπÞ�χ̃IðtÞχ̃Jðt − ϱB − 2NπÞ

þ εℜ½eiΩ̃JðtþϱB−ð2Nþ1ÞπÞ�χ̃IðtÞχ̃Jðtþ ϱB − ð2N þ 1ÞπÞ
− εℜ½eiΩ̃Jðt−ϱB−ð2Nþ1ÞπÞ�χ̃IðtÞχ̃Jðt − ϱB − ð2N þ 1ÞπÞ
−ℜ½eiΩ̃JðtþϱB−ð2Nþ2ÞπÞ�χ̃IðtÞχ̃Jðtþ ϱB − ð2N þ 2ÞπÞ� ð56Þ

While this still can be written as a “sum of two
Fourier transforms,” that form is not significantly
simpler. In fact, for computational purposes it is simpler
to use this expression directly.

VII. GAUSSIAN SWITCHING FUNCTIONS

At this point, let us make a few simplifying assumptions.
As is common practice, we will use Gaussian switching
functions, with

χIðτÞ ¼ e−ðτ−τ0IÞ2=2σ2 : ð57Þ

Note that our parameters τ0I; σ are expressed in proper
time; the conversion between t0I and τ0I will depend on the
detector configuration. As before, the Fourier transform of
the switching function in its proper time is

χ̂IðkÞ ¼ σe−k
2σ2=2þikτ0I : ð58Þ
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We can therefore express the density matrix elements in
terms of σ; t0I , and try to measure the dependence of the
entanglement on the parameters.
In the geodesic case, let us assume that λA ¼ λB ¼ λ,

Ω̃A ¼ Ω̃B ¼ ΩL; t0A ¼ −t0B ¼ −t0=2 ¼ −τ0=2L, σ̃A ¼
σ̃B ¼ σ=L. For t0 > 0, this implies A switches first.
When considering different curvatures, we will also hold
Δx constant, calculating ϱB using (38). At this point, we
emphasize that all circular geodesics in AdS share a
common proper time, which implies that these detectors
are identical. In a more general spacetime, this corresponds
to setting the coordinate gap and switching times equal, but
the physical interpretation of this choice is less clear.
Substituting the switching function into the L expressions,
we find

LII ¼ λ2
X
n

π

ωn
φ2
nðxAÞσ2e−ðωn=LþΩÞ2σ2 ð59Þ

LAB ¼ λ2
X
n

π

ωn
φnðxBÞφnðxAÞ

× σ2e−ðωn=LþΩÞ2σ2−iðωn=LþΩÞτ0 : ð60Þ

The M integral, specifically the commutator term M−, is
rather more complicated. Using the symmetries above, we
find

χ̃Bðtþ ðϱB þ NπÞ=2Þχ̃Aðt − ðϱB þ NπÞ=2Þ
¼ L2e−ððϱBþNπ−t0Þ=2Þ2=σ̃2e−t2=σ̃2 ; ð61Þ

χAðtþ ðϱB þ NπÞ=2ÞχBðt − ðϱB þ NπÞ=2Þ
¼ L2e−ððϱBþNπþt0Þ=2Þ2=σ̃2e−t2=σ̃2 : ð62Þ

Evaluating the expressions for Mþ and M− yields

Mþ ¼ −λ2
X∞
n¼0

ð−εÞpðNÞ π

ωn
φnðxBÞφnðxAÞ

× σ2 cos½ωnτ0=L�e−ðΩ2þω2
n=L2Þσ2 ð63Þ

M− ¼ λ2
i

8π tan ϱB
σ̃

ffiffiffi
π

p
e−σ̃

2Ω̃2
X∞

N¼−∞
ð−εÞpðNÞςðN þ 1=2Þ

× ðe−ððϱBþNπ−t0Þ=2Þ2=σ̃2 þ e−ððϱBþNπþt0Þ=2Þ2=σ̃2Þ

¼ λ2
i

4
ffiffiffi
π

p
L tan ϱB

σe−σ
2Ω2

X∞
N¼−∞

ð−εÞpðNÞςðN þ 1=2Þ

× e−ððϱBþNπÞ2L2þτ2
0
Þ=4σ2 coshð2ðϱB þ NπÞτ0L=4σ2Þ

ð64Þ

Note that Mþ and M− are pure real and pure imaginary
respectively. This leads to interesting consequences
if we attempt to calculate them separately, which we
explore later.
The causality estimator expressions look rather similar to

theM− expressions, with a twist. In this case, there is a part
that is not Gaussian in the gap:

CAB ¼ λ2
iσ

8
ffiffiffi
π

p
L tan ϱB

X∞
N¼0

½ðe−σ2Ω2 þ eiΩðϱBþ2NπÞLÞe−ððϱBþ2NπÞLþτ0Þ2=4σ2

þ εðe−σ2Ω2 þ eiΩð−ϱBþð2Nþ1ÞπÞLÞe−ðð−ϱBþð2Nþ1ÞπÞLþτ0Þ2=4σ2

− εðe−σ2Ω2 þ eiΩðϱBþð2Nþ1ÞπÞLÞe−ððϱBþð2Nþ1ÞπÞLþτ0Þ2=4σ2

− ðe−σ2Ω2 þ eiΩð−ϱBþð2Nþ2ÞπÞLÞe−ðð−ϱBþð2Nþ2ÞπÞLþτ0Þ2=4σ2 � ð65Þ

CBA ¼ λ2
iσ

8
ffiffiffi
π

p
L tan ϱB

X∞
N¼0

½ðe−σ2Ω2 þ eiΩðϱBþ2NπÞLÞe−ððϱBþ2NπÞL−τ0Þ2=4σ2

þ εðe−σ2Ω2 þ eiΩð−ϱBþð2Nþ1ÞπÞLÞe−ðð−ϱBþð2Nþ1ÞπÞL−τ0Þ2=4σ2

− εðe−σ2Ω2 þ eiΩðϱBþð2Nþ1ÞπÞLÞe−ððϱBþð2Nþ1ÞπÞL−τ0Þ2=4σ2

− ðe−σ2Ω2 þ eiΩð−ϱBþð2Nþ2ÞπÞLÞe−ðð−ϱBþð2Nþ2ÞπÞL−τ0Þ2=4σ2 � ð66Þ

For the static case, we set the detectors to have equal
proper gap and switching time. This implies that Ω̃A ¼ ΩL,
Ω̃B ¼ ΩðL sec ϱBÞ, σ̃A ¼ σ=L, σ̃B ¼ σ=ðL sec ϱBÞ. For the
time displacement we again choose t0A ¼ −t0B ¼ −t0=2.

While this still produces the total coordinate-time displace-
ment of t0, we must now be more mindful of the effect on
the phases. We also choose to scale the coordinate-time
displacement as t0 ¼ τ0=L ¼ −2τ0A=L, holding the proper
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time constant; that is, we scale the coordinate-time dis-
placement as though it were measured at the center.
Under this choice of time displacements, we can calcu-

late the nonentangling detector responses as follows:

LII ¼ λ2σ2
X
nl

π

ωnl
φ2
nlðxIÞe−σ

2ðΩþωnl=ðL sec ϱBIÞÞ2 ð67Þ

LIJ ¼ λ2σ2
X
n

π

ωn
φnðxJÞφnðxIÞe−σ2ðΩþωn=ðL sec ϱBIÞÞ2=2

× e−σ
2ðΩþωn=ðL sec ϱBJÞÞ2=2e−iðωnþΩ̄Þτ0=L ð68Þ

where Ω̄ ¼ ðΩ̃A þ Ω̃BÞ=2 ¼ ΩLð1þ sec ϱBÞ=2.
Next, for Mþ, we find

Mþ ¼−
λ2

2

X
n

π

ωn
φnðxBÞφnðxAÞσ2

× ðe−ðσ2ð ωn
LsecϱB

−ΩÞ2þσ2ðωnL þΩÞ2Þ=2−ið2nþ2þðΩ̃A−Ω̃BÞÞt0

þe−ðσ
2ðωnL −ΩÞ2þσ2ð ωn

LsecϱB
þΩÞ2Þ=2þiðωn−ðΩ̃A−Ω̃BÞÞt0Þ

¼−λ2σ2e−σ2Ω2þiΩτ0ðsecϱB−1Þ
X
n

π

ωn
φnðxBÞφnðxAÞ

×e−σ
2ðωnÞ2ð1þcos2ϱBÞ=2L2

×coshðσ2ΩðωnÞð1− cosϱBÞ=L− iðωnÞτ0=LÞ ð69Þ

employing the identity (30), where in the final step we use
the fact that σ̃IΩ̃I ¼ σΩ. It seems thatMW is no longer real.
The switching functions appearing in M− become

χ̃B

�
tþ ϱB þ Nπ

2

�
χ̃A

�
t −

ϱB þ Nπ

2

�

¼ L2ðsec ϱBÞe−ðtþ
ϱBþNπ−t0

2
Þ2=2σ̃2Be−ðt−

ϱBþNπ−t0
2

Þ2=2σ̃2A

¼ L2ðsec ϱBÞe
−ðϱBþNπ−t0Þ2

2ðσ̃2
A
þσ̃2

B
Þ e

−
�
tþðϱBþNπ−t0Þ

σ̃2
A
−σ̃2

B
σ̃2
A
þσ̃2

B

�
2

=2σ̃2AB ð70Þ

χ̃A

�
tþ ϱB þ Nπ

2

�
χ̃B

�
t −

ϱB þ Nπ

2

�

¼ L2ðsec ϱBÞe−ðtþ
ϱBþNπþt0

2
Þ2=2σ̃2Ae−ðt−

ϱBþNπþt0
2

Þ2=2σ̃2B

¼ L2ðsec ϱBÞe
−ðϱBþNπþt0Þ2

2ðσ̃2
A
þσ̃2

B
Þ e

−
�
t−ðϱBþNπþt0Þ

σ̃2
A
−σ̃2

B
σ̃2
A
þσ̃2

B

�
2

=2σ̃2AB ð71Þ

where σ̃2AB ¼ σ̃2Aσ̃
2
B=ðσ̃2A þ σ̃2BÞ. We can then apply the dt

integral term-by-term. The final result is

M− ¼ iλ2

8π sin ϱB

X∞
N¼−∞

ð−εÞpðNÞςðN þ 1=2Þσ̃AB
ffiffiffiffiffiffi
2π

p
e
−2σ2ABΩ̄

2þ2it0Ω̄
σ̃2
A
−σ̃2

B
σ̃2
A
þσ̃2

B

×

�
e
−ðϱBþNπ−t0Þ2

2ðσ̃2
A
þσ̃2

B
Þ −iðϱBþNπÞσ̃

2
A
Ω̃A−σ̃2

B
Ω̃B

σ̃2
A
þσ̃2

B þ e
−ðϱBþNπþt0Þ2

2ðσ̃2
A
þσ̃2

B
Þ þiðϱBþNπÞσ̃

2
A
Ω̃A−σ̃2

B
Ω̃B

σ̃2
A
þσ̃2

B

�

¼ iλ2

8π sin ϱB
σ̃AB

ffiffiffiffiffiffi
2π

p
e
−2σ2ABΩ̄

2þ2it0Ω̄
σ̃2
A
−σ̃2

B
σ̃2
A
þσ̃2

B

X∞
N¼−∞

ð−εÞpðNÞςðN þ 1=2Þe−
ðϱBþNπÞ2þt2

0

2ðσ̃2
A
þσ̃2

B
Þ

× 2 cosh

�
ϱB þ Nπ

σ̃2A þ σ̃2B
ðt0 − iðσ̃2AΩ̃A − σ̃2BΩ̃BÞÞ

�

¼ iλ2

8πL sin ϱB
σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

1þ sec2ϱB

s
e
−ð1þsec ϱBÞ2

1þsec2ϱB
σ2Ω2=2þiτ0Ω

ð1−cos2ϱBÞð1þsec ϱBÞ
1þcos2ϱB

×
X∞

N¼−∞
ð−εÞpðNÞςðN þ 1=2Þe−

ðϱBþNπÞ2L2þτ2
0

2σ2ð1þcos2ϱBÞ

× 2 cosh
�ðϱB þ NπÞL
1þ cos2ϱB

ðτ0=σ2 − iΩð1 − cos ϱBÞÞ
�
: ð72Þ

Notably, it appears that the asymmetry between A and B
has causedM− to no longer be purely imaginary, except in
the special case ϱB ¼ 0. Unlike the geodesic case, it is not
clear whether Mþ and M− have any particular rela-
tive phase.

Finally, the causality estimator largely follows the M−

derivation. The full expression may be found in (A2).
While the result is rather complicated, we can see two
terms: one Gaussian on the sum of detector frequencies,
and one Gaussian on the difference. In most cases the
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Gaussian of differences (or the ex part of cosh x) will
dominate.
Next, the logarithmic negativity can be expressed as

N ¼ maxðN ð2Þ; 0Þ where

N ð2Þ ¼ −
1

2

�
LAA þ LBB −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLAA − LBBÞ2 þ 4jMj2

q �
:

ð73Þ

However, in the geodesic case, because LAA ¼ LBB, this
simplifies to

N ð2Þ ¼ jMj − LII: ð74Þ

This form demonstrates the competition between nonlocal
correlations and local noise. It also suggests that it may be
possible to quantify the degree to which the detectors are
timelike-connected, by comparing the commutator part of
M to local noise. We will explore this in the next section.
Finally, we will also consider the mutual information,

given by

IðρABÞ ¼ SðρAÞ þ SðρBÞ − SðρABÞ ð75Þ

where S ¼ −Trðρ log ρÞ is the von Neumann entropy and
ρI ¼ TrJðρIJÞ is the partial trace of the total state of two
detectors. Evaluating in terms of LJI , we find [8]

IðρABÞ ¼ Lþ logLþ þ L− logL−

− LAA logLAA − LBB logLBB ð76Þ

where

L� ¼ 1

2

�
LAAþLBB�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLAA−LBBÞ2þ4jLABj2

q �
: ð77Þ

Of course, in the geodesic case, the symmetries of the
problem allow us to reduce this to

L� ¼ LAA � jLABj: ð78Þ

VIII. RESULTS

We will begin by analyzing LII . While the transition
probability of a uniformly accelerating single detector in
AdS4 was previously explored by Jennings [38], our use of
finite time switching implies the possibility of qualitatively
different behavior. Furthermore, we will also (briefly)
consider negative gaps, corresponding to a situation in
which the detector is initially excited. For brevity, we will
mostly plot data from the Dirichlet case, ε ¼ −1, and
discuss differences where they occur.

A. Transition rates

Using the expression found previously, we compute LII
for a static detector as a function of gap and position, where
we use σ as our reference length scale. Notably, we find
essentially no variation with respect to the position of the
detector. As one might expect, the effect of a finite
switching time is to excite the detector, even if it starts
in its ground state. A negative-gap detector, on the other
hand, spontaneously deexcites; the greater the negative gap
(in absolute value), the faster this occurs. For small values
of L, such as L ¼ σ, we can also see hints of a resonant
effect in Fig. 1(a), as the detector couples to different modes
within AdS, much as it would couple to different modes in
a cavity. The main difference between boundary conditions
appears to be the location of the resonances: the von
Neumann case ε ¼ 1 has one set of modes, the Dirichlet
case ε ¼ −1 has another, and the transparent case ε ¼ 0 has
both. Notably, the lowest energy mode is higher in the
Dirichlet case: as shown in Fig. 1(a), this also causes
the transition rate to decay faster for positiveΩ. As well, the
resonances become less distinct at increasing distance from
the center, due to the presence of higher spherical har-
monics. However, since we wish to minimize LII , we will
only consider positive gap when calculating entanglement.
(Of course, as discussed earlier, the geodesic detector has
the same behavior regardless of its position.) We also note
that comparison with the analytic expression for the
Wightman function yields identical results.
There is one feature of the transition rate that is

characteristic of the dimensionality, and not of AdSn

(a)

(b)

FIG. 1. The one-detector transition rate for the static detector,
L ¼ σ, varying Ω and r separately. Note the resonances visible in
Fig. 1(a).
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generally. For large negative gap, we see that the transition
rate is roughly proportional to jΩj, modulo the oscillations.
This is consistent with previous results in 3þ 1 dimen-
sional spacetime, e.g., Minkowski, as calculated in [21].
However, it is quite different from the picture found by
Henderson et al. in AdS3 [17]; in that case, the response of
the detector approaches a finite limit for large negative Ω.
This difference is not surprising—it is well known that the
response of a detector exhibits different dependence on Ω
as a function of spacetime dimension due to the short
distance behavior of the Wightman function [39]. An
equivalent way to understand this is from the energy
scaling of the density of states of field quanta probed by
the detector, which goes as Ωd−3 [40]. In specific terms,
both AdS3 and AdS4 have an azimuthal mode number m,
but AdS4 also has an angular momentum mode l.
We also compare different values of L to determine

whether the detector can determine the curvature of AdS in
a “faster than light” sense discussed in [21]. Specifically,
can a detector identify the curvature of spacetime, if L > σ?
This question is not as trivial as it appears: although AdS is
usually described as uniformly curved, there is a coordinate
system in which it is conformally flat, over a patch covering
half an AdS period. We therefore might naïvely expect that
the curvature cannot be detected except in timescales larger
than that patch. As shown in Fig. 2, this is not true: while
LAA converges as L=σ is increased to infinity, there is an
observable difference for L=σ as large as 5. This confirms
our expectations: namely, that AdS approximates flat
space in the lower curvature limit, but has some detectable
differences.
Once again, we also compared different boundary

conditions over varying values of L; while the resonances
were once again shifted for different ε, the more noticeable
effect at positiveΩ is the small-L behavior. Specifically, the
Dirichlet condition (ε ¼ −1) decays the fastest. We also
observed that when Ω < 0, ε-dependent resonances with
varying L were observed, as one would expect.

B. Geodesic entanglement harvesting

We now analyze the negativity N ð2Þ. While this scenario
was previously analyzed in flat space in [8], some unique

considerations appear in AdS. At the simplest and most
obvious level, there is one additional parameter, the
curvature scale L. The flat space limit is L → ∞, while
at the opposite limit, curvature approaches infinity; so one
might expect that entanglement behaves very differently if
L is as small as σ or smaller. At that point, the detector can
probe the discrete spectrum of AdS, so we might expect
some qualitatively different behavior. However, the ques-
tion of whether entanglement exists at all appears to have a
similar answer: namely, for any separation, some entangle-
ment exists for sufficiently high detector gap. We show a
gap/separation plot for L ¼ 5σ in Fig. 3(a), where we have
plotted N ð2Þ in (74) and not the negativity N . Notably,
there still appears to be a linear relation between minimum
gap and proper separation, independent of the value of ε.
Plotting for L ¼ σ shows an almost identical graph,

FIG. 3. Negativity values for varying separation and gap.
ε ¼ −1. Region where N ð2Þ > CAB appears to be limited in size,
even as L → ∞. Zero contour marked in red.

FIG. 2. The one-detector transition rate at the center, with fixed
gap Ω ¼ 2=σ, varying curvature length L.
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complete with a line of zero negativity in roughly the same
place; the implications of this invariance recommend
further study.
The fact that the boundary of entanglement is described

by a line deserves further examination. For instance, in [8],
the boundary becomes a straight line for both (3þ 1)-D and
(1þ 1)-D Minkowski space, when the detector is switched
via Gaussian, suggesting the dimension is not a factor here.
This is further supported by similar findings [17] in AdS3,
in which this linear relation breaks down at small gap and
separation. However, it appears that AdS has a nearly
perfect line here; in particular, it appears that even degen-
erate detectors can harvest entanglement, while this is not
possible in Minkowski space. While this is not strictly a
violation of [10], since the finite switching implies the
detectors are in causal contact, it is still surprising that AdS
is distinguished from Minkowski space in this way. Further
study may be needed here.
The question of whether spacelike entanglement is pos-

sible is more complicated. Recall that we use Gaussian
switching functions, rather than compact switching func-
tions. Since our switching functions do not have compact
support, we must therefore be wary of how much the tails of
the Gaussians contribute to the entanglement. There are two
ways we might attempt to quantify this: we could either
simply assert that the detectors are spacelike separated if their
switching supports are suitably separated in space, or we
could compare the negativity to the “causal” contribution to
the density matrix. Unfortunately, these two methods do not
yield similar answers: since our density matrix term M is
Gaussian in the gaps, but our causality estimator CIJ is not,
we cannot simply increase the gap until the negativity
exceeds the causal contribution. Therefore, Fig. 3(a) is a
littlemisleading: if the separation is too large, then even if the
gap may be increased untilN ð2Þ > 0, the negativity will still
not exceed the causality operator. Note that the parameter
space in which N ð2Þ > jCIJj is quite restrictive, even as we
approach the flat space limit; we plot the difference N ð2Þ −
jCIJj in Fig. 3(b) for L ¼ 5. In fact, the size of this “island
of spacelike entanglement” does not increase in size

significantly, even for L ¼ 200 or larger, in defiance
of what we would expect of the flat space limit. We leave
the correct characterization of spacelike entanglement to
future work.
Another unique feature of AdS appears if we try to

decrease L too far. Because we use a conformally coupled
scalar field, signals can reach spatial infinity in finite time;
therefore, if two detectors are switched at the same time,
there is a switching time σ for which the detectors will
become timelike connected, no matter how far apart they
are in space. (While this is also true for a non-conformally
coupled field, strictly speaking, the corresponding finite
energy modes are trapped away from the boundary; the
“signal” that reaches the boundary can only be faithfully
represented in the UV limit. However, two detectors will
still become connected for sufficiently small L.) This
occurs when the characteristic length L is approximately
equal to σ. This unique situation raises some further
challenges when determining whether detectors are caus-
ally connected: for instance, since the boundary is located
at ρ ¼ π=2, and the speed of light in these coordinates is
dρ=dt ¼ 1, then the proper time for the central detector to
send a signal, have it reflect off the boundary, then return, is
Lπ; no greater separation is possible. Nevertheless, we may
still consider what happens to the negativity for such high
curvatures, despite their more classical origin. At such
curvatures, the boundary condition ε becomes relevant, as
we will see.
We also plot the negativity as a function of curvature scale

and proper separation, keeping the proper gap constant
at Ω ¼ 3σ, shown in Fig. 4(a), with selected sections in
Figs. 4(b) and 4(c). For sufficiently large curvature scale, the
negativity appears to approach an asymptotic limit, as we
would expect. It also appears that for very small curvature
scales, the negativity trends towards zero. However, contrary
to what one might expect, it seems that even as L → 0, the
maximum range of entanglement increases. Of course, as
mentioned previously, this is most likely due to the timelike
connection phenomenon: in that limit, detectors become
causally related, no matter what their proper separation is.

FIG. 4. The negativity of two geodesic detectors for varying boundary conditions, one at the origin, one at proper
separation Δx. Zero contours in red.
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At this point, we compare the negativity obtained for
different boundary conditions ε as a function of curvature
scale. While these values converge for large L, as we might
expect, their behavior at small L is drastically different. We
attribute these differences to the different shapes of the
ground states of AdS: namely, while the lowest energy
excitation of the Dirichlet case is centered about the origin,
the lowest energy excitation of the von Neumann and
transparent cases is evenly spread out over AdS, explaining
why the Dirichlet entanglement decays so quickly with
distance.
Figure 5 reveals some interesting features of the neg-

ativity and mutual information, as a function of separation
in time and space. One can see the light cones emanating
from the central detector, reflecting off the conformal
boundary; this is highlighted in Fig. 5(a). It is also
interesting to note the effects of changing the boundary
conditions: notably, the von Neumann condition ε ¼ 1 in
Fig. 5(c) causes entanglement to vanish between the
maxima on the Δx ¼ 0 line, while that does not happen
for the transparent and Dirichlet conditions. As one might
expect, because our boundary conditions are reflective, the
negativity is almost periodic. [Of course, the transparent
case in Fig. 5(b) does not have reflection off the boundary
per se, but it is still almost periodic, albeit with a period
twice as long.] While this neatly explains the behavior of
the light-cone part of the entanglement, this still leaves a

small mystery: namely, why is the spacelike part Mþ also
affected? This is highlighted in Figs. 5(d)–5(f); while no
trace of the light cones remains, the mutual information still
appears sensitive to the boundary condition. While the
commutator has an obvious dependence on ε, the depend-
ence of Mþ is a matter for further study.
However, the apparent periodicity of N ð2Þ is not perfect:

the maximum at Δt ¼ 0 is different from the others. This is
more apparent if we pick a smaller curvature scale. Careful
analysis shows that in this case, while the other peaks blur
into a continuum, the central peak soars above them:
Figure 6 shows this in dramatic form. (Of course, by
symmetry, LII is equal and constant for detectors A and B.)
That said, in both cases, the response is almost periodic in a
weaker sense: there is a component of the negativity that
does not vanish as time displacement approaches infinity.
This is contrary to the situation with cavities and is
evidently a symptom of the global recurrence time phe-
nomenon, wherein all field operators of AdS are periodic.
This remains true even if the coupling is minimal. The low-
L case also highlights the importance of the boundary
condition for extreme AdS: while the overall structure
of Figs. 6(a)–6(c) are broadly similar, the values of
entanglement attained differ wildly, due to differences
in how the various reflections of the commutator interact.
We also calculated the mutual information IðρABÞ for
L ¼ σ;Ω ¼ 2=σ. As one might have expected, without

FIG. 5. Negativity N ð2Þ and mutual information IðρABÞ for geodesic detectors, one at the origin, as a function of separation in space
and time. L ¼ 5σ;Ω ¼ 3=σ. Zero contour in red.

NG, MANN, and MARTÍN-MARTÍNEZ PHYS. REV. D 98, 125005 (2018)

125005-16



the “peakiness” from the commutator part, the result has no
variation with respect to Δt; we have therefore chosen to
omit these graphs.

C. Static entanglement harvesting

The static detector case has more interesting features.
First, we plot the dependence of negativity on the proper
gap of the detectors versus the proper separation, for
curvature scales L ¼ 5σ in Fig. 7, with qualitatively similar
results (not illustrated) holding for L ¼ σ. We again find an
island of spacelike entanglement, bounded by the red line
in the plot of N ð2Þ − CAB shown in Fig. 7(b). According to
this estimator, “spacelike” entanglement is only possible in
a small parameter space, at a spatial separation of approx-
imately 2.5σ; as before, even for very large L, this island
does not significantly grow in size. Once again, whether
this is the correct characterization of spacelike entangle-
ment will need further study, especially in flat space.
Plotting next the dependence of negativity on the

detector proper separation and the curvature scale, we note
that in order to calculate LBB, larger separations require
exponentially more resources in the static case. While our
results in Fig. 8 are mostly as in the geodesic case, a truly
bizarre feature appears: an island of separability, bounded
by the red line in the figure. All boundary conditions show
this feature, albeit with slightly different sizes and positions
of the island. (Notably, the Dirichlet condition has the
smallest island.) However, there does not appear to be a
resonance or any such numerical correspondence here. This
phenomenon is also not particular to AdS4; a similar island
has been shown to appear in AdS3 in the same general
region of parameter space [17]. The origin of this feature is
a matter for further research. As well, the behavior as L
becomes small is radically different; for sufficiently small
L, there is a local maximum in negativity as a function of
separation. Still, for even smaller L, we have found that the
negativity does still vanish.
Next we plot in Fig. 9 the negativity and the mutual

information against the spatial and temporal separations of
the detectors, for parameters L ¼ 5σ;Ω ¼ 3=σ. The picture

FIG. 6. Negativity for geodesic detectors, one at the origin, as a function of separation in space and time. L ¼ σ;Ω ¼ 2=σ. Zero
contours in red.

FIG. 7. The negativity for a pair of static detectors separated by
Δx and having proper gap Ω, with AdS length L ¼ 5σ. Note that
coarseness of N ð2Þ appears to be an artifact of the plot grid. The
zero contour is in red; we see it bounds an island of spacelike
entanglement.
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here is rather more complicated. The far region where
entanglement vanishes is reduced to a tiny dot compared to
the geodesic case. However, a grid of peaks and troughs
also appears in the negativity. In fact, careful analysis
shows that there are tiny pockets where entanglement
extinction occurs. These features appear to be the result
of interference between the Mþ andM− terms, especially
since no such feature is inherent to either individually, nor
in the mutual information; however, there does not appear
to be a simple way to predict their relative phase.
The negativity for L ¼ σ;Ω ¼ 2=σ in Figs. 10(a)–10(c)

is broadly similar: entanglement reaches further than in the

geodesic case, but a puzzling series of waves also appears.
This particular choice of parameters has much smaller
regions of zero entanglement in the waves, however. Even
more interesting is the fact that as a result of the entangle-
ment, there is a range of separations for which entangle-
ment is stronger than in the limit Δx → 0. While the
existence of this latter fact appears to be related to the
smaller curvature scale, and the difference in redshifts, our
understanding of this feature is once again limited.
We also note a degree of time-asymmetry in the

negativity for all three boundary conditions, slightly more
exaggerated for Dirichlet. This effect, while small, is indeed

FIG. 8. The negativity N ð2Þ for static detectors, one at the origin, as a function of curvature length L and proper separation Δx. Zero
contours in red. Note the island of separability, in which there is no entanglement.

FIG. 9. The negativity and mutual information for static detectors, one at the origin, as a function of separation in space and time.
L ¼ 5σ;Ω ¼ 3=σ. Zero contours in red.
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present. The same effect appears in AdS3 [17], where it is
considerably more pronounced, with much larger concur-
rence for Δt > 0, when detector A switches first. In both
dimensions the effect vanishes for large AdS length. We
suspect that the diminished asymmetry in AdS4 is due to
the effect of the Huygens principle.
Surprisingly, the mutual information, shown in

Figs. 9(d)–9(f) and 10(d)–10(f), is quite similar to the
geodesic case. It appears that the entanglement contains
far more information than the mutual information does.
Notably, there is still an apparent violation of what one
might call “time reversal symmetry”: the quantity of mutual
information depends on which detector switches on first. Of
course, in this context, that may not be surprising, since the
two detector configurations are quite distinct. However, one
mystery is still present: evidently, in the static case, there is a
finite nonzero distance at which mutual information is
maximized. We believe this is another consequence of the
different redshifts; however, there is no corresponding
analysis in Minkowski space to which we can compare.
To summarize this section, the static detector case is

much richer in features than the geodesic detector case. We
hypothesize that the “waves” are a consequence of the
detector gaps being unequal with respect to coordinate
time; this means that the relative phase of the components
M� evolves with coordinate time. However, more study is
required to come to this conclusion. In particular, even in

the flat case, information about the unequal detector gap
case is limited. As well, the other known cases of static
detector entanglement in curved space are not immediately
comparable (e.g., being in (2þ 1) dimensions, as in
[17,41]). Many questions yet remain.

IX. CONCLUSIONS

Although an analytic expression for the Wightman
function exists in AdS4, using it to compute the entangle-
ment of detectors within that spacetime is not trivial. We
chose to use a mode sum formalism, which can be
generalized to anyKilling spacetime, and then characterized
the response of single detectors, as well as investigated the
entanglement structure of pairs of detectors, within AdS4.
Because AdS4 is Huygens, we were able to use a novel
expression ofM to evaluate the entanglement structure, but
we believe that the expression should still be helpful in more
general cases, especially if the two detectors remain space-
like separated. We then used our expressions to analyze two
scenarios: one where one detector is in geodesic motion at
fixed proper separation from the other at the origin, and
another where one detector is static at a finite distance from
the center.
Still, the importance of the Huygens property of AdS4

should not be understated. It is not a generic property of
AdS, nor of four-dimensional spacetime individually:

FIG. 10. The negativity and mutual information for static detectors, one at the origin, as a function of separation in space and time.
L ¼ σ;Ω ¼ 2=σ. Zero contours in red.
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picking different dimensions, or picking another spacetime,
will usually cause the commutator to become nonzero
inside the light cone, making M− more difficult to
calculate. This, in a nutshell, is the largest fundamental
difference between our AdS4 and the previously analyzed
BTZ [41] and AdS3 cases [17]. We believe this may also be
the cause of some of the more qualitative differences
between our results and those of AdS3, most notably
related to the dependence of the negativity on which
detector switches first: while the commutator contribution
persists inside the lightcone in AdS3, this cannot happen in
AdS4, leading to some genuinely different results.
A brief summary of the entanglement structure of AdS4

is “like Minkowski space locally, but more like a cavity
globally.” Similar to our analysis of the gravitating cavity,
the detector is unable to distinguish AdS4 from flat space
unless switched for times comparable to the scale of the
curvature. However, once that threshold is reached, the
detectors begin to behave as though they were in a cavity:
we find that the single detector exhibits mode resonances,
while the pair of detectors experience periodicity in time.
However, the degree of complexity introduced by forcing
the detectors to remain static (and, therefore, at different
redshifts and proper accelerations) spoils this simple
picture. The complex structure that results (even in
Minkowski space) merits further investigation.

While thegeodesic case ismost symmetric,webelieve that
the static case is more generic, and thus more likely to be
useful in the general case. Our methods should allow for
calculation of the two-detector statistics of any static space-
time, even when the analytic form of the Wightman function
is not known. As such, we will soon investigate the
Schwarzschild solution, and hope to learn much about its
entanglement structure. We hope that these methods will be
employed to study many other spacetimes in the future.
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APPENDIX: STATIC DETECTOR
CAUSALITY ESTIMATOR

Here we will perform substitute our Gaussian switching
functions into (56) and integrate over time. First, we make
our expression more symmetrical by translating the time
variable for each term. This also will allow us to use the
previously found expressions for the products of the
switching functions.

CAB ¼ iλAλB
8πL2 tan ϱB

X∞
N¼0

Z
∞

−∞
dt

�
ðeiððΩ̃AþΩ̃BÞtÞþðΩ̃A−Ω̃BÞðϱBþ2NπÞÞ þ eiððΩ̃A−Ω̃BÞtÞþðΩ̃AþΩ̃BÞðϱBþ2NπÞÞÞ

× χ̃A

�
tþ ϱB þ 2Nπ

2

�
χ̃B

�
t −

ϱB þ 2Nπ

2

�

þ εðeiððΩ̃AþΩ̃BÞtÞþðΩ̃A−Ω̃BÞð−ϱBþð2Nþ1ÞπÞÞ þ eiððΩ̃A−Ω̃BÞtÞþðΩ̃AþΩ̃BÞð−ϱBþð2Nþ1ÞπÞÞÞ

× χ̃A

�
tþ −ϱB þ ð2N þ 1Þπ

2

�
χ̃B

�
t −

−ϱB þ ð2N þ 1Þπ
2

�

− εðeiððΩ̃AþΩ̃BÞtÞþðΩ̃A−Ω̃BÞðϱBþð2Nþ1ÞπÞÞ þ eiððΩ̃A−Ω̃BÞtÞþðΩ̃AþΩ̃BÞðϱBþð2Nþ1ÞπÞÞÞ

× χ̃A

�
tþ −ϱB þ ð2N þ 1Þπ

2

�
χ̃B

�
t −

−ϱB þ ð2N þ 1Þπ
2

�

− ðeiððΩ̃AþΩ̃BÞtÞþðΩ̃A−Ω̃BÞð−ϱBþð2Nþ2ÞπÞÞ þ eiððΩ̃A−Ω̃BÞtÞþðΩ̃AþΩ̃BÞð−ϱBþð2Nþ2ÞπÞÞÞ

× χ̃A

�
tþ −ϱB þ ð2N þ 2Þπ

2

�
χ̃B

�
t −

−ϱB þ ð2N þ 2Þπ
2

��
ðA1Þ

Next, substitute in the switching function found in (71), and do the integration over t. The switching functions are all
Gaussian, so this can be done analytically. The result should be
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CAB ¼ iλAλB
8π sin ϱB

σ̃AB
ffiffiffiffiffiffi
2π

p X∞
N¼0

�
e
−ðϱBþ2Nπþt0Þ2

2ðσ̃2
A
þσ̃2

B
Þ
�
e
−ðΩ̃AþΩ̃BÞ2=2σ̃2ABþiðΩ̃AþΩ̃BÞðϱBþ2Nπþt0Þ

σ̃2
A
−σ̃2

B
σ̃2
A
þσ̃2

B
þiðΩ̃A−Ω̃BÞðϱBþ2NπÞ

þ e
−ðΩ̃A−Ω̃BÞ2=2σ̃2ABþiðΩ̃A−Ω̃BÞðϱBþ2Nπþt0Þ

σ̃2
A
−σ̃2

B
σ̃2
A
þσ̃2

B
þiðΩ̃AþΩ̃BÞðϱBþ2NπÞ�

þ εe
−ð−ϱBþð2Nþ1Þπþt0Þ2

2ðσ̃2
A
þσ̃2

B
Þ

�
e
−ðΩ̃AþΩ̃BÞ2=2σ̃2ABþiðΩ̃AþΩ̃BÞð−ϱBþð2Nþ1Þπþt0Þ

σ̃2
A
−σ̃2

B
σ̃2
A
þσ̃2

B
þiðΩ̃A−Ω̃BÞð−ϱBþð2Nþ1ÞπÞ

þ e
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A
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B
σ̃2
A
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B
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A
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B
Þ

�
e
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A
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B
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A
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B
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þ e
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A
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A
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σ̃2
A
−σ̃2
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σ̃2
A
þσ̃2

B
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For CBA, substitute t0 with−t0, and exchange Ω̃A with Ω̃B, and σ̃A with σ̃B. We leave fully expanding the tilded terms with
respect to ϱB, L, Ω and σ as an exercise for the reader.
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